Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Виды и аналоги конденсаторов – как определить тип конденсатора и подобрать аналог

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

В высоковольтных устройствах (умножителях напряжения, генераторах Маркса, катушках Тесла, мощных лазерах и т.п.) применяют высоковольтные конденсаторы, отличающиеся по конструкции от низковольтных. Они используются в схемах с напряжением более 1600 В. Некоторые разновидности высоковольтных электронных устройств:

  • К75-25 – импульсные модели, используемые в схемах с напряжением до 50 кВ. Их емкость – 2-25 нФ. Благодаря возможности работать с токами частотой 500 Гц, эффективны в искровых катушках Тесла.
  • К15-4. Этот тип конденсатора можно определить по корпусу цилиндрической формы зеленого цвета. Имеют небольшую емкость и используются в генераторах Маркса, старых телевизорах, умножителях напряжения и других высоковольтных низкочастотных схемах.
  • К15-5. Керамические детали кирпичного цвета, компактных габаритов, дисковой формы. Максимальное напряжение – 6,3 кВ, используются в высокочастотных фильтрах.

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

В бумажных конденсаторах фольгированные обкладки разделяет диэлектрик из конденсаторной бумаги. Эти детали используются как в высокочастотных, так и низкочастотных цепях. Они не пользуются популярностью из-за низкой механической прочности. Более прочным вариантом является металлобумажная деталь, в которой на бумагу напыляется металлический слой.

Бумажные и металлобумажные конденсаторы выпускаются в широком интервале емкостей и номинальных напряжений. Металлобумажные варианты выигрывают в плане компактности конструкции и проигрывают по стабильности сопротивления изоляции. Дополнительный плюс металлобумажных изделий – способность к самовосстановлению электрической прочности при единичных случаях пробоев бумаги.

Электролитические конденсаторы отличаются повышенной энергоемкостью и используются в цепях переменного и постоянного тока. В них диэлектриком является металлооксидный слой, созданный электрохимическим способом. Он располагается на плюсовой обложке из того же металла. Другая обложка – жидкий или сухой электролит. Металл – алюминий, ниобий или тантал.

Конденсаторы постоянной емкости относятся к устаревшим. Им на смену пришли детали переменной электроемкости. Наиболее распространены электролитические конденсаторы подстроечного типа. Их емкость меняется при регулировке, но при работе схемы остается постоянной. Благодаря герметичности корпуса и твердого полупроводника, изделия стабильны при хранении и могут использоваться при низких температурах (до -80°C) и высоких частотах.

Пленочные полистирольные изделия востребованы в схемах импульсного характера, с постоянным или высокочастотным переменным током. Такая продукция выпускается с обкладками из фольги или с пленочным диэлектриком, на который наносится тонкий металлизированный слой. Для изготовления пленочного диэлектрика используются поликарбонат, тефлон, полипропилен, металлизированная бумага. Диапазон емкостей – 5 пкФ-100 мкФ. Очень популярны высоковольтные исполнения пленочных конденсаторов – до 2000 В.

Выпускаются различные типы пленочных конденсаторов, которые различаются по:

  • размещению слоев диэлектрика и обкладок – аксиальные и радиальные;
  • материалу изготовления корпуса – полимерные и пластмассовые, выпускают модели без корпуса с эпоксидным покрытием;
  • форма – цилиндрическая и прямоугольная.

Основное преимущество такой продукции – способность к самовосстановлению, защищающая ее от вероятности преждевременного отказа. Другие плюсы – хорошие электрохимические характеристики, тепловая стабильность, способность к высоким нагрузкам при переменном токе. Благодаря выше перечисленным свойствам, пленочные и металлопленочные изделия применяются в измерительной технике, радиоэлектронике, вычислительной технике.

Также называются SMD конденсаторы. Эти радиокомпоненты предназначены для поверхностного монтажа. Типы безвыводных конденсаторов:

  • керамические;
  • пленочные;
  • танталовые.

Чип-конденсаторы имеют компактные габариты, стандартизированную форму корпуса, характеристики, во многом совпадающие с многослойными конденсаторами. Используются в печатных платах как по отдельности, так и наборами.

Таблица аналогов конденсаторов

Напишите в комментариях какие аналоги зарубежных или отечественных конденсаторов вы знаете и мы добавим их в таблицу.

Отечественный конденсатор Зарубежный аналог
К10 – керамический, низковольтный MLCC
К15 – керамический, высоковольтный Elzet
К53-16 Тип TIM, Mallory; тип B45181, Siemens
К53-16-1 Тип EF, Panasonic
К53-18 Тип TAC, Mallory
К53-20 Тип TAC, Mallory
К53-22 Тип B45196, Siemen; тип T421, Union Carbide
К53-25 Тип 935D, Sprague
К53-34 Тип EF, Panasonic; тип TDC, Mallory
К32 – слюдяной малой мощности Mica
К42 – бумажный, с металлизированными обкладками MP
К50 – электролитический, алюминиевый, фольговый Jamikon, Elzet, Capxon, Samhwa
К50-16 50В 500 мкФ Capxon KF
К50-24 25В 2200 мкФ Frolyt TGL 7198
К50-29 Vishay 601D
К50-29В 63В 220 мкФ Supertech
К71 – пленочный полистирольный KS или FKS
К76 – лакопленочный MKL
K77 – пленочный, поликарбонатный KC, MKC, FKC
К78 – пленочный, полипропиленовый KP, MKP, FKP

Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Основные типы конденсаторов | Электрик



Электрический конденсатор – один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические


Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.
В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!
 Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы


Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 – 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.
Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее “ходовых” ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы


Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 – 100 нФ.
Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.
Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы


Например К52-1 или smd А. Основным веществом служит – пентоксид тантала, а в качестве электролита – диоксид марганца. Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.
Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы


Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.
Ёмкость таких конденсаторов идет порядка 1 нф – 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы


Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф – 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт! Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.


Максимальное напряжение у них сравнительно не большое, до 300 – 600 вольт что вполне достаточно для пуска и работы электродвигателей.
Выводы конденсатора могут быть как в виде проводов, так и под клеммы или под болт.

Цифровая маркировка конденсаторов

Цифро-буквенная маркировка конденсаторов

Виды конденсаторов и их применение

Конденсатор — это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

 

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),

Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в котором металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид  конденсаторов имеет особую маркировку.

Конденсаторы с воздушным диэлектриком

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

Типы конденсаторов

Конденсатор — один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.

Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Пленочные конденсаторы

Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

В качестве диэлектрика пленочных конденсаторов обычно используют тефлон, металлизированную бумагу, майлар, поликарбонат, полипропилен, полиэстер. Диапазон емкости этого типа конденсаторов составляет примерно от 5pF (пикофарад) до 100uF (микрофарад). Диапазон номинального напряжения пленочных конденсаторов достаточно широк . Некоторые высоковольтные конденсаторы этого типа достигают более 2000 вольт.

Различают два вида пленочных конденсаторов по способу размещения слоев диэлектрика и обкладок – радиальные и аксиальные.

Радиальный и аксиальный тип пленочных конденсаторов

Маркировка емкости пленочных конденсаторов происходит по тому же принципу что и керамических. Это трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%. Например 103J означает 10 000 пикоФарад +/- 5% или 10 наноФарад +/-5%.

Однако довольно часто разные производители кроме значения емкости и точности добавляют символы номинального напряжения, температуры, серии, класса, корпуса, и других особых характеристик. Данные символы могут отличатся и быть размещены в разном порядке, в зависимости от производителя. Поэтому для разшифровки маркировки пленочных конденсаторов желательно пользоваться документацией (Datasheets).

Электролитические конденсаторы

Электролитические конденсаторы обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Обратим внимание, что электролит хорошо проводит электрический ток! Это полностью противоречит принципу устройства конденсатора, где два проводника должны быть разделены диэлектриком.

Дело в том, что слой диэлектрика создается уже после изготовления конструкции компонента. Через конденсатор пропускают ток, и в результате электролитического окисления на одной из обкладок появляется тонкий слой оксида алюминия или оксида тантала (в зависимости из какого металла состоит обкладка). Этот слой представляет собой очень тонкий и эффективный диэлектрик, позволяющий электролитическим конденсаторам превосходить по емкости в сотни раз «обычные» пленочные конденсаторы.

Электролитические конденсаторы

Недостатком вышеописанного процесса окисления является полярность конденсатора. Оксидный слой обладает свойствами односторонней проводимости. При неправильном подключении напряжения оксидный слой разрушается, и через конденсатор может пойти большой ток. Это приведет к быстрому нагреву и разширению электролита, в результате чего может произойти взрыв конденсатора! Поэтому необходимо всегда соблюдать полярность при подключении электролитического конденсатора. В связи с этим на корпусе компонента производители указывают куда подключать минус.

По причине своей полярности электролитические конденсаторы не могут быть использованы в цепях с переменным током. Но иногда можно встретить компоненты состоящие из двух конденсаторов, соединенными минус-к-минусу и формирующие «не полярные» конденсаторы. Их можно использовать в цепях с переменным током малого напряжения.

Емкость алюминиевых электролитических конденсаторов в колеблется основном от 1 мкФ до 47000 мкФ. Номинальное напряжение — от 5В до 500В. Допуск обычно довольно большой — 20%.

Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия — у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.

Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Переменные конденсаторы

Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы — приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала (форму, частоту, амплитуду и т.д.).

Емкость может менятся механическим способом, электрическим напряжением (вариконды), и с помощью температуры (термоконденсаторы). В последнее время во многих областях вариконды вытесняются варикапами (диодами с переменной емкостью).

Под названием «переменные конденсаторы» обычно имеют ввиду компоненты с механическим изменением емкости. Управление емкостю здесь достигается путем изменения площади обкладок. Обкладки в переменных конденсаторах состоят из множества пластин с воздушным пространством между ними в качестве диэлектрика.

Часть пластин фиксированная, часть подвижная. Положение подвижных пластин по отношению к фиксированным определяет общую емкость конденсатора. Чем больше общая площадь пластин тем больше емкость.

Переменные конденсаторы

Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Способ монтажа конденсаторов

Конденсаторы разделяют по способу монтажа на компоненты для навесного монтажа и для печатного монтажа (SMD или чип-конденсаторы). У компонентов для навесного монтажа есть выводы в виде «ножек». У конденсаторов для печатного монтажа выводами служит часть их поверхности.

Конденсатор.Типы конденсаторов.

Типы конденсаторов

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

  • Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор.

    В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

    Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин.

  • Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (1 киловольт – 1 000 вольт). Номинальное напряжение маркируют на корпусе конденсатора.

  • Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе. Допуск обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Три указанных параметра являются основными. Знание этих параметров достаточно, чтобы самостоятельно подбирать конденсаторы для изготовления самоделок и ремонта электроники.

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Кроме обычных существуют ещё и электролитические конденсаторы. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность. Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Обозначение электролитического конденсатора на схемах.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Обозначается так.

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Свойства конденсатора
  • Конденсатор не пропускает постоянный ток и является для него изолятором.

  • Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Вот так выглядят конденсаторы постоянной ёмкости.

Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость22 мкФ (22), номинальное напряжение16 Вольт (16V). Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

классификация по характеристикам, параметрам и применению

Конденсаторы активно применяются в электрических схемах электрооборудования и радиоэлектронных приборах. В зависимости от целевого назначения и условий эксплуатации техники, используются различные виды конденсаторов. Для того чтобы лучше понимать, какая может быть классификация конденсаторов, надо иметь общее понятие, как они работают и где применяются.

Конденсаторы различных видов

Физический принцип работы конденсаторов

Независимо от того, какие типы конденсаторов, их практическое применение вызвано ценным свойством: способностью накапливать электрический заряд и освобождаться от него, другими словами, заряжаться и разряжаться.

Самая простая конструкция конденсатора

Бывают разные типы конденсаторов, но классическая конструкция очень простая: две пластины с отводными электродами, между которыми диэлектрический материал. В схемах колебательного контура приема передающей аппаратуры конденсаторы работают в совокупности с катушкой индуктивности. Сначала пластины заряжаются противоположными зарядами, после полной зарядки начинается разрядка, после полной разрядки начинается вторичный процесс зарядки, но при этом полярности на пластинах меняются. На этом принципе работают схемы аналоговых генераторов.

Емкость конденсаторов

Основные параметры конденсаторов – это емкость и напряжение. Независимо, какая классификация конденсаторов, его электрическая емкость характеризует величину заряда, который способен накопить конденсатор, измеряется она в Фарадах (F). Экспериментальным путем и расчетами установлено, что емкость планеты Земля составляет 1F, величина заряда конденсаторов ничтожно мала по отношению к этому значению. Поэтому для удобства расчетов в системе измерения величин СИ используются следующие порядки:

  • Микро – одна миллионная фарады 1х10-6 µF;
  • Нано – одна миллиардная фарады 1х10-9 nF;
  • Пико – одна триллионная фарады 1х10-12 pF.

На практике есть некоторые трудности определения емкости конденсаторов, для этого надо изучить правила маркировки различных видов и производителей. Эта тема требует отдельного более тщательного рассмотрения.

Назначение и область применения

Электронное оборудование содержит большое количество узлов различного назначения, где применяются конденсаторы. В таймерах они подключаются через резисторы, определяя время разряда или заряда. В блоках питания и преобразователях напряжения сглаживают пульсацию, стабилизируя напряжение после выпрямителя. В некоторых случаях конденсаторы используются в качестве фильтров, обладая свойством проводимости переменного тока и запиранием постоянного.

Пример бытовой техники, где применяются конденсаторы

Они эффективно могут ускорить или замедлить процесс увеличения или падения напряжений в различных электронных схемах.

Разновидности конденсаторов

Все виды конденсаторов можно разделить на несколько групп:

  1. По функциональному назначению:
  • Общего назначения, которые применяются в бытовой электронной аппаратуре, эксплуатируемой при обычных условиях, к этим моделям нет особых требований по защите от окружающей среды;
  • Специального назначения, здесь учитываются условия эксплуатации и функциональное назначение, повышены требования к защите корпуса и пределы допустимых электрических величин;
  • Низковольтные изделия используются при напряжении до 1600В;
  • Высоковольтные – выше 1600В;
  • Конденсаторы с низкой индуктивной составляющей – для подавления радиопомех в электромагнитном поле;
  • В высокочастотной аппаратуре ставят конденсаторы с газовым, воздушным или вакуумным заполнением в качестве диэлектрической прокладки, они обладают малыми диэлектрическими потерями.
  1. По состоянию характеристики емкости:
  • С фиксированной величиной емкости;
  • Конденсаторы с переменной емкостью разделяют на три группы:
  1. Подстроечьные используются для одноразовой подстройки аппаратуры при вводе в эксплуатацию или периодической настройки в процессе длительной эксплуатации приборов, когда некоторые электрические параметры изменяют свои значения;
  2. С переменной емкостью, когда емкость меняется от температуры или напряжения, такие приборы называются термоконденсаторами и варикапами;
  3. Когда емкость меняется за счет изменения расстояния между пластинами или площади пластин, расположенных друг против друга.
  4. По степени защиты:
  • Без защиты – для эксплуатации в обычных условиях;
  • С элементами защиты корпуса – для работы в условиях повышенных температур и большой влажности;
  • Конденсаторы без корпуса и изоляционного слоя с открытой конструкцией;
  • Уплотненные конденсаторы под корпусом имеют уплотнительный изоляционный наполнитель;
  • С элементами повышенной герметизации.
  1. По способу монтажа в конструкцию схемы:
  • Навесные конденсаторы с ленточными, круглыми электродами и опорным винтом для крепления на платы или другие конструкции, охлаждающие радиаторы в силовых цепях;

Конденсаторы с опорным винтом для крепления на радиаторы

  • Модели конденсаторов с электродами круглого сечения для установки в печатные платы;
  • SMD конденсаторы сделаны по специальной технологии для поверхностной пайки на дорожки печатной платы;

SMD конденсаторы для поверхностной пайки на печатные платы

  • Современные разработки предусматривают конденсаторы с защелкивающимися электродами на конструкции схем.
  1. По виду материала диэлектрической прокладки между пластинами конденсатора:
  • Конденсаторы, в которых в качестве диэлектрика ставят материал неорганического происхождения. Используется керамика, слюда или стекло, эмалированные прокладки;
  • В низкочастотных моделях используются органические пленки, в которых диэлектрические свойства зависят от частоты проходящего через них тока;
  • Высокочастотные конденсаторы имеют фторопластовые или полистирольные прокладки, газовое, вакуумное или воздушное наполнение;
  • Электролитические конденсаторы подключаются обязательно с учетом полярности цепи, диэлектрическая прокладка в них содержит оксидные материалы, производимые электрохимическим путем. На электроде анода используется алюминий или тантал, в качестве катода применяют электролитический состав желеобразной массы (гель) или жидкость.

Особенности и характеристики востребованных конденсаторов

Несмотря на простоту классической конструкции, отдельные виды имеют некоторые особенности, это важно учитывать при выборе конденсаторов.

Электролитические алюминиевые конденсаторы

Конструкция этих конденсаторов содержит внутри цилиндрического корпуса скрутку двух алюминиевых лент, между которыми бумажная лента пропитана электролитическим составом. Емкость таких конденсаторов составляет 0.1-100 000 µF, при максимальном напряжении 35В.

Конструкция электролитического конденсатора

Именно такие конденсаторы применяют на печатных платах оборудования, где есть элементы, работающие на постоянном токе.

Обратите внимание! При подключении таких конденсаторов обязательно надо учитывать полярность. Недостатком этой конструкции считают значительный ток утечки, емкость уменьшается на высоких частотах.

Конденсаторы с полипропиленом

В качестве диэлектрической прослойки между пластинами установлена пленка из полипропилена. Интервал величины емкости этого типа – от 100pF до 10 µF, максимальное напряжение – 3000В. Преимущество этого вида – в высокой точности емкости с погрешностью в 1%.

Конденсаторы с полиэстеровой пластиной:

  • Пределы емкости – 1nF-15uF,
  • Напряжение – 50-1500В;
  • Погрешность – производители делают конденсаторы различного класса точности: 5;10 и 20%.

Многослойные керамические конденсаторы

Имеют многослойную структуру с чередованием металла и керамики, величина их емкости не превышает нескольких µF.

Конструкция многослойных керамических конденсаторов

Напряжение даже не указывается на маркировке, все они работают в пределах 0-50В в схемах с постоянным, пульсирующим и переменным током.

Высоковольтные керамические конденсаторы

Эти конденсаторы работают в пределах напряжения от 50 до 15000В, емкость – 68pF-150nF. Так же работают в цепях с постоянным, переменным и пульсирующим током.

Керамические дисковые конденсаторы с одним слоем

Конструкция пластин этого конденсатора имеет круглую форму, с одной диэлектрической прослойкой между ними. Они имеют большую емкость – 1pF-220nF, напряжение – до 50В. Преимущества этого вида:

  • малые токи утечки,
  • низкая индуктивная составляющая,
  • способность работать при высоких частотах и температурах, сохраняя стабильные показатели емкости.

Танталовые конденсаторы

Танталовые изделия по конструкции и характеристикам напоминают алюминиевые электролитические конденсаторы, но меньшего размера. Диэлектрический слой состоит из пентаоксида тантала, рабочее напряжение –не более 100В, емкость – 47nF-1000uF.

Важно! Электрод положительной полярности указывается на корпусе линией. Эффективно работают на высоких частотах порядка сотен Khz.

Воздушные переменные конденсаторы

Такие модели конденсаторов используются в приемо-передающей аппаратуре для настройки частот. Диэлектриком между пластин является воздушная прослойка.

Конструкция переменного конденсатора с воздушным диэлектрическим слоем

Роторная часть с пластинами вращается по оси относительно статорной неподвижной части, таким образом, изменяется величина емкости.

Виды конденсаторов с переменной емкостью

Бумажные конденсаторы

Сделаны на основе конденсаторной бумаги в виде ленты, которая сматывается в плотный рулон. Конденсаторная бумага со специальной диэлектрической пропиткой устанавливается между фольгированными лентами.

Внешний вид одного из бумажных конденсаторов

Рулон помещается в герметичный металлический корпус прямоугольной или цилиндрической формы, иногда вместо фольги используется металлическое напыление. Чаще всего такие конденсаторы используют в силовых промышленных сетях 220/380В в схемах запуска электродвигателей.

Обозначение некоторых видов конденсаторов на схемах

Производители делают большое количество различных конденсаторов, поэтому при их использовании надо хорошо изучить назначение оборудования и условия его эксплуатации. Тогда выбор конденсаторов будет сделан осознанно, с учетом их конструктивных особенностей и технических характеристик, тогда и приборы будут работать эффективно и долговременно.

Видео

Оцените статью:

Виды конденсаторов – Основы электроники

Узнав, что же такое конденсатор, рассмотрим, какие бывают виды конденсаторов.

Итак, виды конденсаторов можно классифицировать по нескольким признакам:

  • по назначению;
  • по характеру изменения емкости;
  • по способу монтажа;
  • по характеру защиты от внешних воздействий.

Иногда в литературе термин «виды конденсаторов» меняют на «группы конденсаторов», что одинаково по своему смысловому значению.

Классификация видов конденсаторов показана на рисунке 1.

Рисунок 1. Виды конденсаторов.

Рассмотрим более подробно виды конденсаторов, а точнее характеристики видов конденсаторов.

Конденсаторы общего назначения – конденсаторы, применяемые в большинстве видов радиоэлектронной аппаратуры. К конденсаторам этого вида не применяются особые требования.

Конденсаторы специального назначения – конденсаторы, к которым предъявляются особые требования (по напряжению, частоте, виду действующих сигналов и т.д.) в зависимости от той цепи, где они установлены. Например к данному виду конденсаторов относятся: импульсные, высоковольтные, пусковые, помехоподавляющие, а так же и другие конденсаторы.

Конденсаторы постоянной емкости – это конденсаторы, чья емкость является фиксированной и в процессе эксплуатации аппаратуры не меняется.

Конденсаторы переменной емкости – применяются в цепях, где требуется изменение емкости в процессе эксплуатации. При этом изменение емкости может производится различными способами: механически, путем изменения управляющего напряжения, изменением температуры окружающей среды.

Подстроечные конденсаторы – не применяются в цепях с оперативным изменением емкости. В основном их используют для первоначальной настройки аппаратуры или периодической подстройки цепей, где требуется малый диапазон изменения емкости.

Конденсаторы, используемые для печатного монтажа – это конденсаторы которые применяются в аппаратуре с обычными печатными платами с отверстиями для выводов радиокомпонентов. У таких конденсатов выводы изготовлены из проволоки круглого сечения.

Конденсаторы, используемые для навесного монтажа. Этот вид конденсаторов очень многообразен по исполнению выводов. Здесь могут использоваться мягкие и жесткие выводы, радиальные или аксиальные выводы, выводы, изготовленные из ленты или проволоки круглого сечения, а так же с выводами в виде опорных винтов и проходных шпилек (проходные конденсаторы). К конденсаторам для навесного монтажа можно отнести более современные конденсаторы с выводами под винт.

Конденсаторы, используемые для поверхностного монтажа( SDM-конденсаторы). Отдельно необходимо выделить SDM-конденсаторы, так как они находят все большее и большее применение в современной радиоэлектронной аппаратуре. Другое название таких конденсаторов – безвыводные. У этого вида конденсаторов в качестве выводов используются части его копруса.

Конденсаторы с защёлкивающимися выводами (Snap in). Вид современных конденсаторов, в которых выводы изготовлены таким образом, что при установки в отверстия платы они жестко «защелкиваются», это позволяет качественно и с удобствами осуществить их пайку.

Конденсаторы с выводами под винт. Интересный вид конденсаторов для поверхностного монтажа. В выводах конденсаторов этого вида нарезана резьба. В основном эти конденсаторы применяются в блоках питания, где преобладает ток большой величины и необходимо надежно подключить выводы к силовым проводам. Использование выводов под винт так же делает возможным установку конденсатора на радиатор.

Незащищенные конденсаторы – вид конденсаторов, который не допускают к работе в условиях повышенной влажности. Возможно эксплуатация этих конденсаторов в составе герметизированной аппаратуры.

Защищенные конденсаторы – могут работать в условия повышенной влажности.

Неизолированные конденсаторы – при использовании этого вида конденсаторов не допускается касания их корпусом шасси аппаратуры.

Изолированные конденсаторы – имеют хорошо изолированный корпус, что делает возможным касания шасси аппаратуры или ее токоведущих поверхностей.

Уплотненные конденсаторы – в конденсаторах этого вида используется корпус, уплотненный органическими материалами.

Герметизированные конденсаторы – эти конденсаторы имеют герметизированный корпус, что исключает взаимодействие внутренней конструкции конденсатора с окружающей средой.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Различные типы конденсаторов и их применение

Конденсатор

Конденсаторы широко используются в качестве электронного компонента в современных схемах и устройствах. Конденсатор имеет долгую историю и используется более 250 лет назад. Конденсаторы являются старейшим электронным компонентом, который изучается, проектируется, разрабатывается и используется. С развитием технологий конденсаторы выпускаются разных типов в зависимости от их характеристик. В этой статье мы обсудим самые популярные и полезные типы конденсаторов.Конденсатор является компонентом, и он обладает способностью накапливать энергию в виде электрического заряда, который создает электрическую разность между его пластинами, и он похож на небольшую перезаряжаемую батарею.

Что такое конденсатор?

Конденсатор является пассивным компонентом и накапливает электрическую энергию в электрическом поле. Эффект конденсатора известен как емкость. Он состоит из двух близких проводников и разделен диэлектрическим материалом. Если пластины подключены к источнику питания, они накапливают электрический заряд.Одна пластина накапливает положительный заряд, а другая пластина – отрицательный. Электрический символ конденсатора показан ниже.

Обозначение конденсатора

Емкость

Емкость – это отношение электрического заряда (Q) к напряжению (В), математическое разложение приведено ниже.

C = Q / V

Где

  • Q – электрический заряд в кулонах
  • C – емкость в фарадах
  • V – напряжение между пластинами в вольтах

Различные типы конденсаторов

Ниже перечислены различные типы конденсаторов.

  1. Электролитический конденсатор
  2. Слюдяной конденсатор
  3. Бумажный конденсатор
  4. Пленочный конденсатор
  5. Неполяризованный конденсатор
  6. Керамический конденсатор
Электролитический конденсатор

Как правило, при конденсаторах используются большие электролитные конденсаторы . являются обязательными. Слой тонкой металлической пленки используется для одного электрода, а для второго электрода (катода) используется полужидкий раствор электролита, который находится в желе или пасте.Диэлектрическая пластина представляет собой тонкий слой оксида, который в процессе производства проявляется электрохимическим способом, толщина пленки составляет менее десяти микрон.

Электролитический конденсатор

Этот изолирующий слой очень тонкий, можно изготавливать конденсаторы с большим значением емкости для физического размера, который мал, а расстояние между двумя пластинами очень мало. Типы конденсаторов в большинстве электролитических являются поляризованными, то есть на клемму конденсатора подается постоянное напряжение, и они должны иметь правильную полярность.

Если положительный полюс к положительному выводу и отрицательный к отрицательному выводу из-за неправильной поляризации сломает изолирующий оксидный слой, что приведет к необратимому повреждению. Все поляризованные электролитические конденсаторы имеют четкую полярность с отрицательным знаком, указывающим на отрицательный вывод, и полярность должна соблюдаться.

Электролитические конденсаторы обычно используются в цепи питания постоянного тока, потому что они имеют большую емкость и малы для снижения пульсаций напряжения.Эти электролитические конденсаторы используются для связи и развязки. Недостатком электролитических конденсаторов является их относительно низкое напряжение из-за поляризации электролитического конденсатора.

Слюдяной конденсатор

Этот конденсатор представляет собой группу природных минералов, а в конденсаторах из серебряной слюды используется диэлектрик. Существует два типа слюдяных конденсаторов: фиксированные конденсаторы и серебряные слюдяные конденсаторы . Фиксированные слюдяные конденсаторы считаются устаревшими из-за их худших характеристик.Серебряные слюдяные конденсаторы изготавливаются путем прослоения листа слюды, покрытого металлом с обеих сторон, и затем этот узел покрывается эпоксидной смолой для защиты окружающей среды. Слюдяные конденсаторы используются в конструкции, требующей стабильного, надежного конденсатора относительно небольшого размера.

Слюдяные конденсаторы

Слюдяные конденсаторы – это конденсаторы с низкими потерями, используемые на высоких частотах, и этот конденсатор очень стабилен химически, электрически и механически из-за своей специфической кристаллической структуры, связывающей, и это обычно слоистая структура.Чаще всего используются слюда мусковит и флогопит. Мусковитовая слюда лучше по электрическим свойствам, а другая слюда обладает стойкостью к высоким температурам.

Бумажный конденсатор

Конструкция бумажного конденсатора находится между двумя листами оловянной фольги, отделенными от бумаги, или промасленной бумагой и тонкой вощеной. Сэндвич из тонкой фольги и бумаги затем скатывается в цилиндрическую форму и помещается в пластиковую капсулу.Две тонкие фольги бумажных конденсаторов прикрепляются к внешней нагрузке.

Бумажный конденсатор

На начальном этапе, если конденсаторы использовались между двумя фольгами конденсатора, бумага использовалась между двумя фольгами, но в наши дни используются другие материалы, такие как пластмассы, поэтому он называется бумажным конденсатором. Диапазон емкости бумажного конденсатора составляет от 0,001 до 2 000 мкФ, а напряжение очень высокое, до 2000 В.

Пленочный конденсатор

Пленочные конденсаторы также являются конденсаторами, и в качестве диэлектрика в них используется тонкий пластик.Пленочный конденсатор изготавливается чрезвычайно тонким с использованием сложного процесса вытягивания пленки. Если пленка производственная, она может быть металлизирована в зависимости от свойств конденсатора. Для защиты от воздействия окружающей среды электроды добавляются и собираются.

Пленочный конденсатор

Имеется различных типов пленочных конденсаторов. доступны, например, полиэфирная пленка, металлизированная пленка, полипропиленовая пленка, пленка из ПТЭ и полистирольная пленка. Основное различие между этими типами конденсаторов заключается в том, что материал, используемый в качестве диэлектрика, и диэлектрик следует выбирать в соответствии с их свойствами.Применение пленочных конденсаторов – стабильность, низкая индуктивность и низкая стоимость.

Емкость пленки PTE является термостойкостью и используется в аэрокосмической и военной технике. Конденсатор с металлизированной полиэфирной пленкой используется там, где требуется длительная стабильность при относительно низком уровне.

Неполяризованные конденсаторы

Неполяризованные конденсаторы подразделяются на два типа конденсаторов с пластиковой фольгой, а другой – электролитический неполяризованный конденсатор.

Неполяризованный конденсатор

Конденсатор из пластиковой фольги неполяризован по своей природе, а электролитические конденсаторы, как правило, представляют собой два последовательно соединенных конденсатора, которые расположены спина к спине, поэтому в результате получается неполяризованный конденсатор с половинной емкостью. Неполяризованный конденсатор требует подключения переменного тока последовательно или параллельно с сигналом или источником питания.

Примерами являются фильтры кроссовера громкоговорителей и схема коррекции коэффициента мощности. В этих двух приложениях на конденсатор подается большой сигнал переменного напряжения.

Керамический конденсатор

Керамические конденсаторы являются конденсаторами и используют керамический материал в качестве диэлектрика. Керамика – один из первых материалов, используемых в производстве конденсаторов в качестве изолятора.

Керамический конденсатор

В керамических конденсаторах используется много геометрических форм, и некоторые из них представляют собой керамический трубчатый конденсатор. Конденсаторы с барьерным слоем устарели из-за своего размера, паразитных эффектов или электрических характеристик.Два распространенных типа керамических конденсаторов – это многослойный керамический конденсатор , (MLCC) и керамический дисковый конденсатор.

Многослойные керамические конденсаторы изготавливаются по технологии поверхностного монтажа (SMD), они меньше по размеру, поэтому широко используются. Номиналы керамических конденсаторов обычно находятся в диапазоне от 1 нФ до 1 мкФ, и возможны значения до 100 мкФ.

Керамические дисковые конденсаторы изготавливаются путем покрытия керамического диска серебряными контактами с обеих сторон, и для достижения большей емкости эти устройства состоят из нескольких слоев.Керамические конденсаторы будут иметь высокочастотные характеристики из-за паразитных эффектов, таких как сопротивление и индуктивность.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о конденсаторах MCQ

В этой статье мы объяснили различные типы конденсаторов и их использование. Я надеюсь, что, прочитав эту статью, вы получили некоторые базовые знания о типах конденсаторов. Если у вас есть какие-либо вопросы об этой статье или о реализации, пожалуйста, оставьте комментарий в разделе ниже.Вот вопрос к вам в конденсаторах, в которых хранится заряд электролита?

Типы конденсаторов – Типы конденсаторов »Электроника

Есть много разных типов конденсаторов, которые используются в электронном оборудовании, каждый из них имеет свои особенности: проверьте различия и какие из них применимы для разных приложений.


Capacitor Tutorial:
Использование конденсатора Типы конденсаторов Электролитический конденсатор Керамический конденсатор Танталовый конденсатор Пленочные конденсаторы Серебряный слюдяной конденсатор Супер конденсатор Конденсатор SMD Технические характеристики и параметры Как купить конденсаторы – подсказки и подсказки Коды и маркировка конденсаторов Таблица преобразования


Конденсаторы используются практически во всех электронных схемах, которые строятся сегодня.Конденсаторы производятся миллионами каждый день, но существует несколько различных типов конденсаторов.

Каждый тип конденсатора имеет свои преимущества и недостатки, которые можно использовать в различных приложениях.

Соответственно, необходимо немного знать о каждом типе конденсатора, чтобы можно было выбрать правильный для любого конкретного использования или применения.

Существует множество вариантов, в том числе фиксированный или регулируемый конденсатор, выводы или использование технологии поверхностного монтажа, и, конечно же, диэлектрик: электролитический алюминий, тантал, керамика, пластиковая пленка, бумага и многое другое.


Полярные и неполярные типы

Одно из основных различий между различными типами конденсаторов заключается в том, являются ли они поляризованными.

По сути, поляризованный конденсатор – это конденсатор, который должен работать с напряжением на нем определенной полярности.

Некоторые из наиболее популярных типов поляризованных конденсаторов включают электролитический алюминий и тантал. Они отмечены для обозначения положительного или отрицательного вывода, и они должны работать только с напряжением смещения в его направлении – обратное смещение может повредить или разрушить их.Поскольку конденсаторы выполняют множество задач, таких как связь и развязка, на них будет постоянное напряжение постоянного тока, и они будут пропускать только любые компоненты переменного тока.

Другой вид конденсатора – это неполяризованный или неполярный конденсатор. Этот тип конденсатора не требует полярности и может быть подключен любым способом в цепи. Керамика, пластиковая пленка, серебряная слюда и ряд других конденсаторов являются неполярными или неполяризованными конденсаторами.

Типы конденсаторов с выводами и поверхностного монтажа

Конденсаторы

доступны в виде выводов и конденсаторов для поверхностного монтажа.Практически все типы конденсаторов доступны в свинцовом исполнении: электролитические, керамические, суперконденсаторы, пластиковая пленка, серебряная слюда, стекло и другие специальные типы.

Конденсаторы SMD

немного более ограничены. Конденсаторы SMD должны выдерживать температуры, используемые в процессе пайки. Поскольку у конденсатора нет выводов, а также в результате используемых процессов пайки, компоненты SMD, включая конденсаторы, подвергаются полному повышению температуры самого припоя. В результате не все разновидности доступны в качестве конденсаторов SMD.

К основным типам конденсаторов для поверхностного монтажа относятся: керамические, танталовые и электролитические. Все они были разработаны, чтобы выдерживать очень высокие температуры пайки.

Конденсаторы переменной и постоянной емкости

Еще одно различие между типами конденсаторов заключается в том, являются они фиксированными или переменными.

На сегодняшний день подавляющее большинство конденсаторов – это конденсаторы постоянной емкости, т.е. они не имеют никакой регулировки. Однако в некоторых случаях может потребоваться регулируемый или переменный конденсатор, где может потребоваться изменение емкости конденсатора.Обычно эти конденсаторы имеют относительно низкую стоимость, иногда максимальные значения до 1000 пФ.

Переменный конденсатор, используемый для настройки в радиостанциях

Переменные конденсаторы также могут быть классифицированы как переменные и предварительно установленные. Основные переменные могут быть отрегулированы ручкой управления и могут использоваться для настройки радио и т. Д. Предустановленные переменные конденсаторы обычно имеют регулировку винтом и предназначены для регулировки во время настройки, калибровки, тестирования и т. Д. Они не предназначены для регулировать при нормальном использовании.

Типы конденсаторов постоянной емкости

Существует очень много различных типов конденсаторов фиксированной емкости, которые можно купить и использовать в электронных схемах.

Эти конденсаторы обычно классифицируются по диэлектрику, который используется внутри конденсатора, так как он определяет основные свойства: электролитические, керамические, серебряно-слюдяные, металлизированная пластиковая пленка и ряд других.

В то время как в приведенном ниже списке приведены некоторые из основных типов конденсаторов, не все из них могут быть перечислены и описаны, и есть некоторые менее используемые или менее распространенные типы, которые можно увидеть.Однако он включает в себя большинство основных типов конденсаторов.

  • Керамический конденсатор: Как видно из названия, этот тип конденсатора получил свое название из-за того, что в нем используется керамический диэлектрик. Это дает множество свойств, включая низкий коэффициент потерь и разумный уровень стабильности, но это зависит от точного типа используемой керамики. Керамические диэлектрики не дают такого высокого уровня емкости на единицу объема, как некоторые типы конденсаторов, и в результате керамические конденсаторы обычно имеют значение от нескольких пикофарад до значений около 0.1 мкФ.

    Для компонентов с выводами широко используются дисковые керамические конденсаторы. Этот тип керамического конденсатора широко используется для таких применений, как развязка и связь. Конденсаторы с более высокими техническими характеристиками, особенно используемые в конденсаторах для поверхностного монтажа, часто имеют определенные типы керамических диэлектриков. Наиболее часто встречающиеся типы включают:

    • COG: Обычно используется для низких значений емкости. Он имеет низкую диэлектрическую проницаемость, но обеспечивает высокую стабильность.
    • X7R: Используется для более высоких уровней емкости, поскольку он имеет гораздо более высокую диэлектрическую проницаемость, чем COG, но более низкую стабильность.
    • Z5U: используется для еще более высоких значений емкости, но имеет более низкую стабильность, чем COG или X7R.
    Керамические конденсаторы доступны как в традиционных устройствах с выводами, так и в проходных вариантах. Наиболее широко используемый формат для керамических конденсаторов – это конденсатор для поверхностного монтажа – формат представляет собой многослойный керамический конденсатор, также сокращенный до MLCC.Эти MLCC используются миллиардами каждый день, поскольку они образуют наиболее часто используемый тип конденсаторов для массового производства.

  • Электролитический конденсатор: Конденсатор этого типа является наиболее популярным с выводами для значений более 1 мкФ, имея один из самых высоких уровней емкости для данного объема. Конденсатор этого типа состоит из двух тонких пленок алюминиевой фольги, один из которых покрыт оксидным слоем в качестве изолятора.Между ними помещается пропитанный электролитом бумажный лист, затем две пластины наматываются друг на друга и затем помещаются в банку.

    Электролитические конденсаторы поляризованы, то есть их можно размещать в цепи только в одном направлении. Если они подключены неправильно, они могут быть повреждены, а в некоторых крайних случаях могут взорваться. Также следует соблюдать осторожность, чтобы не превышать номинальное рабочее напряжение. Обычно они должны эксплуатироваться значительно ниже этого значения.

    Этот тип конденсатора имеет большой допуск.Обычно значение компонента может быть указано с допуском -50% + 100%. Несмотря на это, они широко используются в аудиоприложениях в качестве разделительных конденсаторов и в приложениях сглаживания для источников питания. Они плохо работают на высоких частотах и ​​обычно не используются для частот выше 50–100 кГц.

    Электролитические конденсаторы выпускаются как традиционные устройства с выводами. Некоторые даже имеют клеммы для пайки или даже винтовые клеммы, хотя они обычно зарезервированы для версий с более высоким током и емкостью, часто используемых в источниках питания.Электролитические конденсаторы также доступны в виде конденсаторов для поверхностного монтажа. Первоначально они не были доступны в формате для поверхностного монтажа из-за трудностей, возникающих в результате высоких температур, испытываемых конденсаторами при пайке. Теперь они преодолены, и электролиты широко доступны в качестве конденсаторов для поверхностного монтажа.


  • Конденсаторы с пластиковой пленкой: Конденсаторы с пластиковой пленкой могут быть изготовлены в двух основных форматах:
    • Металлизированная пленка: В пленочных конденсаторах этого типа пластиковая пленка имеет очень тонкий слой металлизации, нанесенный на нее. фильм.Эта металлизация подключается к соответствующему разъему на одной или другой стороне конденсатора.
    • Пленочная фольга: Пленочный конденсатор этой формы имеет два электрода из металлической фольги, разделенных пластиковой пленкой. Клеммы присоединяются к торцам электродов с помощью сварки или пайки.
    В пластиковых пленочных конденсаторах можно использовать различные диэлектрики. Поликарбонат, полиэстер и полистирол – одни из самых распространенных.У каждого есть свои свойства, что позволяет использовать их в определенных приложениях. Их значения могут варьироваться от нескольких пикофарад до нескольких микрофарад в зависимости от фактического типа.
    Конденсатор с полиэфирной пленкой Обычно они неполярные. В общем, это хорошие конденсаторы общего назначения, которые можно использовать для различных целей, хотя их высокочастотные характеристики обычно не так хороши, как у керамических типов. Вот некоторые из наиболее распространенных типов:
    • Майлар – может создавать шум при использовании в приложениях, где есть вибрация.
    • Поликарбонат – Умеренный уровень потерь, который может увеличиваться с частотой. Очень высокое сопротивление изоляции.
    • Полиэстер – Умеренный уровень потерь, который может увеличиваться с частотой. Очень высокое сопротивление изоляции.
    • Полистирол – имеет очень небольшие потери, но объемный. Имеют температурный коэффициент около -150 ppm / C
    Пленочные конденсаторы доступны в виде традиционных устройств с выводами, но редко используются в качестве конденсаторов для поверхностного монтажа.Причина этого – высокие температуры, которые испытывает весь конденсатор SMT во время процессов пайки, используемых при поверхностном монтаже.

  • Тантал: Обычные алюминиевые электролитические конденсаторы довольно большие для многих применений. В приложениях, где важен размер, можно использовать танталовые конденсаторы. Они намного меньше, чем алюминиевые электролиты, и вместо использования пленки оксида на алюминии они используют пленку оксида на тантале.Обычно они не имеют высоких рабочих напряжений, 35 В обычно являются максимальными, а некоторые даже имеют значения всего вольта или около того.

    Танталовый конденсатор с выводами Как и электролитические конденсаторы, тантал также поляризован, и они очень нетерпимы к обратному смещению, часто взрываясь при воздействии напряжения. Однако их небольшой размер делает их очень привлекательными для многих приложений.

    Тантал уже давно доступен в формате конденсатора для поверхностного монтажа. До того, как стали доступны электролиты SMT, эти конденсаторы стали основой для дорогостоящих конденсаторов для поверхностного монтажа.В настоящее время они все еще широко используются, хотя также доступны электролитические конденсаторы для поверхностного монтажа.


  • Silver Mica: Серебряные слюдяные конденсаторы производятся путем нанесения серебряных электродов непосредственно на диэлектрик слюдяной пленки. Для достижения необходимой емкости используется несколько слоев. Добавляются провода для соединений, а затем вся сборка инкапсулируется. Значения конденсаторов из серебряной слюды колеблются от нескольких пикофарад до двух или трех тысяч пикофарад.
    Серебряный слюдяной конденсатор Этот тип конденсаторов не так широко используется в наши дни. Однако их все еще можно получить и использовать там, где стабильность стоимости имеет первостепенное значение и где требуются низкие потери. В связи с этим одно из их основных применений – в настраиваемых элементах схем, таких как генераторы, или в фильтрах.
  • Supercap Суперконденсаторы с уровнями емкости от фарада и выше становятся все более обычным явлением.Эти суперконденсаторы обычно используются для таких приложений, как задержка памяти и тому подобное.
    Суперконденсатор или суперконденсатор Они слишком велики для использования в большинстве схем, и их частотная характеристика ограничена, но они представляют собой идеальные удерживающие конденсаторы, способные обеспечивать остаточный ток и напряжение для сохранения памяти на периоды, когда может быть отключено питание.

Обзор типов конденсаторов

Различные диэлектрики, конструкция конденсатора и т.п. означают, что разные типы конденсаторов, вероятно, будут иметь разные диапазоны значений, для которых доступны конденсаторы такого типа.

приведенная ниже таблица призвана суммировать ожидаемые диапазоны для различных типов конденсаторов.

Примерные диапазоны для различных типов конденсаторов

Даже из выбора наиболее часто используемых типов конденсаторов видно, что доступно множество форм. У каждого есть свои преимущества и недостатки, и если для каждой работы выбрать правильный, то он может очень хорошо работать в цепи. Именно по этой причине при построении схем важно использовать конденсатор правильного типа.Если используется неправильная сортировка, то его производительность может не соответствовать стандарту, необходимому для схемы.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Типы конденсаторов | Типы конденсаторов по функциям и применению

Существует множество типов конденсаторов с различными функциями и приложениями.Конденсаторы варьируются от маленьких до больших, и каждый из них имеет характеристики, которые делают их уникальными. Например, некоторые конденсаторы маленькие и хрупкие, такие как те, что используются в радиосхемах. С другой стороны, конденсаторы могут быть довольно большими, например, в сглаживающих схемах.

При сравнении конденсаторов различных типов обычно принимается во внимание диэлектрик, используемый между пластинами.

Ассортимент конденсаторов многочислен. Возьмем, например, конденсаторы переменного типа, которые дают пользователю возможность изменять значение их емкости для использования в схемах типа «подстройка частоты».Некоторые конденсаторы выглядят трубчатыми из-за пластин из металлической фольги, которые свернуты в цилиндр. Диэлектрический материал обычно находится между пластинами из металлической фольги и цилиндром.

Также существуют конденсаторы, используемые в коммерческих целях, которые сделаны из металлической фольги, переплетенной с тонкими листами майлара или пропитанной парафином бумаги.

Малогабаритные конденсаторы обычно изготавливаются из керамических материалов, а затем заделываются эпоксидной смолой. Независимо от того, какой тип конденсатора используется, все они играют важную роль в электронных схемах.Давайте более подробно рассмотрим многие из наиболее распространенных типов конденсаторов, доступных в настоящее время.

Тип пленочного конденсатора

A Mallory 150 100 нФ 630 В постоянного тока полиэфирный пленочный конденсатор

Это наиболее распространенный тип конденсатора (с точки зрения доступности), который принадлежит к относительно большому семейству конденсаторов. Основное различие между пленочными конденсаторами и другими формами конденсаторов – их диэлектрические свойства. К ним относятся поликарбонат, полипропилен, полиэстер (майлар), полистирол, тефлон и металлизированная бумага.Что касается диапазона емкости, конденсаторы пленочного типа доступны в диапазоне от 5 пФ до 100 мкФ.

Пленочные конденсаторы бывают разных стилей и форм, включая:

  • Эпоксидный корпус (прямоугольный и круглый) – конденсатор заключен в формованный пластиковый корпус, который затем заполняется эпоксидной смолой.
  • Wrap and Fill (Oval and Round) – используется пластиковая лента, чтобы плотно обернуть конденсатор, а концы заделаны эпоксидной смолой.
  • Металлический герметичный (прямоугольный и круглый) – конденсатор заключен в металлический корпус или трубку и залит эпоксидной смолой.

Пленочные конденсаторы с диэлектриками из тефлона, полистирола и поликарбоната иногда называют «пластиковыми конденсаторами». Конденсаторы с пластиковой пленкой имеют такую ​​же конструкцию, что и конденсаторы с бумажной пленкой. Основное различие между ними заключается в том, что в одном используется бумага, а в другом – пластик.

Конденсаторы с пластиковой пленкой имеют преимущество перед типами с пропитанной бумагой в том, что они имеют меньшие допуски, высокую надежность, длительный срок службы и могут продолжать работать в достаточной степени даже при высоких температурах.

Диэлектрические конденсаторы

Конденсатор с диэлектриком

Диэлектрические конденсаторы, относящиеся к «переменному типу» конденсаторов, в которых требуется непрерывное изменение емкости для настройки транзисторных радиоприемников, передатчиков и приемников. Конденсаторы с переменной диэлектрической проницаемостью уникальны тем, что представляют собой многопластинчатые конденсаторы с воздушным разнесением, которые имеют лопатки статора (неподвижные пластины) и лопатки ротора (подвижные пластины), которые перемещаются между неподвижными пластинами.

Значение емкости в конечном итоге определяется положением подвижных пластин по отношению к неподвижным пластинам.Обычно, когда два набора пластин полностью соединяются вместе, значение емкости будет максимальным. Конденсаторы с высоким напряжением имеют относительно большие воздушные зазоры или промежутки между пластинами.

Помимо конденсаторов переменного типа, существуют также переменные конденсаторы предварительно заданного типа, называемые подстроечными устройствами. Триммеры, как правило, небольшие, и их можно предварительно настроить или отрегулировать на определенное значение емкости с помощью отвертки. Большинство триммеров имеют небольшую емкость 500 пФ (или меньше) и не имеют поляризации.

Керамические конденсаторы

Керамические конденсаторы

Керамические конденсаторы обычно называют «дисковыми конденсаторами». Для их изготовления нужно взять небольшой керамический или фарфоровый диск и покрыть его серебром с обеих сторон перед тем, как сложить их вместе, чтобы получился работающий конденсатор.

Одиночные керамические диски размером примерно 3–6 мм используются, когда требуются низкие значения емкости. Керамические конденсаторы имеют высокую диэлектрическую проницаемость (High-K) и обычно доступны, поэтому высокая емкость может быть достигнута с помощью объекта меньшего размера.

Керамические конденсаторы имеют тенденцию к существенным нелинейным изменениям емкости в зависимости от температуры. В результате керамические конденсаторы часто используются как шунтирующие или развязывающие конденсаторы. Что касается значений, керамические конденсаторы варьируются от пары пикофарад до нескольких микрофарад (мкФ). Однако обычно керамические конденсаторы имеют низкое напряжение.

Трехзначный код обычно печатается на корпусе конденсаторов керамического типа для определения их емкости в пикофарадах.Вычисление относительно простое после того, как оно было рассчитано – первые две цифры представляют собой номинал конденсаторов, а третья цифра представляет количество нулей, которые необходимо добавить.

Электролитические конденсаторы

Электролитические конденсаторы

Электролитические конденсаторы обычно резервируются для ситуаций, когда требуются более высокие значения емкости. Электролитические конденсаторы отличаются тем, что вместо использования тонкопленочного (металлического) слоя в качестве одного из электродов вместо этого в качестве второго электрода используется раствор электролита в виде полужидкого желе или пасты.

Большинство электролитических типов конденсаторов поляризованы, что означает, что для напряжения постоянного тока, подаваемого на конденсатор, необходимо использовать правильную полярность. Другими словами, положительная полярность должна соединяться с положительной клеммой, а отрицательная полярность – с отрицательной клеммой. В случае неправильной поляризации оксидный слой, действующий как изоляция, может выйти из строя и в результате может быть необратимо поврежден.

Из-за большой емкости и небольшого размера электролитические конденсаторы используются в цепях питания постоянного тока.Это сделано для приложений связи и развязки, а также для уменьшения пульсаций напряжения. Электролитические конденсаторы имеют относительно низкое напряжение (один из основных недостатков). Поскольку электролитические конденсаторы поляризованы, они не могут (и не должны) использоваться с источниками переменного тока.

Есть две формы электролитических веществ, о которых вам следует знать – танталовые электролитические конденсаторы и алюминиевые электролитические конденсаторы.

1) Танталовые электролитические конденсаторы

Танталовые электролитические конденсаторы и танталовые шарики бывают двух видов – с сухим (твердым) и влажным (фольга) электролитическим типом.Сухие танталовые конденсаторы физически меньше алюминиевых, и в качестве второго вывода используется диоксид марганца.

2) Алюминиевые электролитические конденсаторы

Алюминиевые электролитические конденсаторы бывают двух типов – с фольгой и с протравленной фольгой. Из-за высокого напряжения пробоя и пленки оксида алюминия алюминиевые электролитические конденсаторы имеют высокие значения емкости по сравнению с их размером.

Конденсатор имеет пластины из фольги, анодированные постоянным током.Во время этого процесса устанавливается полярность материала пластины, и создаются положительные и отрицательные стороны.

Протравленные типы фольги отличаются от обычных типов фольги в одном основном – оксид алюминия на катоде и аноде подвергается химическому травлению для увеличения диэлектрической проницаемости и площади поверхности.

Когда дело доходит до электролитов с протравленной фольгой, их лучше всего использовать для блокировки постоянного тока, байпасных цепей и связи. С другой стороны, простые типы фольги больше предназначены для сглаживания конденсаторов в источниках питания.Имейте в виду, что алюмоэлектролитики считаются поляризованными устройствами. Таким образом, могут возникнуть катастрофические последствия, когда приложенное напряжение на выводах изменится на противоположное, поскольку изолирующий слой, расположенный внутри конденсатора (а также сам конденсатор), будет разрушен. К счастью, если повреждение минимально, электролит, который используется внутри конденсатора, может помочь устранить повреждение.

Электролиты могут не только самостоятельно лечить поврежденные пластины. Они также могут повторно анодировать пластину из фольги.Поскольку процесс анодирования можно обратить вспять, электролит может удалить оксидное покрытие с фольги (что также произошло бы, если бы конденсатор был подключен с обратной полярностью). Помните, что, поскольку электролит может проводить электричество, могут возникнуть катастрофические проблемы, если слой оксида алюминия будет удален из уравнения или полностью разрушен.

Когда дело доходит до диэлектрических свойств, оксид тантала считается лучше, чем оксид алюминия, потому что он дает лучшую стабильность емкости и снижает токи утечки, что в конечном итоге делает их идеальными для фильтрации, обхода, применения, блокировки и развязки.

Имейте в виду, что танталовые конденсаторы могут выдерживать обратное напряжение намного лучше, чем алюминиевые (потому что они поляризованы), но на самом деле они рассчитаны на более низкие рабочие напряжения. Обычно сухие танталовые конденсаторы используются в цепях, где напряжение постоянного тока больше по сравнению с напряжением переменного тока.

Существуют «неполяризованные» конденсаторы, в которых в некоторых танталовых типах используются два конденсатора в одном. В такой ситуации соединение является отрицательным (создает неполяризованный конденсатор), что часто используется в цепях переменного тока с низким напряжением в качестве неполяризованного устройства.

Изображение предоставлено: Clker-Free-Vector-Images / Pixabay

Конденсаторы различных типов – EIT | Инженерный технологический институт: EIT

Конденсатор – это пассивный электрический элемент, который накапливает энергию в виде электростатического поля. Проще говоря, конденсатор состоит из 2-х проводящих пластин, отделенных диэлектриком (изоляционным материалом). Емкость обратно пропорциональна расстоянию между пластинами и прямо пропорциональна площади поверхности проводящих пластин.Емкость также зависит от диэлектрической проницаемости материала, изолирующего пластины. Обычная единица измерения емкости сокращенно называется фарад. Это огромная единица; другие универсальные единицы известны как микрофарады, сокращенно 1 мкФ = 10-6F (мкФ) и пикофарады, сокращенно 1 пФ = 10-12F (пФ).

«Элемент электрической цепи, используемый для временного хранения заряда, состоящий, как правило, из двух металлических пластин, разделенных и изолированных друг от друга диэлектриком, также известным как конденсатор.«Конденсатор в целом похож на батарею. Общим фактором, который присутствует в батарее и конденсаторе, является то, что они оба хранят электрическую энергию. Конденсаторы хранят электроны внутри в течение любого заданного периода времени. Конденсатор – это двусторонний механизм, который включает в себя 2 проводящих элемента, разделенных непроводящим материалом. Конденсатор фактически состоит из 2 проводящих поверхностей, на которых накапливается энергия, эти поверхности разделены тонким изоляционным листом, который имеет чрезвычайно большое сопротивление.Некоторые обычные непроводящие материалы, которые повсеместно присутствуют в конденсаторах, – это тефлон, керамика, фарфор и целлюлоза. Диэлектрик – это материал, который указывает тип используемого конденсатора и его конкретное использование. Это зависит от типа используемого диэлектрика и размера для применения в высоковольтных или высокочастотных приборах. Конденсаторы производятся для различных продуктов; некоторые конденсаторы настолько малы, что предназначены для таких продуктов, как калькуляторы, в то время как другие суперконденсаторы производятся для встраивания в компьютерную шину.Конденсаторы можно увидеть во всех видах систем отопления, вентиляции и кондиционирования воздуха, включая платы оттаивания и печатные платы. Самыми обычными типами конденсаторов, используемых в системе HVAC, являются пусковой конденсатор, двойной рабочий конденсатор и рабочий конденсатор. Конденсаторы в серии:
Когда конденсаторы соединены последовательно, общая емкость даже меньше, чем у любого из последовательно соединенных конденсаторов, индивидуальной емкости. Если более двух конденсаторов соединены последовательно, в результате получается отдельный конденсатор (экв.
л), который имеет общую сумму пластинчатого пространства одного конденсатора.Как мы хорошо знаем, увеличение расстояния между пластинами при неизменных остальных факторах приводит к падению емкости. Следовательно, общая емкость ниже, чем емкость любого отдельного конденсатора. Для расчета общей емкости конденсаторов, соединенных последовательно, приведена ниже формула: – Конденсаторы, подключенные параллельно:
При параллельном соединении конденсаторов общая емкость является суммой емкости отдельного конденсатора.Если более 2 конденсаторов соединены параллельно, результатом будет один соответствующий конденсатор, общая площадь которого равна
пластинчатой ​​поверхности отдельного конденсатора. Поскольку мы испытали увеличение поверхности пластины, в то время как другие важные факторы остаются неизменными, результатом является увеличение емкости. Формула для оценки параллельного сопротивления такая же, как и для расчета общей емкости конденсаторов, соединенных последовательно. Типы конденсаторов:
Конденсаторы могут использоваться различными способами в различных электронных схемах.Несмотря на то, что их метод работы остается в точности аналогичным, они могут использоваться для обеспечения ряда различных схемных операций, таких как: конденсатор связи
, конденсатор сглаживания, конденсатор развязки. Есть много других типов конденсаторов, которые можно использовать, максимум из них обсуждается ниже:
1. Керамический конденсатор: Керамический конденсатор используется во многих устройствах, от радио до радиочастот. Безусловно, керамические конденсаторы являются наиболее часто используемыми конденсаторами; Это потому, что эти конденсаторы
дешевы, надежны и их коэффициент потерь намного ниже.Эти керамические конденсаторы используются как для выводов, так и для поверхностного монтажа. Керамические конденсаторы являются наиболее широко используемыми конденсаторами, которые в настоящее время используются во многих приборах и электронных устройствах. В настоящее время керамические конденсаторы доступны в широком диапазоне форматов, от свинцовых компонентов до поверхностного монтажа. Широко доступны дисковые керамические конденсаторы с выводами. Эти керамические конденсаторы используются практически во всех видах электрического оборудования.Точные характеристики керамического конденсатора в основном зависят от типа используемого диэлектрика. Керамические конденсаторы считаются рабочими лошадками в мире конденсаторов тока. В настоящее время доступны 3 основных типа керамических конденсаторов, хотя также доступны дополнительные стили:

  • Дисковые керамические конденсаторы с выводами для монтажа во все отверстия, покрытые слоем смолы.
  • Многослойные керамические конденсаторы для микросхем.
  • Специальные бессвинцовые дисковые керамические конденсаторы для микроволновых печей, предназначенные для установки в прорези на печатной плате и привариваемые на месте.

2. Электролитический конденсатор:
Этот тип конденсатора поляризован. Эти конденсаторы могут иметь более высокое значение емкости – обычно выше 1 мкФ, этот тип конденсаторов обычно используется в низкочастотных приложениях. Электролитический конденсатор уже много лет используется во многих приборах. Пластины этого конденсатора изготовлены из проводящей алюминиевой фольги. Благодаря алюминиевой пленке пластины могут быть очень тонкими, а также гибкими.Следовательно, эти плиты можно упаковать в конце процедуры строительства. Две пластины, входящие в состав этого конденсатора, немного отличаются. Первый покрыт изоляционным оксидным листом, а между ними помещается бумажная прокладка, пропитанная электролитом. Фольга, изолированная оксидным покрытием, является анодом, тогда как щелочной электролит и вторая фольга работают как катод. Свойства электролитического конденсатора:

  • ESR Эквивалентное последовательное сопротивление.
  • Частотная характеристика – этот конденсатор имеет ограниченную частотную характеристику.
  • Утечка – даже несмотря на то, что он имеет более высокий уровень емкости
  • для данного объема, они также имеют высокую интенсивность утечки.
  • Пульсации тока – При использовании этого конденсатора в сильноточных приложениях важно учитывать ток пульсаций, он должен иметь место.
  • Допуск – этот конденсатор имеет очень широкий допуск.

3. Танталовый конденсатор:
Эти конденсаторы даже поляризованы, и они также обеспечивают чрезвычайно высокое значение емкости для своего объема.Конденсаторы такого типа крайне фанатичны к обратному смещению, часто вызывая взрыв при использовании под давлением. Танталовый конденсатор состоит из пористого фрагмента танталового сердечника, окаймленного пятиокиси тантала. Танталовый кабель вводится во фрагмент сердечника, а затем расширяется в осевом направлении от компонента. Покрытие из пятиокиси тантала покрыто графитом, диоксидом марганца, серебряным проводящим внешним слоем и, наконец, припоем. С 1960 года танталовые конденсаторы совершенствовались благодаря продвижению и разработке превосходных заряженных танталовых порошков, неизменно вносящих свой вклад в проект малых танталовых конденсаторов.Танталовый конденсатор состоит из пористого фрагмента танталового сердечника, ограниченного рамкой. Использование танталового конденсатора дает следующие преимущества:

  • Эти конденсаторы имеют повышенный объемный КПД
  • Эти конденсаторы могут быть легко установлены на печатных платах любого типа.
  • Танталовые конденсаторы имеют лучшие частотные характеристики
  • Танталовые конденсаторы чрезвычайно надежны, поскольку они не теряют емкость

Танталовые конденсаторы могут быть размещены в ноутбуках, ПК, схемах подушек безопасности в грузовиках и легковых автомобилях, мобильных телефонах, пейджерах и других устройствах. других устройств. 4. Конденсатор переменной емкости:
Конденсатор переменной емкости – это своего рода конденсатор, который помогает накапливать энергию за счет генерации электрических полей. Сильной стороной этого устройства является то, что способность сохранять мощность может быть изменена
либо многократно, либо намеренно с помощью механических или электронных методов. Емкость переменного конденсатора может изменяться в течение всего срока службы самого устройства. В конденсаторе используется механическая структура, которая позволяет изменять удаленность между различными наборами пластин или, в частности, поверхность области вышележащих пластин вместе с диодами переменной емкости.Все они изменяют поведение своей емкости из-за приложения смещения обратного напряжения. Доступны различные типы переменных конденсаторов. К ним относятся:

  • воздушный конденсатор
  • вакуумный переменный конденсатор
  • регулируемый конденсатор
  • высоковольтный переменный керамический конденсатор

5. Бумажный конденсатор:
Бумажные конденсаторы изготавливаются из бумаги или бумаги, пропитанной маслом. листы алюминиевой фольги скручиваются в барабан и консервируются воском.Эти бумажные конденсаторы обычно использовались, но теперь их заменяют конденсаторы из полимера или пластика. Бумажные конденсаторы имеют большие размеры, чрезвычайно гигроскопичны и пропускают влагу, что приводит к потерям в диэлектрике, а их общие характеристики являются основным недостатком конденсаторов такого типа. Другие варианты состоят из бумаги-полиэстера, крафт-бумаги и пропитанного маслом конденсатора. Вот некоторые другие типы конденсаторов: 6. Конденсатор серебряной слюды:
Конденсатор этого типа в наши дни не используется, но конденсатор такого типа по-прежнему обеспечивают очень высокий уровень стабильности, меньшие потери и точность там, где пространство не является проблемой.
7. Конденсатор из полистирольной пленки: Это относительно дешевый тип конденсаторов, но там, где это необходимо, поставляются конденсаторы с жесткими допусками. Они имеют трубчатую форму; это потому, что пластина или диэлектрический сэндвич скручиваются вместе.
8. Конденсатор из полиэфирной пленки: Эти конденсаторы используются там, где их стоимость является проблемой, поскольку они не обеспечивают превосходных допусков. Эти конденсаторы, как правило, доступны только в виде свинцовых электрических компонентов.
9. Конденсатор из поликарбоната: Этот тип конденсатора применяется в устройствах, где важны производительность и надежность.Пленка из поликарбоната чрезвычайно устойчива и позволяет изготавливать конденсаторы с превосходными допусками, которые сохраняют значение емкости конденсаторов с течением времени.
10. Конденсатор из металлизированной полиэфирной пленки:
По сути, это конденсатор из полиэфирной пленки, единственное различие между ними состоит в том, что в металлизированных полиэфирных конденсаторах полиэфирная пленка металлизирована. Конденсаторы с металлизированной полиэфирной пленкой обычно используются только в качестве свинцовых электрических компонентов.
11. Полипропиленовый конденсатор:
Этот конденсатор используется, когда требуется более высокий допуск, чем у полиэфирных конденсаторов.В этом конденсаторе в качестве диэлектрика используется полипропиленовая пленка. Эти конденсаторы обычно доступны только в виде свинцовых электрических компонентов.
12. Стеклянные конденсаторы:
В этом конденсаторе в качестве диэлектрика используется стекло. Это дорогой конденсатор, но он предлагает чрезвычайно высокий уровень производительности благодаря очень низким потерям, более высокому высокочастотному току (
нт), отсутствию пьезоэлектрического шума и некоторым другим важным характеристикам, которые делают их идеальными для нескольких высокопроизводительных ВЧ-приложений.
13. Суперконденсаторы:
Суперконденсаторы относятся к семейству электрохимических конденсаторов. Эти конденсаторы иногда называют конденсаторами с двойным электрическим слоем (EDLC) или ультраконденсаторами. Они не состоят из традиционного твердого диэлектрика. Значение емкости суперконденсатора определяется на основе 2 принципов хранения; эти два принципа влияют на общую емкость конденсатора. Суперконденсаторы
имеют небольшой вес и дешевы, поэтому в наши дни это самый популярный конденсатор на рынке.Они используются в большинстве портативных электронных устройств и телефонов, а также в самолетах и ​​автомобилях. Суперконденсаторы новой технологии гибкие и биоразлагаемые. Преимущества суперконденсатора:

  • Отсутствие опасности перезарядки
  • Очень высокая скорость заряда и разряда
  • Высокая эффективность цикла (95% и более)
  • Практически неограниченный жизненный цикл – миллионы циклов времени – от 10 до 12 лет
  • Зарядка за секунды
  • Низкое сопротивление
  • Суперконденсаторы и ультраконденсаторы относительно дороги с точки зрения стоимости ватта

12.Ультраконденсатор:
Ультраконденсаторы и суперконденсаторы – это одно и то же, это было объяснено выше, пожалуйста, обратитесь.


Калькулятор емкости конденсатора:
Этот калькулятор емкости вычисляет емкость между двумя параллельными пластинами. Первый калькулятор метрический, а второй – дюймовый. Конденсаторы небольшого номинала могут быть выгравированы на печатной плате для радиочастотных целей, но при определенных условиях использование отдельных конденсаторов является дополнительными затратами.Ниже приведены различные значения диэлектрической проницаемости.


Уравнение:
C = K * EO * A / D, где Eo = 8,854 × 10-12

Где:
K – диэлектрическая проницаемость материала,
A – площадь вышележащей поверхности пластин. ,
d-это расстояние между пластинами, и
C-Is емкость

Конденсаторная батарея:

Конденсаторная батарея представляет собой группу из нескольких конденсаторов одинакового номинала, которые соединены последовательно или параллельно с одним. другой для накопления электрической энергии.Результирующий банк затем используется для работы или коррекции паузы с коэффициентом мощности
или изменения фазы в источнике питания переменного тока (переменный ток). Их также можно использовать в источниках питания постоянного (постоянного тока) для повышения способности источника питания к пульсирующему току или для увеличения общей суммы накопленной энергии.
Конденсаторные батареи работают по той же теории, что и одиночный конденсатор; они предназначены для аккумулирования электроэнергии, но с большей способностью, чем у отдельного прибора.


Применение конденсаторов:
Конденсаторы используются для различных целей, это наиболее часто встречающееся устройство в любом электронном гаджете. У каждого типа конденсатора есть свои преимущества и недостатки, и, как следствие, применение pacitor ca
может быть разным. Некоторые конденсаторы подходят для использования на повышенных частотах, в то время как другие можно использовать для низкочастотных целей. Без сомнения, важно иметь правильный конденсатор для точного использования схемы, чтобы
функционировал должным образом.

  • Сроки – для иллюстрации с 555timerIC для управления зарядкой и разрядкой.
  • Муфта – для иллюстрации между узлами аудиосистемы и для объединения громкоговорителя.
  • Накопление энергии – для иллюстрации в цепи вспышки фотоаппарата.
  • Сглаживание – для иллюстрации в блоке питания.
  • Tuning – для иллюстрации в радиосистеме.
  • Фильтрация – для иллюстрации в контроллере тона аудиосистемы.

Источник: https: // www.electronicshub.org/different-types-of-capacitors/

Различные типы конденсаторов и их применение

В основном конденсатор состоит из двух проводящих пластин, разделенных тонким изолирующим слоем. Существуют различные типы конденсаторов , которые производятся во многих формах, стилях и материалах.

Коллекция различных типов конденсаторов

Понимание их основных принципов поможет вам выбрать конденсатор для вашего приложения. Прежде чем перейти к каждому из них, давайте разберемся с основными способами использования конденсатора в цепи.

Конденсаторы широко используются в электрических и электронных схемах.

В электронных схемах используются конденсаторы малой емкости,

  • для передачи сигналов между каскадами усилителей.
  • в составе электрофильтров и настраиваемых схем.
  • в составе систем электроснабжения для сглаживания выпрямленного тока.

В электрических цепях используются конденсаторы большей емкости,

  • для хранения энергии в таких приложениях, как стробоскопы.№
  • в составе некоторых типов электродвигателей (асинхронные двигатели).
  • для коррекции коэффициента мощности в системах распределения питания переменного тока

Стандартные конденсаторы имеют фиксированное значение емкости, но регулируемые конденсаторы часто используются в настроенных схемах.

Считайте, как сохраняется заряд в конденсаторе.

Типы конденсаторов

Теперь мы изучим различные типы конденсаторов и то, как они классифицируются.Также в этом разделе вы можете узнать, как эти конденсаторы получили свое название, которое мы называем сейчас.

Как правило, конденсаторы делятся на две общие группы:

  1. Фиксированные конденсаторы
  2. Переменные конденсаторы

Фиксированные конденсаторы – это конденсаторы с фиксированными значениями емкости.

В то время как Переменные конденсаторы имеют переменные (подстроечные) или регулируемые (настраиваемые) значения емкости.

Из них наиболее важной группой являются конденсаторы постоянной емкости.

Базовая классификация конденсаторов

Важными типами конденсаторов постоянной емкости являются:

  • Керамические конденсаторы
  • Пленочные и бумажные конденсаторы
  • Алюминиевые, танталовые и ниобиевые электролитические конденсаторы
  • Полимерные конденсаторы
  • Суперконденсатор
  • Серебряные слюдяные, стеклянные, кремниевые, воздушные и вакуумные конденсаторы

Многие конденсаторы получили свое название от используемого в них диэлектрика.Но это верно не для всех конденсаторов, потому что некоторые старые электролитические конденсаторы названы по своей конструкции катода. Так что наиболее часто используемые имена просто исторические.

Конденсаторы постоянной емкости бывают поляризованными и неполяризованными.

Керамические и пленочные конденсаторы являются примерами неполяризованных конденсаторов . Электролитические и суперконденсаторы входят в группу поляризованных конденсаторов .

Полная классификация конденсаторов постоянной емкости показана на рисунке ниже.

Типы фиксированных конденсаторов

В дополнение к показанным выше типам конденсаторов, которые получили свое название от исторического развития, существует много отдельных конденсаторов, названных в зависимости от их применения.

Конденсаторы, получившие свое название в зависимости от их применения, включают следующие:

  • Силовые конденсаторы,
  • Конденсаторы двигателя,
  • Конденсаторы промежуточного контура,
  • Подавляющие конденсаторы,
  • Перекрестные звуковые конденсаторы,
  • Балластные конденсаторы освещения. ,
  • Демпферные конденсаторы,
  • Конденсаторы связи, развязки или байпасирования.

Часто для этих приложений используется более одного семейства конденсаторов, например Для подавления помех можно использовать керамические конденсаторы или пленочные конденсаторы.

Обзор различных типов конденсаторов

Как мы объясняли выше, существует множество различных типов конденсаторов, которые можно использовать. Зная основные характеристики каждого из них, вы легко сможете подобрать конденсатор для своего проекта.

Чтобы упростить вашу работу, ниже перечислены основные типы конденсаторов:

1.Керамический конденсатор

Керамический конденсатор – это тип конденсатора, который используется во многих приложениях от аудио до ВЧ.

Керамический конденсатор

Значения керамического конденсатора колеблются от несколько пикофарад до примерно 0,1 мкФ . Керамические конденсаторы являются наиболее часто используемыми типами конденсаторов , которые дешевы и надежны, а их коэффициент потерь особенно низок, хотя это зависит от конкретного используемого диэлектрика.

Ввиду своих конструктивных свойств эти конденсаторы широко используются как в выводном, так и в поверхностном исполнении.

2. Электролитический конденсатор

Электролитические конденсаторы – это тип конденсатора поляризованного типа .

Электролитические конденсаторы

Они могут предложить высокие значения емкости – обычно выше 1 мкФ . Эти конденсаторы наиболее широко используются для низкочастотных приложений – источников питания, развязки и аудиосвязи, поскольку они имеют ограничение по частоте около 100 кГц.

3. Танталовый конденсатор

Подобно электролитическим конденсаторам, танталовые конденсаторы также имеют поляризацию и предлагают очень высокий уровень емкости для своего объема.

Танталовый конденсатор

Однако этот тип конденсатора очень нетерпим к обратному смещению, часто взрываясь при воздействии нагрузки.

Конденсаторы этого типа также не должны подвергаться воздействию высоких пульсаций тока или напряжений, превышающих их рабочее напряжение.

Доступны как для выводов, так и для поверхностного монтажа.

4. Серебряный слюдяной конденсатор

Серебряные слюдяные конденсаторы не так широко используются в наши дни , но они по-прежнему обеспечивают очень высокий уровень стабильности, низкие потери и точность там, где пространство не является проблемой.

Серебряные слюдяные конденсаторы

Они в основном используются для приложений RF , и их максимальное значение ограничено 1000 пФ или около того.

5. Конденсатор из полистирольной пленки

Конденсаторы из полистирола – это относительно дешевый конденсатор , но при необходимости можно использовать конденсатор с жесткими допусками.

Пленочный конденсатор из полистирола

Они имеют трубчатую форму из-за того, что пластина / диэлектрический сэндвич скручены вместе, но это добавляет индуктивность, ограничивая их частотную характеристику до нескольких сотен кГц.

Обычно они доступны только в виде компонентов электроники с выводами.

6. Конденсатор из полиэфирной пленки

Конденсаторы из полиэфирной пленки используются там, где стоимость составляет , поскольку они не обеспечивают высоких допусков.

Конденсатор с полиэфирной пленкой

Многие конденсаторы с полиэфирной пленкой имеют допуск , равный 5% или 10% , что подходит для многих приложений. Как правило, они доступны только в виде свинцовых электронных компонентов.

7. Металлизированный полиэфирный пленочный конденсатор

Этот тип конденсатора по существу представляет собой конденсатор , представляющий собой полиэфирный пленочный конденсатор , в котором сами полиэфирные пленки металлизированы.

Конденсатор из металлической полиэфирной пленки

Преимущество использования этого процесса заключается в том, что из-за тонкости электродов весь конденсатор может быть помещен в относительно небольшой корпус.

Металлизированные полиэфирные пленочные конденсаторы обычно доступны только в виде компонентов электроники с выводами.

8. Конденсатор из поликарбоната

Конденсаторы из поликарбоната используются в приложениях, где надежность и производительность имеют решающее значение .

Конденсатор из поликарбоната

Позволяет изготавливать конденсаторы с высокими допусками.Эти конденсаторы будут сохранять свою емкость с течением времени.

Кроме того, они имеют низкий коэффициент рассеяния и остаются стабильными в широком диапазоне температур, многие из которых указаны от -55 ° C до + 125 ° C.

Однако производство поликарбонатных диэлектриков прекратилось, и их производство в настоящее время очень ограничено.

9. Полипропиленовый конденсатор

Полипропиленовый конденсатор иногда используется, когда требуется конденсатор с более высоким допуском, чем у полиэфирных конденсаторов.

Полипропиленовый конденсатор

Как следует из названия, в этом конденсаторе используется полипропиленовая пленка в качестве диэлектрика. Одним из преимуществ конденсатора является то, что его емкость очень мало изменяется со временем и под действием приложенного напряжения.

Этот тип конденсатора также используется для низких частот. Обычно верхний предел составляет 100 кГц или около того. Как правило, они доступны только в виде свинцовых электронных компонентов.

10. Стеклянные конденсаторы

Как следует из названия, в конденсаторах этого типа используется стекло в качестве диэлектрика .Стеклянные конденсаторы обычно стоят дороже .

Стеклянный конденсатор по размеру по сравнению с монетой.

Несмотря на свою дороговизну, эти конденсаторы предлагают очень высокие уровни производительности с точки зрения чрезвычайно низких потерь, высокой способности к высокочастотному току, отсутствия пьезоэлектрических шумов и других характеристик.

Эти функции делают их идеальными для многих высокопроизводительных ВЧ-приложений.

11. SuperCap

SuperCap также известен как суперконденсатор или ультраконденсатор .

SuperCap

Как следует из названия, эти конденсаторы имеют очень больших значений емкости , до нескольких тысяч Фарад.

SuperCap находит применение для обеспечения удержания памяти, а также в автомобильных приложениях .

Типы конденсаторов и их применение

Конденсатор можно рассматривать как резервуар, в котором хранится электрический заряд. Чем больше емкость, тем больше зарядов способен накапливать конденсатор. Он бывает разных форм, размеров и, конечно же, разных рейтингов. По сути, он состоит из двух пластин, разделенных изолятором или диэлектриком, и имеет множество применений, и даже в нашей повседневной жизни мы используем его, даже не подозревая об этом.

Эта статья призвана дать вам некоторое представление о типах и использовании одного из наиболее часто используемых пассивных электрических компонентов: конденсатора.

Конденсаторы (Источник: flickr Эрик Шрейдер)

Прежде чем мы углубимся в его применение, давайте познакомимся с конденсаторами типа .

Типы конденсаторов

При разработке схемы для конкретного использования тип конденсатора играет ключевую роль в ее правильном функционировании.Каждый конденсатор имеет определенный набор характеристик, таких как допуск, номинальное напряжение и т. Д.

Конденсаторы

можно условно разделить на две категории: конденсаторы переменной емкости и конденсаторы постоянной емкости.

Переменный конденсатор , с другой стороны, будет иметь значение емкости, которое можно изменить. Этот конденсатор имеет две пластины, одна из которых неподвижна, а другая подключена к подвижному валу, а емкость изменяется путем изменения подвижной пластины.

Конденсатор постоянной емкости , как следует из названия, этот тип конденсатора имеет фиксированное значение емкости.Обе проводящие пластины неподвижны, поэтому значение ее емкости нельзя изменить.

Из них чаще используется фиксированный тип. В этой статье рассматриваются некоторые из хорошо известных типов конденсаторов постоянной емкости.

Конденсаторы керамические:

В керамических конденсаторах в качестве диэлектрика используется керамический материал. Вы можете легко идентифицировать его, так как большая часть из них имеет форму диска. Диск покрыт керамическим материалом и помещается между двумя выводами. Когда требуется более высокое значение емкости, несколько слоев керамических материалов сплавлены вместе, чтобы сформировать диэлектрик.

Основным преимуществом этого типа конденсатора является то, что это неполяризованный конденсатор. Это означает, что вы можете подключить его в любом направлении в вашей цепи.

В зависимости от температурных характеристик и допусков они подразделяются на три категории: керамические конденсаторы класса 1, класса 2 и класса 3.

Конденсаторы

класса 1 являются наиболее стабильными с точки зрения температурной устойчивости и имеют хорошую точность, в то время как конденсаторы класса 3 имеют относительно низкую точность и наименьшую стабильность.

Алюминиевые электролитические конденсаторы:

Алюминиевые электролитические конденсаторы имеют широкий диапазон допусков и, следовательно, являются одними из наиболее часто используемых конденсаторов. Здесь жидкий или гелевый материал, наполненный ионами, действует как электролит. Этот электролит отвечает за большие значения емкости конденсаторов этих типов. Это поляризованные конденсаторы , поэтому их необходимо аккуратно подключать к печатной плате, не забывая об их положительном / отрицательном выводах.Они имеют цилиндрическую форму с двумя выводами разной длины.

Более короткий вывод обозначает отрицательный вывод, а более длинный вывод обозначает положительный вывод. Поэтому, когда вы используете его в своей цепи, помните золотое правило: «Напряжение на положительной стороне должно быть выше, чем на отрицательной стороне».

Электролит может быть твердым полимером или влажным электролитом и состоять из ионов алюминия. Электролитический конденсатор с более высокими значениями емкости имеет и недостатки.Сюда входят большие токи утечки, высокие допуски и эквивалентное сопротивление.

Танталовые электролитические конденсаторы:

Танталовые электролитические конденсаторы – это еще один тип электролитических конденсаторов, в которых анод сделан из тантала. Использование тантала дает конденсаторам более высокие значения допуска, но более низкое максимальное рабочее напряжение, чем алюминиевый электролитический конденсатор, он не может использоваться в качестве прямой замены того же самого.

Танталовые конденсаторы

имеют очень тонкий диэлектрический слой и, следовательно, более высокое значение емкости на единицу объема.Он показывает сравнительно хорошую стабильность и частотные характеристики по сравнению с конденсаторами других типов.

Однако танталовые конденсаторы создают риск потенциального отказа, который может возникнуть во время скачков напряжения, когда анод входит в прямой контакт с катодом. Это может привести к химической реакции в зависимости от силы энергии, производимой во время процесса. Поэтому при использовании этого конденсатора вам придется использовать ограничители тока или плавкие предохранители в качестве предохранительной схемы.

Пленочные конденсаторы:

Пленочные конденсаторы, как следует из названия, имеют диэлектрики из тонкой пластиковой пленки. Этот фильм создается с помощью сложного процесса рисования пленки. Пленка может быть металлизированной или необработанной, это зависит от требований характеристик конденсатора. Этот тип конденсатора имеет хорошую стабильность при низкой индуктивности и сравнительно дешевле, чем его аналоги. В зависимости от типа используемого диэлектрика эти пленочные конденсаторы подразделяются на различные категории, такие как полиэфирная пленка, пластиковая пленка и т. Д.

Это неполяризованные конденсаторы с желаемыми характеристиками. По сравнению с электролитным конденсатором он имеет более длительный срок хранения и срок службы, что делает его более надежным.

Серебряные слюдяные конденсаторы:

В конденсаторах

Silver Mica в качестве диэлектрика используется слюда, группа природных минералов, которая зажата между двумя металлическими листами. Специфическое кристаллическое связывание слюды помогает в производстве очень тонких слоев диэлектрика. Этот конденсатор популярен своей надежностью и стабильностью при небольшом значении емкости.Эти конденсаторы с малыми потерями не поляризованы и могут быть изготовлены со многими высокими допусками.

Теперь, когда вы получили представление о некоторых конденсаторах и их сильных сторонах, давайте обсудим основные области применения этих конденсаторов.

Какой конденсатор и где можно использовать?

Конденсаторы керамические

Это, вероятно, наиболее широко производимые конденсаторы из-за их бесконечного применения. Наиболее заметная область, где используются эти конденсаторы, – это резонансный контур передающей станции, который требует высокой точности и высокой мощности конденсатора.Благодаря своей неполярности и доступности в широком диапазоне емкостей, номинальных напряжений и размеров, он также популярен как конденсатор общего назначения. Чтобы уменьшить радиочастотный шум в двигателе постоянного тока, можно использовать керамические конденсаторы на щетках двигателя.

Конденсаторы электролитные

Электролитические конденсаторы находят свое применение в приложениях с высокими емкостями без поляризации переменного тока (например, в цепи фильтрации). Другие области включают в себя импульсный источник питания, сглаживание входа и выхода в фильтрах нижних частот.В схемах с большой амплитудой и высокочастотными сигналами их нельзя использовать, поскольку они будут иметь высокие значения ESR.

Конденсаторы танталовые

Эти конденсаторы обладают преимуществом низкого тока утечки наряду с высокой емкостью, а также лучшей стабильностью и надежностью. Это делает их хорошим выбором для выборки и удержания цепей, цепей фильтрации источников питания компьютеров и сотовых телефонов. Они доступны в военных версиях, которые не высыхают со временем и, следовательно, действуют как замена электролитическим конденсаторам в военных приложениях.

Пленочные конденсаторы

Эти конденсаторы популярны среди энтузиастов силовой электроники. Они используются почти во всех силовых электронных устройствах, рентгеновских аппаратах, фазовращателях и импульсных лазерах. Даже в импульсном блоке питания используется пленочный конденсатор для коррекции коэффициента мощности. Варианты с более низким напряжением используются в качестве развязывающих конденсаторов, фильтров и аналого-цифровых преобразователей. Их можно использовать как часть обычных цепей, а также для сглаживания скачков напряжения.

Серебряные слюдяные конденсаторы

В областях, где требуется низкая емкость, но требуется высокая стабильность, например, в силовых радиочастотных цепях, можно использовать конденсаторы из серебряной слюды.Высокое напряжение пробоя делает его пригодным для работы с высоким напряжением. Они обладают низкими потерями и поэтому широко используются в схемах с высокочастотной настройкой, таких как генераторы.

В этой статье рассмотрены наиболее известные типы конденсаторов. Кроме них, существует несколько других типов, таких как подстроечный конденсатор, воздушный конденсатор, суперконденсатор и т. Д. Подстроечный конденсатор – это переменный тип, который не так широко используется. Суперконденсаторы представляют собой комбинацию нескольких электролитических конденсаторов, образующих конденсатор более высокого номинала, который проявляет свойства как конденсаторов, так и аккумуляторной батареи.

На этом мы подошли к концу статьи. Надеюсь, вы получили ясное и ясное представление о типах конденсаторов и их различных применениях.

Спасибо за внимание!


Автор: Cicy имеет степень магистра электротехники и электроники по специальности “Силовая электроника”. Она писатель-фрилансер, который пишет, чтобы упростить сложные концепции понятным языком.

типов конденсаторов – Инженеры-преподаватели.com

Конденсаторы бывают всех форм и размеров и обычно имеют маркировку в фарадах. Их также можно разделить на две группы: фиксированные и переменные. Конденсаторы постоянной емкости, которые имеют приблизительно постоянную емкость, затем могут быть дополнительно разделены в соответствии с типом используемого диэлектрика. Некоторые разновидности: бумажные, масляные, слюдяные, электролитические и керамические конденсаторы. На рисунке 111 показаны схематические символы для постоянного и переменного конденсатора.

Рисунок 111. Условные обозначения для постоянного и переменного конденсатора.
Фиксированные конденсаторы

Слюдяные конденсаторы
Фиксированные слюдяные конденсаторы изготовлены из пластин из металлической фольги, разделенных листами слюды, образующими диэлектрик. Вся конструкция покрыта формованным пластиком, который не пропускает влагу. Слюда является отличным диэлектриком и выдерживает более высокие напряжения, чем бумага, без образования дуги между пластинами. Обычные значения слюдяных конденсаторов колеблются от примерно 50 мкФ до примерно 0,02 мкФ.

Керамика
Керамический конденсатор изготовлен из таких материалов, как титановая кислота и барий в качестве диэлектрика. Внутри эти конденсаторы не имеют катушки, поэтому они хорошо подходят для использования в высокочастотных приложениях. Они имеют форму диска, доступны с очень маленькими значениями емкости и очень маленькими размерами. Этот тип довольно небольшой, недорогой и надежный. И керамический, и электролитический конденсаторы являются наиболее широко доступными и используемыми конденсаторами.

Электролитический
Используются два типа электролитических конденсаторов: (1) мокрый электролитический и (2) сухой электролитический.

Мокрый электролитический конденсатор состоит из двух металлических пластин, разделенных электролитом с диэлектриком электролита, который в основном представляет собой проводящую соль в растворителе. Для емкостей, превышающих несколько микрофарад, площади пластин бумажных или слюдяных конденсаторов должны стать очень большими; поэтому вместо них обычно используются электролитические конденсаторы. Эти блоки обеспечивают большую емкость при небольших физических размерах. Их значения колеблются от 1 до примерно 1500 микрофарад. В отличие от других типов, электролитические конденсаторы обычно поляризованы, с положительным выводом, отмеченным знаком «+», и отрицательным проводом, отмеченным знаком «-», и на них следует воздействовать только постоянным напряжением или только пульсирующим постоянным напряжением.

Электролит, контактирующий с отрицательной клеммой, в пастообразной или жидкой форме, составляет отрицательный электрод. Диэлектрик представляет собой чрезвычайно тонкую пленку оксида, нанесенную на положительный электрод конденсатора. Положительный электрод, который представляет собой алюминиевый лист, сложен для достижения максимальной площади. Конденсатор во время изготовления подвергается процессу формования, при котором через него пропускают ток. Прохождение тока приводит к осаждению тонкого оксидного покрытия на алюминиевой пластине.

Близкое расстояние между отрицательным и положительным электродами приводит к сравнительно высокому значению емкости, но допускает большую вероятность пробоя напряжения и утечки электронов от одного электрода к другому.

Электролит установки сухого электролиза представляет собой пасту, содержащуюся в сепараторе, изготовленном из абсорбирующего материала, такого как марля или бумага. Сепаратор не только удерживает электролит на месте, но и предотвращает короткое замыкание пластин. Сухие электролитические конденсаторы изготавливаются как в цилиндрической, так и в прямоугольной блочной форме и могут находиться внутри картонных или металлических крышек.Поскольку электролит не может пролиться, сухой конденсатор можно установить в любом удобном месте. Электролитические конденсаторы показаны на рисунке 112.

Рисунок 112. Электролитические конденсаторы.

Тантал
Эти конденсаторы, как и электролитические, изготовлены из материала, называемого танталом, который используется для изготовления электродов. Они превосходят электролитические конденсаторы, обладая лучшими температурными и частотными характеристиками. Когда танталовый порошок спекается с целью его застывания, внутри образуется трещина.Эта трещина используется для хранения электрического заряда. Как и электролитические конденсаторы, танталовые конденсаторы также поляризованы и обозначены символами «+» и «-».

Полиэфирная пленка
В этом конденсаторе тонкая полиэфирная пленка используется в качестве диэлектрика. Эти компоненты недорогие, термостабильные и широко используются. Допуск составляет примерно 5–10 процентов. Он может быть довольно большим в зависимости от емкости или номинального напряжения.

Масляные конденсаторы
В радио- и радиолокационных передатчиках часто используются напряжения, достаточно высокие, чтобы вызвать искрение или пробой бумажных диэлектриков.Следовательно, в этих применениях предпочтительны конденсаторы, в которых в качестве диэлектрического материала используется бумага, пропитанная маслом или маслом. Конденсаторы этого типа значительно дороже обычных бумажных конденсаторов, и их использование обычно ограничивается радио- и радиолокационным передающим оборудованием. [Рисунок 113]

Рисунок 113. Масляный конденсатор.
Переменные конденсаторы

Переменные конденсаторы в основном используются в схемах радионастройки, и их иногда называют «настраивающими конденсаторами».«У них очень маленькие значения емкости, обычно от 100 пФ до 500 пФ.

Триммеры
Триммер фактически представляет собой регулируемый или переменный конденсатор, в котором в качестве диэлектрика используется керамика или пластик. Большинство из них имеют цветовую кодировку, чтобы легко узнать их настраиваемый размер. На керамическом типе напечатано значение. Цвета: желтый (5 пФ), синий (7 пФ), белый (10 пФ), зеленый (30 пФ) и коричневый (60 пФ).

Варакторы
Конденсатор или варактор переменного напряжения также известен как диод переменной емкости или варикап.В этом устройстве используется изменение ширины барьера в диоде с обратным смещением. Поскольку ширина барьера диода действует как непроводник, диод образует конденсатор при обратном смещении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *