Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

2. Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрический ток — направленное, упорядоченное движение электрических зарядов.

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.


 

Обрати внимание!

Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.
Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.


 

Существуют различные виды источников тока:

  

• Механический источник тока

— механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.


 

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

 

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.

 

 

 

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

 

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.


 

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

 

• Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую.
К нему относится, например, гальванический элемент. 

 

 

В цинковый сосуд Ц вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в полотняный мешочек, наполненный смесью оксида марганца с углём С. Пространство между цинковым корпусом и смесью оксида марганца с углём заполнено желеобразным раствором соли Р. В результате химической реакции цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.

Из нескольких гальванических элементов можно составить батарею.

 

 

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

 

 

 

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна — из спрессованного железного порошка, а вторая — из пероксида никеля.   

Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие. Чтобы электроэнергию доставить от источника до потребителя, необходимы соединительные проводники, а чтобы её поступлением можно было управлять, нужны рубильники, выключатели, кнопки и т.д.

 

Обрати внимание!

Источник электроэнергии, потребители электроэнергии, замыкающие устройства, соединённые между собой проводами, называют электрической цепью.

Чтобы в цепи существовал электрический ток, она должна быть замкнутой, т.е. состоять из проводников электричества. Если в каком-либо месте провод разорвётся, то ток в цепи прекратится. На этом основано действие выключателей.  

 

Обрати внимание!

Чертежи, на которых изображаются способы соединения электрических приборов в цепь, называют схемами.

 

 

Приборы на схемах обозначают условными знаками. Вот некоторые из них:


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Источники:

 

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://www.fizika.ru/kniga/index.php?mode=paragraf&theme=09&id=9010
http://files.school-collection.edu.ru/dlrstore/669ba06a-e921-11dc-95ff-0800200c9a66/3_8.swf

www.yaklass.ru

2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА. История электротехники

2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА

В течение нескольких лет (1792–1795 гг.) А. Вольта не только повторил все опыты Л. Гальвани, но и произвел ряд новых исследований. И если Л. Гальвани искал причину обнаруженных им явлений как физиолог, то А. Вольта, будучи физиком, искал в них физические процессы [1.1; 1.6; 1.12; 1.13].

А. Вольта прежде всего обратил внимание на факт, уже известный Л. Гальвани, что сокращения мышц наиболее интенсивно происходят при использовании двух разнородных металлов. Продолжая исследования, он отверг идеи Л. Гальвани о «животном» электричестве и пришел к выводу, что источником электричества является контакт двух разнородных металлов: «Металлы не только прекрасные проводники, но и двигатели электричества», — утверждал А. Вольта. А «… лягушка, приготовленная по способу Гальвани, есть чувствительнейший электрометр» [1.1; 1.2].

Обобщением исследований А. Вольта была предложенная им теория «контактного электричества». Эта теория утверждала, что при соприкосновении различных металлов происходит разложение их «естественного» электричества; при этом электричество одного знака собирается на одном металле, а другого — на другом. Силу, возникающую при контакте двух металлов и разлагающую их «естественное» электричество, А. Вольта назвал электровозбудительной, или электродвижущей силой; эта сила «перемещает электричество так, что получается разность напряжений» (между металлами. —

Авт.) [1.2].

Произведя исследование этого вопроса при помощи созданного им весьма чувствительного прибора — электроскопа с конденсатором, А. Вольта установил, что металлы можно распределить в некоторый ряд, в котором «разность напряжений» между двумя металлами будет тем больше, чем дальше они расположены один от другого.

С современной точки зрения совершенно очевидна ошибочность идеи Вольта о возможности получения электрического тока посредством простого контакта разнородных металлов, т.е. получения электрической энергии без затраты для этого какого-либо другого вида энергии. Однако в начале прошлого века эта теория контактного электричества нашла много сторонников и на некоторое время удержалась в науке.

Многочисленные эксперименты привели А. Вольта к выводу, что непрерывный электрический «флюид» может возникнуть лишь в замкнутой цепи, составленной из различных проводников — металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Опыты А. Вольта завершились построением в 1799 г. первого источника непрерывного электрического тока, составленного из медных и цинковых кружков (пар), переложенных суконными прокладками, смоченными водой или кислотой. Этот прибор, о котором он впервые сообщил президенту Лондонского королевского общества в марте 1800 г., был назван им «электродвижущим аппаратом», а позже французы стали его называть «гальваническим или вольтовым столбом» (рис. 2.1).

Рис. 2.1. Вольтов столб

Необходимость применения проводников второго класса (суконных кружков, смоченных водой или кислотой) А. Вольта объяснял следующим: при соприкосновении двух различных металлов электричество одного знака сосредоточивается на одном металле, а электричество противоположного знака — на другом. Если составить столб из нескольких пар различных металлов, например цинка и серебра (без прокладок), то каждая цинковая пластина будет находиться в соприкосновении с одинаковыми серебряными пластинами и их общее действие будет взаимно уничтожаться. Для того чтобы действие отдельных пар суммировалось, необходимо обеспечить соприкосновение каждой цинковой пластинки только с одной серебряной. Это осуществляется с помощью проводников второго рода — суконных кружков, смоченных водой или кислотой, разделяющих пары металлов и не препятствующих движению электричества. Таким образом, А. Вольта, не понимая того, что электрический ток возникает в результате химических процессов между металлами и жидкостями, практически пришел к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую. Хотя А. Вольта и заметил, что поверхности приведенных в контакт разнородных металлов, составляющих гальваническую пару, подвергаются изменению — окисляются, тем не менее он не придал этому факту никакого значения.

Рис. 2.2. Чашечная батарея Вольта 

А. Вольта предложил кроме столба еще и несколько иную конструкцию источника электрического тока — так называемую чашечную батарею (рис. 2.2), действие которой, по его мнению, также было основано на контакте между двумя металлами (влажную суконную прокладку столба заменяла жидкость). Чашечная батарея представляла собой соединение отдельных элементов, имевших форму банок, наполненных разбавленной серной кислотой, в которую погружались одна медная и одна цинковая пластины. Кроме предложенных А. Вольта конструкций источника электрического тока вскоре были разработаны некоторые другие его модификации.

Создание вольтова столба подготовило почву для закладки фундамента электротехники. Современник А. Вольта, выдающийся французский ученый академик Доменик Франсуа Араго (1786–1853 гг.) считал вольтов столб «самым замечательным прибором, когда-либо изобретенным людьми, не исключая телескопа и паровой машины». В этом определении нельзя усматривать преувеличения. Вольтов столб — это первый источник непрерывного электрического тока, сыгравший громадную роль как в развитии науки об электричестве, так и в расширении его практических приложений. Вольтов столб в различных своих модификациях долгое время оставался самым распространенным источником электрического тока. Как будет видно из последующего, крупнейшие ученые первой половины XIX в. В.В. Петров, X. Дэви, А. Ампер, М. Фарадей широко применяли вольтов столб для своих опытов.

Научный вклад итальянского ученого был высоко оценен его современниками. Легенды об А. Вольта ходили среди ученых уже при его жизни. Создав вольтов столб, А. Вольта подарил миру, как писал один из его биографов, «невиданный ранее источник электричества, не порциями, как от банок и электрофоров, а непрерывным потоком».

Заслуживают внимания трактат А. Вольта «Об идентичности гальванического и электрического флюидов», его высказывания о «сходстве» электричества и магнетизма.

Современники называли А. Вольта самым великим физиком, жившим в Италии после Галилея. В 1881 г. на Международном конгрессе электриков в Париже единице напряжения было присвоено наименование «Вольт».

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Источник тока - это... Что такое Источник тока?

Рисунок 1 — схема с условным обозначением источника тока[1] Рисунок 2.1 — Обозначение на схемах источника тока

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.

На рисунке 1 представлена схема замещения триполярного транзистора, содержащая источник тока (с указанием S·Uбэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·Uбэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Свойства

Идеальный источник тока

Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:

Мощность, отдаваемая источником тока в сеть, равна:

Так как для источника тока , напряжение и мощность, выделяемая им, неограниченно растут при росте сопротивления.

Реальный источник тока

Реальный источник тока, так же как и источник ЭДС, в линейном приближении может быть описан таким параметром, как внутреннее сопротивление . Отличие состоит в том, что чем больше внутреннее сопротивление, тем ближе источник тока к идеальному (источник ЭДС, наоборот, тем ближе к идеальному, чем меньше его внутреннее сопротивление). Реальный источник тока с внутренним сопротивлением эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление и ЭДС .

Напряжение на клеммах реального источника тока равно:

Сила тока в цепи равна:

Мощность, отдаваемая реальным источником тока в сеть, равна:

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени () после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) ведёт к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник тока, только не постоянного, а переменного. Поэтому размыкание вторичной цепи трансформатора тока недопустимо; вместо этого при необходимости перекоммутации в цепи вторичной обмотки без отключения линии эту обмотку предварительно шунтируют.

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)
  • Источник тока, управляемый током (сокращенно ИТУТ)

Примечания

См. также

Литература

  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

dic.academic.ru

Источник тока — Википедия. Что такое Источник тока

Обозначение источника тока на схемах (вариант)

Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.

Источник тока используется в качестве простейшей модели некоторых реальных источников электрической энергии или как часть более сложных моделей реальных источников, содержащих другие электрические элементы. Следует заметить, что электрические характеристики реальных источников могут быть близки к свойствам источника тока или его противоположности — источника напряжения.

В электротехнике источником тока называют любой источник электрической энергии.

Свойства

Идеальный источник тока

Сила тока, текущего через идеальный источник тока, всегда одинакова по определению:

I=const{\displaystyle I={\text{const}}}

Напряжение на клеммах идеального источника тока (не путать с реальным источником!) зависит только от сопротивления R{\displaystyle R} подключенной к нему нагрузки:

U=I⋅R{\displaystyle U=I\cdot R}

Мощность, отдаваемая источником тока в нагрузку:

P=I2⋅R{\displaystyle P=I^{2}\cdot R}

Поскольку ток через идеальный источник тока всегда одинаков, то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.

Реальный источник

В линейном приближении любой реальный источник тока (не путать с описанным выше источником тока — моделью!) или иной двухполюсник может быть представлен в виде модели, содержащей, по меньшей мере, два элемента: идеальный источник и внутреннее сопротивление (проводимость). Одна из двух простейших моделей — модель Тевенина — содержит источник ЭДС, соединенный последовательно с сопротивлением, а другая, противоположная ей, модель Нортона — источник тока, соединенный параллельно с проводимостью (т. е. идеальным резистором, свойства которого принято характеризовать значением проводимости). Соответственно, реальный источник в линейном приближении может быть описан при помощи двух параметров: ЭДС E{\displaystyle {\mathcal {E}}} источника напряжения (или силы тока I{\displaystyle I} источника тока) и внутреннего сопротивления r{\displaystyle r} (или внутренней проводимости y=1/r{\displaystyle y=1/r}).

Можно показать, что реальный источник тока с внутренним сопротивлением r{\displaystyle r} эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление r{\displaystyle r} и ЭДС E=I⋅r{\displaystyle {\mathcal {E}}=I\cdot r}.

Напряжение на клеммах реального источника тока равно

Uout=IR⋅rR+r=IR1+R/r.{\displaystyle U_{\text{out}}=I{\frac {R\cdot r}{R+r}}=I{\frac {R}{1+R/r}}.}

Сила тока в цепи равна

Iout=IrR+r=I11+R/r.{\displaystyle I_{\text{out}}=I{\frac {r}{R+r}}=I{\frac {1}{1+R/r}}.}

Мощность, отдаваемая реальным источником тока в сеть, равна

Pout=I2R(1+R/r)2.{\displaystyle P_{\text{out}}=I^{2}{\frac {R}{\left(1+R/r\right)^{2}}}.}

Реальные генераторы тока имеют различные ограничения (например, по напряжению на его выходе), а также нелинейные зависимости от внешних условий. В частности, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени (t≪L/R{\displaystyle t\ll L/R}) после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) приводит к резкому возрастанию напряжения между контактами и к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник переменного тока. Следовательно, размыкание вторичной цепи трансформатора тока недопустимо. Вместо этого при необходимости перекоммутации в цепи вторичной обмотки (без отключения линии) эту обмотку предварительно шунтируют.

Применение

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

В схеме токового зеркала (рисунок 2) ток нагрузки в правой ветви задается равным эталонному току в левой ветви, так что по отношению к нагрузке R2 эта схема выступает как источник тока.

Обозначения

Существуют различные варианты обозначений источника тока. Наиболее часто встречаются обозначения (a) и (b). Вариант (c) устанавливается ГОСТ[1] и IEC[2]. Стрелка в кружке указывает положительное направление тока в цепи на выходе источника. Варианты (d) и (e) встречаются в зарубежной литературе. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками напряжения.

Рисунок 3. Обозначения источника тока на схемах

Примечания

  1. ↑ ГОСТ 2.721-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения.
  2. ↑ IEC 617-2:1996. Graphical symbols for diagrams — Part 2: Symbol elements, qualifying symbols and other symbols having general application

См. также

Литература

  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.

wiki.sc

Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

2 497

      Бурыкин Валерий Иванович

      Генератор тока и генератор напряжения. В чём разница? Что такое Генератор тока и каковы области его применения.

      ***

      По работе нужно было найти какое либо внятное описание того, что собой представляет генератор тока (стабилизатор тока, источник тока), его области применения и примеры расчёта. Ничего приемлемого найти не удалось.

      Пришлось самому приступить к написанию статьи отвечающей на эти вопросы.

      И ещё, пришлось заменить общепринятые обозначения «дельта» и «бесконечность» на слова. К сожалению, вместо них при попытке считать текст отображаются вопросительные знаки.

      28.02.2012г.

      

      ***

      

      Первое, что нам необходимо понять — это то в чём различия генератора тока и стабилизатора напряжения.

Стабилизатор напряжения.

       Другие названия:

       — источник напряжения;

       — генератор напряжения;

       — источник опорного напряжения (в схемах его обычно обозначают как ИОН).

      Основное требование:

      Uвых. = const.

      Ток в нагрузке подключенной к выходу стабилизатора напряжения изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора напряжения соответствует Rнагр. = бесконечности.

      Идеальный генератор напряжения создаёт на сопротивлении нагрузки напряжение стабильной величины. При этом его внутреннее сопротивление равно нулю (Ru = 0). Ток в нагрузке определяется по формуле:

      Iнагр. = U / Rнагр.

      Из этого можно сделать вывод:

      — так как напряжение стабильно, то при изменении Rнагр. будет изменяться ток, протекающий через нагрузку, Рис. 1.


Рис. 1 Схема идеального источника напряжения.

      Идеальный источник напряжения при уменьшении Rнагр. до нуля способен создавать ток бесконечно большой величины.

      Но в жизни ничего идеального не существует, все источники напряжения имеют некоторое внутреннее сопротивление — Ru.

      Это приводит к тому, что напряжение источника делится между внутренним сопротивлением Ru и сопротивлением нагрузки Rнагр, Рис. 2



Рис. 2 Функциональная схема реального источника напряжения.

      Поэтому ток в нагрузке вычисляется по формуле:

      Iнагр. = U / (Ru + Rнагр.)

      Максимальный ток возникает при Rнагр. = 0.

      Из формулы видно — ток в нагрузке зависит от напряжения развиваемого источником, а также от величины суммы сопротивлений Rнагр. и Ru.

      Как правило, внутреннее сопротивление источника напряжения (Ru) выбирается как минимум в 100 раз меньше минимально возможного значения сопротивления нагрузки (Rнагр. min). В этом случае напряжение на выходе источника при изменении сопротивления нагрузки от бесконечности до Rнагр. min будет изменяться не более чем на 1%.

      Т.е. желательно, чтобы соблюдалось условие:

      Rнагр. min => 100*Ru

      В данном случае мы не рассматриваем вопрос о мощности источника напряжения. Мощность зависит от принципа построения источника, реализуемой схемы и применяемых компонентов.

      Теперь посмотрим, что собой представляет генератор тока

Генератор тока.

      Другие названия:

       — источник тока;

       — стабилизатор тока.

      Основное требование:

      Iвых. = const.

      При этом напряжение на нагрузке изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора тока возникает при Rнагр. = 0

      Идеальный источник тока создаёт в нагрузке стабильный ток, то есть — ток, величина которого не зависит от сопротивления нагрузки, Рис. 3.



Рис. 3 Функциональная схема идеального источника тока.

      Так как ток источника не зависит от величины сопротивления нагрузки то при изменении Rнагр. пропорционально будет изменяться и Uнагр.

      Uнагр. = Rнагр. * Iист.

      Идеальным генератором тока считается такой источник, через который протекает ток неизменной величины и не зависящий от Rнагр.

      В таком случае если Rнагр стремится к бесконечности, то Uнагр. так же стремится к бесконечности. Такая ситуация на практике неосуществима. Реальные генераторы тока поддерживают стабильный ток в нагрузке только в пределах от Rнагр. = 0 до некоторой величины Rнагр. max.

      Эквивалентные схемы генераторов тока, приводимые в академической литературе малопонятны, а формулы, описывающие их работу, вряд ли когда-либо понадобятся в практических расчетах.

      Поэтому я начну сразу с практических схем.

      Наиболее доступная и простая как в понимании, так и в расчётах схема выглядит так:



Рис. 4 Практические схемы простых генераторов тока на биполярных транзисторах.

      На рисунке изображены две одинаковые схемы простых генераторов тока. Разница состоит только в том, что применены транзисторы разной проводимости. Другое отличие это то, к какому полюсу источника питания подключена нагрузка.

      В обоих случаях применена схема включения транзистора с общим коллектором (эмиттерный повторитель). Эмиттерным повторителем она названа за то, что изменение напряжения на эмиттере (Uэ) повторяет изменение напряжения на базе, в нашем случае это Uстаб.

      Повторяет именно изменение напряжения, а не само напряжение так как существует падение напряжения на эмиттерном переходе транзистора. Поэтому в случае усилителя постоянного тока напряжение Uэ будет определяться по формуле:

      Uэ = Uстаб. — Uбэ

      где Uбэ — падение напряжения на переходе база — эмиттер транзистора.

      Поскольку Uэ зависит только от напряжения стабилизации стабилитрона и от напряжения Uбэ, а значения этих напряжений можно считать константами, то в идеальном случае Uэ не будет зависеть от изменения Uпит. и Rн.

      Ток протекающий через Rэ является одновременно и током протекающим через нагрузку, то есть IRэ = Iист.

      Соответственно Iист. вычисляется по формуле:

      Iист. = Uэ / Rэ

      где: Uэ и Rэ константы, следовательно и Iист. — так же константа.

      На самом деле стабильность напряжения Uэ зависит от того насколько стабилитрон VD чувствителен к изменению протекающего через него тока и к воздействию окружающей температуры.

      То же самое относится и к переходу база — эмиттер транзистора.

      Пока будем считать, что эти факторы нас не касаются.

      В этом случае мы будем находиться в счастливом заблуждении, что наши расчёты абсолютно точны.

       Основные параметры источника (генератора) тока:

      1. Величина требуемого СТАБИЛЬНОГО тока — (Iист.).

       Т. е. тока, который питает нагрузку и не изменяется под воздействием внешних факторов.

      2. Максимальное сопротивление нагрузки — (Rнагр. max).

      3. Минимально возможное напряжение источника питания для нашей схемы — (Uпит. min).

Что нужно для расчёта источника тока.

      Самый тяжёлый вариант входных условий.

      Здесь вас пытаются уложить в Прокрустово ложе тем, что лишают манёвра.

      Требования заказчика:

      а. Ток источника тока (генератора тока) = Iист.

      б. Сопротивление нагрузки, которое меняется от Rнагр. min до Rнагр. max.

      Замечу — нижний предел сопротивления нагрузки (Rнагр. min) для генератора тока всегда можете смело принимать за ноль.

      Rнагр. max. — определяется из характеристик питаемого оборудования и важен для расчёта.

      в. Напряжение питания = Uпит.

      Методика расчёта генератора тока.

      Первое, что нужно определить это то какое максимальное напряжение необходимо развить на Rнагр.

      Uнагр. max = Iист. * Rнагр. max

      Далее определить то, каким запасом по напряжению мы располагаем.

      Uзап. = Uпит. — Uнагр. max

      Нужно понимать, что напряжение запаса должно поделиться между Uкэ. и Uэ.

      Значение напряжения Uкэ. которое снижается до минимального значения при максимальном значении Rнагр. желательно принять не менее 3 Вольт. Конечно чем больше, тем лучше

      Далее можем вычислить с каким максимальным напряжением стабилизации при заданных условиях можно выбрать стабилитрон.

      Uстаб. max = Uзап. — Uкэ + Uбэ

      Сопротивление Rэ рассчитываем по формуле:

      Rэ = (Uстаб. — Uбэ) / Iист.

      

      Из этой формулы видно, что током генератора тока мы можем управлять двумя способами:

      — изменяя Uстаб.;

      — изменяя Rэ.

      Uбэ — константа и изменению не подлежит.

      Есть ещё один подводный камень, это соотношение напряжений Uбэ и Uстаб.

      Из последней формулы видно, что если Uстаб. окажется меньше или равно Uбэ, то в этом случае Rэ должно быть либо равным нулю, либо отрицательным. И то, и другое невозможно.

      Таким образом, если Uстаб. получится меньше или равно Uбэ то схема окажется неработоспособной, так как в этом случае мы не сможем открыть транзистор и создать хоть какое либо падение напряжения на Rэ.

      Желательно получить Uстаб. в шесть — семь раз превышающее Uбэ.

      Если Uстаб. получается близким по значению к Uбэ то необходимо изменять входные условия. Если вы не можете повлиять на параметры нагрузки: (уменьшить Rнагр. max) или согласовать уменьшение тока от генератора тока, остается только один вариант — увеличить напряжение питания. Если и это невозможно согласовать…. Тогда пошлите заказчика к чёрту, а расчёты выкиньте в корзину.

      

Пример расчета простого генератора тока на биполярном транзисторе

      Тяжёлый вариант.

      Требования заказчика:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Это и есть то самое Прокрустово ложе.

      Простейшая для понимания схема будет такова:



Рис. 5

Пример расчета:

      Первое что нужно сделать, это проверить возможность создания такого генератора тока.

      Попробуем произвести расчёт.

      Uнагр. max = Iист. * Rнагр. max. = 0.02 * 3 000 = 60В

      Видим неприятную картину.

      Заданное Uпит. меньше требуемого Uнагр. max. Следовательно мы не сможем обеспечить требуемый ток в нагрузке при максимальном сопротивлении Rнагр.

      Что делать?

      Самое удобное для нас это уменьшить ток генератора тока. Как было сказано ранее этого можно добиться либо уменьшая Uстаб., либо увеличивая Rэ.

      Ток при этом определяется по формуле:

      Iист. = (Uстаб. — Uбэ) / Rэ

      Допустим, нам удалось согласовать изменение величины тока.

      Посмотрим, какая величина Iист. нас устроит.

      Как уже говорилось Uстаб. желательно выбрать не менее 6* Uбэ. Среднее значение Uбэ для кремниевых транзисторов составляет 0,65 В. Оно может изменяться в зависимости от выбранного транзистора, но ненамного (если конечно вы не выберете составной транзистор). Рассчитаем величину Uстаб.

      Uстаб. = Uбэ * 6 = 0,65 * 6 = 3,9В

      Обращаемся к справочнику по диодам, находим там раздел «Стабилитроны». И о чудо! Есть такой стабилитрон! И зовут его 2С139А.

      Он обладает следующими параметрами:


      Uст — напряжение стабилизации стабилитрона

      Uст ном — номинальное напряжение стабилизации стабилитрона

      Iст — ток стабилизации стабилитрона

      Iст ном — номинальный ток стабилизации стабилитрона

      Рmax — максимально-допустимая рассеиваемая мощность на стабилитроне

      rст — дифференциальное сопротивление стабилитрона

      aст — температурный коэффициент стабилизации стабилитрона

      Тк max — максимально-допустимая температура корпуса стабилитрона

      Далее определим необходимый запас по напряжению.

      Uзап. = Uстаб. — Uбэ + Uкэ = 3,9 — 0,65 + 3 = 6,25 В

      Вычитаем из величины питающего напряжения напряжение запаса и получаем максимально возможное напряжение на нагрузке.

      Uнагр. = Uпит. — Uзап. = 50 — 6,25 = 43,75 В

      Полученную величину Uнагр. делим на Rнагр. max. и получаем то значение тока, которое нас устроит.

      Iист. = Uнагр / Rнагр. max = 43.25 / 3000 = 0.0144 А

      Итак, нам удалось изменить требования заказчика, теперь они выглядят так:

      а. Iист. = 14,4мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Значит, мы можем приступить к окончательному расчёту элементов схемы.

      Rбал. = (Uпит. — Uстаб.) / Iст ном = (50 — 3,9) / 0,01 = 4610 Ом

          Где: Iст ном — взято из справочника.

      Выбираем ближайшее значение Rбал. (желательно в меньшую сторону):

      Rбал. = 4,3кОм.

      

      Определим величину сопротивления Rэ.

      Rэ = (Uстаб. — Uбэ) / Iист. = (3,9 — 0,65) / 0.0144 = 225,694444444444…….Ом.

      Опять же принимаем ближайшее значение и снова в меньшую сторону.

      Rэ = 220 Ом.

      В итоге получаем окончательную схему.



Рис. 6 Результат расчёта.

      Какой выбрать транзистор VT1?

      Да любой биполярный npn транзистор.

      Нужно помнить только, что у нас задано Uпит = 50 В. А это говорит о том, что допустимое напряжение Uкэ должно быть не менее этого значения (лучше раза в полтора больше). Максимальную мощность, рассеиваемую на корпусе транзистора можно рассчитать исходя из предельного режима, когда Rнагр. = 0.

      В этом случае Uкэ будет равно Uпит.-Uэ.

      Значит, мощность рассеяния можно определить из формулы:

      Pк max = (Uпит. — (Uстаб. — Uбэ)) * Iист. = (50 — (3,9 — 0,65)) * 0,0144 = 0,673 W

      где Pк — мощность рассеиваемая на коллекторе транзистора и выбирается она из справочника. (Надеюсь нет смысла объяснять почему нужно выбрать транзистор с несколько большим Pк?).

      В этом расчёте мы исходим из условия короткого замыкания в нагрузке.

      Можно конечно произвести расчёт из условия Rнагр = Rнагр. min, т.е. то минимальное сопротивление которое задано заказчиком. В этом случае Pк max. получится меньше, но в тоже время источник может оказаться слишком чувствительным к короткому замыканию в нагрузке.

      Может случиться так, что заказчик не пойдет на то чтобы изменить входные параметры.

      В этом случае нужно понять: какую сумму он готов заплатить за готовое изделие.

      Физика есть физика и против её законов не попрёшь.

      Если заказчик готов раскошелиться, то в схему можно ввести дополнительный источник питания, позволяющий входное напряжение 50В преобразовать в то напряжение, которое позволит нам вписаться в исходные условия.

      Рассчитаем какое минимальное Uпит. нам необходимо для удовлетворения первоначальных условий. Вот эти условия:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Uэ и Uкэ можно оставить прежними, к ним у нас претензий быть не должно.

      То, какое максимальное напряжение на нагрузке при данных условиях мы должны развить уже было рассчитано (Uнагр. max = 60 В).

      В этом случае (если мы снова возьмём стабилитрон 2С139А) минимальное значение напряжения питания можно определить из формулы:

      Uпит. min = Uнагр. max + Uэ + Uкэ = 60 + 3,25 + 3 = 66,25 В

      где Uэ = Uстаб. — Uбэ.

      Для ровного счёта примем Uпит. min = 67 В.

      В этом случае схема примет следующий вид:



Рис. 7 Генератор тока с внутренним источником напряжения.

      Есть одно НО! Добавление этого квадратика может увеличить стоимость схемы в сотню раз. Хотя желание заказчика мы при этом удовлетворим.

      Иногда в схему генератора тока вводят операционный усилитель (другое название — дифференциальный усилитель). Это позволяет создать большой коэффициент усиления в цепи отрицательной обратной связи и исключить влияние Uбэ транзистора на стабильность выходного тока.

      Пример такой схемы приведён на Рис. 8.

      Расчёт такой схемы отличается только тем, что нужно забыть об Uбэ.



Рис. 8 Генератор тока с дифференциальным усилителем.

      Можно пойти дальше и создать стабилизатор тока с регулируемым значением Iист.

      В этом случае желательно заменить стабилитрон на маломощный линейный стабилизатор напряжения. Обычно такие стабилизаторы напряжения в схемах обозначаются как ИОН (источник опорного напряжения).

      Вот пример такой схемы:



Рис. 9 Регулируемый генератор тока.

      Ну вот, кажется всё основное, то что касается построения и расчёта генераторов тока я изложил.

      Теперь встаёт вопрос…. А на кой чёрт нам всё это нужно?

      Ну, стабилизаторы напряжения… — тут всё понятно!

      Широко применяются в бытовой и промышленной электронике. Ни одно современное электронное устройство не обходится без них.

      А зачем нужно устройство, которое не может поддерживать стабильное напряжение на нагрузке, и это напряжение постоянно «гуляет», а величина этого напряжения будто привязана к величине Rнагр.?

      Рассмотрим некоторые области применения генераторов тока (стабилизаторов тока, источников тока).

      Первая и наверное самая распространённая область — это источники стабильного напряжения, как раз то без чего не обходится практически ни одно современное электронное устройство.

      В простейшем случае общая схема стабилизатора напряжения выглядит так:



Рис. 10 Функциональная схема стабилизатора напряжения.

      Обозначения в схеме:

      

      ИОН — источник опорного напряжения;

      Уош. — усилитель ошибки;

      Uоп. — опорное напряжение;

      Uдел. — напряжение снимаемое с делителя подключенного к выходному напряжению стабилизатора напряжения.

      Uош. — напряжение ошибки, оно вычисляется как Uоп. — Uдел.

      

      Напряжение на выходе стабилизатора зависит от величины Uоп. и коэффициента деления делителя.

      Uстаб. = Uоп * (Rдв + Rдн) / Rдн

      Усилитель ошибки сравнивает два напряжения Uоп. и Uдел., его главная задача поддерживать Uош. близким к нулю, а следовательно следить за тем, чтобы Uстаб. оставалось неизменным.

      Допустим мы имеем почти идеальный Уош., способный удерживать Uош. в десятки тысяч раз меньшим чем Uоп. (такие дифференциальные каскады сейчас существуют)

      В этом случае мы можем пренебречь влиянием элементов схемы Уош. на величину Uстаб. и главным виновником в нестабильности выходного напряжения при изменении Uпит. будет ИОН.

      

      Простейший источник опорного напряжения выглядит так:



Рис. 11 Простой источник опорного напряжения.

      Допустим, в процессе эксплуатации, Uпит. может изменяться от 18 до 36 Вольт.

      Мы располагаем всё тем же стабилитроном 2С139А (учтите, буквы русские).

      Первое что нужно сделать это рассчитать Rбал. Оно рассчитывается исходя из минимальной величины Uпит, при этом следует задаться минимальным током стабилитрона Iстаб. min.

      Из справочных данных следует что рабочий диапазон токов стабилитрона лежит в пределах 3 — 70 mA. Номинальный ток — 10 mA. Подбираться слишком близко к нижнему пределу не стоит, так как при этом слишком сильно возрастает Rст. Определимся с минимальным током стабилитрона равным 7mA.

      Тогда:

      Rбал. = (Uпит. min — Uстаб.) / Iстаб. min = (18 — 3.9) / 7 = 2.014 кОм.

      Ближайшее значение 2 кОм.

      При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,53 В.

      Разделив дельту на номинальное напряжение стабилитрона, определим величину нестабильности напряжения такого ИОН:

      0,53 / 3,9 = 0,135

      Т.е. нестабильность ИОН будет равна 13,5%.Понятно, что напряжение на выходе стабилизатора напряжения будет изменяться по такому же закону. И его нестабильность так же составит 13,5%.

      Посмотрим на сколько при таком изменении напряжения питания изменится ток протекающий через стабилитрон.

      Изменение тока протекающего через стабилитрон можно вычислить по следующей формуле:

      дельта Iстаб. = (Uпит. max — Uпит. min) / Rбал. = (36 — 18) / 2000 = 9 mA.

      Изменение тока составило 129% так как:

      дельта Iстаб. / Iстаб. min = 9 / 7 = 1,29

      Но нестабильность по напряжению в 13,5% нас не устраивает. Что делать?

      Вот здесь нам и придёт на помощь его величество Генератор Тока.

      Давайте запитаем стабилитрон, с которого будем снимать опорное напряжение, через это самое величество:



Рис. 12 Схема ИОН с повышенной стабильностью Uоп.

      Допустим VD1 иVD2 будут всё те же 2С139А. В этом случае Rбал. так же будет равно 2 кОм.

      Зададимся током через VD2. По справочнику номинальный ток этого стабилитрона 10 mA. Не мудрствуя лукаво примем это за истину.

      Вычислим величину Rэ.

      Rэ = (UVD1 — Uбэ.) / IVD2 = (3.9 — 0.65) / 10 = 0.325 кОм.

      Принимаем ближайшее значение 330 Ом.

      Изменение тока протекающего через Rэ, а значит и через VD2 при изменении Uпит. на 18 Вольт будет таким же как и изменение напряжения на VD1 рассчитанное ранее, т.е. 13,5%.

      Абсолютная величина изменения тока VD2 составит: 10mA * 13.5% = 1,35mA, в отличии от 9 mA в VD1. Это приведёт к изменению напряжения на стабилитроне VD2 на 0,081V. Нестабильность опорного напряжения снизится до 2,1%.

      Вместо 13,5% на VD1!

      И это притом, что я выбрал довольно паршивый стабилитрон. Хотите получить меньшую нестабильность выбирайте стабилитрон с меньшим Rст.

      

      Ну вот, с одной областью применения генераторов тока кажется разобрались.

      Что же ещё? Где ещё нам может понадобиться источник стабильного тока?

      Да там где используются резистивные датчики.

      Фоторезисторы, термосопротивления, резистивные тензодатчики и т.д. и т.п.



Рис. 13 Один из вариантов подключения датчиков к генератору тока.

      Сопротивление таких датчиков является функцией какого либо внешнего параметра — температуры, освещённости, давления. Обозначим зависимость Rдат. от величины параметра (P) как f(P).

      Как правило, сопротивление связано с измеряемым параметром определённой математической формулой. Ток протекающий через датчик в случае использования идеального источника тока не зависит от Uпит.

      Падение напряжения на Rдат будет определяться по формуле:

       Uдат. = Iист. * f(P).

      Так как Iист. = const, то Uдат. будет изменяться по тому же закону что и Rдат. Вот здесь нам и пригодилось то, что напряжение на выходе генератора тока «привязано» к Rнагр.

      А дальше всё просто: берём контроллер на основе микропроцессора, закладываем в него софт состоящий из многих программ предназначенных для расчёта различных f(P), программу опроса множества датчиков, величины критических значений измеряемых параметров и подключаем всё это к центральному компьютеру межзвёздного корабля.

      Теперь дежурная вахта в любой момент может получить информацию о величине температуры, освещения и давления в сотнях, а может и тысячах отсеках корабля, и даже о том, с каким ускорением летит корабль.

      Лифт сможет сообщить о том, каков вес груза находящегося в кабине.

      Вот кажется и всё то основное, что я хотел рассказать о генераторе тока.

      Теперь вернёмся к началу статьи. В чём всё-таки сходства и различия генераторов (стабилизаторов, источников) тока от устройств поддерживающих на своём выходе стабильное напряжение (стабилизаторов напряжения)?

      Составим таблицу сравнительных характеристик.


      Отсюда видно, что генератор тока и стабилизатор напряжения представляют собой зеркальное отражение друг друга.

      Я описал лишь некоторые области применения источников тока. На самом деле их намного больше.

      Дерзайте.

      Если вы заметили в статье я постоянно «путал» названия: генератор, источник, стабилизатор.

      Это сделано специально. Т.к. в различной литературе по электронике и электротехнике вы можете столкнуться с любым из них.

      

       И ещё.

      Часто производители в описании своей продукции делают большую ошибку.

      Вот пример:

      

       С сайта «FG Wilson (Engineering) Ltd» :

      

       Схема стабилизатора напряжения R438 обеспечивает управление по замкнутому циклу для выходного напряжения генератора переменного тока регулированием тока поля возбудителя. R438 может получать питание от поля системы с бесщеточным самовозбуждением или ПМГ и, как вариант, устанавливается на следующих генераторах переменного тока:

      Генераторы переменного тока серии 1000*

      Генераторы переменного тока серии 2000

      Генераторы переменного тока серии 3000

      

      В стабилизаторе напряжения R438 предусмотрена возможность проведения следующих регулировок (перед проведением регулировок необходимо внимательно ознакомиться с руководством по установке и техническому обслуживанию генератора переменного тока)

      

      Я не буду воспроизводить всю статью, но и из этой выдержки видно, что для того, кто писал описание этого устройства нет разницы между генератором напряжения и генератором тока.

       На самом деле это совершенно разные устройства.

      Если мы говорим о генераторе тока, то это означает, что нормирован ток.

      Если мы говорим о генераторе напряжения, то это означает, что нормировано напряжение.

      Дополнительно о стабилизаторах тока и напряжения читайте в статье «Стабилизатор тока и стабилизатор напряжения» этого раздела.


b-valery.ru

Источник тока: типы, принцип работы, особенности

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление бывает немаленьким. В первую очередь, подразумеваются нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей. Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные. До некоторых пор встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Инвертор сварочный

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 – 250 вольт, выдавая постоянное действующее значение тока на зажимы. Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы. Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник способен поддерживать любой закон изменения параметров. Это признаётся отличительной особенностью, предназначением. Обеспечивает правильное функционирование потребителей.

Работа источника тока

Требования к факторам питания

В учебниках физики приводятся в качестве примеров источников тока:

  1. Батарейки.
  2. Аккумуляторы.

Несложно заметить, сплошь гальванические источники питания химического принципа действия. Автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения – инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи. В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В. У каждого предназначение, несколько предназначений.

Протекание тока в цепи

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону. Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла. Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа – 3 мм;
  • диаметр электрода – 3,2 мм;
  • рабочий ток процесса 100 – 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю. Потом надевает маску, начинает легонько постукивать детали, получая искру. Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно. Чтобы удостовериться, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (ощутимо влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, часто приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий. Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока. Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон способен сигнализировать мнемонически о ходе процесса. Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии). Ход процесса регистрируется датчиком Холла: только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами. По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измерения позволят перевести разницу потенциалов в цифры, понятные процессору. Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками. Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается. Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА. Используется принцип, схожий с имеющим место быть в цифровых мультиметрах: из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. Трансформаторы тока действуют аналогичным образом. Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

vashtehnik.ru

история открытия и изучения явления, применение в современном мире :: SYL.ru

Электричество в древнем мире

Еще древнегреческий философ Фалес писал о свойствах янтаря, потертого шерстью, притягивать мелкие предметы. Но достаточно долгое время все знания об электричестве ограничивались этим любопытным опытом. Никто не связывал с этим явлением природные молнии, наблюдаемые во время гроз. Дальнейшее изучение электрического тока, пока без разделения на постоянный и переменный, продолжилось лишь в XVII веке. И за пару сотен лет ученые продвинулись очень далеко.

Открытие явления

В 1600 году был введен термин "электричество", а более чем полвека спустя началось его активное изучение. Изначально разделения на постоянный и переменный ток не существовало, так что исследования были несистематичными. Первая теория, касающаяся природы электричества, была сформулирована в XVIII веке Бенджамином Франклиным, который, впрочем, остался в истории в первую очередь как политический деятель. Чуть позднее был сконструирован первый конденсатор - так называемая Лейденская банка. Тем не менее, считается, что всерьез история исследования постоянного тока началась с опытов Гальвани, касающихся, как ни странно, в первую очередь биологии, а не физики. Знаменитый итальянец буквально перевернул науку.

Изучение постоянного тока

Опыты Гальвани касались в первую очередь физиологии. Пропуская электрический ток через тело лягушки, он заметил, как ее мышцы сокращались. Описание этих опытов заинтересовало не только биологов, но и физиков. Сам же Гальвани, проведя еще серию исследований, счел, что мышцы являются чем-то вроде Лейденской банки, или, если быть точнее, ее батарей. Эти опыты легли в основу современной электрофизиологии. Последователь итальянца, его соотечественник Алессандро Вольта, в 1800 году создал первый источник питания постоянного тока - гальванический элемент. Англичане Карлейл и Николсон повторили опыты своего коллеги, придя к выводу, что в определенных условиях электричество, пропущенное через воду, заставляет ее разлагаться на составные элементы. Подобные эксперименты в конечном итоге дали стимул развитию химии. Русские ученые также приложили руку к исследованиям - уроженец Санкт-Петербурга Василий Петров в 1803 году описал явление электрической дуги. Однако 9 лет спустя это открытие произошло снова и было представлено как случившееся впервые. Дальнейшие исследования уже были направлены на изучение характеристик и законов, управляющих током. Параллельно ученые находили все новые и новые способы применения электричества, изобретая удивительные приборы, которыми человечество пользуется до сих пор.

Характеристики и параметры

Как очевидно из названия, величина постоянного тока и его напряжение в любой момент остаются неизменными. Несмотря на то что движение заряженных частиц происходит непрерывно, их общее пространственное положение остается стационарным. Кстати, как ни удивительно, но с технической точки зрения термин "постоянный ток" является некорректным, ведь неизменным является не он, а напряжение источника питания, его электродвижущая сила (ЭДС). Но понятие настолько прочно вошло в употребление, что его изменение просто невозможно представить. Итак, главным признаком этой разновидности остается отсутствие смены полярности напряжения на источнике питания. Постоянный ток обладает рядом параметров, которые, разумеется, присущи и другим типам:

  • Сила или величина (I). Показывает количество тока, протекающего через поперечное сечение проводника за единицу времени. Измеряется в амперах.
  • Плотность (F). Отношение силы тока к площади поперечного сечения проводника. Единицы измерения - А/мм2.
  • Напряжение (V). Эта физическая величина показывает работу источника электроэнергии при переносе заряда по отношению к ее величине. Измеряется в вольтах.
  • Электрическая мощность (P). Обозначает скорость передачи или преобразования электроэнергии. Единица - ватт.
  • Сопротивление (R). Эта величина характеризует свойство проводника препятствовать прохождению тока. Измеряется в омах.

Законы и формулы

Все вышеназванные величины напрямую связаны друг с другом, и практически любая из них может быть выражена через остальные. В школьном курсе физики это подробно изучается, но нелишним будет повторить все снова. Самыми простыми примерами формул могут являться следующие:

  • V = I x R = P : I;
  • I = V : R = P : V;
  • R = V2 : P = V : I = P : I2;
  • P = V x I = I2 x R = V2 : R.

Разумеется, многие помнят и о законе Ома, хотя не все смогут его сформулировать. Он применим и к постоянному току и описывает зависимость ЭДС источника или напряжения и силы от сопротивления. На языке формул это выглядит так:

  • U = IR. То есть разность потенциалов между началом и концом проводника равна произведению силы тока и сопротивления.

В том числе и с этим законом связана еще одна важная зависимость. Она описывает переход электрической энергии в тепловую при передаче. Иными словами, речь идет о потерях мощности в виде нагрева проводов. Эта зависимость называется законом Джоуля-Ленца и описывается так:

где Q - выделяемая теплота, I - сила тока, R - сопротивление, а t - промежуток времени.

Эта формула работает только для постоянной разновидности. То есть она применима только для частного случая, в то время как для переменного она будет выглядеть несколько сложнее.

Отличия от остальных видов

Если рассмотреть графики основных типов электротока, то никаких вопросов не возникнет. Линия постоянного будет прямой, остающейся на одном уровне с течением времени, переменного - пилообразной. В отличие от последнего, первый не обладает таким параметром, как частота, вернее, в этом случае она является нулевой. Кроме того, направление постоянного тока не меняется со временем. Различается и обозначение - DC (direct current) и AC (alternating current). Как нетрудно догадаться, первый - это постоянный, а второй - переменный. К тому же последняя разновидность может быть как одно-, так и трехфазной. В этом и заключаются основные отличия.

Источники и усилители

Разумеется, постоянный ток не берется из ниоткуда. Существуют спеицальные приборы, которые его генерируют. Это обычные батарейки, аккумуляторы и другие современные источники. Первым из них был тот самый гальванический элемент Вольта. Но иногда ток нужно не только генерировать, но и усиливать. Для этого тоже есть специальные устройства - усилители постоянного тока (УПТ). Эти приборы необходимы для того, чтобы повышать напряжение. Усилитель в полном смысле можно назвать УПТ, если его рабочий диапазон включает все частоты, вплоть до самых низких, и нулевую. Эти устройства очень востребованы и широко используются во многих областях электроники, так что их развитие и совершенствование происходит непрерывно.

Применение в современном мире

Он повсеместно. Любые современные приборы, работающие как от сети, так и от аккумуляторов, используют постоянный ток. В первом случае устройство предусматривает специальный элемент, преобразующий электричество из одной разновидности в другую. Во втором же в источнике питания происходит химическая реакция, которая поддерживает напряжение неизменным. Казалось бы, что в этом случае проще было бы, если бы в сети был постоянный, а не переменный ток, но это не так. Вторую разновидность проще вырабатывать, а также его не приходится преобразовывать для работы трансформаторов. А устройства, позволяющие из переменного получать постоянный называются выпрямителями, хотя приборы, проводящие обратное действие, - инверторами. Нашел свое применение этот вид тока и в электрохимии, некоторых видах сварки, обработке металлов, медицине и многих других областях. Он действительно везде, и иногда это кажется настоящим чудом, ведь все начиналось с обычного янтаря.

www.syl.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о