Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Сказка о том, как открыли Майкла Фарадея, который открыл электромагнитное поле

Ник. Горькавый
«Наука и жизнь» №6, 2017

Другие научные сказки Ник. Горькавого см. в «Науке и жизни» №11, 2010, №12, 2010, №1, 2011, №2, 2011, №3, 2011, №4, 2011, №5, 2011, №6, 2011, №9, 2011, №11, 2011, №6, 2012, №7, 2012, №8, 2012, №9, 2012, №10, 2012, №12, 2012, №1, 2013, №11, 2013, №1, 2014, №2, 2014, №3, 2014, №7, 2014, №8, 2014, №10, 2014, №12, 2014, №1, 2015, №4, 2015, №5, 2015, №6, 2015, №7, 2015, №9, 2015, №1, 2016, №2, 2016, №3, 2016, №6, 2016, №8, 2016, № 11, 2016, № 2, 2017, № 4, 2017.

Журнальный вариант одной из научных сказок из новой книги Ник. Горькавого «Электрический дракон», которая вышла в свет в издательстве «АСТ» в начале этого года.

В гости к принцессе Дзинтаре приехала королева Никки с мужем Джерри.

— У меня срочное дело к вашей маме, — заявила королева детям Дзинтары Галатее и Андрею, — поэтому я её забираю, а вам оставляю Джерри. Он расскажет очередную вечернюю сказку об электричестве.

— Я постараюсь не сильно искрить! — пообещал Джерри. — Надеюсь, вам понравится история про гениального самоучку — знаменитого английского физика Майкла Фарадея.

Его жизнь была увлекательнее любого романа. Майкл рос в лондонском пригороде вместе с двумя сёстрами и двумя братьями в бедной семье кузнеца. В 13 лет ему пришлось начать зарабатывать. Майкл поступил рассыльным в лондонский книжный магазин, принадлежавший французскому эмигранту Джорджу Рибо. После испытательного срока мальчика оставили работать в магазине переплётчиком. Всё свободное время Майкл читал. Особенно ему нравились книги по химии и электричеству. Он даже ставил описываемые в них опыты.

— Но как он мог это делать? — удивилась Галатея. — Ведь у него не было никакого оборудования.

— Конечно, Майклу были по силам только простые эксперименты, он проводил их с помощью инструментов и материалов из кузницы своего отца, который, как и Рибо, поощрял занятия любознательного подростка и помогал ему. Однажды отец купил Майклу необходимую для опытов «лейденскую банку» (см.

 «Науку и жизнь» № 4, 2017. — Прим. ред.).

Посетители книжного магазина тоже старались оказать содействие смышлёному юноше. Один из них подарил Фарадею билет на цикл лекций знаменитого английского физика и химика Хэмфри Дэви, которые тот читал в Королевском институте. Майкл тщательно записал лекции, переплёл их в аккуратную книжку и послал Дэви с просьбой принять его на работу в институт. Этот, по словам самого Фарадея, наивный и смелый шаг принёс результат. Дэви был поражён усердием молодого человека, ответил ему и через несколько месяцев, в начале 1813 года, взял его на работу на освободившееся место лаборанта. Фарадей исполнял свои обязанности безукоризненно и вскоре стал незаменимым помощником Дэви, особенно после того, как учёный повредил глаза при взрыве химических реактивов в своей лаборатории.

Майкл никогда не учился в школе, и тем более в университете, но несколько лет, проведённых им в книжном магазине Рибо, сделали его образованным человеком.

— Мне кажется, тут дело не в магазине, а в желании Фарадея учиться, — сказал Андрей.

— Согласен, но, если бы Майкл работал в угольной шахте, а в те времена многие дети его возраста вслед за отцами становились шахтёрами, возможностей для самообразования у него было бы гораздо меньше. Впоследствии Фарадей посвятил Джорджу Рибо одну из своих книг, а на книжном магазине, который существует до сих пор, появилась мемориальная доска, напоминающая о том, что здесь когда-то работал великий учёный.

Осенью того же 1813 года вместе с Дэви и его супругой 22-летний Майкл отправился в поездку по европейским научным центрам, где Дэви встречался с А. Ампером, Ж. Л. Гей-Люссаком и другими выдающимися учёными. Судьбоносная встреча с А. Вольтой (см. «Науку и жизнь» № 4, 2017, статья «Сказка об электрической лягушке и итальянском физике Алессандро Вольте, основоположнике учения об электричестве») произошла в доме знаменитого учёного на озере Комо в Италии и была довольно продолжительной.

Однажды к дому Алессандра Вольты подкатила карета, нагружённая сундуками и чемоданами. Рядом с кучером сидел молодой человек. Он спрыгнул на землю и открыл дверцу кареты. Из неё вышел элегантный господин, а за ним — его жена, пышно разодетая дама. Сварливым голосом она отдала распоряжение насчёт чемоданов, а её муж устремился к хозяину дома, который ожидал его возле крыльца.

— Приветствую вас, сэр Хэмфри Дэви, — сказал Вольта. — Трудна ли была ваша дорога?

Гость представил Вольте супругу, а потом, после некоторого колебания, своего помощника Майкла, молодого человека, ехавшего рядом с кучером и выполнявшего обязанности слуги.

К этому времени Дэви уже прославился своими открытиями в области химии и электролиза, сделанными с помощью вольтова столба. Немало часов провёл он в лаборатории Вольты, знакомясь с созданными великим учёным приборами. Майкл ходил следом и внимательно записывал пояснения хозяина, иногда задавая вопросы, которые своей глубиной удивляли его.

— Смышлёный у вас помощник, — сказал Вольта. А потом добавил: — Я нашёл пролив в новый таинственный океан электричества, которое вырабатывает моя батарея, но исследовать его придётся вам, молодому поколению. Верю, что вы откроете в нём множество секретов.

Галатея нетерпеливо спросила:

— Дэви оправдал надежды Вольты?

Джерри ответил:

— Не совсем. Конечно, он был крупным учёным, но по-настоящему великим исследователем электричества, сумевшим разгадать основные тайны «электрического дракона», стал его молодой помощник Майкл Фарадей, который вошёл в историю благодаря своим выдающимся открытиям. Ранее электрические явления не связывали с магнитными, такими как указание стрелки компаса строго на север или притяжение магнитом железных опилок. Обнаружить единство электрических и магнитных явлений помог вольтов столб. Произошло это так.

Дождливым утром 1820 года профессор Копенгагенского университета Ханс Христиан Эрстед показывал студентам опыт по нагреванию проволоки из-за текущего по ней тока от вольтовой батареи. На лабораторном столе среди другого оборудования лежал компас. Истопник, принёсший в комнату дрова для камина, выпрямил усталую спину и вдруг заметил, что, когда профессор включил электрическую цепь, стрелка компаса дёрнулась.

— Сударь! — деликатно кашлянул остроглазый истопник, обращаясь к учёному, который проводил этот простой опыт, наверное, в сотый раз. — У вас тут компас… того… шалит!

Эрстед глубоко верил в связь магнитных и электрических явлений, поэтому обратил пристальное внимание на дрожание стрелки компаса, замеченное истопником. Ранее учёные пробовали пропускать электрический ток через магнитную стрелку, но не добились никакого результата. Эрстед провёл серию опытов и доказал, что стрелка компаса реагирует на включённый провод из любого, даже немагнитного, металла и располагается по касательной к окружности вокруг провода. Проще говоря, если расположить провод с током вертикально, то стрелка компаса укажет не на сам провод, а, например, влево. Если же окружить провод несколькими компасами, то их стрелки образуют горизонтальную окружность, в центре которой будет вертикальный провод.

После этого открытия Эрстед стал знаменитым, но история не сохранила имени остроглазого истопника.

Исследователи, узнавшие об опыте Эрстеда, удивлялись тому, что магнитное взаимодействие между объектами направлено не от одного к другому, как в теории гравитации Ньютона и электростатическом законе Кулона, а в сторону.

— А что тут удивительного? — не поняла Галатея.

— А то, что электрически заряженные тела тянутся друг к другу. В гравитации все тела падают на Землю в направлении её центра. Представь себе, что ты выронила камушек и он полетел не вниз, а в сторону — параллельно земле. Результаты, полученные Эрстедом, были настолько сенсационными, что о них за считаные недели узнали во всей Европе.

В том же 1820 году французский исследователь Андре-Мари Ампер обнаружил, что два провода под током отталкиваются друг от друга или притягиваются в зависимости от направления течения тока. Он также показал, что катушка из намотанного электрического провода становится сильным магнитом. Ампер изобрёл электромагнитный телеграф, работа которого была основана на воздействии провода с током на магнитную стрелку.

Он писал:

«…можно было бы, взяв столько проводников и магнитных стрелок, сколько имеется букв, и помещая каждую букву на отдельной стрелке, устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок. Соединяя поочередно концы столба с концами соответствующих проводников, можно было бы лицу, которое наблюдало бы за буквами на стрелках, передавать сведения со всеми подробностями и через какие угодно препятствия. Если установить со стороны столба клавиатуру с буквами и производить соединения нажатием клавиш, то этот способ сообщения мог бы применяться достаточно просто и не требовал бы больше времени, чем необходимо для нажатия клавиш на одной стороне и чтения каждой буквы на другой».

Фарадея чрезвычайно увлекли эксперименты Эрстеда и Ампера. Майкл интерпретировал опыты Эрстеда следующим образом: ток в проводе создаёт вокруг магнитное поле, на которое реагирует стрелка компаса. Но можно ли создать электрический ток из магнитного поля? Фарадей был уверен: если Эрстед превратил электричество, текущее по проводу, в магнитное поле, воздействующее на компасную стрелку, то должен быть и обратный процесс!

В 1822 году Фарадей зафиксировал в дневнике поставленную перед собой задачу: «Превратить магнетизм в электричество». Примерно в это же время Дэви с другим английским физиком Волластоном попробовали сконструировать электрический двигатель, но потерпели неудачу. За решение этой сложной проблемы взялся Фарадей. Он продемонстрировал работоспособность сразу двух возможных конструкций электродвигателя. Фарадей научился превращать электрическую энергию в механическую!

— Наверное, это очень не понравилось Дэви и Волластону! — воскликнул Андрей.

— Да. Они даже стали обвинять Майкла в плагиате. Фарадею эти склоки были настолько неприятны, что он попросту перестал работать в области электродинамики и переключился на другие научные проблемы. К электрическим опытам он вернулся, когда обоих его оппонентов уже не было в живых. В 1831 году Майкл совершил революцию в области электродинамики — открыл электромагнитную индукцию (способ превращения магнитного поля в электричество).

— А как он это сделал? — поинтересовалась Галатея. Джерри призадумался, но быстро нашёлся:

— А я сейчас вам покажу! У вас есть магнит?

— Конечно, есть! — воскликнул Андрей, и они стали копаться в большом ящике с игрушками.

— Отлично! — сказал Джерри, держа в руках подковообразный магнит. — Это лучшая детская игрушка всех времён. Теперь нам нужны провода и какой-нибудь простенький вольтметр или любой другой измеритель тока.

— Лапок дохлых лягушек у нас нет! — пошутила Галатея.

— Тогда вот этот приборчик сойдёт, — показал Джерри на найденный вольтметр, который Андрей использовал в электрических схемах, собираемых на уроках физики.

— Теперь сделаем катушку в сотню витков, а лучше ещё больше… — Джерри стал наматывать тонкий провод вокруг пустого пластикового стаканчика — и присоединим её свободные концы к вольтметру.

— И это всё? — удивилась Галатея.

— Да! — подтвердил Джерри. — Теперь мы можем приступать к опытам.

Он взял в руки магнит и опустил его конец в стаканчик. В этот момент стрелка вольтметра дёрнулась и переместилась в сторону на несколько милливольт.

— Я видела, видела! — завопила в восторге Галатея. — Появился ток!

— У тебя острый глаз! — похвалил девочку Джерри.  — Теперь вытащи магнит.

Галатея быстро выдернула магнит из стаканчика — и стрелка вольтметра снова дёрнулась, только в обратную сторону.

— Я — настоящий Фарадей! — воскликнула Галатея. И они начали экспериментировать с новой игрушкой, вернее, с новым научным прибором.

Джерри сказал, глядя на увлечённых детей:

— Фарадей доказал: изменение величины магнитного поля, пронизывающего замкнутый проводник, заставляет заряды в проводе двигаться, создаёт в нём электрический ток. Если собрать прибор, способный периодически изменять магнитное поле, пронизывающее катушку, то это будет электрический генератор — источник тока, во многих отношениях превосходящий батарею Вольты. С помощью простых предметов Фарадей создал прототип электрогенератора, который до сих пор служит главным источником получения электрического тока. По такому же принципу работают электрогенераторы, вращаемые огромными турбинами, на гидроэлектростанциях, на тепловых и на атомных станциях, вырабатывающих электрический ток.

— А электромоторы в автомобилях тоже придумал Фарадей?

— Он показал, как из электричества получать механическую энергию. В его опыте свободно висящий провод окунался в ванночку с ртутью, в середине которой был установлен магнит. Когда по проводу шёл ток, он начинал вращаться вокруг магнита. Но от этой конструкции до электродвигателя современного типа было ещё очень далеко. И всё же первым, кто доказал, что дракона можно заставить крутить колёса и винты, был Фарадей. Его имя стало всемирно известным, академии разных стран выбирали его своим почётным членом.

— Так-так, — закивала головой Галатея. — Из рассыльного книжного магазина — в академики! Здорово!

— Ещё как здорово, но, несмотря на головокружительный взлёт в науке, Фарадей оставался исключительно скромным человеком. Он отклонил честь быть возведённым в рыцарское достоинство, а рыцарей почитали и даже хоронили в Вестминстерском аббатстве, где покоятся английские короли и сам Исаак Ньютон. Фарадей дважды отказался от должности председателя Королевского общества — высшего научного поста в Великобритании. Он был полностью сосредоточен на науке и уклонялся от всего, что мешало ему ею заниматься.

За годы работы Фарадей поставил около 30 тысяч экспериментов. В течение 24 лет он проводил опыты по электричеству и магнетизму и посылал их описания в Лондонское королевское общество. Именно эти работы совершили революцию в электродинамике.

Одно из главных достижений Фарадея, имеющее теоретический характер, состоит в том, что он ввёл в науку понятие физического поля, что кардинально отличало электродинамику от теории гравитации Ньютона.

— Но ведь у Ньютона тоже было поле, только гравитационное. В чём же их различие? — спросил Андрей.

— Ньютоновская теория основана на дальнодействии. Это значит, что каждое гравитирующее тело, например Юпитер, действует на другое тело, например на Сатурн, мгновенно на любом расстоянии.

— Но ведь это не так! — удивился Андрей. — Ничто не может действовать быстрее скорости света, а между Юпитером и Сатурном расстояние в несколько световых часов.

— Во времена Ньютона о конечной скорости взаимодействия никто не знал. Поэтому Ньютон исходил из бесконечной или мгновенной скорости передачи гравитационного взаимодействия. Его теория работала практически всегда хорошо, и её придерживались вплоть до начала XX века, пока Альберт Эйнштейн не построил свою теорию гравитации, согласно которой скорость распространения гравитационного поля ограничивается скоростью света.

Учёные XIX века представляли себе пространство между гравитирующими телами пустым. Фарадей считал, что пространство между зарядами и магнитами заполнено полем или средой с особыми нитями — силовыми линиями. В электродинамике не было мгновенного взаимодействия между зарядами: один заряд воздействовал на поле, оно менялось, и это изменение «чувствовал» другой заряд.

— Это не совсем понятно, — заёрзала Галатея.

— Свяжи два шарика ниткой и повесь на крючок. Потяни один шарик вниз. Как он будет воздействовать на другой шарик? Через нитку, которая стала «передавать» взаимодействие и заставлять другой шарик двигаться вверх.

Электромагнитное поле, согласно Фарадею, стало переносчиком взаимодействия между зарядами, и эта концепция является основой современной физики. С помощью своих опытов Фарадей открыл основные законы электродинамики и создал первые образцы электрического двигателя, электрогенератора и трансформатора. Тем самым он заложил фундамент современной электрической цивилизации.

Однажды член парламента, будущий премьер-министр Великобритании Уильям Гладстон, спросил Фарадея:

— Чем же так важно это ваше электричество?

— Скоро вы будете обкладывать его налогами, — ответил Фарадей.

— А кто продолжил его дело? — у Галатеи горели глаза от нетерпения.

— Эстафету подхватил британский физик-теоретик шотландского происхождения Джеймс Максвелл, который превратил законы Фарадея в математические уравнения, названные в его честь законами электродинамики Максвелла. Джеймс послал свою работу Фарадею. Тот сразу откликнулся:

«Мой дорогой сэр, я получил Вашу статью и очень благодарен Вам за неё. .. Эта работа не только приятна мне, но и даёт мне стимул к дальнейшим размышлениям. Я поначалу испугался, увидев, какая мощная сила математики приложена к предмету, а затем удивился тому, насколько хорошо предмет её выдержал…»

Напряжённые исследования, которые часто были связаны с использованием вредных веществ, например ртути, подорвали здоровье Фарадея. В 1862 году он оставил работу и лишился жалования. Нехотя, лишь под воздействием общественного мнения, премьер-министр назначил ему небольшую пенсию.

— Безобразие! — возмутилась Галатея. — Учёный, который столько сделал для людей и для своей страны, остался нищим.

Джерри вздохнул:

— Увы, это обычная история жизни многих великих людей. Для Фарадея она закончилась относительно благополучно: он получил от королевы в подарок дом в Хэмптон-Корте, по соседству с одним из королевских дворцов в Лондоне. В этом доме он прожил остаток своих лет с любимой супругой Сарой. Сейчас там музей.

Научные достижения Фарадея высоко ценили многие выдающиеся личности. Немецкий физик Герман Гельмгольц высказался просто: «До тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея». А самый известный физик XX века Альберт Эйнштейн заявил: «Со времени обоснования теоретической физики Ньютоном наибольшие изменения в её теоретических основах, другими словами, в нашем представлении о структуре реальности, были достигнуты благодаря исследованиям электромагнитных явлений Фарадеем и Максвеллом». Ему же принадлежат слова: «…надо иметь могучий дар научного предвидения, чтобы распознать, что в описании электрических явлений не заряды и не частицы описывают суть явлений, а скорее пространство между зарядами и частицами».

Завершая вечернюю сказку, Джерри подытожил:

— Майкл Фарадей входит в десятку, а может быть, и в пятёрку самых влиятельных учёных в истории, но он единственный из них, кто не получил формального образования, а оказался самоучкой. В этом смысле Фарадей уникален.

Андрей задумался и стал размышлять:

— XVIII век — век электростатики, XIX — век электродинамики. А каким был XX век, ведь вся наука об электричестве уже была создана к его началу?

Джерри ответил:

— Благодаря трудам Франклина и Вольты, Фарадея и Максвелла, многих других учёных люди изучили характер «электрического дракона», измерили его силу, узнали его слабости. В ХХ веке на первый план вышли инженеры и изобретатели. Они стали конструировать различные устройства, которые заставили «электрического дракона» работать на людей, так что XX век стал веком электрических машин.

Как развивалась научная магнитотерапия – статьи от компании Еламед

Необычные свойства магнита издавна привлекали внимание ученых. Попытки изучить и применить их на благо людей длятся не менее трех с половиной тысяч лет1, но качественный перелом в этом деле произошел ровно 200 лет назад.

Зимой 1819 – 1820 гг. датский ученый Ханс Кристиан Эрстед открыл явление электромагнетизма. Ему удалось заметить отклонение магнитной стрелки при прохождении электрического тока через проводник, т. е. найти подтверждение тому, что ток способен генерировать магнитное поле. С этого момента электричество и магнетизм стали рассматриваться во взаимосвязи. Это позволило приступить к созданию устройств для магнитотерапии, ведь немногим ранее – в 1780 году – специальная комиссия Парижской академии наук уже решила, что магнитотерапия может успешно применяться для лечения заболеваний нервной системы2.

В 1821 г. Майкл Фарадей повторил эксперимент Эрстеда и двинулся дальше, сформулировав концепцию магнитного поля.

Идеи Майкла Фарадея развил Джеймс Максвелл. Разработанная им теория представила магнитные поля как особый вид физической материи, осуществляющей связь и взаимодействие между электрически заряженными частицами. Она оказала огромное влияние на развитие магнитотерапии.

Позже свой вклад в изучение электромагнетизма внесли А.Г. Столетов, П. Кюри, П. Вейс, Н. Тесла, Э. Резерфорд, Н. Бор, А. Эйнштейн, П.Л. Капица. Их работы положены в основу науки магнитобиологии.


Современный уровень её развития позволяет утверждать: «физическая сущность действия магнитного поля на организм человека заключается в том, что оно оказывает влияние на движущиеся в теле электрически заряженные частицы, воздействуя таким образом на физико-химические и биохимические процессы»3. То есть магнитное поле способно создать в крови и лимфе, как в движущихся проводниках, слабые токи, изменяющие течение обменных процессов.

На базе этого теоретического знания с 1930-х гг. начали производить аппараты для магнитотерапии, способные создавать различные типы магнитных полей4. Они были выпущены в производство в Италии, Дании и США, но лучше всего магнитотерапия развивалась в СССР5. Здесь проводились глубокие фундаментальные исследования по взаимодействию живых организмов с магнитными полями. В 1966 г. в Москве состоялось I Всесоюзное совещание по влиянию магнитных полей на биологические объекты6. Оно явилось толчком к активизации научных исследований по магнитобиологии в СССР в 1970–80-е гг. 7

Практическим следствием этой работы стало массовое применение в поликлиниках, больницах, амбулаториях и санаториях магнитотерапевтических аппаратов. Но в 80-е годы прошлого века они всё ещё были стационарными.

Разработкой портативных аппаратов профессионального уровня занялся Елатомский приборный завод. Новый директор завода Николай Панин понимал, как нужны таки изделия, подходящий для использования как в поликлинике, так и дома. Первым подобным аппаратом был МАГ-30, затем появился АЛМАГ-01, позже – ДИАМАГ.

ДИАМАГ предназначен для транскраниальной магнитотерапии. Его используют преимущественно для лечения таких неврологических заболеваний, как мигрень и головная боль напряжения (ГБН). Излучатели аппарата надевают на голову, и создаваемое ими импульсное магнитное поле оказывает воздействие на мозг пациента.

Это способствует:

  • снятию сосудистых и мышечных спазмов;
  • улучшению микроциркуляции крови;
  • увеличению доставки кислорода к мозгу;
  • возникновению седативного эффекта.

Благодаря этому ДИАМАГ дает возможность купировать ГБН и приступ мигрени. Кроме того ДИАМАГ способен предотвратить развитие мигренозного приступа в случае использования аппарата при его первых признаках. При курсовом лечении ДИАМАГ может сделать атаки мигрени более редкими.

Система управления качеством производства на Елатомском приборном заводе соответствует требованиям международного стандарта EN ISO 13485:2016, что подтверждено аудиторами из компании TUV NORD CERT GmbH (Германия)8. Возможно, именно поэтому магнитотерапевтической и диагностической техникой компании оснащено около 80% российских учреждений медицинского профиля9. Впрочем, использование ДИАМАГа не требует глубоких знаний биологии человека, так что после консультации со специалистом его можно спокойно применять для домашнего лечения.

ДИАМАГ. Продукт высоких технологий!


Алексей Левин «Популярная механика» №7, 2010
2  Е. И. Золотухина, В. С. Улащик. Основы импульсной магнитотерапии – Витебск: Витебская областная типография – 144 с. С.6.
Физиотерапия: Учебник/ Клячкин Л. М. [и др.] — 2-е изд., перераб. и доп. — М.: Медицина, 1995. — 240 с. С.60
Магнитотерапия: теоретические основы и практическое применение / В. С. Улащик [и др.] ; под общ. ред. В. С. Улащика. – Минск: Беларуская навука, 2015. – 379 с. С.10
Там же.
Там же.
Там же.
Новость «Работа и продукция ЕЛАМЕД – высшего европейского качества!»
Новость «Современная физиотерапия теперь доступна каждому!»

This Month in Physics History

К концу 18-го века ученые заметили много электрических и магнитных явлений, но большинство считало, что это разные силы. Затем, в июле 1820 года, датский естествоиспытатель Ганс Христиан Эрстед опубликовал брошюру, в которой ясно показано, что на самом деле они были тесно связаны.

Ганс Христиан Эрстед родился в августе 1777 года в Рудкобинге, Дания. Он получил образование в основном дома и в детстве проявлял некоторый интерес к науке. В 13 лет он поступил в ученики к своему отцу, фармацевту. В 1794 года он поступил в Копенгагенский университет, где изучал физику, философию и фармацию и получил степень доктора философии.

Он защитил докторскую диссертацию в 1801 году и, как обычно, начал путешествовать по Европе, посещая Германию и Францию ​​и встречаясь с другими учеными. Одним из людей, которых он встретил и, возможно, вдохновил, был Иоганн Риттер, один из немногих ученых того времени, которые верили в связь между электричеством и магнетизмом.

Ханс Кристиан Эрстед

Вернувшись в Копенгаген в 1803 году, Эрстед искал место преподавателя физики в университете, но не сразу его получил. Вместо этого он начал читать лекции в частном порядке, взимая плату за вход. Вскоре его лекции стали популярными, и в 1806 году он получил назначение в Копенгагенский университет, где расширил программу физики и химии и создал новые лаборатории. Он также продолжил собственные исследования в области физики и других областей науки. Его первая научная работа была посвящена электрическим и химическим силам. Он исследовал множество проблем физики, в том числе сжимаемость воды и использование электрического тока для подрыва мин.

Эрстед сделал открытие, которым он известен, в 1820 году. В то время, хотя большинство ученых считали, что электричество и магнетизм не связаны, были некоторые причины полагать, что связь может быть. Например, давно известно, что компас при ударе молнии может поменять полярность. Эрстед ранее отмечал сходство между тепловым излучением и светом, хотя и не определил, что и то, и другое является электромагнитными волнами. Он, кажется, считал, что электричество и магнетизм — это силы, излучаемые всеми веществами, и эти силы могут каким-то образом мешать друг другу.

Во время демонстрации лекции 21 апреля 1820 г., устанавливая свой аппарат, Эрстед заметил, что когда он включал электрический ток, подключив провод к обоим концам батареи, стрелка компаса, которую держала рядом, отклонялась в сторону от магнитного севера. , куда он обычно указывал. Стрелка компаса двигалась лишь слегка, настолько незначительно, что зрители даже не заметили. Но Эрстеду было ясно, что происходит что-то важное.

Некоторые люди предполагают, что это было совершенно случайное открытие, но версии расходятся в том, была ли демонстрация предназначена для поиска связи между электричеством и магнетизмом, или она предназначалась для демонстрации чего-то совершенно другого. Конечно, Эрстед был хорошо подготовлен к наблюдению такого эффекта, имея под рукой стрелку компаса и батарею (или «гальванический прибор», как он его называл).

То ли случайное, то ли отчасти ожидаемое, Эрстед был заинтригован своим наблюдением. Он не сразу нашел математическое объяснение, но обдумывал его в течение следующих трех месяцев, а затем продолжал экспериментировать, пока не был совершенно уверен, что электрический ток может создавать магнитное поле (что он назвал «электрическим конфликтом»). ).

21 июля 1820 года Эрстед опубликовал свои результаты в брошюре, которая была распространена частным образом среди физиков и научных обществ. Его результаты были в основном качественными, но эффект был ясен — электрический ток порождает магнитную силу.

Его батарея, гальваническая батарея, состоящая из 20 медных прямоугольников, вероятно, создавала ЭДС около 15-20 вольт. Он пробовал разные типы проводов, но стрелка компаса все равно отклонялась. Когда он изменил направление тока, то обнаружил, что стрелка отклоняется в противоположном направлении. Он экспериментировал с различной ориентацией иглы и проволоки. Он также заметил, что эффект не может быть экранирован, если поместить дерево или стекло между компасом и электрическим током.

Публикация сразу произвела фурор и подняла статус Эрстеда как ученого. Другие начали исследовать недавно обнаруженную связь между электричеством и магнетизмом. Французский физик Андре Ампер разработал математический закон для описания магнитных сил между проводниками с током. Примерно через десять лет после открытия Эрстеда Майкл Фарадей продемонстрировал, по существу, обратное тому, что обнаружил Эрстед, — что изменяющееся магнитное поле индуцирует электрический ток. Следуя работе Фарадея, Джеймс Клерк Максвелл разработал уравнения Максвелла, формально объединив электричество и магнетизм.

Эрстед продолжал заниматься физикой. Он основал Общество распространения естественных наук, целью которого было сделать науку доступной для публики, что он считал очень важным. В 1829 году он основал Политехнический институт в Копенгагене. Он также был опубликованным писателем и поэтом и внес свой вклад в другие области науки, такие как химия — например, в 1825 году он впервые произвел алюминий. Эрстед умер в 1851 году. Его открытие 1820 года положило начало революции в понимании электромагнетизма, обеспечив первую связь между тем, что считалось двумя очень разными физическими явлениями.

электромагнетизм | Определение, уравнения и факты

электрическое поле

Посмотреть все СМИ

Ключевые люди:
Майкл Фарадей Уильям Томсон, барон Кельвин Джеймс Клерк Максвелл Карл Фридрих Гаусс Дж.Дж. Томсон
Похожие темы:
электромагнитное излучение электричество Кулоновская сила магнитная сила электромагнитное поле

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

электромагнетизм , наука о заряде и силах и полях, связанных с зарядом. Электричество и магнетизм — два аспекта электромагнетизма.

Электричество и магнетизм долгое время считались отдельными силами. Лишь в 19 веке к ним, наконец, стали относиться как к взаимосвязанным явлениям. В 1905 Специальная теория относительности Альберта Эйнштейна вне всяких сомнений установила, что оба явления являются аспектами одного общего явления. Однако на практическом уровне электрические и магнитные силы ведут себя совершенно по-разному и описываются разными уравнениями. Электрические силы создаются электрическими зарядами либо в состоянии покоя, либо в движении. Магнитные силы, с другой стороны, создаются только движущимися зарядами и действуют исключительно на движущиеся заряды.

Понять, как концепция осязания меняется при наличии электронов между двумя объектами

Посмотреть все видео к этой статье

Электрические явления происходят даже в нейтральной материи, потому что силы действуют на отдельные заряженные составляющие. В частности, электрическая сила отвечает за большинство физических и химических свойств атомов и молекул. Она невероятно сильна по сравнению с гравитацией. Например, отсутствие хотя бы одного электрона из каждого миллиарда молекул у двух 70-килограммовых (154 фунтов) людей, стоящих на расстоянии двух метров (двух ярдов) друг от друга, отталкивало бы их с силой в 30 000 тонн. В более привычном масштабе электрические явления ответственны за молнии и гром, сопровождающие некоторые грозы.

Электрические и магнитные силы можно обнаружить в областях, называемых электрическими и магнитными полями. Эти поля фундаментальны по своей природе и могут существовать в пространстве вдали от заряда или тока, которые их породили. Примечательно, что электрические поля могут создавать магнитные поля и наоборот независимо от внешнего заряда. Изменяющееся магнитное поле создает электрическое поле, как обнаружил английский физик Майкл Фарадей в работе, которая лежит в основе производства электроэнергии. И наоборот, изменяющееся электрическое поле создает магнитное поле, как пришел к выводу шотландский физик Джеймс Клерк Максвелл. Математические уравнения, сформулированные Максвеллом, включили световые и волновые явления в электромагнетизм. Он показал, что электрические и магнитные поля путешествуют вместе в пространстве как волны электромагнитного излучения, при этом изменяющиеся поля взаимно поддерживают друг друга. Примерами электромагнитных волн, распространяющихся в пространстве независимо от материи, являются радио- и телевизионные волны, микроволны, инфракрасные лучи, видимый свет, ультрафиолетовый свет, рентгеновские лучи и гамма-лучи. Все эти волны распространяются с одинаковой скоростью, а именно со скоростью света (примерно 300 000 километров или 186 000 миль в секунду). Они отличаются друг от друга только частотой, с которой колеблются их электрическое и магнитное поля.

Викторина “Британника”

Викторина “Все о физике”

Кто был первым ученым, проведшим эксперимент по управляемой цепной ядерной реакции? Какова единица измерения циклов в секунду? Проверьте свою физику с помощью этого теста.

Уравнения Максвелла до сих пор дают полное и элегантное описание электромагнетизма вплоть до субатомного масштаба, но не включая его. Однако интерпретация его работ была расширена в 20 веке. Специальная теория относительности Эйнштейна объединила электрические и магнитные поля в одно общее поле и ограничила скорость всего вещества скоростью электромагнитного излучения. В конце 19В 60-х годах физики обнаружили, что другие силы в природе имеют поля с математической структурой, аналогичной электромагнитному полю. Этими другими силами являются сильное взаимодействие, ответственное за выделение энергии при ядерном синтезе, и слабое взаимодействие, наблюдаемое при радиоактивном распаде нестабильных атомных ядер. В частности, слабое и электромагнитное взаимодействия были объединены в общую силу, называемую электрослабой силой. Цель многих физиков объединить все фундаментальные силы, включая гравитацию, в одну великую единую теорию до сих пор не достигнута.

Важным аспектом электромагнетизма является наука об электричестве, которая занимается изучением поведения агрегатов заряда, включая распределение заряда в материи и перемещение заряда с места на место. Различные типы материалов классифицируются как проводники или изоляторы в зависимости от того, могут ли заряды свободно перемещаться через составляющие их вещества. Электрический ток является мерой потока зарядов; законы, управляющие токами в материи, важны в технике, особенно в производстве, распределении и контроле энергии.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Понятие напряжения, так же как заряда и тока, является фундаментальным для науки об электричестве. Напряжение — это мера склонности заряда перетекать из одного места в другое; положительные заряды обычно имеют тенденцию перемещаться из области высокого напряжения в область более низкого напряжения. Распространенной проблемой в электричестве является определение соотношения между напряжением и током или зарядом в данной физической ситуации.

В этой статье делается попытка дать качественное понимание электромагнетизма, а также количественную оценку величин, связанных с электромагнитными явлениями.

Повседневная жизнь современного человека пронизана электромагнитными явлениями. Когда лампочка включена, через тонкую нить в колбе течет ток, который нагревает нить до такой высокой температуры, что она светится, освещая все вокруг. Электрические часы и соединения связывают простые устройства такого рода в сложные системы, такие как светофоры, которые отсчитывают время и синхронизируются со скоростью транспортного потока. Радиоприемники и телевизоры получают информацию, переносимую электромагнитными волнами, распространяющимися в пространстве со скоростью света. Чтобы запустить автомобиль, токи в электростартере генерируют магнитные поля, которые вращают вал двигателя и приводят в движение поршни двигателя, сжимая взрывоопасную смесь бензина и воздуха; искра, инициирующая горение, представляет собой электрический разряд, образующий мгновенный ток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *