Литий-ионный аккумулятор — Википедия
Литий-ионный аккумулятор цилиндрический, типоразмера 18650 Литий-ионный аккумулятор сотового телефона Siemens, призматический[1]Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространён в современной бытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили.
Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году.
Нобелевская премия по химии 2019 года была вручена троим учёным “За создание литий-ионных батарей”.
При использовании литий-ионных аккумуляторов в составе батарей без балансирующего устройства, часть из них окажется переразряженной (B) при работе батареи или перезаряженной (C) либо не дозаряженной (D) до номинальной ёмкости во время зарядки батареиЧасто в корпус аккумулятора встраивают контроллер защиты (или PCB-плата (англ. Protection Circuit Module)), который отключает аккумулятор, предотвращая превышение напряжения заряда, чрезмерный разряд и превышение температуры, приводящие его к преждевременной деградации или разрушению. Также этот контроллер может опционально ограничивать ток потребления. Тем не менее, надо учитывать, что не все аккумуляторы снабжаются защитой. В целях снижения стоимости производители могут не устанавливать её. Кроме того, в устройствах в которых встроен контроллер защиты, а также в аккумуляторных батареях (к примеру ноутбуков) используются только аккумуляторы без встроенной платы защиты [5].
Литиевые аккумуляторы имеют специальные требования при подключении нескольких ячеек последовательно. Зарядные устройства для таких многосоставных аккумуляторов с ячейками или сами аккумуляторные батареи снабжаются схемой балансировки ячеек. Смысл балансировки в том, что электрические свойства ячеек могут немного отличаться, и какая-то ячейка достигнет полного заряда/разряда раньше других. При этом необходимо прекратить заряд этой ячейки, продолжая заряжать остальные, так как переразряд или перезаряд литий-ионных аккумуляторов выводит их из строя. Эту функцию выполняет специальный узел — балансир[en] (или BMS-плата (англ. Battery Management System)[6]). Он шунтирует заряженную ячейку так, чтобы ток заряда шёл мимо неё. Балансиры одновременно выполняют функцию платы защиты в отношении каждого из аккумуляторов, так и батареи в целом
Зарядные устройства могут поддерживать конечное напряжение заряда в диапазоне 4,15—4,25В.
Кроме контроллера защиты, литий-ионные, а также литий-полимерные аккумуляторы выпускаемые в формфакторах АА и ААА с напряжением 1,5 В (не следует путать с аналогичного размера формфакторами 14500 и 10440 напряжением 3,7 В, а также с незаряжаемыми одноразовыми литиевыми элементами питания напряжением тоже 1,5 В) оборудуются встроенными электронными преобразователями напряжения. Отличие таких аккумуляторов — стабилизированное напряжение на выходе на контактах в 1,5 В независимо от рабочего напряжения самой ячейки аккумулятора и его моментальное обнуление, когда напряжение самой литиевой ячейки становится ниже допустимого (срабатывает плата защиты).
Литий-ионный аккумулятор. Схема работы Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пористым сепаратором, пропитанным электролитом. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъёмникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, оксиды (LiMnO2) и соли (LiMnRON) металлов.Первоначально в качестве отрицательных пластин применялся металлический литий, затем — каменноугольный кокс. В дальнейшем стал применяться графит. Применение оксидов кобальта позволяет аккумуляторам работать при значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-железо-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления — СКУ или BMS (battery management system), — и специальным устройством заряда/разряда.
В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов:
- кобальтат лития LiCoO2 и твёрдые растворы на основе изоструктурного ему никелата лития
- литий-марганцевая шпинель LiMn2O4
- литий-феррофосфат LiFePO4.
Электрохимические схемы литий-ионных аккумуляторов:
- литий-кобальтовые LiCoO2 + 6C → Li 1-xCoO2 + LiC6
- литий-ферро-фосфатные LiFePO4 + 6C → Li1-xFePO4 + LiC6
Благодаря низкому саморазряду и большому количеству циклов заряда/разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом, помимо системы СКУ они укомплектовываются инверторами (преобразователи напряжения).
- Высокая энергетическая плотность (ёмкость).[источник не указан 606 дней]
- Низкий саморазряд.
- Высокий ток работы
- Не требуют обслуживания.
Широко применяемые литий-ионные аккумуляторы при перезаряде, несоблюдении условий заряда или при механическом повреждении часто бывают чрезвычайно огнеопасными.
- Огнеопасны
- Теряют работоспособность при переразряде
- Теряют ёмкость на холоде
- От 200 до 500 циклов зарядки
Взрывоопасность[править | править код]
Вздувшийся литий-ионный аккумулятор в плоском алюминиевом корпусе типоразмера ENEL10 (Li-42B, NP-45). Бумажная этикетка снятаЛитиевые аккумуляторы изредка проявляют склонность к взрывному самовозгоранию. [16][17][18] Интенсивность горения даже от миниатюрных аккумуляторов такова, что может приводить к тяжким последствиям.[19] Авиакомпании и международные организации принимают меры к ограничению перевозок литиевых аккумуляторов и устройств с ними на авиатранспорте.[20][21]
Самовозгорание литиевого аккумулятора очень плохо поддается тушению традиционными средствами. В процессе термического разгона неисправного или поврежденного аккумулятора происходит не только выделение запасенной электрической энергии, но и ряд химических реакций, выделяющих вещества для поддержания горения, горючие газы от электролита[22], а также в случае не LiFePO4 электродов[23], выделяется кислород. Потому вспыхнувший аккумулятор способен гореть без доступа воздуха и для его тушения непригодны средства изоляции от атмосферного кислорода. Более того, металлический литий активно реагирует с водой с образованием горючего газа водорода, потому тушение литиевых аккумуляторов водой эффективно только для тех видов аккумуляторов, где масса литиевого электрода невелика. В целом тушение загоревшегося литиевого аккумулятора неэффективно. Целью тушения может быть лишь снижение температуры аккумулятора и предотвращение распространения пламени
Эффект памяти[править | править код]
Традиционно считается, что, в отличие от Ni-Cd и Ni-MH аккумуляторов, Li-Ion аккумуляторы полностью избавлены от эффекта памяти. По результатам исследований учёных Института Пауля Шерера (Швейцария) в 2013 году этот эффект был таки обнаружен, но оказался ничтожен.[27]
Причиной его является то, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых ухудшается в случае неполной зарядки.[28] Во время зарядки ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития. Заряжание батареи происходит на фоне возрастания электрохимического потенциала. В определённый момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарного напряжения батареи. Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть. При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.
В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.
Требования к режимам заряда/разряда[править | править код]
Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше установленных производителем. Крайне чувствительны они и к напряжению зарядки. Если его повысить всего на 4 %, то аккумуляторы будут вдвое быстрее терять ёмкость от цикла к циклу. Ток зарядки зависит от разницы напряжений между аккумулятором и зарядным устройством и от сопротивления как самого аккумулятора, так и подводимых к нему проводов. Поэтому увеличение напряжения зарядки на 4 % может приводить к увеличению тока зарядки в 10 раз. Это отрицательно сказывается на аккумуляторе. Он может перегреваться и деградировать[29].
Старение[править | править код]
Литиевые аккумуляторы стареют, даже если не используются. Соответственно, нет смысла покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса.
Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от ёмкости аккумулятора и температуре 0…10 °C:[30]
Температура, ⁰C | С 40%-м зарядом, % за год | Со 100%-м зарядом, % за год |
---|---|---|
0 | 2 | 6 |
25 | 4 | 20 |
40 | 15 | 35 |
60 | 25 | 40 % за три месяца |
Снижение ёмкости при низких температурах[править | править код]
Как и в других типах аккумуляторов, разрядка в условиях низких температур приводит к снижению отдаваемой энергии, в особенности при температурах ниже 0 ⁰C. Так, снижение запаса отдаваемой энергии при понижении температуры от +20 ⁰C до +4 ⁰C приводит к уменьшению отдаваемой энергии на ~5-7 %, дальнейшее понижение температуры разрядки ниже 0 ⁰C приводит к потере отдаваемой энергии на десятки процентов и может приводить к преждевременному исчерпанию ресурса. Химия литий-ионных аккумуляторов более чувствительна к температурам заряжания, и оно оптимально при температурах ~ +20 ⁰C, а при температурах ниже +5 ⁰C не рекомендовано.[31]
Как и для других типов аккумуляторов, одним из вариантов решения проблемы являются аккумуляторы с внутренним подогревом.[32]
ru.wikipedia.org
Литиевый аккумулятор для автомобиля: преимущества и недостатки
Литиевый аккумулятор для автомобиля набирает все большую популярность. Легкие литиевые аккумуляторы разработаны для целого ряда транспортных средств, начиная от мотоциклов и заканчивая военной техникой. Растущий спрос на них заставил поставщиков и ученых сосредоточиться на повышении плотности энергии, рабочей температуры, безопасности, долговечности, времени зарядки и выходной мощности литий-ионных батарей.
Разработка литиевых АКБ началась с 1912 года под руководством Г.Н Льюиса, но появились первые литиевые неперезаряжаемые источники питания только в начале 1970-х годов. В 1980-х годах попытались разработать перезаряжаемый питающий элемент, но разработка не удалась из-за нестабильности в металлическом литии, используемом в качестве основного материала.
Литиевая батарея использует литий в качестве анода. АКБ Lion используют графит в качестве анода и активных материалов в катоде.
В связи с нестабильностью лития во время зарядки ученые стали использовать неметаллический раствор с использованием лития. В 1991 году фирма «SONY» запатентовала первый ион Li батарею. Продолжая развиваться, она остается популярной и перспективной на мировом рынке.
Свинцово-кислотные источники питания уступают литий-ионным автомобильным аккумуляторам по многим показателям. Вес литиевых АКБ на 80 % легче свинцово-кислотных. В батарее Lion долгое время сохраняется зарядка, срок службы достигает десяти лет.
С другой стороны, цена на автомобильные литиевые аккумуляторы в несколько раз превышает стоимость свинцово-кислотных.
Автомобильный литий-ионный аккумулятор часто используется в электромобилях. Электромобиль приводится в движение, используя энергию источника питания.
Типы батарей электромобиля
В электромобилях используется три типа аккумуляторных батарей: свинцово-кислотные, батареи гидрида металла никеля и литий-ионные источники питания.
Свинцово-кислотные АКБ изобретены в 1859 году и считаются привычной формой источника питания. Они использовались во всех типах автомобильного транспорта. Это вид жидких батарей, которые содержат емкости со слабым раствором серной кислоты.
Свинцовые электроды и кислота используется для производства электроэнергии в АКБ. Источник питания не имеет сложности в обслуживании и отличается небольшой стоимостью. Но содержит опасные газы, которые приводят к взрыву при неправильной эксплуатации.
Никель-металлогидридные аккумуляторы используются с 1980 года. Это маленькая, легкая и вместительная батарея, которая имеет высокую плотность и не содержит никаких токсических металлов.
Литий-ионные аккумуляторы для автомобилей используются с начала 1990 года. Они отличаются очень высокой плотностью энергии.
Из-за облегченных и низких требований к техническому обслуживанию, литий-ион используется в электронных устройствах, часто в портативных компьютерах.
Этот тип питающих элементов считается лучшим для питания электромобилей.
Какие бывают типы литий-ионных батарей и где используются
В настоящее время используются три вида LIB, которые отличаются материалами катода.
Катоды лития, содержащие кобальт (Limo2).
Этот тип особенно эффективен. Кобальтовый ион Со3+ маленький, поэтому катод построен таким образом, что литий-ионные катоды легко перемещаются. Это важно для высокой плотности энергии и емкости, чтобы выпускать маленькие и легкие батареи. Используется в портативной электронике и электромобилях.
Литий-кобальтовый оксид LiCoO2 (LCO) – это тонкое устройство чувствительно к повреждениям, поэтому используется лишь в электроприборах.
Литий-Никель-Кобальт-Оксид Алюминия (LiNiO.8Co0.15Alo.05 или NCA) является надежным соединением. Обеспечивая хорошую плотность энергии и высокую мощность, эти материалы используются как литиевые аккумуляторы 12 вольт для автомобиля.
Литий-Никель-Марганец-Кобальт-Оксиды (NMC) – прочнее и долговечнее, чем тип NCA. Большинство производителей электромобилей используют этот катодный материал. При этом существует несколько вариантов, в которых металлы содержат никель, марганец и кобальт в различных соотношениях. Чем больше доля никеля – тем выше содержание энергии.
Катоды из оксида фосфора-железа-лития (LiFePO4 или LFP).
Этот вид также прочен, но имеет низшую плотность энергии, чем катоды LiMО2. Китайские производители используют для электромобилей городского цикла. Заряда хватает на короткие расстояния.
Катоды из оксида марганца-лития (LiMn2O4 или LMO).
Этот вид раньше использовался в электромобилях, но катоды, содержащие кобальт, превосходят их по стабильности и плотности энергии.
В этом видео описаны подробные характеристики ионных аккумуляторов, размеры, состав и расшифровки маркировок.
Преимущества литиевых аккумуляторов
- Очень высокая плотность энергии. Превосходит в четыре раза свинцово-кислотные источники питания.
- Высокое напряжение клеток. Литий-ионная ячейка заменяет три ячейки NiCd или NiMH, которые обеспечивают только 1,2 вольта. Ученые в настоящее время работают над обеспечением более высокого напряжения в клетках. Чем больше напряжение в клетках, тем меньше клеток требуется. Это дает возможность сделать батарею легче и вместительнее.
- Переносят высокие токи разряда. Это позволяет работать автомобильным приборам, таким как холодный стартер или приводы для гибридных автомобилей с маленькой емкостью АКБ.
- Увеличивают мощность и производительность, в зависимости от требований.
- Имеют возможность быстрой зарядки.
- Отсутствует эффект памяти – полная разрядка не влияет на продолжительность срока службы.
- Низкая скорость саморазряда (от трех до пяти процентов в месяц, сохранят работоспособность до десяти лет).
- При заряде батареи на 100 % способна отдать энергию тока без технических повреждений.
Вариации базового химического состава (например, различные анодные и катодные материалы) позволяют разнообразить характеристики производительности для конкретных применений.
Также доступны батареи маленького размера. Материал электрода и керамические электролиты могут быть разделены на твердые (оксид алюминия/силикагель) или гибкие (акриловые волокна) подложки для производства энергии высокой плотности для тонких и плоских батарей.
Недостатки литий-ионных батарей
- Чувствительность к глубокой разрядке, перегрузка и слишком высокая температура. Но на практике это редко является проблемой. Аккумуляторы уже имеют встроенную электронику, которая защищает от негативных влияний. При использовании LIB без встроенной электроники рекомендуется использовать зарядное устройство, которое для нее предназначено.
- Повышенная чувствительность к высоким и низким температурам. Оптимальная рабочая температура в пределах 10–35 градусов. При низких температурах мощность батареи падает. Также существуют специально предназначенные ионные источники питания для низких температур, которые поддерживают заряд при температуре -40 градусов, только с ограниченными разрядными потоками.
Безопасность литиевых батарей
При перегреве или перезарядке LIB могут подвергаться разрушению. Это приведет к утечке ядовитых газов, взрыву и пожару. Чтобы этого избежать, батарея лития содержит отказоустойчивую схему, которая отключает источник питания, когда напряжение находится в опасном диапазоне.
Короткое замыкание приведет к перегреву, возгоранию и взрыву. Литий-ионные аккумуляторы, в отличие от свинцово-кислотных, изготавливаются под высоким давлением, они имеют легковоспламеняющийся жидкий электролит. Их качество строго контролируется при изготовлении.
Литий-ионный аккумулятор для автомобиля имеет множество положительных характеристик, но использование его в бензиновых и дизельных двигателях не эффективно и в данное время не применяется. Генератор, который вырабатывает переменный ток в автомобиле, не приспособлен заряжать данный вид аккумуляторов.
Это видео расскажет об использовании литий-ионных аккумуляторов для бензиновых и дизельных двигателей.
3batareiki.ru
Литий-ионный аккумулятор (Li-ion) | Принцип работы
В настоящее время литий-ионный аккумулятор используется абсолютно во всей домашней и портативной электронике.
Можно без преувеличения сказать: без портативных источников питания, мир современной техники был бы намного беднее. Все разнообразие карманных электронных гаджетов, приборов, смартфонов, гироскутеров, электромобилей наконец, стало возможным благодаря литий-ионным аккумуляторам.
Принцип работы литий-ионного аккумулятора
Давайте рассмотрим литий-ионный аккумулятор. Как видите, он состоит из нескольких слоев с различным химическим составом.
состав литий-ионного аккумулятораВ основе работы литий-ионного аккумулятора лежит, так называемый, электрохимический потенциал. Суть его в том, что металлы стремятся «отдавать» свои электроны. Как видно на рисунке ниже, наибольшая способность к отдаче электронов – у лития, а наименьшая – у фтора. Если такой атом отдает свой электрон, то он становится положительным ионом.
Первая в истории электрическая батарейка, созданная более 200 лет назад Алессандро Вольтой, работала как раз на принципе электрохимического потенциала. Вольта взял два металла с разными электрохимическими потенциалами (цинк и серебро) и получил электрический ток. В честь его открытия такую “батарейку” назвали Вольтовым столбом.
В 1991 г. Sony выпустила первый коммерчески успешный литий-ионный аккумулятор.
В литий-ионных элементах используется металл с наибольшей способностью отдавать электроны – литий. У лития всего один электрон на внешней орбите, и он постоянно стремится его «потерять».
атом литияИз-за этого литий считается чрезвычайно химически активным металлом. Он реагирует даже с водой и воздухом. Но активен только чистый литий, а вот его оксид, напротив, очень стабилен.
оксид литияЭто свойство лития как раз используется при создании литий-ионных аккумуляторов.
Допустим, мы каким-то образом отделили атом лития от оксида. Этот атом будет крайне нестабилен и сразу превратится в положительный ион, потеряв электрон.
положительный ионОднако в составе оксида литий гораздо более стабилен, чем одинокий атом лития. Если мы сможем каким-то образом обеспечить движение по двум отдельным путям для электрона и для положительного иона лития, то ион самостоятельно достигнет оксида и встанет там на свое место. При этом мы получим электрический ток благодаря движению электрона.
Итак, можно получить электрический ток из оксида лития, если сначала отделить атомы лития от оксида и затем направить потерянные ими электроны по внешней цепи. Рассмотрим, как эти две задачи решаются в литий-ионных элементах.
Строение литий-ионного аккумулятора
Помимо оксида лития, элементы содержат также электролит и графит. В графите связь между слоями гораздо слабее, чем между атомами внутри слоев, поэтому графит имеет слоистую структуру.
строение литий-ионного аккумулятораЭлектролит, помещенный между оксидом лития и графитом, служит барьером, пропускающим сквозь себя только ионы лития. Электроны же не могут проникать сквозь электролит и отскакивают от него, как теннисный мячик об стенку. В качестве электролита используется органическая соль лития, которая наносится на слой разделителя (о разделителе ниже в статье).
Процесс заряда и разряда литий-ионного аккумулятора
Итак, у нас есть разряженный аккумулятор
литий-ионный аккумулятор разряженныйДавайте же его зарядим. Для этого нам нужен какой-либо источник питания. Что произойдет в этот момент на самом литий-ионном аккумуляторе? Положительный полюс начнет притягивать электроны, «вытаскивая» их из оксида лития.
процесс зарядки литий-ионного аккумулятораПоскольку электроны не могут проникать через электролит, то они движутся по внешней цепи через источник питания.
и в конце концов достигают графита
где очень удобно располагаются в слоях графита.
В этот же самый момент положительные ионы лития притягиваются отрицательным полюсом, проходя сквозь электролит и также попадают в графит, размещаясь между его слоями.
Когда все ионы лития достигнут графита и будут «захвачены» его слоями, батарея будет полностью заряжена.
Такое состояние батареи неустойчивое. Это можно представить как шар, который находится на самой верхушке холма и в любой момент может скатиться.
Вот мы и достигли первой цели: электроны и ионы лития отделены от оксида. Теперь надо как-то сделать так, чтобы электроны и ионы двигались разными путями. Как только мы подключим какую-либо нагрузку к нашему заряженному литий-ионному аккумулятору, то начнется обратный процесс. В этом случае ионы лития через электролит пожелают вернуться в свое изначальное состояние.
Поэтому они начнут двигаться обратно сквозь электролит, а электроны побегут через внешнюю цепь, то есть через нагрузку.
Так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц, то в цепи лампочки накаливания возникнет электрический ток, который заставит эту самую лампочку светиться.
Как только все электроны “убегут” из графита, то батарея полностью разрядится. Чтобы ее снова зарядить, достаточно поставить аккумулятор “на зарядку”.
При этом графит сам по себе не участвует в химических реакциях – он лишь служит «складом» для ионов и электронов лития.
Слой разделителя в литий-ионном аккумуляторе
Если внутренняя температура элемента по какой-то причине начнет расти, жидкий электролит высохнет, и произойдет короткое замыкание между анодом и катодом. В результате элемент может загореться или даже взорваться.
Чтобы этого не произошло, между электродами помещается дополнительный изолирующий слой, называемый разделителем. Разделитель проницаем для ионов лития благодаря наличию микропор. Электроны он не пропускает.
Из чего делают литий-ионный аккумулятор
В реальных литий-ионных аккумуляторах графит и оксид лития наносятся в виде покрытия на медную и алюминиевую фольгу. Ниже на рисунке мы видим, что на тонком листе меди у нас располагается графит, а на тонком листе алюминия – оксид лития.
Минус аккумулятора снимается с медной фольги, а плюс – с алюминиевой.
ну а между ними располагается еще разделитель, пропитанный электролитом
Для того, чтобы уменьшить объем, все эти три слоя сворачивают в “рулончик”.
образуя при этом всем нам знакомую литий-ионную цилиндрическую батарейку
Литий-ионные аккумуляторы в автомобиле Tesla
Вообразите мир, в котором все машины оснащены электродвигателями, а не двигателями внутреннего сгорания. Электромоторы превосходят ДВС практически по всем техническим показателям, да к тому же намного дешевле и надежнее. У ДВС есть существенный недостаток: он выдает достаточный крутящий момент лишь в узком диапазоне скоростей. В общем, электродвигатель – однозначно лучший выбор для автомобиля. Об этом мы писали еще в статье про автомобиль Тесла.
Сравнение электромобилей и автомобилей с ДВСНо есть одно «узкое место», из-за которого электрическая революция в автопроме постоянно откладывается – это источники питания. Долгое время громоздкие, тяжелые, недолговечные и ненадежные аккумуляторы электромобилей никак не могли составить конкуренцию полному баку бензина. Но все изменилось, когда на рынок вышел производитель электромобилей Тесла.
Именно литий-ионные аккумуляторы использует компания Тесла для своих электрокаров.
Стандартный элемент выдает напряжение 3,7 – 4,2 В. Множество таких элементов, соединенных последовательно и параллельно, образуют модуль.
Литий-ионные элементы при работе выделяют много тепла. При этом высокая температура снижает срок службы и эффективность самих элементов. Для контроля температуры, а также их уровня заряда, защиты от перезаряда и общего состояния элементов питания, служит специальная система управления батареями (Battery management system, сокращенно BMS). В батареях Tesla используется спиртовая система охлаждения. BMS регулирует скорость движения спирта в системе, поддерживая оптимальную температуру батарей.
радиатор для аккумуляторов ТеслаЕще одна важнейшая функция BMS – защита от перезаряда. Допустим, есть три элемента с разной емкостью. Во время зарядки элемент с большей емкостью зарядится сильнее двух остальных. Чтобы этого не допустить, BMS использует так называемое выравнивание заряда элементов (cell balancing). При этом все элементы заряжаются и разряжаются равномерно и защищены от чрезмерного или недостаточного заряда.
равномерный заряд аккумуляторов , благодаря технологии BMSИ в этом преимущество Tesla над технологией аккумуляторов Nissan. У Nissan Leaf серьезная проблема с охлаждением аккумулятора из-за большого размера элементов и отсутствия системы активного охлаждения.
батарея Nissan Leaf и TeslaУ конструкции с множеством маленьких цилиндрических элементов есть и еще одно преимущество: при большом расходе энергии нагрузка распределяется равномерно между всеми элементами. Если бы вместо множества маленьких элементов был один огромный элемент, из-за постоянных нагрузок он очень быстро бы пришел в негодность. Tesla сделала ставку на маленькие цилиндрические элементы, технология производства которых уже хорошо отработана. Более подробно про батарейный модуль Тесла читайте в этой статье.
Защитный SEI-слой
Во время первой зарядки внутри литий-ионного элемента происходит одно замечательное явление, спасающее элемент от скорой «смерти». Неожиданной проблемой оказались электроны, находящиеся в слое графита. При контакте с электролитом они начинают разрушать его. Но одно случайное открытие позволило не допустить контакт электронов с электролитом. При первой зарядке элемента, как мы уже говорили, ионы лития движутся сквозь электролит. В процессе этого движения молекулы растворенного в электролите вещества покрывают ионы. Достигнув графитового слоя, ионы лития вместе с молекулами раствора электролита реагируют с графитом, образуя так называемая промежуточную фаза твердого электролита (solid electrolyte interphase, или SEI-слой). Этот слой предотвращает контакт электронов с электролитом, предохраняя электролит от разрушения.
защитный SEI-слойВот так проблема случайным образом решилась сама собой. Хотя эффект SEI был открыт случайно, в последующие два десятилетия ученые целенаправленно улучшали процесс, подбирая наиболее эффективную толщину и химический состав.
Заключение
Сегодня уже удивительно, что еще два десятка лет назад в электронных гаджетах не применялись литий-ионные аккумуляторы. Индустрия литий-ионных аккумуляторов развивается с фантастической скоростью: ожидается, что в ближайшие несколько лет их рынок достигнет 90 млрд. долларов. Современные литий-ионные батареи способны выдержать примерно 3000 циклов зарядки-разрядки – это уже приличный показатель, но еще есть, куда расти. Лучшие умы во всем мире трудятся над тем, чтобы повысить их долговечность до 10 000 циклов. В этом случае аккумулятор электромобиля не придется заменять целых 25 лет. Миллионы долларов вкладываются в исследования, которые позволят заменить графит на кремний в качестве «хранилища» в литий-ионных элементах. Если это удастся сделать, их емкость возрастет более чем в пять раз! В настоящее время мир переходит уже на литий-полимерные аккумуляторы, которые показали себя чуточку лучше, чем литий-ионные.
Материал подготовлен по статье
www.ruselectronic.com
5 практических советов по эксплуатации литий-ионных аккумуляторов
Литий-ионные аккумуляторы не столь «привередливы», как их никель-металл-гидридные собратья, но все равно требуют определенного ухода. Придерживаясь пяти простых правил, можно не только продлить жизненный цикл литий-ионных аккумуляторных батарей, но и повысить время работы мобильных устройств без подзарядки.Не допускайте полного разряда. У литий-ионных аккумуляторов отсутствует так называемый эффект памяти, поэтому их можно и, более того, нужно заряжать, не дожидаясь разрядки до нуля. Многие производители рассчитывают срок жизни литий-ионного аккумулятора количеством циклов полного разряда (до 0%). Для качественных аккумуляторов это 400-600 циклов. Чтобы увеличить срок службы вашего литий-ионного аккумулятора, чаще заряжаете свой телефон. Оптимально, как только показатель заряда батареи опустится ниже отметки 10-20 процентов, можете ставить телефон на зарядку. Это увеличит количество циклов разряда до 1000-1100.
Данный процесс специалисты описывают таким показателем как Глубина Разряда (Depth Of Discharge). Если ваш телефон разряжен до 20%, то Глубина Разряда составляет 80%. В нижеприведенной таблице показана зависимость количества циклов разряда литий-ионного аккумулятора от Глубины Разряда:
Разряжайте раз в 3 месяца. Полный заряд на протяжении длительного времени также же вреден для литий-ионных аккумуляторов, как и постоянная разрядка до нуля.
Из-за крайне нестабильного процесса заряда (мы часто заряжаем телефон как придется, и где получится, от USB, от розетки, от внешнего аккумулятора и тд.) специалисты рекомендуют раз в 3 месяца полностью разряжать аккумулятор и после этот заряжать до 100% и подержать на зарядке 8-12 часов. Это помогает сбросить так называемый верхний и нижний флаги заряда аккумулятора. Более подробно об этом можно прочитать здесь.
Храните частично заряженными. Оптимальным состоянием для длительного хранения литий-ионного аккумулятора является уровень заряда от 30 до 50 процентов при температуре 15°C. Если же оставить батарею полностью заряженной, со временем ее емкость существенно снизится. А вот аккумулятор, который долгое время пылился на полке разряженным до нуля, скорее всего, уже не жилец – пора отправлять его на утилизацию.
В нижеприведенной таблице показано сколько остается емкости в литий-ионном аккумуляторе в зависимости от температуры хранения и уровня заряда при хранении в течение 1 года.
Используйте оригинальное зарядное устройство. Мало кто знает, что зарядное устройство в большинстве случаев встроено непосредственно внутрь мобильных устройств, а внешний сетевой адаптер лишь понижает напряжение и выпрямляет ток бытовой электросети, то есть напрямую на батарею не воздействует. Некоторые гаджеты, например цифровые фотокамеры, лишены встроенного зарядного устройства, и поэтому их литий-ионные аккумуляторы вставляют во внешний «зарядник». Вот тут-то использование внешнего зарядного устройства сомнительного качества вместо оригинального может негативно сказаться на работоспособности батареи.
Не допускайте перегрева. Ну а злейшим врагом литий-ионных аккумуляторов является высокая температура – перегрева они напрочь не переносят. Поэтому не допускайте попадания на мобильные устройства прямых солнечных лучей, а также не оставляйте их в непосредственной близости от источников тепла, например электрообогревателей. Максимально допустимые температуры, при которых возможно использование литий-ионных аккумуляторов: от –40°C до +50°C
Также, вы можете посмотреть Часто Задаваемые Вопросы по аккумуляторам на нашем сайте.
habr.com
маркетинговые уловки и распространенные ошибки / Habr
Неоднократно сталкиваюсь в статьях и комментариях (в статьях все же гораздо реже) с использованием неправильных данных или названий, которые впоследствии приводятся, как аргументы, хотя на самом деле они ошибочны изначально. И эти ошибки распространяются по всем ресурсам, включая Гиктаймс.Этой статьей я бы хотел разъяснить некоторые моменты и провести своеобразный ликбез.
Литий-полимерные аккумуляторы
Сразу с главного — в свободном доступе на рынке не существует литий-полимерных аккумуляторов в техническом смысле этого слова. В англоязычном мире с этим уже разобрались, а вот на постсоветском пространстве существуют некоторые издержки в терминологии, которыми пользуются маркетологи. Маленькое отступление — не то, чтобы этим не пользовались в других регионах, но там хотя бы есть возможность проверки этой информации на родном языке.
Немного истории
Любой литий-ионный аккумулятор имеет 4 основных составляющих — два электрода (анод и катод), электролит и сепаратор. Все 4 элемента развивались и развиваются дальше. Для электролита на начало исследований (1970-ые) было предложено два варианта — жидкий или твердый электролит. В то время твердый электролит обещал больше перспектив в эксплуатации — электролит не вытекает при повреждении корпуса, сам элемент более прочный. Главным недостатком было и остается высокое сопротивление твердого электролита, оно сводит на нет физические характеристики.
Фактически снижение количества ресурсов, выделяемых компаниями на разработку твердых электролитов, произошло в начале 1990-х, когда Sony вывела на рынок аккумулятор с жидким электролитом. Сама компания Sony еще в 1988 году была уверена в будущем успехе твердого электролита.
Не смотря на ориентацию на жидкий электролит компании не перестали искать альтернативы. Одним из вариантов стали так называемые гибридные электролиты. Фактически для них используется сепаратор с мелкими отверстиями и тем же жидки электролитом. Хотя он на ощупь кажется сухим, на самом деле количество электролита в нем не отличается от подобного в обычном аккумуляторе. Как в принципе и конструкция:
Схематическая модель литий-ионного аккумулятора с катодом LiCoO2 и графитовым анодом из Википедии на немецком языке.
Подобные аккумуляторы довольно распространены, их коммерческое распространение началось еще в начале 2000-х, но физически и химически это те же самые литий-ионные аккумуляторы с жидким электролитом и их в общем не очень много.
Что же представлено на рынке?
Одним из способов классификации аккумуляторов является его корпус. На сегодня существуют три популярных способа упаковки:
- Цилиндрические ячейки
- Призматические ячейки
- «Мешочек» или pouch-bag ячейки
Первый тип аккумуляторов известен своим использованием в ноутбуках и автомобилях Тесла (там используется его самый распространенный размер 18650).
Второй тип является измененной формой цилиндрических. Алюминиевый корпус, прямоугольник или квадрат в поперечном сечении. Популярен для стационарного применения и в транспорте.
Третий тип имеет мягкий корпус и не всегда оснащается встроенной системой защиты. Фактически удешевленный вариант призматической ячейки. Этот тип аккумуляторов используется, в частности, в мобильных телефонах.
Последние в списке и есть те самые «полимерные». Они так называются по нескольким причинам. Самый наглый способ маркетологов — корпус из полимеров, потому и «полимерные».
Второй вариант — использование полимерного мелкопористого сепаратора. Фактически ничем не отличается от обычного литий-ионного аккумулятора.
Третий вариант, который я не встречал — давать название «полимерный» на основании использования полимерных элементов в качестве основ катодов, анодов и прочих элементов. Как правило попадает в множество аккумуляторов в пластиковом корпусе.
Проблемы терминологии
При разработке концепции идея была такова, что под понятием «жидкий электролит» понимались жидкий или гелеобразный раствор соли лития, в то время как под понятием «твердый электролит» (solid electrolyte) — твердое состояние вещества. Так как возникло желание продать то, что обещалось но чего нет, то сегодня даже в среде исследователей гелевый электролит вносят в перечень «твердых» электролитов, хотя его характеристики все же скорее гибридные. Потому можно встретить описание в научных работах «твердый гелевый электролит», которое некоторыми учеными считается вводящим в заблуждение.
Будущее полимерных электролитов
Разработки ведутся и в перспективе возможно появление аккумуляторов с настоящим полимерным электролитом. Однако по состоянию на 2015 год лабораторные образцы полимерных электролитов на основе органической химии не показывали ощутимого прогресса, потому на дату публикации статьи в обозримом будущем не предвидится массового ухода от жидкого электролита.
Проблемы с наименованием типов аккумуляторов
На рынке представлено несколько различных типов литий-ионных аккумуляторов. Они имеют различные наименования, которые позволяют описывать их характеристики в плане емкости или безопасности. В целом можно встретить следующие типы:
- Литий-кобальтовые с катодом LiCoO2 — самые емкие модели имеют графитовый анод.
- Литий-марганцево-оксидные с катодом LiMn2O4, Li2MnO3 или LMnO, последние могут выступать как просто литий-марганцовые
- Литий-никель-марганец-кобальт-оксидные или NMC с катодом LiNiMnCoO2
- Литий-железо-фосфатные с катодом LiFePO4 (LFP)
- Литий-никель-кобальт-алюминий-оксидные (NCA) с катодом LiNiCoAlO2
- Литий-титанат-оксидные (LTO) с анодом Li4Ti5O12
Сразу можно заметить неравномерность наименований. Некоторые названы в честь катода, некоторые — в честь анода. И если в первом случае еще можно попытаться угадать с высокой степенью вероятности, что анод будет графитовый, то в случае названия по аноду остается только гадать. Также на сегодня ведутся разработки и в принципе можно найти на рынке аккумулятор с катодом LiFePO4 и анодом Li4Ti5O12, т.е. литий-железо-фосфатные литий-титанатовые, которые в этой системе не имеют простого маркетингового наименования По ссылке — научная статья 2013 года с испытаниями такого аккумулятора.
Причина существования такого большого числа катодов и анодов аккумуляторов в различных требованиях к аккумуляторам. Где-то нужна бóльшая безопасность, а где-то емкость или мощность. Получить представление о запасаемой энергии можно исходя из того, что каждый тип катода и анода имеет разный потенциал, как видно из изображений ниже (в качестве потенциала в 0 В выбирается потенциал металлического лития, больше разница напряжений — больше мощность, энергетическая плотность зависит от количества атомов лития):
Общая схема с потенциалами от университета г. Киль. Источник
Материал из статьи 2013 года авторов Jiantie Xu, Shixue Dou и др. Источник
Еще одна картинка от Purdue School of Engineering and Technology. Источник
Общее представление о причинах может давать следующее грубое изображение связи потенциалов элементов и возможности металлизация лития при очень низком разряде или термической нестабильности при перезаряде:
Изображения взято из курса лекций
Самые небезопасные в эксплуатации из представленных на рынке — литий-кобальтовые с графитовый анодом, самые безопасные — с катодом LiFePO4 и анодом Li4Ti5O12. Естественно, наличие BMS (Battery Management System) уменьшает риски, но пренебрегать ими не стоит, тот же слишком сильный разряд эта система предотвратить не сможет, что критично для аккумуляторов с графитовым анодом.
Распространенные ошибки
Общие ошибки
Самая главная и часто встречаемая ошибка — противопоставление «обычному литий-ионному аккумулятору». Как видно выше, такого понятия, как «обычный» просто нет. И разница в напряжениях может быть самой разной для вроде бы одинаковых катодов и одинаковой для разных наборов катодов и анодов.
Вторая ошибка, не столь существенная, связанная с предыдущим пунктом, написание материала катода LiFePO4 следующим образом — LiFePo4. Здесь путаница довольно распространенная и сразу показывает, насколько можно доверять такому источнику.
Еще одна крупная ошибка — противопоставление LiPo-аккумулятора литий-ионному. Здесь несколько вариантов сравнения. Первое — это общее, связанное с заблуждением о существовании на рынке аккумуляторов с полимерным электролитом. Второе, имеющее более узкое применение, которое обычно озвучивается в следующем виде «литий-полимерный аккумулятор [речь о корпусе] лучше/хуже LFP/LTO/NCA (подставить нужное)».
Здесь идет смешение типа корпуса и начинки.
Например, по этой ссылке можно прочитать о LFP аккумуляторе в формате литий-полимерного (призматический корпус в данном случае).
Аккумулятор А долговечнее аккумулятора Б
Это еще одно своеобразное перекручивание фактов для аргументации при продаже. Такой метод применяется для разных типов аккумуляторов, но чаще всего сравнивается LFP вариант аккумулятора и литий-кобальтовый или NMC с графитовым катодом. В статьях в интернете, как рекламных так и просто популярных, можно найти соотношение полных эквивалентных циклов в 2000 к 500 в пользу LFP и как результат — рассказ о значительном превосходстве первого.
Здесь есть несколько неточностей. Во-первых, бóльшее число статей по литий-кобальтовым датировано 2005-2006 годами, в то время как для LFP — с 2012-2013. Данные по циклам основаны на этих статьях. Тем не менее разработки на останавливались и были одинаково активными для всех типов аккумуляторов и разрыв не настолько большой в один и тот же временной интервал. Во-вторых, не уточняется объем энергии, который передаст за свою жизнь аккумулятор, а ведь при равных размерах LFP имеет меньшую емкость.
Что же касается главного преимущества — бóльшего числа циклов, то если брать новые исследования и сравнивать в равных условиях серийные образцы, то разница не такая и драматическая. В общей сложности она составляет 20-30% (800 циклов против 1000 для 40°C, например), что не всегда оправдывает покупку того же LFP, так как будет передано меньше энергии за счет меньшей разницы напряжений за весь срок эксплуатации.
Источников с непосредственным сравнением нет, поскольку сам процесс тестирования длительный и дорогостоящий, осложненный договорами про не раскрывание названий участников, но сравнивая по ряду данных можно сделать вывод об аналогичных характеристиках на сегодня для всех литий-ионных аккумуляторов в плане срока эксплуатации во всех возможных сценариях, в т.ч. и простого хранения. Эти данные приведены, например, в источниках 1, 2, 3, 4, 5, 6, 7.
Прочие источники
BU-206: Lithium-polymer: Substance or Hype?
Kazuo Murata, Shuichi Izuchi, Youetsu Yoshihisa «An overview of the research and development of solid polymer electrolyte batteries»
A. Manuel Stephan, K.S. Nahm «Review on composite polymer electrolytes for lithium batteries. Polymer»
D. Golodnitskya, E. Straussc, E. Peleda and S. Greenbaum «Review — On Order and Disorder in Polymer Electrolytes»
Моя предыдущая статья про литий-ионные аккумуляторы — Эксплуатация литий-ионных аккумуляторов
habr.com
Литий ионный аккумулятор: конструкция, характеристики
Сейчас практически во всех портативных устройствах используются литий ионные аккумуляторы. Этот тип АКБ имеет ряд преимуществ перед своими предшественниками. С момента изобретения и до сегодняшних дней Li-ion прошел множество усовершенствований. Благодаря этому накопитель данного типа можно считать лучшим в своем роде. Но несмотря на это у нее присутствуют свои недостатки.
История появления
Первый литий ионный аккумулятор был выпущен в 1991 году. Ведущей компанией по производству данного типа АКБ стала Sony. Но батареи были разработаны в 70-х. Это были первые устройства с высокой энергоёмкостью, что сделало их востребованными. Но не было возможности применять их практически в массовом масштабе.
В составе батареи присутствует два электрода. На фольге из алюминия размещен катод, анод же поместили на медную. Их разделяет специальный сепаратор, который состоит из жидкого электролита, в некоторых случаях материал гелеобразный. Положительные заряды переносятся ионами лития. Они способы проникать внутрь других материалов и химических элементов, что провоцирует электрохимическую реакцию. Этим свойством они и обеспечивают заряд или питание устройств (телефонов, ноутбуков и т.д.).
В первые годы после создания литиево ионного накопителя они были известны своей взрывоопасностью. Это происходило из-за использования в конструкции накопителя металлического лития, а также по причине образования химических соединений в виде газа. При большом количестве разряда и заряда происходило замыкание, что влекло за собой взрыв аккумулятора.
Также взрывы происходили и потому, что ионы лития реагировали с другими соединениями и веществами в составе батарейки. Реакция была опасной и влекла за собой выделение большого количества тепла, после чего происходило возгорание и взрыв АКБ. В ходе улучшения было принято решение заменить анод на графитовый аналог. Такая рокировка позволила устранить проблему с взрывоопасностью аккумулятора. А производителю после выявления недостатка пришлось отозвать всю партию для мобильных телефонов.
Интересный факт! В зарядных устройствах, посредством которых накопители получают заряд, есть функция предохранения перегрева АКБ и защита от «переполнения» током.
Чтобы разработать полностью безопасную литий ионную батарейку понадобилось более чем 20 лет активных исследований и совершенствований. Это привело к выпуску более инновационного вида АКБ, а именно литий фосфатных. Они не перегреваются, а также в составе отсутствуют компоненты с опасными реакциями друг на друга. Также многие производители встраивают в корпус контроллер для заряда аккумуляторов во избежание эксцессов с возгоранием.
Принцип работы и устройство
Литий ионный аккумулятор имеет следующий принцип работы:
- После подачи тока на контакты АКБ, катионы лития переходят в анод;
- Во время использования и непосредственной разрядки, ионы лития перемещаются из анода и проникают в диэлектрик примерно на глубину до 50 нм.
Количество циклов зарядки за весь срок службы АКБ может исчисляться 1000. Интересно то, что при глубоком разряде окисление пластин источника не происходит. Но не все типы литий ионных аккумуляторов переносят процесс глубокой разрядки. Например, при установке в телефон или фотоаппарат, во время возникновения глубокого разряда плата блокирует возможность повторного заряда. Зарядить можно будет только с использованием специального устройства.
А вот тяговые литиевые батареи для лодочных моторов совсем не боятся полной потери заряда. Устройство литий ионного аккумулятора, как правило, состоит из некоторых источников энергии, которые соединены параллельно или последовательно.
Химические процессы на положительном и отрицательном электроде
Современные модели литий ионных АКБ содержат электрод из материала, в состав которого входит углерод. Природа этого материала и компоненты электролита влияют на процессы интеркаляции ионов лития в углерод. Матрица анода является слоистой. Она может быть, как частично, так и полностью упорядоченной
Во время протекания интеркаляции ионы от лития как бы раздвигают пласты углерода и встраиваются между ними. При внедрении и изъятии ионов объем матрицы не меняется. Положительный электрод выполняется из оксида никеля или кобальта. Также используются шпинели из лития и марганца.
Во время заряда происходят реакции, которые описываются следующими уравнениями:
- на положительном электроде;
- на отрицательном электроде.
Принцип действия разряда описывается обратными уравнениями.
Виды литий ионных аккумуляторов
Литий ионные аккумуляторы стали востребованы во многих сферах. Помимо использования в гаджетах, бытовых устройствах и автомобилях, выпускают и АКБ для промышленного использования, который имеют высокое напряжение и емкость. Самыми востребованными считаются АКБ, представленные в таблице.
Две цифры первые в ряду указывают на размер диаметра батареи, вторые две на длину. Нуль ставится в случае цилиндрической формы. Также выпускаются АКБ подтипа «Крона» с напряжением в 9 Вольт.
Обозначения батареи указывают на содержание элементов, например, как:
- ICR – кобальта;
- IMR – марганца;
- INR – никеля и марганца;
- NCR –кобальта и никеля.
Виды li ion аккумуляторов в основном отличаются размерами, химическим составом, а также по емкости и напряжению.
Конструкция литий ионной батареи
Литиево ионные батареи изготавливаются в цилиндрическом и призматическом виде. Вариант в виде цилиндра является по сути рулоном из электродов с материалами для разделения разно полюсных. Корпус выполняется из стали или алюминия, с которым соединен минус. Плюс выводится на площадку, расположенную на торце корпуса.
Призматическая конструкция выполняется путем складывания прямоугольных пластин друг на друга. Такой вариант позволяет сделать накопитель компактней.
Любая конструкция предусмотрена с герметичным корпусом. Вытекание электролита недопустимо, так как сразу же выводит батарею из строя.
Характеристики
Характеристики li ion аккумуляторов напрямую зависят от компонентов в составе накопителя. Параметры могут принимать значения в следующих диапазонах:
- Напряжение: номинальное – 3.7 В, макс. – 4.2-4.35 В, мин. – 2.5-3 В.
- Энергоемкость – 110-243 Втч/кг.
- Сопротивление – 5-15 Ом/Ач.
- Время скорого заряда – 15-60 минут.
- Рабочие температуры — -20-60 градусов.
Эксплуатация и срок службы
Батарея такое же сложное устройство, как и телефон, разве что выполняет только одну функцию. Именно поэтому, чтобы максимально эффективно использовать все возможности акб, рекомендуется ознакомиться с тем, как правильно пользоваться и хранить батарею. Это также поспособствует продлению срока службы.
Как правильно эксплуатировать
Необходимо стараться не допускать полного разряда батареи. Этот процесс легко контролировать. Но помимо этого также требуется следить за правильным ходом заряда.
При процессе заряда аккумуляторной батареи необходимо не допускать избыточного подключения к устройству зарядки. Литий ионный АКБ корректно работает и заряжается при напряжении до 3.6 В. Как правило, зарядные устройства подают 4.2 В. При превышении времени заряда в корпусе могут провоцироваться небезопасные электрохимические реакции. Это может повлечь за собой перегревание и вздутие.
При разработке была учтена такая особенность и при превышении напряжения выше рекомендуемого показателя, процесс заряда останавливается. Также литиевые АКБ правильно заряжать именно двухступенчатым способом. Первым этапом происходит зарядка накопителя на постоянном токе, вторым постоянным напряжением с постепенным понижением тока. Данный алгоритм уже реализован во многих зарядных устройствах.
Срок службы
Срок службы батареи напрямую зависит от правильного использования. Например, при несоблюдении рекомендаций в эксплуатации литий ионных аккумуляторов этот период сокращается в 10 раз. Принято считать, что АКБ способны выдержать 500-1000 циклов заряд-разряд, в этом случае учтен фактор полного разряда. При остатке даже минимального процента заряда можно увеличить срок службы устройства на порядок.
Нельзя назвать точный срок работоспособности данного типа устройств, так как длительность напрямую зависит от условий использования. Но все же ориентировочно одна литий ионная батарейка может корректно выполнять свои функции на протяжении 8-10 лет с учетом того, что ее использование будет происходить строго по рекомендациям.
Хранение и утилизация
Данный тип аккумуляторов достаточно просто хранить. Как правило, саморазряд при корректном хранении составляет около 10-15 % в год. Но этот показатель может меняться в большую или меньшую сторону в зависимости от условий консервации.
Важно! Даже при идеальных условиях хранения литий ионных аккумуляторов все равно будет происходить процесс деградации элементов.
При возникновении необходимости длительной консервации аккумулятора типа Li-ion требуется позаботиться о минимизации негативного воздействия на акб:
- Место для хранения должно быть сухим, с небольшим показателем влажности. Требуется исключить риск ударов, возникновения вибрации и непосредственное соседство с открытым огнем или нагревательными элементами.
- Температура хранения литий ионного аккумулятора не должна быть ниже нуля. Оптимально хранить устройство при 5-25 градусах.
- Перед консервацией устройства вынимают из прибора. Также предварительно заряжают полностью.
Главное учесть, что любой контакт с водой негативно скажется на состоянии аккумулятора. Хранить при соблюдении всех рекомендаций устройство можно в течение нескольких лет. Важно понимать, что это не убережет батарею от уменьшения емкости.
Утилизировать АКБ требуется путем сдачи в предприятия, которые на этом специализируются. Просто выбрасывать батарею строго запрещено. Дело в том, что более чем половина устройства, вышедшего из строя, используется повторно для производства новых батарей.
Безопасность
Основная проблемы по защите литий ионного аккумулятора на сегодняшний день решена. Специальная электронная защита в виде встроенного контролера держит под надзором все процессы, происходящие во время заряда и разряда (т.е. при использовании АКБ по назначению). Помимо этого, постоянно усовершенствуется материал для изготовления катода. Приоритетно сейчас стоит возможность сделать его термически стабильным.
Также Li-Ion оснащены специальной защитой, которая реагирует на внутреннее замыкание цепи. Помимо этого, немногие типы АКБ этого рода защищены от внешнего короткого замыкания. Защита внутри устройства состоит из двух слоев сепараторов. Один из слоев изготовлен из полипропилена, другой из аналогичного этому материалу вещества. В случае возникновения короткого замыкания второй из слоев просто плавится, что делает его непроницаемым. И рост дендритов лития, стремящихся к положительному электроду, прекращается.
Производители стали встраивать в корпус батареи контролеры заряда, чтобы избежать возможность самовозгорания. Это устройство держит под контролем температуру внутри корпуса батарейки, глубину заряда, а также количество тока, потребляемого АКБ.
Но несмотря на этот тип усовершенствований даже сегодня есть много сообщений о взрывах аккумуляторов. Довольно часто это случается в телефонах. Эти случаи объясняются тем, что не все производители литий ионных АКБ пользуются такими контролерами. Отказ мотивируется улучшением показателей емкости самой батареи, а также удешевлением производства. Так что, если батарея вздулась спустя некоторое время после эксплуатации — это верный признак того, что производитель сэкономил на производстве.
Но даже такая опасная возможность, как возгорание, которую можно устранить, делает литий ионные аккумуляторы лучше, чем предшествующие аналоги по всем характеристикам. Данный тип батареи работает намного дольше благодаря высокой емкости, низкий уровень пассивного разряда продляет срок годности. Также батареи типа Li-ion не нужно дополнительно обслуживать. А при выходе из строя устройства его дешевле заменить, чем отремонтировать.
Требования к режимам заряда/разряда
Требуется тщательно следить за уровнем разряда аккумулятора. Дело в том, что полный разряд батареи негативно сказывается на его характеристиках. Также возможен полный вывод из строя после глубокого разряда.
Помимо этого, на срок службы литий ионных аккумуляторов непосредственно сказывается уровень разряда перед зарядом и произведение зарядки при помощи токов номиналом выше рекомендованного производителем. Такой тип довольно чувствителен к напряжению зарядного устройства. Например, если использовать вспомогательный прибор с напряжением выше рекомендованного на 3-4 процента, то батарея потеряет емкость в два раза быстрее.
Ток заряда находится в непосредственной зависимости от разницы напряжения аккумулятора и устройства. А также от сопротивления АКБ и проводов, подводимых к нему. При простых расчетах выходит, что при увеличении напряжения зарядного устройство на 4%, ток заряда возрастет в 10 раз. Такой скачок негативно скажется на работоспособности аккумулятора. Также это увеличивает возможность перегрева.
Как восстановить литий ионный акб
Даже большой срок службы литий ионного аккумулятора не спасает от истощения батареи. В таком случае есть проверенный способ как восстановить литий ионный аккумулятор, но он проработает не долго.
Важно! Восстановить вздутую батарею невозможно. В этом случае она подлежит только утилизации.
Необходимо взять зарядку с напряжением в 5-12 В, а также резистор 330-1 кОм. Минус источника подключить к АКБ, плюс подключается аналогично только через резистор. После чего включить подачу тока и замерять рост показателей напряжения в следующие 10-20 минут. Как только показатель выдаст 3.31 В, смартфон покажет, что пошел процесс заряда. Повышение напряжения, а затем последующее его снижения до рекомендуемых параметров поможет немного восстановить емкость li ion аккумулятора.
Как проверить работоспособность АКБ
Для того, чтобы проверить работоспособность литий ионного аккумулятора, необходимо для начала полностью зарядить батарейку. После чего подключить ее одним концом к тестеру, а другим к нагрузочному резистору.
Тестер покажет емкость, ток и напряжение. Достаточно сравнить полученные показатели с базовыми параметрами батареи. Сильное отклонение в меньшую сторону будет означать, что устройство медленно выходит из строя.
Плюсы и минусы
У литий ионных аккумулятор есть свои преимущества и недостатки перед другими батареями. К плюсам относят такие моменты, как:
- высокий уровень энергоемкости;
- эффект памяти настолько минимален, что практически отсутствует;
- срок эксплуатации очень большой;
- нет нужды дополнительно обсуживать АКБ;
- корректно выполняет свои функции в большом диапазоне температур;
- уровень саморазряда очень низок.
Несмотря на все преимущества у литий ионных батарей есть и свои минусы, например, как:
- возможность самовозгорания и взрыва, вздутие и выход из строя;
- емкость понижается при температуре эксплуатации ниже нуля;
- стоимость продукта значительно выше чем у предшествующих АКБ;
- для повышения безопасности использования устройства необходим контроллер заряда;
- плохо переносит глубокий разряд.
Кстати, большинство минусов купируются. Например, при желании можно найти батарейку с контроллером, что уже устраняет возможность перегрева и самовозгорания. А при постоянной подзарядке, глубокий разряд также исключается. Также производители с каждым годом выпускают более совершенные варианты литий ионных аккумуляторов. Недостатки постепенно купируются и в скором времени возможно совсем исчезнут, что сделает этот тип совершенным.
Маркировка
Все параметры литий ионной батареи можно узнать из маркировки, нанесенной на корпус. Вариант маркировки может отличаться у каждого вида АКБ. Пока не существует единого стандарта маркирования. Но достаточно просто разобраться в ней, зная типовые параметры и обозначения:
- Буквы. Первой буквой всегда стоит I, так как обозначает тип технологии, т.е. литий ионную. Вторая буква дает уточнение по составу, встречаются маркировки такие как M, F, C, N. Третья буква дает обозначение того, что батарея является перезаряжаемой, маркировка R.
- Цифры. Цифровая маркировка означает размеры в миллиметрах. Таким образом первые 2 цифры — это диаметр, две последующие длина. Ноль на конце маркировки может означать цилиндрическую форму.
Для уточнения значений необходимо обратиться к документам батареи или производителю. У каждого из них может быть разные маркировки. Также отсутствует стандарт нанесения маркера даты производства.
Применение литий ионных аккумуляторов
Литий ионные аккумуляторы используются в большинстве мобильных устройств. Дело в том, что они не имеют аналогов в случаях, когда необходимо отдавать электричество практически в полном объеме. Также они необходимы для долгосрочного использования, так как способны выдержать большое количество циклов разряд-заряд, при этом не снижая свою емкость.
Преимуществами литий ионных АКБ является и малый вес, так как отсутствует необходимость использовать свинцовые решетки. Благодаря отличным характеристикам устройства применяются в разных ипостасях.
Как стартерные батареи
Аккумуляторы из лития становятся дешевле с каждым годом. Это происходит из-за новых разработок, снижающих затраты на производство. Но в данный момент литиево ионные батареи для автомобилей достаточно дорогостоящие и не все автовладельцы могут их приобрести. Также не рекомендуется использовать этот тип АКБ в северных регионах, так как мощность при низких температурах падает и использовать их будет непрактично.
Как тяговое устройство
Этот тип достаточно стойко переносит сильную разрядку хоть это и не рекомендуется. Их ставят на моторные лодки. Если двигатель не слишком мощный, батареи, как правило, хватает на 5-6 часов непрерывной работы. Также литий ионный АКБ устанавливают на погрузочную технику, которая работает в закрытом помещении.
Бытовая техника.
Частая практика у производителей делать устройства, где вместо пальчиковых батареек или других вынимаемых аналогов используется литий ионный акб. Существуют модели с напряжениями 3.6 вольт, которые заменяют солевые или щелочные батарейки на 1.5 вольта. В некоторых случаях встречаются li ion аккумуляторы в 3 вольта, их, как правило, используют для замены 2 стандартных батареек.
Литий ионные аккумуляторные батареи прочно вошли в мир технологий. Компактность этого вида акб позволяет использовать их в небольших мощных устройствах как, например, смартфоны.
batteryzone.ru
Литий-серный аккумулятор — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 февраля 2019; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 февраля 2019; проверки требуют 3 правки.Литий-серный аккумулятор | |
---|---|
Схематический рисунок ЛСА в ходе разряда | |
Удельная энергоёмкость | 250-500 Вт/ч/кг |
Долговечность (циклы) | >1000 |
Электродвижущая сила | 1,7-2,5 В |
Литий-серный аккумулятор (сокращённо — Li-S, ЛСА) — вторичный химический источник тока, в котором катод жидкий с содержанием серы отделён от электролита специальной мембраной.
- Теоретическая удельная энергоёмкость: до 2600[1]Вт·ч/кг (до 9360 кДж/кг)
- Удельная энергоёмкость: 250–500 Вт·ч/кг (900-1800 кДж/кг)
- Удельная энергоплотность: 218[2] Вт·ч/дм3 (785 кДж/дм3)
- Удельная плотность конструкции: н/д кг/дм3
- Количество циклов заряд-разряд до потери 20% ёмкости: 1000[3] (1500 без потерь ёмкости, при токах 0,05-1 С[4])
- Срок хранения: н/д лет
- Саморазряд при комнатной температуре: н/д % в месяц
- Напряжение: 2.1[2][5]В; 1,7-2,5[4] В
- Удельная мощность: н/д Вт/кг (при разряде током н/д С)
- Диапазон рабочих температур: от -40°C[1]
- КПД: н/д %
- Стоимость: достижима менее $100/кВт·ч[4] (10 Вт⋅ч/$)
Аккумулятор сделан многослойным, между анодом и катодом расположены анодные и катодные мембраны и слой электролита. Конструкция такого аккумулятора схожа с литий-ионными аккумуляторами, однако, в отличие от него, литий-серный аккумулятор использует вместе с литиевым анодом серосодержащий катод, за счёт чего увеличивается его удельная зарядовая ёмкость. Другая особенность Li-S — возможность использовать жидкий катод, увеличивая таким образом плотность тока через него[5].
Электро-химическая реакция[править | править код]
Реакция литий-серного аккумулятора совпадает с реакцией натрий-серного аккумулятора, только в данном случае роль натрия выполняет литий[6]:
- Разряд
- S8 → Li2S8 → Li2S6 → Li2S4 → Li2S3
- Заряд
- Li2S → Li2S2 → Li2S3 → Li2S4 → Li2S6 → Li2S8 → S8
Примечательна удельная энергоёмкость литий-серных аккумуляторов, составляющая уже у первых образцов до 300 Вт·ч/кг[5]. К другим достоинствам литий-серного аккумулятора можно отнести отсутствие необходимости использовать компоненты защиты, низкая себестоимость, широкий диапазон рабочих температур и общую экологическую безопасность[1].
К недостаткам литий-серного аккумулятора следует отнести очень короткое время жизни (всего 50-60 циклов заряд-разряд)[2]. Однако, последние образцы имеют долговечность 1000 и более циклов[7][8][3][4].
Разработка[править | править код]
Первые образцы подобных аккумуляторов были разработаны в 2004 году компанией Sion Power из США. В 2006 эта компания представила опытный образец аккумулятора размером 11×35×55 мм и ёмкостью 2,2 А⋅ч при напряжении 2,1 В[2][9].
В результате исследований, команде ученых из Стэнфорда удалось стабилизировать время жизни на уровне 100 циклов заряд-разряда, при падении ёмкости на 10-20% от изначальной. Однако примененный учеными способ (добавление полиэтиленгликоля, полуокисленного графена и микрочастиц сажи) приводит к очень высокому разбросу показателей катодов – лучшие из них теряют 10% ёмкости, худшие — 25%[10].
В 2013-м году учёными из Лаборатории Беркли(США) достигнута энергоёмкость 500 Вт·ч/кг и около 250 Вт·ч/кг при заряде/разряде токами 0,05 и 1 C соответственно; долговечность при этом составила не менее 1500 циклов заряда-разряда без потери ёмкости[4].
Использование[править | править код]
Именно такой тип аккумуляторов использовался в августе 2008 года при рекордно высоком и продолжительном полёте на самолёте на солнечных батареях[11].
- ↑ 1 2 3 Перспективные источники тока.
- ↑ 1 2 3 4 Построен новый тип сверхъёмкого литиевого аккумулятора. 20.03.2006
- ↑ 1 2 Li-S battery company OXIS Energy reports 300 Wh/kg and 25 Ah cell, predicting 33 Ah by mid-2015, 500 Wh/kg by end of 2018. 12.11.2014
- ↑ 1 2 3 4 5 New lithium/sulfur battery doubles energy density of lithium-ion. 01.12.2013
- ↑ 1 2 3 Литий-серные аккумуляторы для портативных устройств (неопр.) (недоступная ссылка). Дата обращения 2 августа 2010. Архивировано 24 мая 2012 года.
- ↑ Tudron, F.B., Akridge, J.R., and Puglisi, V.J. (2004): Lithium-Sulfur Rechargeable Batteries: Characteristics, State of Development, and Applicability to Powering Portable Electronics Архивная копия от 14 июля 2011 на Wayback Machine (Tucson, AZ: Sion Power) (англ.)
- ↑ World-Record Battery Performance Achieved With Egg-Like Nanostructures. 08.01.2013
- ↑ Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Январь 2013
- ↑ Разработан самый емкий на сегодня аккумулятор
- ↑ Графен повысил живучесть ультраёмких батарей. 14.07.2011
- ↑ BBS News: «Solar plane makes record flight» (англ.)
ru.wikipedia.org