Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Контрольная работа по теме “Магнитное поле. Электромагнитная индукция”

Контрольная работа по теме:

«Магнитное поле. Электромагнитная индукция»

Вариант 1

А1. Чем объясняется взаимодействие двух параллельных проводников с постоянным током?

  1. взаимодействие электрических зарядов;

  2. действие электрического поля одного проводника с током на ток в другом проводнике;

  3. действие магнитного поля одного проводника на ток в другом проводнике.

А2. На какую частицу действует магнитное поле?

  1. на движущуюся заряженную;

  2. на движущуюся незаряженную;

  3. на покоящуюся заряженную;

  4. на покоящуюся незаряженную.

А3. На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током.

  1. А; 2) Б; 3) В.


А4. Прямолинейный проводник длиной 20 см находится в однородном магнитном поле с индукцией 5 Тл и расположен под углом 300 к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 2 А?

  1. 1,2 Н; 2) 0,6 Н; 3) 2,4 Н.

А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник?

  1. от нас; 2) к нам; 3) равна нулю.

А6.Электромагнитная индукция – это:

  1. явление, характеризующее действие магнитного поля на движущийся заряд;

  2. явление возникновения в замкнутом контуре электрического тока при изменении магнитного потока;

  3. явление, характеризующее действие магнитного поля на проводник с током.

А7. На квадратную рамку площадью 2 м2 в однородном магнитном поле с индукцией 2 Тл действует максимальный вращающий момент, равный 8 Н∙м. чему равна сила тока в рамке?

  1. 1,2 А; 2) 0,6 А; 3) 2А.

В1. Установите соответствие между физическими величинами и единицами их измерения

ВЕЛИЧИНЫ

ЕДИНИЦЫ ИЗМЕРЕНИЯ

А)

индуктивность

1)

тесла (Тл)

Б)

магнитный поток

2)

генри (Гн)

В)

индукция магнитного поля

3)

вебер (Вб)

4)

вольт (В)

В2. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью v. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении скорости движения?

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ИХ ИЗМЕНЕНИЯ

А)

радиус орбиты

1)

увеличится

Б)

период обращения

2)

уменьшится

В)

кинетическая энергия

3)

не изменится

С1. В катушке, индуктивность которой равна 0,6 Гн, возникла ЭДС самоиндукции, равная 30 В. Рассчитайте изменение силы тока и энергии магнитного поля катушки, если это произошло за 0,2 с.

Контрольная работа по теме:

«Магнитное поле. Электромагнитная индукция»

Вариант 2

А1. Поворот магнитной стрелки вблизи проводника с током объясняется тем, что на нее действует:

  1. магнитное поле, созданное движущимися в проводнике зарядами;

  2. электрическое поле, созданное зарядами проводника;

  3. электрическое поле, созданное движущимися зарядами проводника.

А2. Движущийся электрический заряд создает:

  1. только электрическое поле;

  2. как электрическое поле, так и магнитное поле;

  3. только магнитное поле.

А3. На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током.

  1. А; 2) Б; 3) В.

А4. Прямолинейный проводник длиной 50 см находится в однородном магнитном поле с индукцией 5 Тл и расположен под углом 300 к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 0,2 А?

  1. 0,25 Н; 2) 0,5 Н; 3) 1,5 Н.

А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник?

  1. от нас; 2) к нам; 3) равна нулю.

А6. Сила Лоренца действует

  1. на незаряженную частицу в магнитном поле;

  2. на заряженную частицу, покоящуюся в магнитном поле;

  3. на заряженную частицу, движущуюся вдоль линий магнитной индукции поля.

А7.На квадратную рамку площадью 2 м2 при силе тока в 4 А действует максимальный вращающий момент, равный 8 Н∙м. Какова индукция магнитного поля в исследуемом пространстве ?

1)1 Тл; 2) 2 Тл; 3) 3Тл.

В1. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются

ВЕЛИЧИНЫ

ФОРМУЛЫ

А)

Сила, действующая на проводник с током со стороны магнитного поля

1)

Б)

Энергия магнитного поля

2)

В)

Сила, действующая на электрический заряд, движущийся в магнитном поле.

3)

4)

В2. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью v. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении заряда частицы?

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ИХ ИЗМЕНЕНИЯ

А)

радиус орбиты

1)

увеличится

Б)

период обращения

2)

уменьшится

В)

кинетическая энергия

3)

не изменится

С1. Под каким углом к силовым линиям магнитного поля с индукцией 0,5 Тл должен двигаться медный проводник сечением 0,85 мм2 и сопротивлением 0,04 Ом, чтобы при скорости 0,5 м/с на его концах возбуждалась ЭДС индукции, равная 0,35 В? (удельное сопротивление меди ρ= 0,017 Ом∙мм2/м)

Контрольная работа по теме:

«Магнитное поле. Электромагнитная индукция»

Вариант 3

А1. Магнитные поля создаются:

  1. как неподвижными, так и движущимися электрическими зарядами;

  2. неподвижными электрическими зарядами;

  3. движущимися электрическими зарядами.

А2. Магнитное поле оказывает воздействие:

  1. только на покоящиеся электрические заряды;

  2. только на движущиеся электрические заряды;

  3. как на движущиеся, так и на покоящиеся электрические заряды.

А3. На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током.

1)А; 2) Б; 3) В.


А4. Какая сила действует со стороны однородного магнитного поля с индукцией 20 мТл на находящийся в поле прямолинейный проводник длиной 50 см, по которому идет ток 18 А? Провод образует прямой угол с направлением вектора магнитной индукции поля.

  1. 18 Н; 2) 1,8 Н; 3) 0,18 Н; 4) 0,018 Н.

А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник?

1)вверх; 2) вниз; 3) влево; 4) вправо.

А6. Что показывают четыре вытянутых пальца левой руки при определении

силы Ампера

  1. направление силы индукции поля;

  2. направление тока;

  3. направление силы Ампера.

А7. Магнитное поле индукцией 10 мТл действует на проводник, в котором сила тока равна 80 А, с силой 80 мН. Найдите длину проводника, если линии индукции поля и ток взаимно перпендикулярны.

  1. 1 м; 2) 0,1 м; 3) 0,01 м; 4) 0,001 м.

В1. Установите соответствие между физическими величинами и единицами их измерения

ВЕЛИЧИНЫ

ЕДИНИЦЫ ИЗМЕРЕНИЯ

А)

сила тока

1)

вебер (Вб)

Б)

магнитный поток

2)

ампер (А)

В)

ЭДС индукции

3)

тесла (Тл)

4)

вольт (В)

В2. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью v. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении индукции магнитного поля?

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ИХ ИЗМЕНЕНИЯ

А)

радиус орбиты

1)

увеличится

Б)

период обращения

2)

уменьшится

В)

кинетическая энергия

3)

не изменится

С1. В катушке, состоящей из 80 витков, магнитный поток равен 5,2∙10-3 Вб. За какое время должен исчезнуть этот поток, чтобы в катушке возникла средняя ЭДС индукции 0,56 В?

Контрольная работа по теме:

«Магнитное поле. Электромагнитная индукция»

Вариант 4

А1. Что наблюдается в опыте Эрстеда?

  1. проводник с током действует на электрические заряды;

  2. магнитная стрелка поворачивается вблизи проводника с током;

  3. магнитная стрелка поворачивается заряженного проводника

А2. Покоящийся электрический заряд создает:

  1. только электрическое поле;

  2. как электрическое поле, так и магнитное поле;

  3. только магнитное поле.

А3. На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током.

  1. А; 2) Б; 3) В.

А4. В однородном магнитном поле с индукцией 0,41 Тл перпендикулярно линиям магнитной индукции расположен проводник длиной 7,68 м. Определителе силу, действующую на проводник, если сила тока в нем равна 6 А.

1)18,89 Н; 2) 188,9 Н; 3) 1,899Н; 4) 0,1889 Н.

А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник?

1)вправо; 2)влево; 3)вверх; 4) вниз.

А6. Индукционный ток возникает в любом замкнутом проводящем контуре, если:

  1. Контур находится в однородном магнитном поле;

  2. Контур движется поступательно в однородном магнитном поле;

  3. Изменяется магнитный поток, пронизывающий контур.

А7.На прямой проводник длиной 0,75 м, расположенный перпендикулярно силовым линиям поля с индукцией 0,04 Тл, действует сила 0,45 Н. Найдите силу тока, протекающего по проводнику.

1)0,15 А; 2)1,5 А; 3) 15 А; 4) 150 А.

В1. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются

ВЕЛИЧИНЫ

ФОРМУЛЫ

А)

ЭДС индукции в движущихся проводниках

1)

Б)

сила, действующая на электрический заряд, движущийся в магнитном поле

2)

В)

магнитный поток

3)

4)

В2. Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью v U. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при уменьшении массы частицы?

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ИХ ИЗМЕНЕНИЯ

А)

радиус орбиты

1)

увеличится

Б)

период обращения

2)

уменьшится

В)

кинетическая энергия

3)

не изменится

С1. Катушка диаметром 4 см находится в переменном магнитном поле, силовые линии которого параллельны оси катушки. При изменении индукции поля на 2 Тл в течении 6,28 с в катушке возникла ЭДС 8 В. Сколько витков имеет катушка.

Магнитное поле. Электромагнитная индукция

285. Магнитное поле – это вид материи, которая порождается движущимися электрическими зарядами и обнаруживается по действию на движущиеся электрические заряды с некоторой силой.

286. Индукция магнитного поля – это физическая величина, равная отношению максимального вращательного момента сил, действующего на рамку с током, помещённую в магнитное поле, к произведению силы тока в рамке на площадь, ограниченную этой рамкой.

Магнитная индукция измеряется в тесла (Тл)

Второй вариант определения. Индукция магнитного поля – это физическая величина, численно равная отношению максимальной силы, действующей на прямой проводник с током, помещённый в магнитное поле, к произведению силы тока в проводнике на его длину.

287. За направление вектора индукции магнитного поля В принимают направление положительной нормали к рамке с током, помещённой в магнитное поле, при её свободном расположении в этом поле. Направление положительной нормали связано с направлением тока в контуре правилом правого винта.

288. Правило правого винта: винт располагаем так, чтобы при его вворачивании в плоскость рамки вращение головки совпадало с направлением тока в рамке. При этом направление острия винта указывает направление вектора индукции магнитного поля.

289. Во втором определении направление вектора B задаётся правилом левой руки. Левую руку располагаем так, чтобы четыре вытянутых пальца были направлены по направлению тока в проводнике, большой, отогнутый на 900, палец совпадал с направлением максимальной силы, действующей на проводник, тогда вектор индукции магнитного поля будет перпендикулярен ладони.

290. Магнитный момент контура – это величина, равная произведению силы тока в контуре на площадь, ограниченную этим контуром.

где I – сила тока в контуре, S – площадь ограниченная контуром.

Вектор магнитного момента совпадает по направлению с вектором положительной нормали к контуру, которая связана с направлением тока в контуре правилом правого винта.

291. Закон Ампера: Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора индукции магнитного поля на силу тока в проводнике, на длину проводника и на синус угла между направлением тока и вектором индукции магнитного поля.

292. Направление силы Ампера можно определить по правилу левой руки: левую руку располагаем так, чтобы вектор индукции магнитного поля был перпендикулярен ладони, четыре пальца были направлены по направлению тока, тогда, отогнутый на 90 градусов большой палец покажет направление силы Ампера.

293. Силовая линия магнитного поля это линия, касательная к которой в любой точке совпадает по направлению с вектором В индукции магнитного поля в этой точке.

294. Сила Лоренца: на электрический заряд, движущийся в магнитном поле со скоростью V, действует сила, модуль которой равен произведению величины этого заряда q, на модуль скорости его движения V, на модуль вектора индукции магнитного поля B и на синус угла a между вектором скорости и вектором индукции магнитного поля.

295. Направление силы Лоренца можно определить по правилу

левой руки: левую руку располагаем так, чтобы вектор индукции магнитного поля В был перпендикулярен ладони, четыре пальца были направлены по направлению вектора скорости v положительно заряженной частицы, тогда отогнутый на 90 градусов большой палец покажет направление силы Лоренца.

Если частица имеет отрицательный заряд, то вытянутые пальцы левой руки следует направить против направления вектора скорости v.

296. Радиус окружности, по которой со скоростью v, перпендикулярной В, движется в магнитном поле заряженная частица

297. Период обращения частицы – это время, затрачиваемое частицей на один полный оборот.

298. Магнитная проницаемость – это число, показывающее, во сколько раз индукция магнитного поля в веществе больше или меньше, чем в вакууме.

299. Ферромагнетики – это вещества, магнитная проницаемость которых значительно больше 1 и составляет сотни и даже тысячи единиц. Типичными представителями ферромагнетиков являются: железо, никель, кобальт и их сплавы.

300. Домены – это области в ферромагнетике размером порядка 10-5 см, имеющие собственные магнитные поля. В отсутствии внешнего магнитного поля магнитные поля доменов ориентированы произвольно, поэтому кусок ферромагнетика не намагничен. При помещении ферромагнетика во внешнее магнитное поле магнитные поля доменов ориентируются по внешнему полю. Их поля складываются и кусок ферромагнетика намагничивается, приобретая собственное магнитное поле, которое, в свою очередь, складывается с внешним магнитным полем, усиливая его в сотни и даже тысячи раз.

301. Парамагнетики вещества, в которых вектор магнитной индукции собственного магнитного поля имеет одинаковое направление с вектором индукции намагничивающего поля.

302. Диамагнетики вещества, в которых вектор индукции собственного магнитного поля направлен противоположно вектору магнитной индукции намагничивающего поля.

303. Электромагнитная индукция – это явление возникновения индукционного тока в замкнутом проводнике при изменении магнитного поля, пересекающего контур, ограниченный этим проводником.

304. Магнитный поток Ф – это скалярная величина, равная произведению модуля вектора индукции магнитного поля B на площадь поверхности S, которую пересекает магнитное поле, и на косинус угла a между вектором нормали к контуру и вектором индукции магнитного поля.

Магнитный поток измеряется в веберах (Вб).

305. Поток вектора индукции магнитного поля замкнутого контура через площадь, ограниченную этим контуром прямо пропорционален силе тока в этом контуре

где L – индуктивность контура.

306. Индуктивность контура (катушки) – это величина, численно равная отношению потока вектора индукции магнитного поля через площадь, ограниченную этим контуром, к силе тока, протекающему по контуру и создающему это магнитное поле.

Единица индуктивности – генри (Гн). 1 Гн – это индуктивность такого проводника (катушки индуктивности), в котором ток силой в 1 А создаёт поток магнитной индукции в 1 Вб. 1 Тл – это индукция такого магнитного поля, которое будучи перпендикулярным к площадке в 1 м

2 создаёт через неё поток в 1 Вб.

307. Закон Фарадея: ЭДС индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока, пересекающего площадь, ограниченную этим контуром.

308. Правило Ленца: индукционный ток всегда имеет такое направление, при котором, изменение созданного им магнитного потока противодействует изменению магнитного потока , вызывающего этот ток.

309. ЭДС индукции на концах проводника, движущегося в магнитном поле, равна

где a – угол между вектором В и вектором v движения проводника; В – модуль вектора индукции магнитного поля, l – длина проводника.

310. Самоиндукция это явление возникновения ЭДС индукции в проводящем контуре при изменении в нем силы тока.

311. Закон самоиндукции: ЭДС самоиндукции, возникающая в электрической цепи при изменении тока в той же цепи, прямо пропорциональна скорости изменения силы тока.

где L – индуктивность электрической це­пи (катушки индуктивности).

312. Гипотеза Максвелла: во всех случаях, когда электрическое поле изменяется со временем, оно порождает магнитное поле.

313. Электромагнитное поле – это совокупность переменного электрического поля и неразрывно связанного с ним переменного магнитного поля.

314. Вихревым электрическим полем называют поле, которое порождается изменяющимся магнитным полем. Линии напряжённости вихревого электри­ческого поля замкнутые. Работа по перемещению электрического заряда по замкнутому контуру в таком поле не равна нулю.

315. Энергия магнитного поля может быть вычислена по формуле:

где L – индуктивность, I – сила тока.

316. Колебательный контур – электрическая цепь, состоящая из включенных последовательно конденсатора емкостью С, катушки индуктивностью L и резистора сопротивлением R, в которой могут возникать электромагнитные колебания.

317. Идеальный колебательный контур– это электрическая цепь, состоящая из конденсатора и катушки индуктивности. Конденсатор в колебательном контуре служит для накапливания электрических зарядов, а катушка индуктивности – для создания переменной ЭДС самоиндукции, которая периодически перезаряжает конденсатор. В результате в колебательном контуре возникает периодическое изменение заряда и напряжения на обкладках конденсатора, силы тока и напряжения на ка­тушке индуктивности и т.д., т.е. возникают электромагнитные колебания.

318. Период колебаний в колебательном контуре определяется по формуле

где L – индуктивность, С – электроёмкость. За механизм возникновения электромагнитных колебаний ответственно явление самоиндукции.

319. Полная электромагнитная энергия контура в любой момент времени

где Im – максимальная сила тока, Um – максимальное напряжение на конденсаторе.

320. Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных электрических колебаний (напряжения U, силы тока I, напряжённости электрического поля Е, заряда конденсатора q и т.д.) при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

321. Условие резонанса в колебательном контуре индуктивное сопротивление равно емкостному, т.е.

где wр – резонансная частота, L – индуктивность, С – ёмкость.

322. Электромагнитная волна – это процесс распространения в пространстве переменного электрического и, неразрывно связанного с ним, переменного магнитного полей. Электромагнитные волны распространяются в вакууме со скоростью 300 000 км/с. В веществе эта скорость меньше.

323. Свойства электромагнитных волн:

1) они отражаются от проводящих поверхностей;

2) на границе диэлектриков частично отражаются, а частично преломляются во второй диэлектрик;

3) им присущи явления интерференции и дифракции;

4) им присуще явление поляризации.

324. Модуляция – это процесс изменения по определённому закону амплитуды, частоты или фазы гармонических колебаний для внесения в колебательный процесс определённой информации.

325. Детектирование – это процесс выделения низкочастотных модулирующих сигналов из модулированных высокочастотных колебаний.

326. Переменным называется электрический ток, сила и направление которого изменяется с течением времени. Наибольшее распространение получил электрический ток, сила и напряжение которого изменяются по гармоническому закону.

327. Под действующим значением силы (напряжения, ЭДС) переменного тока подразумевают такое значение силы (напряжения, ЭДС) постоянного тока, при пропускании которого через проводник, в последнем выделяется такое же количество теплоты, что и при пропускании переменного тока.

328. Действующее или эффективное значение силы переменного тока, напряжения и ЭДС связаны с их максимальными значениями формулами:

329. ЭДС индукции, возникающая при вращении рамки в однородном магнитном поле

где В – индукция магнитного поля, S – площадь рамки, N – число витков в рамке,w – угловая скорость вращения рамки, t – время. Максимальная ЭДС индукции

330. Индуктивное сопротивление

331. Емкостное сопротивление

332. Импеданс (полное сопротивление) электрической цепи при синусоидальных напряжениях и токе)

333. Закон Ома для цепи переменного тока

или

где Im и Um – амплитудные значения силы тока и напряжения. Iд и Uд – действующие значения силы тока и напряжения.

334. Мощность переменного тока:

335. Коэффициент мощности:

336. Трансформатором называют электротехническое устройство, служащее для увеличения или уменьшения напряжения переменного тока. В основе работы трансформатора лежит явление электромагнитной индукции.

337. Коэффициентом трансформации называется величина, равная отношению числа витков во вторичной обмотке трансформатора к числу витков в первичной или отношению напряжения на вторичной обмотке к напряжению на первичной обмотке.

Если k<1, то трансформатор понижающий, а если k>1, то трансформатор повышающий.

Оптика

338. Свет – это электромагнитные волны, длина волны которых лежит в диапазоне от 4,510-7м до 810-7м. Как и все электромагнитные волны, свет распространяется в вакууме со скоростью 300 000 км/с.

339. Геометрическая оптика – раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах.

340. Световой луч линия, вдоль которой распространяется энергия световых электромагнитных волн.

341. Оптически однородная среда среда, для которой показатель преломления везде одинаков.

342. Закон прямолинейного распространения света: свет в оптически однородной среде рраспространяется прямолинейно.

343. Скорость света в веществе связана со скоростью света в вакууме соотношением:

где n – абсолютный показатель преломления для этого вещества.

344. Закон отражения света: луч падающий, луч отражённый и перпендикуляр, опущенный в точку падения к границе раздела сред, лежат в одной плоскости. Угол падения равен углу отражения.

345. Закон преломления: луч падающий, луч преломлённый и перпендикуляр, опущенный в точку падения к границе раздела сред, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется относительным показателем преломления второй среды относительно первой (n21 )

где a – угол падения, b – угол преломления. Углы падения и преломления отсчитываются от перпендикуляра к границе раздела сред.

346. Предельным углом полного внутреннего отражения называется такой угол падения из среды с большим показателем преломления на границу его раздела со средой с меньшим показателем преломления, при котором угол преломления равен 900.

347. Полное отражение может наблюдаться только при переходе луча света из среды с большим показателем преломления в среду с меньшим показателем преломления. Закон преломления для этого случая принимает вид:

где aпр – предельный угол полного отражения; n1 – показатель преломления среды, из которой луч света падает на границу раздела сред; n2 – показатель преломления среды, в которую переходит преломлённый луч.

348. Абсолютный показатель преломления – это число, показывающее во сколько раз скорость света в вакууме больше, чем в данном веществе.

где с – скорость света в вакууме, v – скорость света в веществе.

349. Относительным показателем преломления n21 называется отношение абсолютного показателя второй среды к абсолютному показателю преломления первой среды. Относительный показатель преломления показывает, во сколько раз скорость света во второй среде меньше, чем в первой.

350. Линза – это прозрачное тело, ограниченное с двух сторон сферическими поверхностями или сферической поверхностью и плоскостью.

351. Собирающая линза – это линза, у которой середина толще, чем края.

352. Рассеивающая линза – это линза, у которой края толще , чем середина.

353. Главная оптическая ось линзы – это прямая линия, проведённая через центры сферических поверхностей, ограничивающих линзу.

354. Оптический центр линзы – точка, лежащая на главной оптической оси и обладающая тем свойством, что лучи, проходящие через нее, не преломляются.

355. Фокусом линзы называется точка, в которой пересекаются лучи, пущенные параллельно главной оптической оси.

356. Формула тонкой линзы:

где d – расстояние от предмета до линзы; f – расстояние от линзы до изображения; F – расстояние от линзы до фокуса (фокусное расстояние). Для рассеивающей линзы формула тонкой линзы имеет вид

357. Величина обратная фокусному расстоянию называется оптической силой линзы.

Оптическая сила линзы измеряется в диоптриях (дптр.) Оптическая сила рассеивающей линзы отрицательна. 1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

358. Оптическая сила тонкой линзы

где n – относительный показатель преломления линзы, R1 и R2 – радиусы кривизны поверхностей (R>0 для выпуклой поверхности, R<0 для вогнутой).

359. Увеличением линзы называется отношение линейного размера изображения к линейному размеру предмета

где Н – размер изображения, h – размер предмета.

360. Для построения изображения в линзах используются свойства трёх лучей:

1) Луч, идущий от точки параллельно главной оптической оси, после преломления в линзе проходит через её второй фокус;

2) Луч, проходящий через оптический центр линзы, не преломляется.

3) Луч, прошедший через первый фокус линзы, после преломления в ней, идёт параллельно главной оптической оси.

Если линза рассеивающая, то после преломления в ней, луч параллельный главной оптической оси, будет отклоняться к её краю так, что его продолжение пройдёт через фокус.

Электромагнитная индукция: применение, метод, единицы измерения

Электромагнитная индукция — это процесс индуцирования электродвижущей силы путем перемещения проводника с зарядом (например, металлической проволоки) в магнитном поле. Когда электрический проводник движется через магнитное поле, он пересекает силовые линии магнитного поля, вызывая изменение магнитного поля.

При изменении магнитного потока (обозначаемого Φ) совершается работа в виде электрической энергии , создавая напряжение или электродвижущую силу через проводник.

Электромагнитная индукция возникает, когда электродвижущая сила генерируется в замкнутой цепи из-за переменного магнитного потока.

Магнитный поток — это измерение общего магнитного поля в данной области. Его можно описать как общее количество линий магнитного поля, пересекающих определенную область.

Обязательно ознакомьтесь с нашим пояснением по ЭДС и внутреннему сопротивлению.

Открытие электромагнитной индукции

Майкл Фарадей открыл закон индукции в 1831 году. Он провел экспериментальную процедуру, в ходе которой соединил батарею, гальванометр, магнит и проводник. Вы можете видеть это на рисунке 1.

Вот что Фарадей обнаружил в ходе своего эксперимента:

  • Когда он отключил батарею, не было протекания электрического тока, и в магните не индуцировался магнитный поток.
  • Когда он замкнул выключатель, переходный ток можно было наблюдать, протекающий через гальванометр. Фарадей назвал это «электрической волной».
  • Когда он разомкнул переключатель, измеренный ток быстро подскочил до противоположной стороны показаний, прежде чем вернуться к нулю.

В последующие месяцы Фарадей продолжил свои эксперименты, которые привели его к открытию других свойств электромагнитной индукции. Он наблюдал те же переходные токи, когда быстро перемещал стержневой магнит через катушку с проводами. Он также создал постоянный ток (постоянный ток) путем вращения медного диска рядом со стержневым магнитом с помощью скользящего электрического провода.

Фарадей обобщил свои выводы, используя концепцию, которую он назвал «силовыми линиями». Когда переключатель был первоначально изменен с разомкнутого на замкнутый, магнитный поток внутри магнитного сердечника увеличился от нуля до максимального значения (которое было постоянным значением). При увеличении потока наблюдался индуцированный ток на противоположной стороне. Точно так же, когда переключатель был разомкнут, магнитный поток в сердечнике уменьшился бы от его постоянного максимального значения до нуля. Следовательно, уменьшающийся поток внутри сердечника индуцировал противоположный ток с правой стороны.

Эксперимент Фарадея по индукции тока магнитным полем (батарейка, железное кольцо и гальванометр), Wikimedia Commons

Закон электромагнитной индукции Фарадея

Фарадей наблюдал за результатами своего эксперимента и выражал свои наблюдения математически. Он заметил, что резкое изменение магнитного потока внутри магнита увеличилось от нуля до некоторого максимального значения. Так, при изменении потока на противоположной стороне создается индукционный ток .

Фарадей пришел к выводу, что изменяющийся магнитный поток в замкнутой цепи индуцирует электродвижущую силу или напряжение , что показано в уравнении ниже. В этом уравнении ε — электродвижущая сила (измеряется в вольтах), Φ — магнитный поток в цепи (измеряется в Вебере), N — число витков катушки, t — время (измеряется в секундах).

\[\varepsilon = N \cdot \frac{\Delta \phi}{\Delta t}\]

Из этого уравнения можно определить параметры, влияющие на магнитное поле: более сильный магнит (который влияет на магнитное поток), большее количество витков (что влияет на N) и скорость, с которой движется провод.

Уравнение Максвелла-Фарадея

Уравнение Максвелла-Фарадея утверждает, что изменяющееся во времени магнитное поле создает пространственно изменяющееся электрическое поле и наоборот. Вы можете увидеть уравнение Максвелла-Фарадея ниже, где × — математический символ, обозначающий градиент электрического поля E, а B — магнитное поле. Оба поля являются функцией положения r и времени t.

\[\bigtriangledown \cdot E = \frac{-\Delta B}{\Delta t}\]

Закон электромагнитной индукции Ленца

Наведенный ток в проводнике создаст магнитное поле. Направление тока будет таким, чтобы магнитное поле противодействовало первоначальным изменениям магнитного поля, вызвавшим ток. Это известно как закон Ленца.

Закон Ленца также математически выражается в приведенном ниже уравнении. Знак минус — это добавление закона Ленца к выражению Фарадея , чтобы показать, что направление индуцированной силы противоположно изменениям в магнитном поле.

\[\varepsilon = -N \cdot \frac{\Delta \phi}{\Delta t}\]

Закон Ленца дополняет закон Фарадея, добавляя, что направление индуцированного тока будет противодействовать изменению магнитного поля.

Катушка с проволочными резисторами состоит из 20 витков. Магнитное поле изменяется от -5T до 3T за 0,5 секунды. Найдите ЭДС индукции в катушке.

Решение

\[\varepsilon = -N \cdot \frac{\Delta \phi}{\Delta t} = -20 \cdot \frac{3-(-5)}{0,5} = -320 В\]

В этом примере T означает тесла. Плотность магнитного потока в один Вб/м 2 равна одному тесла.

Правило правой руки Ленца

Направление индуцированного тока можно найти с помощью правила правой руки Ленца . Разгибаем пальцы так, чтобы они были взаимно перпендикулярны друг другу. Большой палец указывает на силу (F), указательный палец указывает направление магнитного поля (В), а средний палец указывает направление индукционного тока (I). 9Рис. 2. Правило правой руки Ленца

Вы можете увидеть это в уравнении ниже, где Φ — магнитный поток (Вт), N — число витков, B — плотность магнитного потока (Тл), A — площадь поперечного сечения (м 2 ). Когда мы рассматриваем магнитный поток катушки, компонент N имеет решающее значение для расчета магнитной связи катушки.

\[\phi N = BAN\]

Мы рассчитываем общую магнитную связь, умножая магнитный поток на количество витков в катушке. Мы можем игнорировать член N, когда рассматривается магнитный поток данной области.

\[\phi N = BA\]

Применение электромагнитной индукции

Электромагнитная индукция очень важна, поскольку она позволяет генерировать электричество в замкнутой цепи. Электромагнитная индукция очень полезна в электрических генераторах, трансформаторах и двигателях. Наиболее известными приложениями электромагнитной индукции являются генератор переменного тока, электрический трансформатор и магнитный расходомер.

Электромагнитная индукция — основные выводы

  • Электромагнитная индукция — это процесс индуцирования электродвижущей силы путем перемещения проводника, несущего заряд, в магнитном поле.
  • Майкл Фарадей открыл закон электромагнитной индукции. Этот закон гласит, что изменение магнитного потока в замкнутой цепи индуцирует электродвижущую силу или напряжение в цепи.
  • Закон Максвелла-Фарадея гласит, что изменяющееся во времени магнитное поле создает электрическое поле, изменяющееся в пространстве, и наоборот.
  • Магнитная потокосцепление (ΦΝ) представляет собой произведение магнитного потока и числа витков в катушке.
  • Электромагнитная индукция очень важна, поскольку она позволяет генерировать электричество в замкнутом контуре.

Электромагнитная индукция – типография 2046

40,00 $

  • 16″ x 24″
  • Ручная трафаретная печать медными и серебряными красками
  • Издание №3
  • 3 цвета на натуральной бумаге плотностью 100 фунтов
  • Подпись и номер

Варианты обрамления

В наличии

Количество электромагнитной индукции

Категории: Образовательный дизайн, Электричество, СИЛА и ПРИРОДА, Ручная работа, Модернист, Физика, Гравюры, Наука, Научные теории, Трафаретная печать Теги: 16×24, DSC, Образовательный дизайн, Электричество, Физика, Наука

Принимаемые способы оплаты:

  • Описание

Описание

Электромагнитная индукция, используемая во всем, от электрических генераторов до двигателей, описывает, как изменяющееся магнитное поле может производить электрический ток, и наоборот, как электрический ток генерирует окружающее магнитное поле.

Наиболее распространенным применением электромагнитной индукции является производство электроэнергии; когда генератор или турбина пропускает катушку провода в магнитном поле и из него. Линии магнитного поля от магнита заставляют электроны в проводе течь, индуцирует электрический ток.

Чтобы в этой ситуации возникла электромагнитная индукция, проводник, отрезок провода, должен быть перпендикулярен силовым линиям магнитного поля, чтобы оказывать максимальное давление на электроны в проводе. Направление тока определяется направлением силовых линий и направлением движения провода в поле.

В генераторе проволочная петля вращается в магнитном поле, и, поскольку направление магнитного поля меняется при вращении проволоки, направление тока меняется каждые пол-оборота. Этот постоянно изменяющийся ток называется переменным током (AC).

История и закон Фарадея

Явление электромагнитной индукции было окончательно описано Майклом Фарадеем в 1830-х годах. Английский ученый провел публичную демонстрацию 29 августа 1831 года, в ходе которой две проволоки были намотаны на железное кольцо, причем каждая проволока была намотана на противоположные стороны кольца. Подключив один провод к прибору, предназначенному для обнаружения электрического тока, Фарадей показал своей аудитории, что прохождение тока по одному проводу вызывает протекание тока по другому проводу.

Поток тока во втором проводе был вызван током первого провода, который обернулся вокруг железного кольца, создавая электромагнит. Затем этот электромагнит индуцирует ток во втором проводе. Позже Фарадей обнаружил, что втягивание магнитного стержня в катушку с проволокой также может вызывать электрический ток.

Эксперименты Фарадея с электромагнитной индукцией вдохновили нас на то, что мы теперь знаем как закон индукции Фарадея. Основной закон электромагнетизма гласит, что индуцированное напряжение в цепи зависит от скорости изменения во времени магнитного потока через эту цепь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *