Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

© ЗАХАРОВ О.Г. 2010-2014, правка 2015, 2016::: 2017

МЕГАОММЕТР — прибор для измерения большого сопротивления, главным образом сопротивления изоляции [1, 2].

Ранее для обозначения такого прибора использовались термины меггер, мегомметр. Терминологическими стандартами эти термины отнесены к недопустимым.

Название прибора мегаомметр образовано из:

- частицы Мега, используемой для обозначения кратных единиц измерения;

- единицы обозначения сопротивления Ом;

- части сложных слов – метр (от древне-греческого μετρεω - измеряю).

В практике настроечных работ используют переносные мегаомметры, применяемые как средство технологического оснащения для измерений в обесточенном объекте настройки (ОН) и стационарные мегаомметры, которыми измеряют сопротивление изоляции при наличии напряжения в сети. Стационарные мегаомметры одновременно являются и ОН.

Мегаомметры как средство технологического оснащения.

В связи с тем что переносные мегаомметры представляют собой универсальные средства измерения, для каждого ОН необходимо выбирать мегаомметры по пределу измерения и номинальному напряжению (общие правила см.

Выбор средств измерения). Учитывая необходимость выявления дефектов изоляции, следует выбирать мегаомметр с наибольшим по параметрам изоляции напряжением, но не превышающим 80 % напряжения, которым испытывают электрическую прочность изоляции данного ОН. Одновременно нужно принимать во внимание, что мегаомметр имеет большое внутреннее сопротивление и мягкую нагрузочную характеристику (рис. 1).

 

Рис. 1 Нагрузочная характеристика мегаомметра

 

Поэтому чем меньше измеряемое сопротивление изоляции, тем меньшее напряжение прикладывается к изоляции и тем менее вероятно выявление в ней дефектов.

Как правило, для ОН с номинальным напряжением до 42 В, от 42 до 100 В, от 100 до 380 В, от 380 до 1000 В применяют мегаомметры на номинальное напряжение соответственно. 100, 250, 500 и 1000 В.

Пределы измерения наиболее распространенных мегаомметров на пределе измерения:

- «МОм» - 100, 500, 1000 МОм;

- «кОм» - 100 и 200 кОм.

При измерении сопротивления изоляции с одинаковым успехом можно применять как индукторные мегаомметры с ручным приводом, так и безындукторные мегаомметры оснащенные статическим преобразователем напряжения.

Для определения абсорбции коэффициента целесообразнее использовать безындукторные мегаомметры, оснащенные реле времени, фиксирующими моменты отсчитывания показаний.

Сопротивление изоляции проводов соединительных при измерении сопротивления изоляции силовых трансформаторов должно быть не менее предела измерения мегаомметра, а для всех остальных изделий — не менее 100 МОм.

В противном случае поступают так, как сказано в ст. Сопротивление изоляции.

 Перед измерением необходимо проверить мегаомметр, для чего переключатель пределов устанавливают в положение «МОм» и замыкают выводы прибора накоротко.

Вращая рукоятку индуктора мегаомметра (нажав кнопку «Вкл» у безындукторного мегаомметра), определяют совпадение стрелки с нулевой отметкой шкалы.

Затем размыкают выводы и повторяют действия. У исправного мегаомметра стрелка должна совпадать с отметкой шкалы

На пределе «кОм» стрелка мегаомметра должна устанавливаться в противоположных точках шкалы, указанных выше для предела «МОм»..Предельно допускаемые отклонения стрелки от указанных точек составляют ± 1 мм.

Перед присоединением соединительных проводов необходимо выполнить все технические и организационные мероприятия, в частности:

1. Отключить напряжение с ОН и принять меры, исключающие его подачу во время использования мегаомметра.

2. Снять заряд, накопившийся в ёмкости изоляции и помехозащитных конденсаторах путем наложения переносного заземления (о продолжительности наложения заземления см. Изоляция электрическая). Измерения должны производиться двумя специалистами.

Мегаомметр как объект настройки.

Чаще всего стационарные мегаомметры измеряют сопротивление изоляции по принципу наложения постоянного напряжения на напряжение сети.

Как правило, они состоят из следующих блоков:

- источника постоянного напряжения;

- показывающего измерительного прибора, включаемого  оператором;

- блока непрерывного контроля изоляции с переключателем уставок срабатывания.

Настройка стационарных мегаомметров состоит из следующих технологических операций и переходов:

- визуального контроля;

- проверки монтажа;

- контроля изоляции;

- проверки функционирования (ПФ) блока источника постоянного

напряжения;

контроля работоспособности измерительного прибора;

- ПФ блока непрерывного контроля изоляции.

Визуальный контроль мегаомметра помимо указанного в соответствующей статье, включает проверку целости пломб и наличия клейма поверителя, определение годности мегаомметра на данный момент с учетом того, что к началу HP может пройти не более половины срока до очередной поверки.

ПФ источника пост, напряжения производится одновременно с КР измерительного прибора.

КР измерительного прибора осуществляют при замкнутом и разомкнутом входе мегаомметра, аналогично описанному выше для переносных мегаомметров, а также при подключении данной цепи не к выводу сети, а непосредственно на резистор с известным сопротивлением, значение которого соответствует одному из оцифрованных делений шкалы прибора.

Требования к совпадению стрелки с делениями шкалы те же, что и для переносных мегаомметров.

 ПФ блока непрерывного контроля сопротивления изоляции состоит в подключении ко входу мегаомметра резистора с сопротивлением, равным номинальному значению уставки с учетом допуска.

При настройке стационарных мегаомметров, используемых в сетях постоянно-переменного тока, т. е. сетей, содержащих полупроводниковые приборы (диоды, транзисторы, тиристоры), следует учитывать возможность отклонения стрелки прибора за пределы крайних точек шкалы (0 или  ) вследствие неправильного выбора типа мегаомметра при проектировании сети.

 

Литература:

1. Захаров О.Г.Словарь-справочник по настройке судового электрооборудования. Л.: Судостроение, 1987, 216 с.

2. К вопросу об областях применения индукторных и безындукторных мегомметров//Алеева Л.М., Бабаев В.И., Иванов Е.А. и др.// Судовая электротехника и связь, 1972, вып. 54 С. 3

3. Контроль и измерение сопротивления изоляции и ёмкости судовых электрических сетей//Карпиловский Л.Н., Лебедев В.С. и др. Л.: 1979

4. Минин Г.П. Мегаомметр. М.: Энергия, 1966

52. Словарь-справочник судового электромонтажника. Л.: Судостроение, 1990, 392 с.

Как пользоваться мегаомметром: измерение, подключение, видео

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье. 

Содержание статьи

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т. д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности.

 Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

    Как пользоваться мегаомметром: правила электробезопасности

  3.  Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  4. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  5. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  6. Работать в перчатках.

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

  • Э — экран;
  • Л- линия;
  • З — земля;

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

Щупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости

снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей.  Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
Электроизделия и аппараты с напряжением до 50 В100 ВДолжно соответствовать паспортным, но не менее 0,5 МОмВо время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В250 В
тоже, но напряжением от 100 В до 380 В500-1000 В
свыше 380 В, но не больше 1000 В1000-2500 В
Распределительные устройства, щиты, токопроводы1000-2500 ВНе менее 1 МОмИзмерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть1000 ВНе менее 0,5 МОмВ опасных помещениях измерения проводятся раз в год, в друих - раз в 3 года
Стационарные электроплиты1000 ВНе менее 1 МОмИзмерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Как проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

устройство прибора, описание принципа действия электронного агрегата megger

Мегаомметр является прибором для замеров электрического сопротивления. Единицей изменения выступают мегаомы. Приспособление используется при работе с электрическими цепями, отсоединенными от питания, диэлектрической изоляцией, которая часто встречается в электродвигателях, проводах, кабелях, трансформаторах.

Прибор в применении

В основу принципа работы мегаомметра положен закон Ома для отдельного участка цепи. Измерение осуществляется за счет элементов, помещенных в единый корпус. Основа — источник напряжения, имеющий откалиброванную постоянную величину. Дополнением выступают выходные клеммы, непосредственно определитель тока.

Модели от разных производителей кардинально отличаются по конструкции источника, но имеют одно назначение. В бюджетных вариантах и выпущенных в годы СССР агрегатах присутствуют обыкновенные динамомашины ручного типа. Усовершенствованные аналоги оснащены встроенными или внешними источниками. Выходная мощность генератора и его напряжение изменяется в широких диапазонах или же остается в неизменном фиксированном состоянии. К клеммам описываемого устройства подводятся провода, встроенные в измеряемую цепь. Для обеспечения более надежного контакта задействуются зажимы, называемые «крокодилами».

В электрической обозначенной схеме обязательно присутствует амперметр, который определяет величину тока по цепи. Напряжение отображается в точном значении, соответственно, и шкала на измерительном приборе размечается в необходимых единицах сопротивления — килоомах или мегаомах. Существуют мегаомметры с табло, на котором одновременно отображаются оба значения, выводимых на удобный дисплей.

Особенности устройства

Устройство мегаомметра стандартного типа представлено генератором, переключателем, выставляемым на необходимые пределы измерения, измерительной головкой, токоограничивающими резисторами.

Перечисленные детали правильно удерживаются в прочном диэлектрическом корпусе, оснащенном ручкой для удобства перемещения, генераторной рукояткой складывающегося типа. Для начала выработки напряжения она изначально раскладывается и раскручивается. Корпус оснащен тумблером с клеммами выходного типа, к ним и подводятся соединительные провода. Выделяется три выхода со значением на экран (Э), линию (Л), землю (З):

  • Что касается клемм на электронном мегаомметре с обозначением «Л «и «З», они задействуются в ходе работы всегда при необходимости замера изоляционного сопротивления относительно контура земли.
  • Вывод «Э» предназначается для нейтрализации действия токов утечки во время проведения измерения между параллельными жилами, аналогичными им токоведущими частями. Данная клемма функционирует в паре с измерительным устройством с экранированными концами, соединяется с экраном или кожухом. Она помогает выполнить самые точные замеры.

Если рассматривать специфику работы изделий с внешними и внутренними источниками, они практически ничем не отличаются от конструкций, оснащенных ручкой. Выдача напряжения на схему запускается нажатием соответствующей кнопки с последующим ее удерживанием. Некоторые модели устройств способны одновременно подавать различные комбинации напряжения, для чего нужно одновременно работать с несколькими пусками.

Модернизированные модели мегера представлены многоступенчатым внутренним наполнением. Если рассматривать напряжение, которое исходит от генераторов нескольких конструкций, оно представлено примерно таким рядом величин: 100, 250, 500, 700, 1000, а также 2500 вольт. Одни модели устройств функционируют в пределах только обозначенного диапазона, другие — одновременно в нескольких.

Мегаомметры различны по описанию, выходной мощности. С помощью одних устройств диагностируется изоляция на высоковольтном оборудовании. Другие приборы уместны для работы (проверить изоляцию) только с бытовой проводкой. Соответственно, такие изделия отличаются по размерам, общим масштабам.

Повышенное напряжение на агрегате

Работа с помощью мегаомметра определяется особенностями, которые должны учитываться. Первое, на что нужно обратить внимание, это напряжение устройства. Дело в том, что генератор встроенного типа выдает выходную мощность, которой хватает не только для качественной проверки изоляции, но и для серьезного травматизма. Следовательно, использовать измерительные агрегаты должны специально обученные специалисты.

При эксплуатации завышенное напряжение распространяется на обрабатываемый участок вместе с соединительными проводами и клеммами. Надлежащую защиту создадут щупы с усиленным изолированным покрытием. Что касается краев таких приспособлений, они ограничиваются запретной зоной через предохранительные кольца. Это необходимо для предотвращения контакта с ними открытых частей тела.

Щупы имеют рабочую зону, которая задействуется при выполнении измерения. Вот за обозначенный участок человек смело может браться руками. Что касается подключения в общую схему, оно производится посредством специальных зажимов «крокодилов» с достаточной изоляцией. Недопустимо применение другого вида щупов, проводов.

Когда проводятся мероприятия с помощью мегаомметра, в пределах обследуемой зоны не должны присутствовать люди. Особенно актуален этот вопрос при работе на длинномерных кабелях.

Наведенный ток

Электроэнергия, присутствующая в проводах ЛЭП, характеризуется существенным магнитным полем, которое изменяется согласно синусоидальному закону. В результате металлические проводники приобретают ток I2 и вторичную электродвижущую силу. Если рассматривать ощутимую протяженность кабеля, вырастает и величина наведенного напряжения.

Этот фактор следует учитывать, т. к. он сказывается на точности проводимых замеров. Сложность заключается в том, что величина и направление электротока, протекающего через используемый прибор, остаются неизвестными. Подобный ток образует наведенное напряжение, а его показатели накладываются на значения мегаомметра. В результате получается сумма из токовых величин неизвестного диапазона, поэтому метрологическую задачу будет сложно разрешить. Специалисты указывают на тот факт, что измерительные мероприятия на изоляции бессмысленно проводить в случае присутствия малейшего напряжения в сети.

Остаточное явление в действии

Когда генератор описываемого устройства вырабатывает напряжение, поступающее впоследствии в измеряемую сеть, образуется разность потенциалов между контуром заземления и проводом. Впоследствии создается емкость, в которой присутствует определенный заряд.

При отключении измеряющего провода имеющаяся в мегаомметре цепь разрывается. Но частичному сохранению подлежит потенциал из-за появления емкостного заряда в шине, проводе. Контакт человека с подобным участком приведет к электротравме токовым зарядом, который пройдет через тело. Избежать такой опасности поможет переносное заземление с обязательной изоляцией его рукоятки для безопасного устранения емкостного напряжения.

Прежде чем включать мегаомметр для работы, следует убедиться в отсутствии в проверяемой схеме напряжения остаточного заряда. В этом случае рекомендуется воспользоваться вольтметром, специальными индикаторами, подающими необходимый сигнал. Описываемый прибор дает возможность выполнять ряд процедур, в частности это:

  • проверка изоляции десятижильного кабеля по отношению к земле;
  • проведение необходимых замеров в каждой жиле относительно друг друга;
  • определение качества изоляции между жильными проходами.

В любом случае обязательно должно использоваться переносное заземление. Для обеспечения правильной и безопасной работы предварительно заземляющий проводник замыкается с контуром на грунте. В таком состоянии он находится до завершения всех мероприятий. Другим концом проводник соединяется с изоляционной штангой, с помощью которой и обеспечивается заземление для последующего устранения остаточного заряда.

Безопасное использование

Приступая к выполнению измерения, нужно убедиться в полной исправности устройства. Более того, оно должно проверяться перед эксплуатацией в лабораторных условиях на предмет исправности комплектующих деталей, собственной изоляции. В ходе проводимых испытаний обычно задействуется высокое напряжение, а по окончании проверки мегаомметр получает разрешение на работу. Определяется класс точности агрегата, а после контрольных замеров на корпус наносится клеймо, подлежащее сохранности на протяжении всего времени применения прибора.

Безопасность при использовании мегаомметра определяется и правильной областью его использования. Каждому замеру предшествует определение величины выходного напряжения. Перед испытанием изоляции в проверяемой зоне специально задаются экстремальные условия, т. е. подается не номинальное, а завышенное напряжение. Так выявляются дефекты, предотвращается их недопущение в будущем.

В каждой схеме, проходящей проверку, имеются особенности, угрожающие безопасной работе измерительного агрегата. Важно перед работой устранить все неисправности, поломки в цепи. В современной технике присутствует множество:

  • конденсаторов;
  • полупроводников;
  • микропроцессоров и пр.

Такие детали не рассчитаны на экстремальное напряжение, выдаваемое генератором в мегаомметре. Их рекомендуется перед проверкой изоляции шунтировать, полностью извлекать из общей схемы.

Измерение сопротивления в изоляции

Поняв, как работать мегаомметром, перед его использованием стоит ознакомиться со схематическими особенностями, убедиться в исправности и надлежащем обеспечении защиты. Обрабатываемая зона выводится из эксплуатации. Прибор на предмет исправности проверяется следующим образом:

  • края измерительного провода между собой закорачиваются;
  • далее генератором на них подается напряжение;
  • если устройство полностью исправно, в закороченной цепи показатели измерения равняются нулю;
  • следующий шаг — разъединение проводов, отведение их в стороны с проведение повторного замера;
  • в норме на стрелочной шкале megger высвечивается сигнал безопасности.

Процедура проверки изоляции осуществляется в строго обозначенной последовательности. Заземление переносного типа подводится к контуру, на участке полностью исключается наличие напряжения. После этого создается измерительная схема. В нее подается напряжение калиброванного типа до момента выравнивания емкостного заряда. Следующим этапом фиксируется отсчет и вырабатываемая генератором энергия выравнивается. Остаточный заряд нейтрализуется переносным заземлением.

Сопротивление изоляции проверяется мегаомметром при самом высоком пределе МΩ. Принцип действия некоторых моделей основан на прерывистом режиме. Следовательно, в течение 1 минуты подается напряжение, создается пауза в 2−3 минуты.

Узнав, для чего нужен мегаомметр и как он работает, следует разобраться в простых нюансах. Модели со стрелочным корпусом должны ориентироваться на горизонтальное размещение во время работы. В противном случае дополнительных погрешностей не избежать. Что касается усовершенствованных установок, они работают в любом положении с максимальной точностью.

Мегомметр или мегаомметр > Megaommetr.com

Как же все таки правильно называется этот прибор для измерения сопротивления изоляции Мегаомметр или Мегомметр?! Этим вопросом наверное задавался почти каждый пользователь прибора. И вроде как от названия суть работы и измерений не измениться, но хочется, же не только правильно измерять, но и говорить.

Если искать в интернете, как правильно назвать прибор для измерения сопротивления изоляции в сети, то можно встретить название как «мегаомметр» так и «мегомметр». Так как интернет подстраивается под запросы людей, то истину здесь искать бесполезно. Википедия гласит о том, что прибор называется «мегомметр», но название это устарело и нужно использовать «мегаомметр», то есть ситуация особо не проясняется.


Мегаомметр UNI-T UT502A

Чтобы все-таки выяснить, как же назвать это устройство нужно вернуться, так сказать к первоисточнику, в этом случае к заводу производителю.

Как оказалось, мегомметры в 1957 году начал выпускать Уманский завод, который называется «Мегомметр». Но вот, казалось бы, все, докопались до истины, но не тут-то было, на приборах, которые производит завод, красуется надпись «мегаомметр».

Если совсем уж интересно можно поискать книги об этом устройстве, чтобы облегчить Вам задачу, скажу. В книгах написано «мегомметр», правда, год выпуска изданий 1963. В современных книгах встречается чаще название «Мегаомметр».

И опять непонятно как же правильно назвать это чудо-устройство, которое во многом помогает и облегчает жизнь электрика Мегаомметр или Мегомметр.


Мегаомметр ЭС0202/2Г

Прибор, который измеряет мегаомы, гигаомы, а теперь и больше по логике, должен называться все-таки Мегаомметр. Но логика вещь спорная, исходя из этого всего, можно сделать вывод, что не особо важно как Вы называете устройство Мегаомметр или Мегомметр. Главное чтобы перед использованием Вы внимательно изучали и7нструкцию по эксплуатации и придерживались правил техники безопасности. А название, это всего лишь название, важнее точные и четкие измерения.

При этом, если будете заполнять документы, то нужно писать «Мегаомметр», так гласит Википедия, а то по ГОСТу не положено. Из этого напрашивается вывод, что правильно будет Мегаомметр. Но если Вы привыкли говорить все время Мегомметр, то переучиваться не стоит, Вас и так поймут.

Измерение сопротивления изоляции мегаомметром - как это делаетя?

Мегаомметр – прибор для измерения больших сопротивлений, а точнее для измерения сопротивления изоляции. Мегаомметр состоит из генератора напряжения, измерителя электрической величины, специальных выходных клемм. В комплект прибора входят соединительные провода со щупами. Иногда для удобства измерений на щупы надеваются зажимы типа «крокодил».

Генератор напряжения мегаомметра приводится в действие либо специальной вращающейся рукояткой, либо работает от внешнего или внутреннего источника питания и генерирует напряжение при нажатии специальной кнопки. Всё зависит от вида мегаомметра.

Напряжение, которое способен генерировать мегаомметр, имеет стандартную величину. Обычно это 500В, 1000В, 2500В. Также есть мегаомметры с испытательным напряжением 100В и 250В.

Суть работы мегаомметра заключается в следующем. При вращении рукоятки обычного мегаомметра или при включении кнопки электронного мегаомметра на выходные клеммы прибора подаётся высокое напряжение, которое через соединительные провода прикладывается к измеряемой цепи или к электрооборудованию. В процессе замера на приборе можно наблюдать значение измеряемого сопротивления. При измерении значение сопротивления может достигать нескольких килоОм, мегаОм или равняться нулю.

Техника безопасности при работе с мегаомметром

Т.к. мегаомметры способны генерировать напряжение до 2500В, то к работе с ними допускаются только подготовленные и хорошо обученные правилам техники безопасности работники.

  • Допускается пользоваться только исправными и поверенными приборами. Во время измерения сопротивления изоляции запрещается прикасаться к выходным клеммам мегаомметра, к оголённой части соединительных проводов (концы щупов) и к неизолированным металлическим частям измеряемой цепи (оборудования) т.к. эти узлы во время измерения находятся под высоким напряжением.
  • Измерение сопротивления изоляции запрещается производить, если не проверено отсутствие напряжения, к примеру, на жилах электрического кабеля или на токоведущих частях электроустановки. Проверку наличия или отсутствия напряжения выполняют индикатором, тестером или указателем напряжения.
  • Также не разрешается производить измерения, если не снят остаточный заряд с электрооборудования. Остаточный заряд можно снимать при помощи изолирующей штанги и специального переносного заземления путём кратковременного его присоединения к токоведущим частям. В процессе измерений необходимо снимать остаточный заряд после каждого замера.

Проверка работоспособности мегаомметра

Даже если используемый мегаомметр прошёл испытания и поверку, необходимо произвести проверку его работоспособности непосредственно перед работами по замеру сопротивления изоляции. Для этого сначала подключаются соединительные провода к выходным клеммам. Затем эти провода закорачивают и проводят измерение.

При закороченных проводах значение сопротивления должно равняться нулю. Это будет видно на шкале или на дисплее, в зависимости от вида прибора. При закороченных соединительных проводах также проверяется целостность этих проводов.

Далее производится замер при раскороченных проводах. Если прибор исправен, то величина сопротивления изоляции в этом случае будет равняться «бесконечности» (если мегаомметр старого образца), или будет принимать пусть и большое, но фиксированное значение (если прибор электронный с цифровым дисплеем).

Изучение проверяемой схемы измерения

Перед тем, как выполнять измерение мегаомметром, необходимо изучить электрическую цепь, в которой будут производиться замеры. В электрической цепи могут присутствовать электрические приборы, электрические аппараты и другое электрическое и электронное оборудование, которое не рассчитано на выходное напряжение, которое генерирует мегаомметр. По этой причине необходимо данное оборудование защитить от воздействия напряжения мегаомметра. Для этого нужно выполнить действия по заземлению, отключению или извлечению оборудования из схемы измеряемой цепи.

Измерение мегаомметром

В настоящее время наряду с современными цифровыми мегаомметрами часто используются приборы старого образца, выпущенные ещё в советское время. Работа и с тем и с другим видом приборов в принципе мало чем отличается, хотя и присутствуют некоторые отличия в работе.

Общее то, что изначально подключаются соединительные провода к выходным клеммам (зажимам) мегаомметра. Затем выбирается величина испытательного напряжения. Для этого на приборах старого образца переключатель выходного напряжения ставится в положение 500В, 1000В или 2500В.

Стоит отметить, что некоторые приборы способны генерировать только одно значение напряжения.

На цифровых мегаомметрах необходимое испытательное напряжение выбирается специальными клавишами на дисплее.

Следующее действие – подсоединение соединительных проводов к измеряемой цепи (электрический кабель, электродвигатель, ошиновка, силовой трансформатор) и непосредственно замер сопротивления изоляции. Замер производится в течение одной минуты.

Некоторые отличия при работе с приборами разного вида:

  1.  В отличие от цифрового прибора обычный мегаомметр при замерах должен устанавливаться горизонтально на ровной поверхности. Это требуется для того, чтобы при вращении ручки мегаомметра не было большой погрешности, а стрелка прибора показывала только истинное значение.
  2. Снятие показаний на обычном мегаомметре происходит по положению стрелки на шкале, у цифрового мегаомметра для этого есть цифровой дисплей.

Документальное оформление результатов измерений

В процессе измерения сопротивления изоляции все измеренные значения фиксируются и затем заносятся в специальный протокол измерений и испытаний, который подписывается и скрепляется печатью.

Мегаомметр, что это такое и как им пользоваться? | ENARGYS.RU

Мегаомметр или мегомметр как правильно говорить? Такой вопрос возникает у многих. С точки зрения русского языка правильно мегомметр, без идущих друг за другом гласных. Но если посмотреть с профессиональной стороны, то правильно будет мегаомметр, «мега» приставка, показывающая диапазон измерения прибора на высоком напряжении, и «Ом» единица сопротивления, то есть то, что измеряет прибор, ведь не зря во многих рабочих журналах проверок средств защиты пишут именно мегаомметр. Слово «метр» означает измеряю.

Прибор используется для определения большого значения сопротивления, отключенных от электропитания, электрических цепей и диэлектриков, применяемых для изоляции кабельной продукции, изолированных проводов, двигателей, трансформаторных и электротехнических устройств, установок телекоммуникаций и прочих электрических машин.

Прибор также осуществляет измерительные действия по определению поверхностных и объемных сопротивлений изоляции, определяющей состояние безопасности установки.

Безопасное пользование мегаомметром

Пользоваться мегаомметром можно только согласно правилам техники безопасности, измерения могут производить только два квалифицированных специалиста один из которых должен иметь группу допуска по электробезопасности IV. Не подготовленный пользователь не может пользоваться прибором, это чревато поражением электрическим током.

Мегаомметр принцип работы и его схема


Работу c мегаомметром рассмотрим на примере самого распространенного прибора с маркировкой ЭС0202/2Г. Прибор произведенный еще в советское время, на Уманском приборостроительном заводе, мегаомметр получил распространение по территории всего Советского Союза и успешно работает в настоящее время. Надежность, неприхотливость, а что самое важное, точность измерений зарекомендовали этот прибор с положительной стороны. В России прибор под этой маркировкой производится в Белгороде и на многих других приборостроительных заводах.

Прибор предназначен для проведения измерений с большими величинами сопротивлений, и рекомендуется для проверки высоковольтного оборудования, рассчитанного на большую мощность, а также для силовых кабелей большого сечения или раскинутых на значительное расстояние.

Рис №1: Внешний вид мегаомметра

Мегаоомметр этого типа относится к индукторным устройствам, работает за счет встроенного в конструкцию генератора, что позволяет прибору работать без постороннего источника питания, и без аккумуляторных батарей.

Принцип работы построен на использовании принципиальной схемы логарифмического измерительного устройства отношений. В измерительном процессе задействованы: электромеханический генератор напряжения, преобразователь и электронный измеритель.

Для работы рекомендуется использовать прерывистый режим, в котором 1 минута отводится на измерение, 2 минуты – пауза. При первом ознакомлении прибором внимательно изучите мегаомметр и инструкцию по эксплуатации.

Рис №2. Принципиальная схема мегаомметра ЭС0202/2Г

Как проверить мегаомметр

Перед началом измерительных работ выполняется операция по проверке исправного состояния прибора и его поводков, для этого, провода, подсоединенные к прибору замыкают накоротко, и вращают ручку генератора, стрелка должна показать «0» короткое замыкание в положении переключателя «I». При проверке, во время замыкания проводов, нельзя касаться их голыми руками, можно получить удар током.

Как пользоваться мегаомметром или последовательность проведения измерительных работ:

  1. Присоединение мегаомметра к гнездам измерения сопротивления.
  2. Присоединение заземляющего проводника к гнезду экрана (кожуха).
  3. Установка переключателя в нужный предел проведения измерения, всего их два, чем выше мощность оборудования, тем больше диапазон измерения.
  4. Проверяем работу прибора замкнув измерительные щупы, одновременно вращая ручку.
  5. После присоединения измерительных шнуров вращаем ручку мегаомметра (генератора питания), скорость должна быть не менее 120 об в мин.
  6. Установление стрелки измерения в определенное положение является началом отчета измерения.
  7. Чтобы понизить время измерения сопротивления мегаомметром по II шкале гнезда сопротивления закорачиваем (перед началом замера) и вращаем ручку прибора примерно 5 сек.
  8. После применения мегаомметра переключатель устанавливаем в нейтральное положение.

 

Рис №3. Схема присоединения мегаомметра

Допустимая погрешность в работе мегаомметра составляет 0,05 Мом +-15%. Предел дополнительной погрешности связанный с наличием в цепи измерения токов с промышленной частотой в виде помех, составляет около 500 мкА. Прибор может эксплуатироваться при температуре в границах от 30 до +50оС. На зажимах присутствует измерительное напряжение мегаомметра от 500 до 2500В, в зависимости от диапазона используемого измерения, поэтому по окончании измерения необходимо разрядить генератор, касаясь измерительными щупами «земли» или закоротить их на секунду, между собой, до электрического разряда.

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.

для чего нужен, что измеряют, как пользоваться

Большинству электриков на производстве или предприятии приходится иметь дело с мегаомметром. Это одна из разновидностей электрического тестера, позволяющая определять состояние цепи. Как работает такой аппарат, какие параметры измеряет и как им пользоваться, рассмотрим ниже.

ЧТО ТАКОЕ МЕГАОММЕТР

Мегаомметр относится к измерительным приборам, замеряющим сопротивление. Последнее показывается в омах. Приставка "мега" в названии указывает на способность работать с высокими значениями. Поэтому тестер используется преимущественно профессиональными электриками и предназначен для "прозвона" оборудования или электрических коммуникаций, работающих под высоким напряжением. Мегаомметр может использоваться при показателях 50-2500 V, но выявляет тестер не целостность проводника, а надежность его обмотки.

Для замера сопротивления прибор пропускает через проводник заряд тока. Он вырабатывается самостоятельно при помощи генератора (встроенная динамомашина внутри) или берется от аккумулятора. По типу существует два варианта: безиндукционные и индукционные. Мегаомметр относится к ручным приборам и удобен для переноса и частых замеров. Ввиду компактных габаритов для него легко найти место для хранения в сумке электрика и транспортировать.

Мегаомметр может быть цифровым (с ЖК-дисплеем) или аналоговым (значения нарисованы на шкале и показываются стрелкой). Существуют полностью электронные версии (все современные) и электромеханические (более устаревший тип, но применяется до сих пор).

При помощи тестера можно узнать:

  • нарушена ли изоляция кабеля или обмотки механически;
  • имеется ли короткое замыкание;
  • нет ли увлажнения изоляции и частичной утечки тока.

 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСТРОЙСТВО

Стрелочные мегаомметры весят 1-2.2 кг и имеют габариты 210х150х100 мм. Электронные аналоги более тонкие и легкие — их размеры бывают 150х80х50 мм и весят они 400-800 г. Приборы способны показывать сопротивление от 0 до 200 кОм.

Устройство с аналоговым табло состоит из электромеханического генератора, оснащенного ручным приводом. Для подачи нужного напряжения оператор должен крутить ручку со скоростью 2 оборота в секунду. При достижении необходимого уровня загорается световой индикатор. Это указывает, что ток подан и можно смотреть на результат. При неровном расположении тестера в пространстве или удержании в руках, а не на твердом основании, возможны неверные показания. Зато электромеханические мегаомметры можно использовать при температуре от -30 до +50 градусов. Они подходят для продолжительных измерений на улице в холодную погоду.

Электронные версии подают напряжение от встроенного аккумулятора или батареи. Работать с ними проще, поскольку ничего не требуется крутить. Результат выводится на жидкокристаллический экран в виде готовых цифр. Данные не зависят от положения мегаомметра в пространстве. Но кристаллы в дисплее начинают замерзать уже при -10 градусах, поэтому на улице в холодную погоду долго им пользоваться не получится.

У всех типов мегаомметров есть три разъема для подключения контактных проводов. На конце последних находятся измерительные щупы. Они разделяются по предназначению:

  1. заземление;
  2. линия или объект;
  3. экран.

 Для замера сопротивления изоляции между жилами в кабеле, щупы цепляются к ним и заземлению. Разъем экрана в таком процессе не участвует. Для оценки качества изоляции между проводом и наружным экраном (броней) используется третий щуп.

ПРИНЦИП РАБОТЫ

Мегаомметр создан для отсчета электрически активных сопротивлений. Данные отображаются в мегаОмах. Чаще всего измерение ведется при постоянном токе, хотя некоторые версии умеют проводить испытания и на переменном. Расчет происходит на основании закона Ома: R=U/I. В этой формуле R означает сопротивление, которое нужно посчитать. U и I относятся к напряжению и силе тока (вольты и амперы).

Прибор подключается при помощи диагностических щупов к проводнику и включается. Задается определенное напряжение, характерное для этого участка цепи. Внутри мегаомметра есть амперметр, измеряющий силу тока. Зная напряжение и силу тока, вычисляется сопротивление. В данном случае сила тока в определенном участке электрической цепи пропорциональна напряжению и обратно пропорциональна внутреннему сопротивлению.

Если в показаниях мегаомметра есть отклонения от нормы, значит присутствует утечка тока. Это может быть поврежденная изоляция, или часть оголенного провода касается экрана, корпуса. Защитная оболочка жил в скрученном кабеле постепенно высыхает и истончается, что может привести к наводкам тока. Места с нарушенной изоляцией необходимо найти и заизолировать, а с истонченной — заменить. Если этого не сделать, то участок цепи будет перегреваться, и возможно возгорание или короткое замыкание в этом месте.

В случае касания двух оголенных проводов между собой тестер сразу показывает 0. Это означает прямое короткое замыкание и эксплуатировать оборудование дальше запрещено. Потребуется устранить несанкционированный контакт, восстановить цепь и заизолировать проводники.

ПРАВИЛА РАБОТЫ С МЕГАОММЕТРОМ

Поскольку мегаомметры предназначены для эксплуатации в сетях с повышенным напряжением, к работе с ними допускаются только обученные люди. Если электрическая установка пропускает через себя 1000 В и выше, понадобится специальный допуск. Сам аналоговый прибор генерирует от 500 до 1500 V на своей обмотке. Мегаомметр относится к травмоопасным приборам, способным поразить пользователя электрическим током. Причем удар происходит не от проверяемого оборудования, а от обмотки самого тестера, если не снять остаточное напряжение.

При эксплуатации прибора на установках под напряжением свыше 1000 В всегда должен выписываться наряд-допуск и проводиться инструктаж по технике безопасности. К работе допускаются электрики с третьей или четвертой группой электробезопасности.

Важно! Перед началом эксплуатации следует осмотреть мегаомметр на целостность обмотки токонесущих частей. При использовании электрик должен быть в диэлектрических перчатках. После снятия щупов с контактов, остаточное напряжение на оборудовании нужно передать на "землю", присоединив провод. Контакты самого мегаомметра нужно соединить между собой на 2 секунды. Только после этого прибор разрешается сматывать для хранения или транспортировки.

Работу с мегаомметром нужно выполнять при уровне влажности не выше 80%. При высоком показателе влажности возможно пощипывание током. Прикасаться руками можно только к изолированным ручкам на щупах. Все замеры выполняются только на полностью обесточенном оборудовании. При наличии рядом других рабочих следует вывесить предупреждающую об опасности табличку или плакат. Если изоляция на технике мокрая (туда попала вода, пар и пр.), сперва место просушивается сухим воздухом и только потом проверяют сопротивление. В случаях, когда питание на испытуемое оборудование подается в другом месте, там нужно установить табличку, запрещающую работу.

ГДЕ ИСПОЛЬЗУЮТСЯ

Мегаомметры автономны по источнику питания и могут применяться на любой высоте и удаленности от цивилизации. С их помощью проверяется сопротивление проводника, чтобы найти ток утечки. Вторая задача — это найти короткое замыкание, которое может быть как между токонесущими жилами, так и на корпус оборудования. Основная сфера применения — это силовые электрические установки, оборудование и станки, задействованные в промышленности.

Тестер активно используется на предприятиях для:

  • проверки трансформаторов;
  • обмотки генераторов и выпрямителей в различных электромашинах;
  • замера изоляции проложенных кабелей;
  • тестирования клемм пускателей, автоматов и других устройств.

Мегаомметр самостоятельно вычисляет сопротивление по закону Ома и оператору не приходится выполнять дополнительных подсчетов. Готовые значения выводятся на экран. Это упрощает работу и фиксирование результата.

КАК ПОЛЬЗОВАТЬСЯ МЕГАОММЕТРОМ

Сперва прочитайте инструкцию по эксплуатации к конкретной модели, чтобы понимать предназначение отдельных переключателей и контактов. Убедитесь, что тестер работает. Для этого включите мегаомметр и соедините диагностические щупы "земли" и "линии" между собой. В таком положении тестер должен выдать 0 на дисплее или стрелочном циферблате.

ВЫБОР КОЛИЧЕСТВА ВОЛЬТ

Далее важным параметром является выбор напряжения. Оно напрямую зависит от проверяемого объекта. Для замера сопротивления кабеля переменного тока или других установок, работающих от 220 В подойдет общий режим на 500 В. Промышленное оборудование, работающее под напряжением до 1000 В проверяется с аналогичным параметром. Это относится к технике, подключаемой как к однофазной, так и к трехфазной сети. Толстые магистральные кабели, огромные трансформаторы и силовые установки проверяются на показателе 1500 В.

КАК ПОДКЛЮЧИТЬ ПРОВОДА

Схема подключения щупов мегаомметра зависит от того, что требуется проверить. Для оценки целостности изоляции между двумя проводниками (например, две жилы внутри одного кабеля) щупы тестера фиксируются параллельно к этим проводам. Если нужно узнать сопротивление между токонесущей частью кабеля и наружным защитным экраном, то контакты прибора подключаются к проверяемой жиле и внешнему экрану.

Обратите внимание! Если внутри кабеля много жил, то для полной проверки целостности изоляции придется каждую из них подключить к мегаомметру и экрану. Только так можно быть уверенным в отсутствии утечек и дальнейшей безопасной эксплуатации.

ПОДАЙТЕ НАПРЯЖЕНИЕ НА ЦЕПЬ

Если используется электромеханический тип мегаомметра, понадобится покрутить боковую рукоятку со скоростью 2 оборота в секунду. Когда загорится красная лампочка, необходимые параметры напряжения достигнуты. В цифровых версиях достаточно нажать клавишу "Пуск" и тестер выдаст нужный ток на проверяемый участок.

ФИКСАЦИЯ ПОКАЗАНИЙ

Если отклонения в номинальных показаниях не превышают 0.5 мОм, значит изоляция находится в нормальном состоянии и эксплуатация проводника или оборудования может быть продолжена. На производстве данные о проверке записываются в журнал, чтобы можно было отслеживать динамику показаний.

ЧТО ДЕЛАТЬ С ПРИБОРОМ ПОСЛЕ ОКОНЧАНИЯ ПРОВЕРКИ

Сперва нужно обезопасить рабочее место. Если замер сопротивления выполнялся на пусковом устройстве или другом узле с оголенными клеммами, потребуется снять с них остаточное напряжение. При игнорировании требования, случайное прикосновение к этим деталям приведет к поражению электрическим током. Для снятия напряжения соедините испытуемый элемент с "землей" на пару секунд.

Сам мегаомметр тоже нужно разрядить. Для этого контакты щупов кратковременно замыкаются. Действие выполняется уже на выключенном тестере. Теперь провода с ручками и оголенными штифтами можно смотать и перейти к внесению данных в протокол. Если в процессе замера изоляции выявлены отклонения, кроме записи в журнале потребуется уведомить ответственного на производстве.

КАК ПРОВЕРИТЬ МЕГАОММЕТР

Понять, исправен мегаомметр или нет, можно при помощи двух действий. При первом положении тумблера и совмещении контактов щупа тестер должен выдавать всегда только 0. Когда стороны разъединяются, стрелка аналогового прибора уходит до конца влево, сообщая о бесконечности сопротивления. Ведь у сухого воздуха оно действительно велико. Любые отклонения в этих двух тестах свидетельствуют о неисправности и требуют ремонта аппарата. Применять его для замера сопротивления кабеля или обмотки оборудования нельзя.

Среди распространенных неисправностей мегаомметра встречаются:

  • нарушение контакта в гнезде разъема;
  • преломление провода щупа;
  • перегорание предохранителя;
  • выход из строя источника энергии в цифровых версиях.

Для ремонта мегаомметра понадобится заменить аккумуляторы или сгоревший предохранитель, восстановить контакт в разъеме или проводнике. При других поломках обращаются в сервисный центр для профессионального ремонта или замены товара.

Тестер изоляции против мегомметра | Fluke

Проверка сопротивления изоляции необходима для обеспечения правильной работы проводов и двигателей. Мегомметры позволяют быстро и легко определить состояние изоляции проводов, генераторов и обмоток двигателя. Мегомметр - это электрический счетчик, который измеряет очень высокие значения сопротивления, посылая сигнал высокого напряжения на тестируемый объект. Однако обычно это единственная функция, которую выполняет мегомметр.

Хотя мегомметры часто неофициально называют тестерами изоляции, строго говоря, это неточно.Почему? В чем разница между мегомметром и тестером изоляции? Тестер изоляции выполняет основную функцию измерения, которую выполняет мегомметр - измеряет очень высокие значения сопротивления, посылая сигнал высокого напряжения на проверяемый объект, - и часто он делает гораздо больше; обычно он выполняет больше функций, включая более сложные испытания и запись измерений.

Полнофункциональный тестер изоляции может выполнять испытания сопротивления изоляции высоким напряжением и многое другое.

Чем отличаются тестеры изоляции

Например, в отличие от мегомметров, тестеры изоляции также могут измерять напряжение и ток.Мультиметр изоляции Fluke 1587 FC, например, может выполнять испытания изоляции при напряжении до 1000 вольт, и это полнофункциональный цифровой мультиметр. Fluke 1550c может генерировать до 5000 вольт для испытаний изоляции. Тестеры изоляции также могут выполнять более сложные тесты, такие как компенсация условий окружающей среды, таких как влажность и температура, во время теста, чтобы предоставить информацию о том, как двигатели работают в меняющихся условиях. Поскольку условия окружающей среды и / или химическое загрязнение ускоряют ухудшение изоляции, очень важно сравнивать результаты испытаний сопротивления изоляции, скорректированные для различных условий испытаний.

Тестеры изоляции, такие как Fluke 1587 FC и Fluke 1550c, обладают еще одним преимуществом перед мегомметрами. Хранение в памяти с помощью Fluke Connect® сохраняет измерения на вашем телефоне или в облаке, поэтому вам не нужно записывать результаты. Это экономит время, уменьшает количество ошибок и сохраняет данные для исторического отслеживания с течением времени.

Выбор между тестером изоляции и мегомметром зависит от потребностей вашего бизнеса. Все, что вам нужно, - это мег-тест. Но если вам нужна повышенная мощность, удобство, профилактика и безопасность, лучшим выбором может стать тестер изоляции.

Сравнение тестеров изоляции и мегомметров

Fluke 1587 FC Измеритель изоляции Fluke 1550c Измеритель изоляции Megger MIT230 Extech 380363
Испытательное напряжение 50 В, 100 В, 100 В, 100 В В, 500 В, 1000 В 250 В, 500 В, 1000 В, 2500 В, 5000 В 250 В, 500 В, 1000 В 250 В, 500 В и 1000 В
Измерения сопротивления 2.2 ГОм 2 ТОм 1 ГОм 10 ГОм
PI / DAR x x
Температурная компенсация x x
Запись данных Без ограничений с Fluke Connect® 99 внутренних, без ограничений с FC Ввод вручную 9 записей
Передача данных x x
Измерение напряжения 0-1000 В 25 В - 600 В 999 В
Измерение тока 400 мА переменного или постоянного тока
Проверка диодов x
Проверка целостности x x x
Измерение частоты 99.99 кГц
Измерение емкости 9999 мкФ 15 мкФ
Измерение температуры от -40 ° C до 537 ° C
от -40 ° F до 998 ° F

Получите бесплатную демонстрацию

Тестирование мегомметром с помощью мегомметра

Мегомметр или мегомметр - это устройство, используемое для проверки электрического сопротивления и сопротивления изоляции.Обычно это делается путем отправки высоковольтного сигнала на тестируемый объект, обычно провод или двигатель. Использование мегомметра важно для предотвращения поражения электрическим током и повреждения оборудования. В этой статье мы расскажем, как и когда использовать мегомметр, и обсудим его сравнение с другими инструментами.

Что измеряют мегомметры и как они работают?

Чтобы понять, как работают мегомметры, важно понимать, какие измерения они используют. Измерения, производимые мегомметром, в их самой маленькой части могут быть уменьшены до Ом.Но что такое ом? Ом - это мера электрического сопротивления. Величина, на которую материал уменьшает электрический ток, который проходит через него, и есть величина электрического сопротивления.

Мегомметры получили свое название благодаря измерению большого количества Ом. Меггеры считывают значения в МОмах, где 1 МОм равен 1 000 000 Ом.

Но тогда почему мегомметры иногда называют тестерами изоляции? Это связано с тем, что для проверки электрического сопротивления проводов, например, мегомметры измеряют сопротивление изоляции.Это измерение позволяет оценить целостность изоляции, что важно для предотвращения поражения электрическим током и повреждения оборудования. Однако, хотя мегомметры иногда называют тестерами изоляции, потому что они могут выполнять эту функцию, они также обычно ограничиваются этой функцией. Другие инструменты, называемые тестерами изоляции, могут иметь больше возможностей, например, считывать показания выходного напряжения и тока.

Для проверки изоляции мегомметры используют высоковольтный слаботочный заряд постоянного тока, который измеряет сопротивление внутри проводов и обмоток двигателя для выявления утечки тока и неисправности или повреждения изоляции.Это называется тестом мегомметра. Тесты мегомметра помогают проверить целостность проводов или двигателей, с которыми вы работаете.

Как пользоваться мегомметром

Меггеры генерируют напряжение для определения высокого значения сопротивления изоляции. Как правило, наименьшее значение, которое может подать мегомметр, составляет 1000 вольт, в то время как некоторые ручные мегомметры могут подавать до 10000 вольт или более через небольшой генератор внутри измерителя. Чтобы запустить тест мегомметра, выполните следующие действия и обратитесь к руководству по мегомметру для получения полных инструкций по безопасности.

Шаг 1. Отключите мощность

Убедитесь, что вы исключили любое напряжение, протекающее по проводам, которые вы хотите проверить.

Шаг 2. Снимите провода

Отсоедините провода, которые вы хотите проверить, от обоих концов цепи и от всех питающих проводов в двигателях.

Шаг 3. Подключите заземляющий провод

Подключите один из выводов мегомметра к заземлению, например к изоляции проводов, электрическому корпусу или заземлению.

Шаг 4. Подключите к проводнику

Подключите другой вывод мегомметра к проводу, например, к оголенной медной проволоке или клемме двигателя.

Шаг 5. Увеличьте напряжение

Проверните ручку генератора, чтобы нарастить напряжение. Это может занять от двух до пяти секунд.

Шаг 6. Считайте показания счетчика

Определение безопасного чтения зависит от того, что вы тестируете. Обычно показание должно равняться одному МОм на каждые 1000 вольт рабочего напряжения. Для двигателя с рабочим напряжением 1500 единиц идеальное значение будет 1,5 МОм. Минимальное показание никогда не должно быть меньше одного МОм.

Шаг 7.Полное тестирование

Завершите тестирование оставшихся проводов или клемм.

Измерение электрического сопротивления в зависимости от сопротивления изоляции

Важно отметить, что мультиметры и мегомметры - это не одно и то же. Мультиметры измеряют электрическое сопротивление, а мегомметры измеряют сопротивление изоляции. В то время как электрическое сопротивление является составляющей при использовании мегомметра, цель теста мегомметра - измерить сопротивление изоляции. Это делается для проверки неисправности изоляции, которая может вызвать проблемы с электричеством или повреждение.Мультиметры не имеют возможности измерять сопротивление изоляции.

Мегомметры - незаменимое устройство для обеспечения безопасности при выполнении электромонтажных работ. Понимание того, как их использовать, и их чтение может помочь предотвратить повреждение дорогостоящего оборудования, незапланированные отключения и опасность для персонала.

Как выполнить мегомметр двигателя, также известный как испытание изоляции - трехфазное обучение

Обучающее видео о том, как выполнить мегомметр двигателя и как правильно использовать мегомметр.

Вы когда-нибудь задумывались, что делает тест мегомметра? Что делает мегомметр? Это специальный измеритель, предназначенный для измерения мегаом….и дальше. Что такое мегаом?

Один мегаом эквивалентен 1 000 000 Ом. Зачем нам нужно измерять такое сопротивление? Вместо того, чтобы думать об измерении сопротивления, подумайте об этом как о тестовом приборе. Он специально проверяет изоляцию обмоток двигателя. В зависимости от класса изоляции двигателя, хороший двигатель может иметь сопротивление в тераомах или 1000000000000 Ом!

Это испытание изоляции обмоток двигателя, обычно называемое мегомметром, мегомметром или мегомметром.Мы проверяем изоляцию двигателя, в частности, между обмотками двигателя и корпусом двигателя. Если протекает небольшая часть тока, ее можно измерить с помощью этих высокочувствительных измерителей. Изоляция двигателя рассчитана и выдерживает различные температуры. Время и тепло разрушают изоляцию двигателя. Правильное использование мегомметра позволит проверить изоляцию двигателя. В зависимости от того, какой класс изоляции вы проверяете, это повлияет на величину сопротивления, которую должен показывать измеритель. Для проверки изоляции высокого класса вам следует использовать мегомметр, способный измерять сопротивление до тераомов.В противном случае ваш тест может быть ненадежным или точным.

Triple Phase Training сделал видео выше как бесплатный инструмент для всех. Мы надеемся, что это видео прояснит, как и зачем использовать эти счетчики. При правильном использовании мегомметра можно легко определить повреждение изоляции. Помните, что тепло разрушает изоляцию двигателя, поэтому, если вы не уверены в двигателе, который вы только что протестировали, попробуйте проверить двигатель еще раз, пока он еще теплый от использования. Если вы каждый раз получаете более низкие значения сопротивления, ваш двигатель следует как можно скорее вывести из эксплуатации.

Большинство частотно-регулируемых приводов и инверторов очень чувствительны к потере изоляции, привод может аварийно выключить двигатель, чтобы уберечь его от повреждения. Убедитесь, что номинальные параметры двигателя соответствуют окружающей среде, и проверьте номинальные характеристики по нагреву, а также коэффициент эксплуатации.

Пожалуйста, посмотрите все наши видео на нашем канале YouTube.

Чтобы получить дополнительную информацию о наших курсах по ремонту мостовых кранов, отправьте нам письмо по электронной почте.

Принцип работы мегомметра

| Принцип работы мегомметра

Мегомметр

Мегомметр (или мегомметр) - это прибор для измерения очень высоких сопротивлений, таких как сопротивление изоляции электрических кабелей.

Для пропускания измеряемого тока через такие сопротивления требуется источник высокого напряжения. Таким образом, мегомметр - это, по сути, омметр с чувствительным прибором отклонения и источником высокого напряжения. Как показано на рисунке (1), напряжение обычно создается генератором с ручным заводом. Генерируемое напряжение может составлять от 100 В до 2,5 кВ.

Рис.1: Мегомметр с ручным управлением

Как и в случае омметра с низким сопротивлением, шкала мегомметра показывает бесконечность (∞) при измерении обрыва цепи, ноль при коротком замыкании и половину - шкала, когда неизвестное сопротивление равно стандартному резистору внутри мегомметра.В других точках шкалы отклонение пропорционально соотношению неизвестного и стандартного резисторов. Диапазон прибора может быть изменен путем включения различных номиналов стандартного резистора в схему.

Также доступны мегомметры с батарейным питанием, и по сути, это омметры с очень высоким сопротивлением. Напряжение аккумулятора обычно повышается (с помощью электронных схем) до уровня 1000 В, чтобы получить измеримый ток через неизвестное сопротивление.Измерение производится при кратковременном нажатии и удерживании кнопки питания. Это действие минимизирует ток утечки на батарее.

Приложения Megger | Применение мегомметра

Мегомметр также используется для обнаружения нарушения изоляции в двигателях и трансформаторах. Это достигается за счет наведения высокого напряжения на обмотки этих электрических компонентов. Подача большого напряжения приведет к обнаружению ослабленной изоляции; скорее всего приведет к отказу двигателя или короткому замыканию трансформатора. Напряжения, используемые при испытании изоляции Megger, могут находиться в диапазоне от 50 В до 5000 В. Подав высокое напряжение на обмотки двигателя или трансформатора, вы сможете определить, есть ли ухудшение изоляции. В таком случае ток будет вытекать из обмоток. Уходящий ток может привести к замыканию на землю или короткому замыканию обмоток двигателя или трансформатора.

Принципиальная схема мегомметра

На рисунке 3 показана подробная принципиальная схема мегомметра.

Рис.3: Принципиальная схема мегомметра

1 и 2: Управляющая и отклоняющая катушки

Обычно они монтируются друг к другу под углом 90 градусов и соединяются с генератором параллельно. Полярность такова, что крутящий момент, развиваемый этими катушками, находится в противоположном направлении.

3 и 4: шкала и указатель

Указатель привязан к катушкам, и конец указателя перемещается по шкале счетчика, имеющей диапазон от «нуля» до «бесконечности».Шкала откалибрована в «омах».

5 и 6: Сопротивления катушки давления и катушки тока

Они обеспечивают защиту от любых повреждений в случае низкого внешнего сопротивления при испытании.

7: Подключение генератора постоянного тока или аккумулятора

В мегомметре с ручным управлением генератор постоянного тока обеспечивает испытательное напряжение, в то время как в мегомметре цифрового типа это осуществляется с помощью аккумулятора или зарядного устройства.

8: Постоянные магниты

Постоянные магниты создают эффект намагничивания, чтобы отклонить указатель.

Как использовать мегомметр
  1. Изолируйте тестируемое оборудование от всех силовых цепей
  2. Подключите провода к соответствующим клеммам для проверки изоляции компонент

Примечание: Перед тем, как продолжить, важно проконсультироваться с производителем относительно проведения испытаний изоляции и номинальных характеристик электрического компонента.Слишком высокое напряжение может привести к аннулированию гарантии, сокращению срока службы или повреждению проверяемого двигателя или трансформатора.

  1. Подключите наконечники измерительных проводов к тестируемому оборудованию. Если есть напряжение, большинство измерителей выдадут какое-то предупреждение.
  2. Следуйте инструкциям по эксплуатации оборудования и начните проверку.

При тестировании между обмоткой и землей результатом должно быть нулевое сопротивление. Если между обмотками и землей есть какое-либо сопротивление, результатом будет замыкание на землю в этой точке, и важно заменить блок.

При испытании между двумя отдельными обмотками результат должен быть близок к нулю. Если между двумя отдельными обмотками имеется какое-либо сопротивление, это указывает на то, что в этот момент происходит разрыв изоляции, и важно спланировать замену оборудования.

написано Ахмедом Файзаном, M.Sc. (США)

Что такое мегомное или мегомметрическое тестирование?

Что приходит на ум при рассмотрении прочности проволоки? Многие люди думают только о том, что можно увидеть снаружи.Например, насколько далеко можно протянуть провод, прежде чем он сломается, или какую высокую температуру он может выдержать, прежде чем расплавится. А как быть с нарушениями целостности провода, которые не всегда можно обнаружить невооруженным глазом? А как насчет «электрической» прочности провода?

Как только изоляция изготовлена, она начинает стареть. Со временем его характеристики ухудшаются, и его способность изолировать проводник снижается. Воздействие на провод суровых условий окружающей среды и экстремальных температур еще больше ускоряет деградацию изоляции.Повреждение изоляции провода во время изготовления, такое как порезы кусачками, также может снизить целостность изоляции.

Самым простым тестом, используемым для обнаружения пробоев изоляции проводов, является испытание мегомом (или мегомметром), также известное как испытание сопротивления изоляции (IR). Во время мегомного тестирования испытательное оборудование прикладывает высокое постоянное напряжение (DC), обычно от 500 до 1500 В постоянного тока, между проводником и одним или несколькими другими проводниками в течение определенного периода времени. Поскольку мы проверяем целостность изоляции проводов, мы хотим, чтобы между проводниками протекал небольшой ток или совсем его не было.Таким образом, ожидается высокое значение сопротивления - обычно от 35 до 100 МОм.

Здесь, в InterConnect Wiring, большинство наших жгутов проводов и панелей устанавливаются на военных самолетах. Опасная ситуация может возникнуть, если нарушение изоляции провода отрицательно сказывается на оборудовании или приводит к травмам персонала, особенно в воздухе. Поэтому мы понимаем, насколько важно для нас быстро обнаруживать любое ухудшение изоляции в наших изделиях для электропроводки в процессе производства и принимать превентивные меры.Каждое электрическое испытание, которое мы проводим для наших продуктов, включает в себя тестирование Megohm. Мы прекрасно понимаем, что пробой изоляции проводов может существовать, даже если они плохо заметны. За прошедшие годы мы добились успехов в тестировании нашей продукции, чтобы убедиться, что наши провода «электрически» прочны. Когда мы проводим тест мегомметра, желательно высокое сопротивление; поэтому, если Борг говорит нам, что СОПРОТИВЛЕНИЕ НЕПРАВИЛЬНО, мы смеемся им в лицо. Мы намного жестче, чем они, как и жгуты электропроводки наших самолетов!

Связанные

Измерения мегомметра и приборы для испытания изоляции

Измерения мегомметра теперь могут быть более точными, быстрыми и безопасными, чем когда-либо прежде.

JEFF JOWETT, MEGGER
Значительное количество электронщиков, работающих в электротехнической промышленности, прошли военную подготовку. И многие из них учились на простом аналоговом измерителе с ручным заводом, правильное название которого - мегомметр, или тестер изоляции. Эти тестеры обычно представляли собой блоки на 500 В, которые измеряли до нескольких сотен МОм и могли выполнять проверку целостности цепи, возможно, до 100 Ом. Испытательные напряжения поступали от бортового генератора, приводимого в действие оператором, поворачивающим ручку, с выпрямителем, преобразующим выходной сигнал в постоянный ток.Переключатель предоставлял возможность проверки изоляции с высоким сопротивлением или проверки целостности цепи с низким сопротивлением. Многие из этих тестеров все еще находятся в рабочем состоянии, и при условии, что они находятся в хорошем состоянии и откалиброваны, нет причин, по которым они не должны быть в таком состоянии.

Техник использует ручной мегаомметр для проверки сопротивления изоляции обмоток двигателя. Мегомметры

на протяжении десятилетий оставались весьма схожими по конструкции и функциям. Различия заключались в основном в качестве изготовления. Но революция в микроэлектронных схемах вызвала взрыв в быстром переходе на новые и лучшие конструкции.Теперь измерения могут быть более точными, быстрыми и безопасными, чем когда-либо прежде.

Сначала основы: мегомметр измеряет качество электрической изоляции, прикладывая напряжение к изоляции и измеряя величину тока, который «протекает» через нее (отсюда и термин «ток утечки»). Напряжения обычно применяются при номинальном рабочем напряжении для текущего обслуживания или в два раза выше номинального для устранения неисправностей. Токи очень малы ... обычно наноамперами ... и поэтому тестер должен обладать исключительной чувствительностью.Сила тока всего 5 мА достаточно, чтобы шокировать человека. Испытательное напряжение и измеренный ток преобразуются в сопротивление в миллионах Ом (мегом, МОм). Все, что меньше мегом, обычно считается непригодным для эксплуатации (исключение составляют оборудование, работающее при очень низких напряжениях, и узлы, которые будут заключены в дополнительную изоляцию внутри более крупного оборудования).

Все это сделали оригинальные тестеры, но не более того. Испытания на электрическую изоляцию определили, что необходимо очистить, отремонтировать или утилизировать, а что можно надежно сохранить в эксплуатации.Испытания изоляции являются жизненно важным звеном в противопожарной защите, устранении дорогостоящих отказов в процессе эксплуатации и обеспечении безопасной эксплуатации. Простые инструменты могут выполнять эти функции достаточно хорошо, и за те десятилетия, которые они использовались, вокруг них выросло определенное количество знаний.

Все оригинальные тестеры имели аналоговые механизмы. Они должны были; не было микроэлектроники. Стрелки находились на верхнем уровне, в начале теста были зафиксированы на низком уровне из-за емкостных зарядных токов, затем стабильно смещались (как хотелось) обратно к верхнему пределу или останавливались при измерении.Многие операторы научились наблюдать за поездками и стали меньше обращать внимание на фактические цифры.

Этому навыку было трудно научить; его нужно было изучить, и он до сих пор практикуется опытными техническими специалистами. Но аналоговые движения были чувствительны и выдерживали небольшие удары. Они также могут пострадать от параллакса и интерпретации оператором того места, где остановился указатель.

Современные мегомметры: семейство MIT4002 от Megger. Обратите внимание на использование как цифровых, так и аналоговых отображений сопротивления в логарифмической шкале.

ЖК-дисплеев представили цифровые измерения. Эти устройства обычно можно было сбросить и снова ввести в эксплуатацию, при условии, что они не приземлялись прямо на дисплей; огромный бонус в экономии времени и средств. Цифровые измерения также могут быть чрезвычайно точными, с точностью до одного-двух процентов по качеству инструментов, и не требуют интерпретации. Но дорожка указателя, заветная ветеранам техники, была потеряна.

Тогда технологии снова пришли на помощь! Комбинированные дисплеи доступны в качественных приборах с электронной стрелкой и цифровым результатом в состоянии покоя.Помните: ищите логарифмическую дугу, которая расширена для лучшего разрешения на очень важном нижнем конце шкалы. Простая изогнутая гистограмма не ведет себя как настоящий аналог.

Специалисты по аналоговым технологиям привыкли к хорошей изоляции, измеряющей верхний предел шкалы, отмеченный символом бесконечности. Это всегда желательно, но не всегда понимается.

Infinity - это не измерение; это просто означает, что изоляция лучше, чем этот тестер может измерить в пределах заявленных параметров.Старые оригинальные тестеры могли достичь только 200 МОм, или, что более вероятно, 1000 МОм (1 Гигаом). Этого было достаточно, чтобы отсеять плохое или неисправное оборудование. Но больше информации там не было.

Тестеры качества

теперь измеряют в диапазонах гигаом или тераом (1000 ГОм). У этого расширенного ассортимента есть два основных преимущества. Сопротивление изоляции медленно и неуклонно снижается во время работы и может действовать как автомобильный одометр в обратном направлении; чем меньше число, тем меньше оставшийся срок службы.

Это поведение может быть изменено, чтобы предоставить график технического обслуживания и замены.Более высокие значения позволяют заранее предупредить, если сопротивление быстро падает, например, из-за попадания влаги или ближайших источников загрязнения. Во-вторых, производители изоляционных материалов постоянно разрабатывают более крупные сшитые макромолекулы, которые улучшают качество и повышают значения ранних измерений. Измерительные возможности тестеров должны идти в ногу с такими разработками.

Наконец, вы должны записать результат, если ваш тест действительно идет на бесконечность (выход за пределы диапазона), и знать, какую высоту ваш тестер может измерить.Предел диапазона обычно возрастает с увеличением испытательного напряжения, поэтому помните об используемом напряжении и пределах этого диапазона. Затем запишите его как более
этого предела (например,> 100 ГОм). Нет ничего плохого в
на пределе диапазона.

РУЧНАЯ КОЛОДКА VS АККУМУЛЯТОР

Линия питания не подходила для многих сред, в которых проводились испытания, таких как строительные площадки и удаленные схемы, поэтому ручные рукоятки с годами приобрели значительную загадочность. Когда батареи начали использоваться, они усилили, а не вытеснили загадочность ручного управления.Ранняя работа с батареями была нестабильной и заработала плохую репутацию, вплоть до изгнания в некоторых кругах. Батареи могут разрядиться до конца смены, оставив техника без инструмента. Хуже того, когда они теряли заряд, показания могли стать регрессивно менее точными.

К концу 1970-х годов технология аккумуляторов значительно улучшилась, и эти проблемы можно было избежать. Теперь качественный тестер изоляции может провести 2000 тестов с одним комплектом. Кроме того, все указанные возможности доступны вплоть до появления предупреждения LO BAT.Тем не менее, ручные рукоятки настолько укоренились, что продолжают широко использоваться. Опытные операторы могут настаивать на том, что они могут сказать что-то о качестве тестового объекта по очереди генератора. Но, как и ощущение управляемости автомобиля, это утверждение не поддается количественной оценке с научной точки зрения.

По-прежнему можно получить тестеры изоляции с рукояткой. Примером является MJ159, который также имеет несколько тестовых напряжений для точечного и ступенчатого тестирования напряжения, защитный терминал для исключения поверхностного тока утечки и считывание без масштабных множителей, чтобы избежать возможных ошибок чтения оператора.

Измерители изоляции обеспечивают высокое напряжение, но малую мощность. Поначалу это может показаться нелогичным, но небольшое размышление проясняет это. Тестируемый элемент, который пропускает более нескольких миллиампер, больше не подходит в качестве изоляции. Следовательно, мегомметры обычно ограничены выходным сигналом примерно до 5 мА или меньше. Этот низкий уровень делает тестировщик безопасным, но не тестируемый объект. Испытываемые предметы с высокой емкостью (длинные участки кабеля, большие обмотки двигателей и трансформаторов) могут накапливать достаточно энергии, чтобы привести к летальному исходу.Когда тест заканчивается и градиент напряжения, создаваемый мегомметром, прекращается, вся эта накопленная энергия разряжается.

В прошлом защита от таких трудностей в основном предоставлялась передовой рабочей практике. У некоторых тестеров были выключатели разряда, но их можно было случайно не заметить. Практическое правило заключалось в том, чтобы выпустить в пять раз больше длины теста; то есть десятиминутный тест был оставлен заземленным на пятьдесят минут перед отключением, предполагая, что этого будет более чем достаточно.

Сейчас на повестке дня избыточная безопасность.Безопасная работа дополняется разрядным контуром в приборе со звуковыми и визуальными предупреждениями. Оператору нужно только наблюдать, как процесс разгрузки отображается на дисплее. Защитная схема также используется в начале и во время теста. Если цепь находится под напряжением или становится под напряжением во время теста, современные тестеры предупреждают оператора и отключают тестирование.

Раньше тестеры изоляции обычно возвращались для «гарантийного» ремонта с прожженными следами по всем направлениям.Живое общение; ошибка оператора; нет гарантии.

Теперь тестер качества определяет напряжение под напряжением и отключает тестирование. Это еще не все. Для проверки целостности цепи - следствия проверки изоляции для проверки правильности подключения цепей - требуется испытательная цепь с низким импедансом. Но цепь разряда с высоким сопротивлением остается включенной до тех пор, пока тестер не обнаружит, что оба провода подключены к безопасной цепи с низким сопротивлением.

Старые тестеры когда-то приходили со стопкой тестовых карточек.Техник записывал данные и иногда соединял точки для построения графика. Их часто вешали на машины в водонепроницаемых куртках. Практика отнимала много времени и была подвержена человеческим ошибкам. Современные тестировщики сохраняют данные одним нажатием кнопки; даже все данные длительной процедуры. Помимо легкости хранения, такая практика также исключает множество споров с третьими сторонами и властями. Протоколы испытаний и сертификаты печатаются так же легко. А математические расчеты, такие как поправка на температуру, выполняются автоматически и без ошибок.

ИСПЫТАТЕЛЬНОЕ НАПРЯЖЕНИЕ

Испытания изоляции однажды проводились при одном напряжении, к которому было добавлено несколько важных вариантов выбора переключателя. Но только один читал напрямую. Остальные измерения пришлось скорректировать с помощью множителя или деления, которые были напечатаны на селекторе. Variacs обеспечивает бесконечную регулировку напряжения, но только одно или два положения читаются напрямую. Все остальные пришлось скорректировать на коэффициент, указанный на шкале. В конце концов, появилось несколько позиций селектора, которые можно было читать напрямую.Они оказали огромную помощь и доминировали около полувека. Теперь опытные тестировщики предоставляют возможность прямого считывания с шагом 1 В по всему диапазону тестера.

Кроме того, тестеры могут измерять несколько параметров, помимо сопротивления изоляции, напрямую отображая ток утечки (обратный сопротивлению), частоту, фактическое испытательное напряжение, емкость и другие параметры. Можно настроить звуковые индикаторы прохождения / непрохождения и одновременное отображение нескольких измерений. Стандартные процедуры могут выполняться автоматически, пока оператор занимается другой задачей.

Международные стандарты обеспечивают рабочие процедуры и анализ результатов. Двумя наиболее важными из них являются IEC 61010, который определяет общие требования безопасности для нескольких типов электрического оборудования, и степень защиты IP (степень защиты от проникновения). Рейтинг IEC CAT, или категория, указывает на уровень защиты от дугового разряда / дугового разряда. Всегда знайте рейтинг CAT инструмента и применяйте его соответствующим образом.

Проникновение посторонних материалов… пыли, влаги… не смертельно для оператора, но может быть опасным для прибора.Корпуса значительно улучшились по сравнению со старыми бакелитовыми и фенольными материалами. Рейтинг IP позволяет количественно оценить характеристики корпуса, объективно и надежно указывая, в каких условиях окружающей среды прибор будет продолжать работать. Есть даже рейтинг погружения, хотя испытания изоляции обычно не проводятся под водой.

В целом, эволюция приборов за столетие значительно снизила вероятность ошибки. Но есть еще несколько передовых методов, которые следует учитывать при проведении испытаний изоляции: Тестирование должно соответствовать правилам безопасной работы работодателя, профсоюза или источника стандартов.Изолируйте тестовый предмет и держите его недоступным для посторонних или прохожих. Проведите тест производительности на тестовом оборудовании и подключите провода. Поврежденные потенциальные клиенты часто остаются незамеченным источником сбивающих с толку или неточных результатов.

Знать основную электрическую конфигурацию тестируемого объекта; вы должны проверить изоляцию между выводами. У двигателей и трансформаторов будут открытые обмотки, поэтому вы не проводите проверку целостности цепи. Закройте открытые концы крышкой или разделите их, чтобы исключить возможность возникновения дуги.Знайте единицу измерения, чтобы не путать МОм с ГОм или ТОм. Хороший тестер покажет единицы измерения на дисплее, но операторы иногда не обращают на это внимания.

Прежде всего, обязательно учитывайте время и температуру. И то, и другое сильно влияет на показания. Установите обычную температуру, используя коэффициент изоляционного материала (часть технических характеристик). Снимайте показания в одно и то же время теста, как только цифры установятся (например, 30 секунд, 1 минута).

Наконец, одножильный кабель нельзя протестировать традиционным способом, потому что нет места для присоединения второго провода.Можно сделать специальные приспособления для тестирования одиночных проводников, но не ожидайте, что будут применяться стандартные процедуры для многоядерных.

Что такое Megger? - Определение, строительство и работа

Определение: Megge r - это прибор , который использует для измерения сопротивления изоляции . Он работает по принципу сравнение , то есть сопротивление изоляции равно по сравнению с с известным значением сопротивления .Если сопротивление изоляции высокое, указатель подвижной катушки отклоняет в сторону бесконечности , а если оно низкое, то указатель показывает нулевое сопротивление. Точность Megger составляет по сравнению с другими приборами.

Строительство Megger

Конструкция Megger показана на рисунке ниже. Megger имеет одну токовую катушку и две катушки напряжения V 1 и V 2 .Катушка напряжения V 1 проходит над магнитом, соединенным с генератором. Когда стрелка прибора PMMC отклоняется в сторону бесконечности, это означает, что катушка напряжения остается в слабом магнитном поле и, таким образом, испытывает очень небольшой крутящий момент.

Крутящий момент, испытываемый катушкой, увеличивается, когда она движется внутри сильного магнитного поля. Катушка испытывает максимальный крутящий момент под торцами полюсов, а указатель установлен на нулевом конце шкалы сопротивления.

Для улучшения крутящего момента используется катушка напряжения V 2 .Катушка V 2 расположена так, что при отклонении стрелки от бесконечности до нуля катушка перемещается в более сильное магнитное поле.

В Megger учитывается совместное действие обеих катушек напряжения V 1 и V 2 . Змеевик содержит пружину переменной жесткости. Он жесткий около нулевого конца катушки и становится очень слабым около бесконечного конца пружины.

Пружина сжимает участок с низким сопротивлением и открывает высокое сопротивление пружины, что является большим преимуществом Megger, поскольку он используется для измерения сопротивления изоляции, которое обычно очень велико.

В приборе есть переключатель напряжения, который используется для выбора диапазона напряжения прибора. Диапазон напряжения регулируется путем выбора переменного сопротивления R, подключенного последовательно с токовой катушкой. Напряжение создается при подключении генератора с ручным приводом.

Работа Megger

Испытательное напряжение обычно составляет 500, 1000 или 2500 В, которое генерируется ручным генератором. Генератор имеет центробежную муфту, благодаря которой генератор подавал постоянную для проверки изоляции.Постоянное напряжение используется для проверки изоляции с низким сопротивлением.

Megger имеет три катушки, две катушки давления и одну катушку тока. Катушка давления вращает подвижную катушку против часовой стрелки, тогда как катушка тока вращает ее по часовой стрелке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *