Условное обозначение транзисторов на схемах
Транзистор (от английских слов transfer) — переносить и (re)sistor — сопротивление) — полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы. Электропроводность эмиттера и коллектора всегда одинаковая (p или n), базы — противоположная (n или p). Иными словами, биполярный транзистор содержит два р-n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).
Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. 1. Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (см.
Рис.1. Условное обозначение транзисторов
Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа n, обозначают формулой p-n-p, а транзистор с базой, имеющей электропроводность типа p-n-p. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.
Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора.
На схемах это показывается точкой в месте пересечения соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (VT3 на рис. 1). В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.Линии электрической связи, идущие от эмиттера и коллектора проводят в одном из двух направлений: перпендикулярно или параллельно выводу базы (VT3-VT5). Излом вывода базы допускается лишь на некотором расстоянии от символа корпуса (VT4).
Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а окружность обозначения корпуса заменяют овалом (рис. 1, VT6).
Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы.
Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на поле схемы помещают такую, например, запись: VT1-VT4 К159НТ1), либо используют код аналоговых микросхем (DA) и указывают принадлежность транзисторов в сборке в позиционном обозначении (рис. 2, DA1.1, DA1.2). У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена матрица.
Рис.2. Условное обозначение транзисторных сборок
Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 2 показаны транзисторы структуры n-p-n с тремя и четырьмя эмиттерами).
Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (см. рис. 3, VTl, VT2). При повороте обозначения транзистора на схеме положение этого знака должно оставаться неизменным.
Рис.3. Условное обозначение лавинных транзисторов
Иначе построено обозначение однопереходного транзистора: у него один p-n-переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 3, VT3, VT4). Об электропроводности последней судят по символу эмиттера (направлению стрелки).
На символ однопереходного транзистора похоже обозначение большой группы транзисторов с p-n-переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n или p-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса (рис. 4, VT1), символы истока и стока присоединяют к нему с одной стороны, затвора — с другой стороны на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора (на рис. 4 условное графическое обозначение VT1 символизирует транзистор с каналом n-типа, VT2 – с каналом p-типа).
Рис.4. Условное обозначение полевых транзисторов
В условном графическом обозначении полевых транзисторов с изолированным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в противоположную сторону (см. рис. 4, VT3) — с каналом р-типа. Аналогично поступают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого – три коротких штриха (см.
В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (VT9).
Линии-выводы полевого транзистора допускается изгибать лишь на некотором расстоянии от символа корпуса (см. рис. 4, VT1). В некоторых типах полевых транзисторов корпус может быть соединен с одним из электродов или иметь самостоятельный вывод (например, транзисторы типа КП303).
Из транзисторов, управляемых внешними факторами, широкое применение находят фототранзисторы
. В качестве примера на рис. 5 показаны условные графические обозначения фототранзисторов с выводом базы (VT1, VT2) и без него (VT3). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. Обозначение фототранзистора в этом случае вместе с обозначением излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.Рис.5. Условное обозначение фототранзисторов и оптронов
Для примера на рис. 5 изображена одна из оптопар сдвоенного оптрона (об этом говорит позиционное обозначение U1.1). Аналогично строится обозначение оптрона с составным транзистором (U2).
Принципиальная Схема Транзистора. Что такое транзистор
Содержание
- 1 Типы транзисторов
- 1.1 Биполярные транзисторы
- 1.2 Полевые
- 2 Что такое полевой транзистор
- 2.1 Основные параметры полевых транзисторов
- 3 Применение транзисторов в жизни
- 3.1 PNP-транзистор
- 3.2 NPN-транзистор
- 4 Схемы включения транзисторов
- 4.1 Общий эмиттер
- 4.2 Общий коллектор
- 4. 3 Общая база
- 5 Некоторые параметры биполярных транзисторов
- 5.1 Проверка биполярных транзисторов
- 5.2 MOSFET транзисторы
- 5.3 Рекомендации по эксплуатации транзисторов
- 6 Принципиальная Схема Транзистора
- 6.1 Характеристики транзистора, включённого по схеме оэ:
- 6.2 Внешний вид и обозначение транзистора на схемах
- 7 Однокаскадный усилитель ЗЧ
- 7.1 Характеристики транзистора, включенного по схеме об
Типы транзисторов
В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.
В таблице ниже представлена цветовая маркировка транзисторов:
Цветовая маркировка транзисторов
Биполярные транзисторы
Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами.
В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов . Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.
Слово “транзистор” составлено из слов TRANSfer и resISTOR – преобразователь сопротивления. Он пришел на смену лампам в начале 1950-х. Это прибор с тремя выводами, используется для усиления и переключения в электронных схемах.
Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость).
Таким образом формируют один из электродов транзистора, называемый базой. Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.
Классификация биполярных транзисторов.
Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам. Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.
Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.
Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.
Полевые
Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:
- Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
- Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
- Исток — вывод, через который в канал приходят электроны и дырки.
Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.
Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.
Существует два вида приборов с изолированным затвором:
- со встроенным каналом.
- с индуцированным каналом.
Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.
Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.
Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:
- Входное сопротивление.
- Амплитуда напряжения.
- Полярность.
Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.
Что такое полевой транзистор
Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде. Электроды, между которыми протекает управляемый ток, носят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда.
Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.
В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными.
Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных. Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.
Основные параметры полевых транзисторов
Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп. Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.
Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока. Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты.
Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора. Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.
Транзисторы в заводской упаковке.
Применение транзисторов в жизни
Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:
- Усилительные схемы.
- Генераторы сигналов.
- Электронные ключи.
Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства.
Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы. Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора. Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем.
На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.
Эволюция транзистора
PNP-транзистор
Впервые биполярный транзистор изготовили, вплавляя в кристалл германия (материал n-типа) капли индия. Индий (In) – трехвалентный металл, материал p-типа. Поэтому такой транзистор назвали диффузным (сплавным), имеющим структуру p-n-p (или pnp). Биполярный транзистор на рисунке ниже изготовлен в 1965 году.
Его корпус обрезан для наглядности. Кристалл германия в центре называется базой, а вплавленные в него капли индия – эмиттером и коллектором. Можно рассматривать переходы ЭБ (эмиттерный) и КБ (коллекторный) как обычные диоды, но переход КЭ (коллектор-эмиттерный) имеет особое свойство. Поэтому невозможно изготовить биполярный транзистор из двух отдельных диодов.
Если в транзисторе типа pnp приложить между коллектором (-) и эмиттером (+) напряжение в несколько вольт, в цепи пойдет очень слабый ток, несколько мкА. Если затем приложить небольшое (открывающее) напряжение между базой (-) и эмиттером (+) – для германия оно составляет около 0,3 В (а для кремния 0,6 В) – то ток некоторой величины потечет из эмиттера в базу.
Но так как база сделана очень тонкой, то она быстро насытится дырками (“растеряет” свой избыток электронов, которые уйдут в эмиттер). Поскольку эмиттер сильно легирован дырочной проводимостью, а в слабо легированной базе рекомбинация электронов немного запаздывает, то существенно большая часть тока пойдет из эмиттера в коллектор.
Коллектор сделан больше эмиттера и слабо легирован, что позволяет иметь на нем большее пробивное напряжение (Uпроб.КЭ > Uпроб.ЭБ). Также, поскольку основная часть дырок рекомбинирует в коллекторе, то он и греется сильнее остальных электродов прибора. Обычно α лежит в пределах 0,85-0,999 и обратно зависит от толщины базы.
Эта величина называется коэффициент передачи тока эмиттера. Это коэффициент передачи тока базы, один из самых важных параметров биполярного транзистора. Он чаще определяет усилительные свойства на практике. Транзистор pnp называют транзистором прямой проводимости. Но бывает и другой тип транзистора, структура которого отлично дополняет pnp в схемотехнике.
Двухполярные транзисторы
NPN-транзистор
Биполярный транзистор может иметь коллектор с эмиттером из материала N-типа. Тогда база делается из материала P-типа. И в этом случае, транзистор npn работает точно, как pnp, за исключением полярности – это транзистор обратной проводимости. Транзисторы на основе кремния подавляют своим числом все остальные типы биполярных транзисторов.
Донорным материалом для коллектора и эмиттера может служить As, имеющий “лишний” электрон. Также изменилась технология изготовления транзисторов. Сейчас они планарные, что дает возможность использовать литографию и делать интегральные схемы. По планарной технологии изготавливаются как pnp, так и npn-транзисторы, в том числе и мощные. Сплавные уже сняты с производства.
Схемы включения транзисторов
Обычно биполярный транзистор всегда используется в прямом включении – обратная полярность на КЭ переходе ничего интересного не дает. Для прямой схемы подключения есть три схемы включения: общий эмиттер (ОЭ), общий коллектор (ОК), и общая база (ОБ). Все три включения показаны ниже.
Они поясняют только сам принцип работы – если предположить, что рабочая точка каким-то образом, с помощью дополнительного источника питания или вспомогательной цепи установлена. Для открывания кремниевого транзистора (Si) необходимо иметь потенциал ~0,6 В между эмиттером и базой, а для германиевого хватит ~0,3 В.
Общий эмиттер
Напряжение U1 вызывает ток Iб, ток коллектора Iк равен базовому току, умноженному на β. При этом напряжение +E должно быть достаточно большим: 5 В-15 В. Эта схема хорошо усиливает ток и напряжение, следовательно, и мощность. Выходной сигнал противоположен по фазе входному (инвертируется). Это используется в цифровой технике как функция НЕ.
Если транзистор работает не в ключевом режиме, а как усилитель малых сигналов (активный или линейный режим), то при помощи подбора базового тока устанавливают напряжение U2 равным E/2, чтобы выходной сигнал не искажался. Такое применение используется, например, при усилении аудиосигналов в усилителях высокого класса, с низкими искажениям и, как следствие, низким КПД.
Общий коллектор
По напряжению схема ОК не усиливает, здесь коэффициент усиления равен α ~ 1. Поэтому эта схема называется эмиттерный повторитель. Ток в цепи эмиттера получается в β+1 раз больше, чем в цепи базы. Эта схема хорошо усиливает ток и имеет низкое выходное и очень высокое входное сопротивление.
Тут самое время вспомнить о том, что транзистор называется трансформатором сопротивления. Эмиттерный повторитель имеет свойства и рабочие параметры, очень подходящие для пробников осциллографов. Здесь используют его огромное входное сопротивление и низкое выходное, что хорошо для согласования с низкоомным кабелем.
Полезный материал: что такое полупроводниковый диод.
Общая база
Эта схема отличается наиболее низким входным сопротивлением, но усиление по току у нее равно α. Схема с общей базой хорошо усиливает по напряжению, но не по мощности. Ее особенностью является устранение влияния обратной связи по емкости (эфф. Миллера). Каскады с ОБ идеально подходят в качестве входных каскадов усилителей в радиочастотных трактах, согласованных на низких сопротивлениях 50 и 75 Ом. Каскады с общей базой очень широко используются в технике СВЧ и их применение в радиоэлектронике с каскадом эмиттерного повторителя очень распространено.
Некоторые параметры биполярных транзисторов
Постоянное/импульсное напряжение коллектор – эмиттер.
Постоянное напряжение коллектор – база.
Постоянное напряжение эмиттер – база.
Предельная частота коэффициента передачи тока базы
Постоянный/импульсный ток коллектора.
Коэффициент передачи по току
Максимально допустимый ток
Входное сопротивление
Рассеиваемая мощность.
Температура p-n перехода.
Температура окружающей среды и пр…
Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб
К биполярным транзисторам могут быть отнесены однопереходные транзисторы, таковым является например КТ117. Такой транзистор представляет собой трехэлектродный полупроводниковый прибор с одним р-n переходом. Однопереходный транзистор состоит из двух баз и эмиттера.
В последнее время в схемах часто стали применять составные транзисторы, называют их парой или транзисторами Дарлингтона, они обладают очень высоким коэффициентом передачи тока, состоят они из двух или более биполярных транзисторов, но выпускаются и готовые транзисторы в одном корпусе, таким является например TIP140. Включаются они с общим коллектором, если соединить два транзистора, то они будут работать как один, включение показано на рисунке ниже. Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора.
Некоторые недостатки составного транзистора: низкое быстродействие, особенно перехода из открытого состояния в закрытое. Прямое падение напряжения на переходе база-эмиттер почти в два раза больше чем в обычном транзисторе. Ну и само собой, потребуется больше места на плате.
Проверка биполярных транзисторов
Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Проверка транзистора обычно осуществляется омметром, проверяют оба p-n перехода транзистора: коллектор – база и эмиттер – база. Для проверки прямого сопротивления переходов p-n-p транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. Транзисторы так же можно прозванивать цифровым мультиметром в режиме прозвонки диодов. Для NPN красный щуп прибора «+» присоединяем к базе транзистора, и поочередно прикасаемся черным щупом «-» к коллектору и эмиттеру. Прибор должен показывать некоторое сопротивление, примерно от 600 до 1200. Затем меняем полярность подключения щупов, в этом случае прибор ничего не должен показывать. Для структуры PNP порядок проверки будет обратным.
MOSFET транзисторы
Несколько слов хочу сказать про MOSFET транзисторы (metal–oxide–semiconductor field-effect transistor), (Метал Оксид Полупроводник (МОП)) – это полевые транзисторы, не путать с обычными полевиками! У полевых транзисторов три вывода: G — затвор, D — сток, S – исток. Различают N канальный и Р, в обозначении данных транзисторов имеется диод Шоттки, он пропускает ток от истока к стоку, и ограничивает напряжение сток – исток.
Применяются они в основном для коммутации больших токов, управляются они не током, как биполярные транзисторы, а напряжением, и как правило, имеет очень малое сопротивление открытого канала, сопротивление канала величина постоянная и не зависит от тока. MOSFET транзисторы специально разработаны для ключевых схем, можно сказать как замена реле, но в некоторых случаях можно и усиливать, применяются в мощных усилителях НЧ.
Плюсы у данных транзисторов следующие:
Минимальная мощность управления и большой коэффициент усиления по току
Лучшие характеристики, например большая скорость переключения.
Устойчивость к большим импульсам напряжения.
Схемы, где применяются такие транзисторы, обычно более простые.
Минусы:
Стоят дороже, чем биполярные транзисторы.
Боятся статического электричества.
Наиболее часто для коммутации силовых цепей применяют MOSFET с N-каналом. Напряжение управления должно превышать порог 4 В, вообще, необходимо 10-12 В для надежного включения MOSFET. Напряжение управления — это напряжение, приложенное между затвором и истоком для включения MOSFET транзистора.
Рекомендации по эксплуатации транзисторов
Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.
Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым, например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.
Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.
Принципиальная Схема Транзистора
Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться.
Думаю после экспериментов с мультиметром будет более понятно.
Такая схема может использоваться в качестве запоминающего устройства в компьютерах, так как схема будет хранить информацию до тех пор, пока её не отменят.
Схемы соединения каскадов
Это может быть как обычный широкополосный трансформатор, так и фильтр с различными входным и выходным сопротивлением. Иначе не будет работать схема.
Другие элементы схемы выполняют вспомогательную роль. Электропроводность эмиттера и коллектора всегда одинаковая р или n , базы — противоположная n или р.
Для питания транзистора в схеме с общей базой может подойти любая из рассмотренных нами схем: схема с фиксированным током базы , схема с фиксированным напряжением на базе , схема с коллекторной стабилизацией или схема с эмиттерной стабилизацией.
По ней можно узнать все параметры элемента. Он же справочный лист или техническая документация.
Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.
Характеристики транзистора, включённого по схеме оэ:
Все дело в том, что здесь есть небольшой нюанс. Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Работа транзистора при обратном включении p-n перехода Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Убедились, что по напряжению эта схема нам сигнал не увеличит.
УГО фототранзистора в этом случае вместе с УГО излучателя обычно светодиода заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.
С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы.
Чтож друзья, а на этом у меня все.
Поэтому плотность компоновки элементов в МОП- интегральных схемах значительно выше. То есть ток эмиттера больше тока коллектора на небольшую величину тока базы.
Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. И если последовательно со стабилитроном рис.
Схеме включения транзистора с общей базой соответствует схема усилительного каскада с общим затвором.
Внешний вид и обозначение транзистора на схемах
Если канал имеет электронную проводимость, то транзистор называют n-канальным.
Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора Iк. Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Схема включения биполярного транзистора с общим эмиттером.
А рост приводит к росту напряжения на резисторе обратной связи.
Лампочка не светится, давайте разберемся почему. Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит. На символ однопереходного транзистора похоже УГО большой группы транзисторов с p-n-переходом, получивших название полевых.
Тот вывод, который со стрелкой — это всегда эмиттер. Полевой транзистор FR на печатной плате прибора.
А если взять и прикрыть одну любую часть транзисто, то у нас получится полупроводник с одним p-n переходом или диод. Ответ может быть да а может и нет. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база.
Если канал имеет электронную проводимость, то транзистор называют n-канальным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.
Ничего не напоминает? Об электропроводности последней судят по символу эмиттера направлению стрелки. Лампочка горит лишь полсекунды, гаснет, потом снова загорается, и так продолжается до тех пор, пока подключена батарея. Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы. Установим вместо перемычки сопротивление Rб номиналом — Ом, и еще один источник питания на 1,5 вольта.
Как найти неисправный транзистор в схеме? Поиск битого транзистора на плате. Ремонт платы.
Однокаскадный усилитель ЗЧ
Это может быть полезным для реализации высокочастотных усилителей. И в результате получилась вот такая формула.
Чтобы эксперимент прошёл удачно, надо отрегулировать схему, т. Элементы, представляющие собою полнофункциональные устройства или модули: микросхемы. И свершилось чудо, лампочка засветилась.
Это свойство может использоваться для включения и выключения ламп в зависимости от освещённости. Теперь оголённые концы пропустите через промокательную бумагу на расстоянии примерно 1, см, другие концы присоедините к схеме согласно рис. Ну а обо всем по порядку. Конструкция корпуса а , вольт-амперная характеристика и условное графическое обозначение стабилитрона Существенной особенностью стабилитрона является зависимость его напряжения стабилизации от температуры.
Характеристики транзистора, включенного по схеме об
Это объясняется следующими при чинами. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи. Такого рода схемы используются в автоматических устройствах фотопечати. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся.
В результате в кремнии образуются два p-n перехода. Температурная зависимость вольт-амперной характеристика стабилитрона Для устранения этого недостатка и создания термокомпенсированных стабилитронов последовательно в цепь стабилитрона включают обычные диоды в прямом направлении.
биполярных силовых транзисторов PNP кремний
%PDF-1.4 % 1 0 объект > эндообъект 5 0 объект /Заголовок (MMJT9435 – Биполярные силовые транзисторы PNP Silicon) >> эндообъект 2 0 объект > эндообъект 3 0 объект > ручей 2004-09-14T15:06:34BroadVision, Inc.2020-11-11T14:15:17+08:002020-11-11T14:15:17+08:00Приложение Acrobat Distiller Command 3.01 для Solaris 2.3 и более поздних версий (SPARC)/ pdf
PHPT61002NYC — 100 В, 2 A NPN, мощный биполярный транзистор
PHPT61002NYC — 100 В, 2 A NPN, мощный биполярный транзистор | НексперияЛогин
Имя пользователя/электронная почта Пожалуйста, введите ваше имя пользователя/email
Пароль
Пожалуйста введите ваш пароль
Имя пользователя/электронная почта и пароль не совпадают Ваш аккаунт нуждается в дополнительной проверке.
Пожалуйста
Проверьте свой адрес электронной почты
продолжить. Что-то пошло не так. Пожалуйста, повторите попытку позже!
Создать учетную запись Забыли свой пароль?
Вы можете изменить настройки уведомления об изменении (CN) в My Nexperia. Эти настройки позволяют настроить представление CN в My Nexperia и электронных письмах CN.
По умолчанию вы увидите все доступные вам уведомления об изменениях.
Изменить настройки
Зарегистрируйтесь один раз, перетащите модели ECAD в свой инструмент САПР и ускорьте проектирование.
Щелкните здесь для получения дополнительной информации
Справка
100 В, 2 A Биполярный транзистор большой мощности NPN
Биполярный транзистор большой мощности NPN в пластиковом корпусе SOT669 (LFPAK56) Surface-Mounted Device (SMD).
Дополнение PNP: PHPT61002PYC
- Скачать техническое описание
- Заказать продукт
Заказные детали
Номер типа | Номер детали для заказа | Код заказа (12 НЗ) | Пакет | Купить у дистрибьюторов |
---|---|---|---|---|
PHPT61002NYC | PHPT61002NYCX | 934067867115 | СОТ669 | Заказать продукт |
- Product details
- Documentation
- Support
- ECAD models
- Ordering
100V, 2 A NPN high power bipolar transistor
Buy from Nexperia
SKU | Stock* | Минимальный заказ | Цена за единицу** | Количество |
---|
Купить у дистрибьюторов (No stock)
Seller | SKU | Stock | MOQ | 1 | 10 | 100 | 1,000 | 10,000 | Purchase |
---|
Seller | SKU | Stock | MOQ | 1 | 10 | 100 | 1,000 | 10,000 | Purchase |
---|
Продавец | SKU | Запас | MOQ | 1 | 10 | 100 | 1 000 | 10 000 | . 0054 |
---|
Seller | SKU | Stock | MOQ | 1 | 10 | 100 | 1,000 | 10,000 | Purchase |
---|
* Стоимость запасов может быть изменена
** Отображаемая цена за единицу основана на заказах небольшого количества
*** Уполномоченные торговые посредники для товаров, находящихся в наличии, устаревших и снятых с производства продуктов, надежность которых гарантируется торговым посредником, а не Nexperia
Особенности и преимущества
- Высокая рассеиваемая тепловая мощность
- Применение при высоких температурах до 175 °C
- Уменьшенные требования к печатной плате (PCB) по сравнению с транзисторами в DPAK
- Высокая энергоэффективность благодаря меньшему выделению тепла
Применение
- Выключатель нагрузки
- Управление питанием
- Линейный регулятор напряжения
- Подсветка
Parametrics
Тип номер | Версия | Наименование пакета | Размер (мм) | P TOT 1 (MWS) | VESV 13 (MW) | v. 9003. V (MM) (MWS) | v. | . | I C [MAX] (MA) | H FE [MIN] | Автомобильные квалифицированные | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PHPT61002NYC | SOT669 | ; Power-SO8 | 4,9 x 4,45 x 1 | NPN | 1250 | 100 | 2000 | 100 | N |
Пакет
TIPE | . Маркировка | Упаковка | Информация о упаковке | Пайка оплавлением/пайкой волной | Упаковка | ||
---|---|---|---|---|---|---|---|
PHPT61002NYC | 9340 678 67115 ) | Активный | 1002NCA | LFPAK56; Мощность-SO8 (SOT669) | SOT669 | Reflow_BG-BD-1 WABE_BG-BD-1 | BEEL 7 ”Q1/T1 или Q2/T3 |
Series
- 9003 LFPAK BIPAK BIPLORIORS5-PRELORIORIORIORIORIORIORIORIORIORIORIORIORIORIORIORIORS5. истинная сила
пакеты для интеллектуальной эффективности
Документация (6)
Служба поддержки
Если вам нужна дизайнерская/техническая поддержка, сообщите нам об этом и заполните форму ответа, мы свяжемся с вами в ближайшее время.
Models
File name | Title | Type | Date |
---|---|---|---|
PHPT61002NYC | PHPT61002NYC SPICE model | SPICE model | 2022-07-12 |
Ordering , цены и наличие
Номер типа | Номер детали для заказа | Код заказа (12NC) | Упаковка | Количество в упаковке | Buy online |
---|---|---|---|---|---|
PHPT61002NYC | PHPT61002NYCX | 934067867115 | Reel 7” Q1/T1 or Q2/T3 | – | Order product |
Sample
As a Nexperia customer you Вы можете заказать образцы через нашу торговую организацию или напрямую через наш Интернет-магазин образцов: https://extranet.