Элементы Пельтье. Работа и применение. Обратный эффект
Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).
Что такое элемент Пельтье
Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.
1 — Изолятор керамический
2 — Проводник n — типа
3 — Проводник p — типа
4 — Проводник медный
В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.
Принцип действияЧтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.
Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:
- Свойства металла.
- Температуры среды.
Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.
На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.
Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.
При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.
Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.
Сфера использованияЧтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.
Вот их некоторые области использования:
- Устройства ночного видения.
- Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
- Телескопы с охлаждением.
- Кондиционеры.
- Точные часовые системы охлаждения кварцевых электрических генераторов.
- Холодильники.
- Кулеры для воды.
- Автомобильные холодильники.
- Видеокарты.
Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.
В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.
Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.
Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.
Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.
Обратный эффект элементов ПельтьеТехнология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.
Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.
Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.
Преимущества и недостаткиДостоинствами элементов Пельтье можно назвать следующие факты:
- Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
- Нет движущихся и трущихся частей, что повышает его срок службы.
- Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
- При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.
Недостатками можно назвать такие моменты:
- Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
- Довольно сложная система отведения тепла от поверхности охлаждения.
Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.
Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.
Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.
Другие применения термоэлектрических модулейЭффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.
Основные места использования модулей:
- Охлаждение микропроцессоров.
- Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
- В бытовых устройствах, действующих на нагревание или охлаждение.
Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.
Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.
Похожие темы:
Модули Пельтье в ПК: теория и практика
Тема охлаждения компонентов ПК волнует многих пользователей. Большинство из них ограничиваются стандартными воздушными кулерами, отдельные энтузиасты собирают СВО. А что же дальше? Наверняка те, кто серьезно интересовался разгоном, слышали о модулях Пельтье (или термоэлектрических модулях, далее по тексту – ТЭМ; английский вариант – TEC, Thermoelectric Cooler) и их применении в качестве тепло-отводов для сильно-греющихся элементов компьютера.
Однако зачастую даже базовую информацию по правильному использованию этих удивительных устройств найти трудно, отсюда – многочисленные ошибки тех, кто впервые с ними сталкивается. К слову, производители систем охлаждения также экспериментируют с модулями Пельтье, порой представляя на суд публики весьма любопытные концепты. Как работают ТЭМ, действительно ли они так уж небходимы в СО компьютера, как самостоятельно собрать нехитрые кулеры и избежать простейших ошибок, достаточно характерных для новичков, – обо всем этом мы расскажем в данном материале.
Немного теории
Чем же на самом деле являются модули Пельтье? В базовом определении это термоэлектрические преобразователи, принцип действия которых основан на эффекте Пельтье, открытом в далеком 1834 году. Суть данного процесса заключается в возникновении разности температур в месте контакта материалов при протекании сквозь них электрического тока.
Мы не станем вдаваться в подробности истории открытия и научного обоснования специфики работы ТЭМ, поскольку этой теме можно посвятить целую диссертацию. Однако общие понятия упомянем.
Базовая схема устройства ТЭМ |
Элементы Пельтье состоят из двух токопроводящих материалов (полупроводников) с разными уровнями энергии электронов в зоне проводимости. Физика протекания тока через подобные вещества такова, что для перехода электронов им требуется определенная подпитка, получаемая в момент прохождения тока через спайку. В таком случае возможно перемещение частиц в высокоэнергетическую зону проводимости от одного материала к другому.
Место соприкосновения полупроводников в момент поглощения энергии охлаждается. Изменение направления тока или перемещение электронов из более энергетической зоны в менее насыщенную приводит к нагреву места контакта. Помимо этого, в модулях Пельтье наблюдается тепловой эффект, характерный для любых веществ, сквозь которые пропускают электрический ток. Вообще процессы, присущие ТЭМ, проявляются и в месте контакта обычных металлов, однако определить их без сложных приборов почти нереально. Поэтому основой для модулей служат полупроводники.Структура термоэлектрического элемента (модуля Пельтье) |
Элемент Пельтье состоит из одной или более пар полупроводниковых параллелепипедов разных типов (как в диодах или транзисторах, n- и p-типа). Современная индустрия для этих целей наиболее часто выбирает германид кремния и теллурид висмута. Полупроводники попарно соединяются металлическими перемычками из легкоплавких веществ. Последние выполняют роль термоконтактов и напрямую соприкасаются с керамической пластинкой или подставкой. Пары полупроводников соединены последовательно, разные виды проводимости контактируют друг с другом. С одной стороны модуля имеются лишь n->p-переходы, с другой – p->n. Течение тока вызывает охлаждение и нагревание противоположных групп контактов. Поэтому можно говорить о переносе током тепловой энергии с одной стороны модуля Пельтье на другую и, как следствие, возникновении разности температур на пластинке. Правильное применение модулей позволяет извлечь некоторые выгоды для промышленных, в том числе компьютерных СО. К слову, элементы могут быть использованы и в качестве электрогенераторов – основываясь на тех же принципах работы, физика протекающих внутри процессов объясняется эффектом Зеебека (условно говоря, тот же эффект Пельтье с «противоположным знаком»).
Плюсы и минусы применения ТЭМ
Зачастую к достоинствам модулей Пельтье относят:
- сравнительно небольшие габариты;
- возможность работы и на охлаждение, и на нагревание системы;
- отсутствие движущихся частей, механических составляющих, подверженных износу.
В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:
В USB-холодильнике также используется модуль Пельтье |
- низкий КПД модулей;
- необходимость наличия источни- ка тока для их работы;
- большая потребляемая мощ- ность для достижения заметной разности температур и, как следствие, существенное тепло- выделение;
- ограниченные габариты и полезные характеристики.
Однако, невзирая на негативные характеристики модулей Пельтье, они нашли свое применение в ряде продуктов. ТЭМ выгодны в первую очередь там, где энергетическая эффективность охладителя некритична, чем меньше – тем лучше. Элементы служат для охлаждения устройств с зарядовой связью в цифровых фотокамерах, позволяющих добиться заметного уменьшения теплового шума при длительных экспозициях. Модули Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с целью стабилизации длины волны их излучения. Возможно использование нескольких ТЭМ, составленных последовательно в виде каскадов (холодная сторона одного охлаждает горячую другого), благодаря чему реально достичь очень низких температур для устройств, обладающих малым тепловыделением. Элементы Пельтье – основа компактных холодильников, в первую очередь автомобильных. Их применяют и в миниатюрных сувенирах из области компьютерной периферии, и в производительных СО в качестве основных или вспомогательных компонентов. Именно о последнем варианте мы и поговорим более подробно.
Модули Пельтье в ПК: практика
Элемент Пельтье размещается между водоблоком и медной «буферной» пластинкой |
При переходе к практической реализации СО на базе ТЭМ нужно сделать несколько оговорок, которые позволят правильно подобрать параметры итоговых конструкций. Нередко эксперименты новичков заканчиваются плачевно: либо температуры на «холодной» стороне модулей во время работы получаются выше, чем на горячей, либо системы демонстрируют откровенно слабые результаты даже по сравнению со стоковыми кулерами без элементов Пельтье.
Система охлаждения должна успешно отводить тепло непосредственно от модуля (обеспечивая максимально возможную низкую температуру «горячей» стороны) и компонентов ПК. Примерный КПД такой системы можете вычислить сами – при полезной составляющей в 150–200 Вт (приблизительно столько выделяют современные разогнанные CPU) для получения хоть каких-то видимых результатов придется затратить не менее 600–800 Вт электрической мощности и отвести не менее киловатта тепловой. Именно поэтому производительные СО на базе модулей Пельтье не получили широкого распространения. Впрочем, прецеденты сравнительно успешной реализации гибридных кулеров известны, а мы попытаемся создать свои – маломощный и оптимальный. Чтобы избежать ограничений в виде недостаточного теплоотвода, на «горячую» сторону ТЭМ поместим производительные водоблоки, подключенные в контур СВО. Кстати, модули Пельтье нельзя устанавливать непосредственно на ядро/теплораспределительную крышку чипов – тонкая керамическая подкладка не способна поддерживать эффективную теплопередачу ко всем полупроводниковым парам, составляющим ТЭМ.
Мы решили по максимуму охладить графический чип видеокарты Radeon HD 4350 и CPU Core 2 Duo E8500, попытавшись разогнать данные компоненты. Для отвода тепла от GPU использовались уже упомянутый ТЕС1-12709 (максимальная потребляемая мощность – 136 Вт) и самодельный медный водоблок, в паре с процессором работали ТЕС1-12726 (395 Вт) и один из лучших промышленных водоблоков Swiftech Apogee GT. Модули подключались напрямую к компьютерному БП в 12-вольтовую цепь. Применение киловаттного be quiet! Dark Power PRO BQT P6PRO-1000W давало все основания не переживать за недостаток мощности для питания ПК и элементов системы охлаждения. В контуре СВО трудились два «двойных» радиатора под 120-миллиметровые вентиляторы и помпа Hydor Seltz L30 (производительностью 1200 л/ч на холостом ходу).
Основа мощного чиллера – «бутерброд» из трех водоблоков и восьми ТЭМ, расположенных между ними |
В случае охлаждения компонентов до температур ниже комнатных (в частности, ниже «точки росы») стоит ожидать появления конденсата на переохлажденных поверхностях. Понятно, что вода в таком виде является главным врагом пользователя, и ее выделение необходимо предупредить. Делается это путем тщательной теплоизоляции любых поверхностей (частей РСВ, околосокетного пространства с обеих сторон платы, собственно ТЭМ, теплораспределителя процессора и GPU) материалами, не пропускающими воздух. Лучше всего для этих целей подходит стандартный теплоизоляционный материал для труб водоснабжения (на основании вспененного каучука), специальные замазки, отдельные виды поролона, поставляемого в комплекте с компонентами ПК, на худой конец термопаста и бумажные салфетки.
Итоговые температуры, полученные в различных режимах работы компонентов, их сравнение с показателями, обеспечиваемыми исключительно системой водяного охлаждения, приведены в диаграмме. Как видите, модули Пельтье позволили понизить температуру компонентов ощутимо ниже комнатной (в зависимости от загрузки). В таких условиях не составило особого труда разогнать процессор до частоты 4,3 ГГц с повышением напряжения питания до 1,35 В, а GPU заставить функционировать на 800 МГц (штатное значение – 600 МГц). В то же время мы получили ощутимый нагрев СО тестового стенда (в корпусе ситуация усугубилась бы более существенно) и резкий рост уровня энергопотребления ПК (собственно, вся конструкция потребляет больше, чем отдельно взятый компьютер на базе компонентов тестового стенда). Подобное решение однозначно пригодится в зимнюю пору, однако летом вряд ли порадует большинство пользователей.
Готовы ли вы на такие жертвы ради достижения сравнительно низких температур на компонентах ПК? Решайте сами, но помните о базовых советах, приведенных в этой части материала, – они помогут правильно применить модули Пельтье на практике. Использование систем охлаждения на основе ТЭМ разумно и оправданно в случае с маломощными компонентами (чипсетами материнских плат, GPU низко- и среднеуровневых видеокарт). Не забывайте и о теплоизоляции охлаждаемых элементов – ведь конденсат является главным врагом системы во время экспериментов с ТЭМ.
Выводы
Подытоживая вышесказанное относительно особенностей работы модулей Пельтье и целесообразности их практического применения, повторимся: ТЭМ имеют упомянутые преимущества и недостатки, которые не позволяют дать однозначного ответа на вопрос: «А стоит ли…?» Их использование оправданно для отвода незначительных тепловых нагрузок (именно к таковым относятся компактные холодильники, термостатированные лазеры; СО для маломощных компонентов ПК – чипсетов и отдельных GPU).
На базе элементов Пельтье можно создавать различные самодельные охлаждающие и нагревающие устройства, существуют примеры успешной реализации маломощных генераторов. Но прежде чем заниматься изготовлением подобных конструкций, ознакомьтесь все же с теоретической составляющей – предварительная подготовка избавит от ошибок и сэкономит время в момент практического воплощения проектов.
Говорить о применении модулей Пельтье в ПК следует достаточно осторожно: прочитав о получении низких температур на охлаждаемых элементах, новички часто забывают о значительной потребляемой и выделяемой мощности подобных СО, не учитывают параметры и «запас прочности» отдельно взятой конструкции. ТЭМ заинтересуют в первую очередь оверклокеров, для которых любой выигрышный градус и каждый мегагерц важны. Рассматриваемые элементы – промежуточное звено между классическими системами водяного охлаждения и чиллерами или фреонками, работающими по принципу фазового перехода. Впрочем, применение ТЭМ отнюдь не назовешь простым, поэтому прежде чем приступать к серьезным экспериментам, тщательно взвесьте все «за» и «против».
Готовые СО на базе ТЭМ
Модули Пельтье используются производителями систем охлаждения для ПК в качестве основных и вспомогательных компонентов кулеров. Порой из этого получаются эффектные действенные устройства, иногда все выходит не так гладко, как изначально задумывалось. Мы решили вспомнить об основных СО, применяющих ТЭМ, которым прочили роль революционеров своего времени.
Thermaltake SubZero4G Один из первых кулеров с элементом Пельтье, наделавший сравнительно много шума в сфере охлаждения CPU (2003 год). Однако невысокий запас прочности, значительное по тем временам энергопотребление, громоздкость конструкции и шумность в работе не позволили ему закрепиться на рынке. Появись эта модель на год-два раньше – возможно, все обернулось бы иначе.
Titan Elena Суперкулер для видеокарт, построенный по тому же принципу, что и Titan Amanda: одна половина радиатора работает непосредственно на отвод тепла от GPU, другая охлаждает горячую сторону ТЭМ. В свое время оказался одним из лучших во время тестирования СО для графических адаптеров. (Мы писали о нем в «Домашнем ПК» в 2007 году.)
Swiftech MCW6500-T Самое мощное современное решение для охлаждения CPU, использующее элемент Пельтье. Представляет собой производительный водоблок, отводящий тепло от ТЭМ (около 400 Вт потребляемой электрической мощности), который, в свою очередь, создает оптимальный температурный режим процессора. Эта система способна обеспечить функционирование Core i7 на частоте порядка 4 ГГц при температуре около 0 ºС (режим простоя) и 20–30 ºС в режиме максимальной нагрузки.
Swiftech MCW60-T Аналогично процессорному решению представляет собой высокопроизводительный водоблок для графического адаптера, дополненный модулем Пельтье. В зависимости от TDP видеочипа способно удерживать его температуру на уровне комнатной или ниже.
Cooler Master V10 Элементы Пельтье этой СО охлаждают часть тепловых трубок. Подход достаточно интересный и правильный, применение модулей позволяет сбить пару-тройку градусов на процессоре. Однако экономическая целесообразность такого хода – под большим вопросом, ввиду того что V10 при существенной цене не в состоянии обогнать лучшие воздушные суперкулеры. Скорее всего, виноваты особенности конструкции и недостаточная мощность ТЭМ.
Titan Amanda Серия достаточно современных процессорных суперкулеров на тепловых трубках, использующих термоэлектрический модуль (2007–2008 гг). Часть радиатора отводила тепло непосредственно от ТЭМ, тогда как другая половина охлаждала греющийся компонент. Подобный подход к проектированию позволяет избежать резкой перегрузки СО вследствие превышения лимитов тепловыделения модуля Пельтье. Кулеры линейки Amanda демонстрировали отличные результаты с процессорами, обладающими сравнительно невысоким TDP.
XtremeLabs.org MONSTER T.E.C. Project
Владельцев СВО и тех, кто собирается обзавестись жидкостными системами, могут заинтересовать так называемые чиллеры на базе элементов Пельтье. В зависимости от типа подключения ТЭМ в контур они позволят немного понизить температуру теплоносителя, а при создании мощных СО даже обеспечат температуру хладагента, близкую к нулевой.
Известный нашим читателям энтузиаст Wehr-Wolf давно интересовался затронутой темой эффективного охлаждения компонентов ПК и их дальнейшего экстремального разгона. Начиналось все в далеком 2005 году с теоретических набросков, рассуждений и одного из главных компонентов системы – массивного «бутерброда», состоящего из больших водоблоков. Однако заброшенные на длительное время задумки удалось реализовать лишь совместно с автором данного материала, в середине этого года запустив энтузиастский проект XtremeLabs.org MONSTER T.E.C. Project.
Первый пуск ТЭМ-чиллера в полевых условиях
Принцип работы системы достаточно прост: модули Пельтье (8 ТЭМ с максимальной потребляемой мощностью 136 Вт каждый) охлаждают с двух сторон большой медный водоблок, а сами, в свою очередь, охлаждаются аналогичными водоблоками. «Холодный» и «горячий» контуры СВО полностью разделены между собой. Для питания такого количества ТЭМ в процессе первого запуска использовались два компьютерных БП с общей заявленной мощностью 1200 Вт, в качестве охладителя «горячего» контура выступала СЖО с двумя радиаторами под два 120-миллиметровых вентилятора каждый, прокачиваемая мощной помпой. Однако даже такой СВО оказалось недостаточно, и радиаторы пришлось продувать высокопроизводительными промышленными вентиляторами. В «холодный» контур были подключены помпа Hydor L20 II и водоблок Swiftech Apogee GT, охладителем выступал большой водоблок, контактирующий с «холодной» стороной ТЭМ. В результате первого эксперимента удалось добиться температуры воды в контуре порядке 5–7 ºС, при этом в качестве нагрузки для системы использовался процессор Core i7 965 Extreme Edition, разогнанный до частоты 4 ГГц.
С одной стороны, полученные результаты действительно впечатляют – подобные температуры при таких нагрузках способны обеспечить разве что чиллеры на основе систем фазового перехода, с другой – а стоит ли овчинка выделки? Чудовищная потребляемая мощность системы, громоздкая СО «горячего» контура, высокая общая стоимость оправдываются лишь концептуальным статусом XtremeLabs. org MONSTER T.E.C. Project, на данный момент находящимся в стадии доработки.
Система пельтье что это
Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).
Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.
Содержание
Принцип действия [ править | править код ]
В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.
При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.
Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу – противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.
Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.
Достоинства и недостатки [ править | править код ]
Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.
Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.
Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.
В батареях элементов Пельтье [1] возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.
Применение [ править | править код ]
Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, требуемая мощность охлаждения невелика.
Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.
Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.
В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийных холодильников и до −120 °C для двухстадийных).
Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота. [2] [3] До азотного охлаждения использовали именно такой способ.
«Электрогенератор Пельтье» — модуль для генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:
- непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
- источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)
Поделитесь в соцсетях:
Тема охлаждения компонентов ПК волнует многих пользователей. Большинство из них ограничиваются стандартными воздушными кулерами, отдельные энтузиасты собирают СВО. А что же дальше? Наверняка те, кто серьезно интересовался разгоном, слышали о модулях Пельтье (или термоэлектрических модулях, далее по тексту – ТЭМ; английский вариант – TEC, Thermoelectric Cooler) и их применении в качестве тепло-отводов для сильно-греющихся элементов компьютера.
Однако зачастую даже базовую информацию по правильному использованию этих удивительных устройств найти трудно, отсюда – многочисленные ошибки тех, кто впервые с ними сталкивается. К слову, производители систем охлаждения также экспериментируют с модулями Пельтье, порой представляя на суд публики весьма любопытные концепты. Как работают ТЭМ, действительно ли они так уж небходимы в СО компьютера, как самостоятельно собрать нехитрые кулеры и избежать простейших ошибок, достаточно характерных для новичков, – обо всем этом мы расскажем в данном материале.
Немного теории
Чем же на самом деле являются модули Пельтье? В базовом определении это термоэлектрические преобразователи, принцип действия которых основан на эффекте Пельтье, открытом в далеком 1834 году. Суть данного процесса заключается в возникновении разности температур в месте контакта материалов при протекании сквозь них электрического тока.
Мы не станем вдаваться в подробности истории открытия и научного обоснования специфики работы ТЭМ, поскольку этой теме можно посвятить целую диссертацию. Однако общие понятия упомянем.
Базовая схема устройства ТЭМ |
Элементы Пельтье состоят из двух токопроводящих материалов (полупроводников) с разными уровнями энергии электронов в зоне проводимости. Физика протекания тока через подобные вещества такова, что для перехода электронов им требуется определенная подпитка, получаемая в момент прохождения тока через спайку. В таком случае возможно перемещение частиц в высокоэнергетическую зону проводимости от одного материала к другому. Место соприкосновения полупроводников в момент поглощения энергии охлаждается. Изменение направления тока или перемещение электронов из более энергетической зоны в менее насыщенную приводит к нагреву места контакта. Помимо этого, в модулях Пельтье наблюдается тепловой эффект, характерный для любых веществ, сквозь которые пропускают электрический ток. Вообще процессы, присущие ТЭМ, проявляются и в месте контакта обычных металлов, однако определить их без сложных приборов почти нереально. Поэтому основой для модулей служат полупроводники.
Структура термоэлектрического элемента (модуля Пельтье) |
Элемент Пельтье состоит из одной или более пар полупроводниковых параллелепипедов разных типов (как в диодах или транзисторах, n- и p-типа). Современная индустрия для этих целей наиболее часто выбирает германид кремния и теллурид висмута. Полупроводники попарно соединяются металлическими перемычками из легкоплавких веществ. Последние выполняют роль термоконтактов и напрямую соприкасаются с керамической пластинкой или подставкой. Пары полупроводников соединены последовательно, разные виды проводимости контактируют друг с другом. С одной стороны модуля имеются лишь n->p-переходы, с другой – p->n. Течение тока вызывает охлаждение и нагревание противоположных групп контактов. Поэтому можно говорить о переносе током тепловой энергии с одной стороны модуля Пельтье на другую и, как следствие, возникновении разности температур на пластинке. Правильное применение модулей позволяет извлечь некоторые выгоды для промышленных, в том числе компьютерных СО. К слову, элементы могут быть использованы и в качестве электрогенераторов – основываясь на тех же принципах работы, физика протекающих внутри процессов объясняется эффектом Зеебека (условно говоря, тот же эффект Пельтье с «противоположным знаком»).
Плюсы и минусы применения ТЭМ
Зачастую к достоинствам модулей Пельтье относят:
- сравнительно небольшие габариты;
- возможность работы и на охлаждение, и на нагревание системы;
- отсутствие движущихся частей, механических составляющих, подверженных износу.
В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:
В USB-холодильнике также используется модуль Пельтье |
- низкий КПД модулей;
- необходимость наличия источни- ка тока для их работы;
- большая потребляемая мощ- ность для достижения заметной разности температур и, как следствие, существенное тепло- выделение;
- ограниченные габариты и полезные характеристики.
Однако, невзирая на негативные характеристики модулей Пельтье, они нашли свое применение в ряде продуктов. ТЭМ выгодны в первую очередь там, где энергетическая эффективность охладителя некритична, чем меньше – тем лучше. Элементы служат для охлаждения устройств с зарядовой связью в цифровых фотокамерах, позволяющих добиться заметного уменьшения теплового шума при длительных экспозициях. Модули Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с целью стабилизации длины волны их излучения. Возможно использование нескольких ТЭМ, составленных последовательно в виде каскадов (холодная сторона одного охлаждает горячую другого), благодаря чему реально достичь очень низких температур для устройств, обладающих малым тепловыделением. Элементы Пельтье – основа компактных холодильников, в первую очередь автомобильных. Их применяют и в миниатюрных сувенирах из области компьютерной периферии, и в производительных СО в качестве основных или вспомогательных компонентов. Именно о последнем варианте мы и поговорим более подробно.
Модули Пельтье в ПК: практика
Элемент Пельтье размещается между водоблоком и медной «буферной» пластинкой |
При переходе к практической реализации СО на базе ТЭМ нужно сделать несколько оговорок, которые позволят правильно подобрать параметры итоговых конструкций. Нередко эксперименты новичков заканчиваются плачевно: либо температуры на «холодной» стороне модулей во время работы получаются выше, чем на горячей, либо системы демонстрируют откровенно слабые результаты даже по сравнению со стоковыми кулерами без элементов Пельтье. Причины зачастую кроются в неправильном расчете (или построении СО наугад). Дело в том, что любой ТЭМ имеет свои штатные характеристики, обычно выделяют два значения (рассмотрим их на примере модуля ТЕС1-12709 с заявленной максимальной мощностью 136 Вт), например, пишут, что ΔTmax Qcmax=0(°С) 66 и Qcmax ΔTmax=0(W) 89.2. Перефразируя данное выражение: модуль способен обеспечить максимальный перепад температур между сторонами, равный 89,2 ºС при отсутствии тепловой нагрузки и 0 ºС при наличии таковой на «холодную» сторону 66 Вт. Таким образом, полезная нагрузка модуля лежит в пределах от 0 до 66 Вт, в идеале – чем меньше – тем лучше и тем большую разницу температур обеспечит ТЭМ. В то же время любой модуль имеет другую характеристику – максимальную потребляемую мощность, которую тоже нужно отвести от него с помощью системы охлаждения. Для рассматриваемого ТЕС1-12709 Umax (В) равно 15.2 В, I max- 9 А. Следовательно, при указанных параметрах имеем энергопотребление 136,8 Вт, что, согласитесь, немало.
Система охлаждения должна успешно отводить тепло непосредственно от модуля (обеспечивая максимально возможную низкую температуру «горячей» стороны) и компонентов ПК. Примерный КПД такой системы можете вычислить сами – при полезной составляющей в 150–200 Вт (приблизительно столько выделяют современные разогнанные CPU) для получения хоть каких-то видимых результатов придется затратить не менее 600–800 Вт электрической мощности и отвести не менее киловатта тепловой. Именно поэтому производительные СО на базе модулей Пельтье не получили широкого распространения. Впрочем, прецеденты сравнительно успешной реализации гибридных кулеров известны, а мы попытаемся создать свои – маломощный и оптимальный. Чтобы избежать ограничений в виде недостаточного теплоотвода, на «горячую» сторону ТЭМ поместим производительные водоблоки, подключенные в контур СВО. Кстати, модули Пельтье нельзя устанавливать непосредственно на ядро/теплораспределительную крышку чипов – тонкая керамическая подкладка не способна поддерживать эффективную теплопередачу ко всем полупроводниковым парам, составляющим ТЭМ. Для этой цели лучше всего подойдет промежуточный «буфер» – медная пластинка толщиной 5–7 мм, полностью закрывающая поверхность модуля. К слову, оптимальный режим эксплуатации элементов Пельтье обеспечивается при пониженных напряжении и потребляемом токе. Приближение этих параметров к максимальным существенно повышает тепловую отдачу пластины, однако не так ощутимо – полезную составляющую.
Мы решили по максимуму охладить графический чип видеокарты Radeon HD 4350 и CPU Core 2 Duo E8500, попытавшись разогнать данные компоненты. Для отвода тепла от GPU использовались уже упомянутый ТЕС1-12709 (максимальная потребляемая мощность – 136 Вт) и самодельный медный водоблок, в паре с процессором работали ТЕС1-12726 (395 Вт) и один из лучших промышленных водоблоков Swiftech Apogee GT. Модули подключались напрямую к компьютерному БП в 12-вольтовую цепь. Применение киловаттного be quiet! Dark Power PRO BQT P6PRO-1000W давало все основания не переживать за недостаток мощности для питания ПК и элементов системы охлаждения. В контуре СВО трудились два «двойных» радиатора под 120-миллиметровые вентиляторы и помпа Hydor Seltz L30 (производительностью 1200 л/ч на холостом ходу).
Основа мощного чиллера – «бутерброд» из трех водоблоков и восьми ТЭМ, расположенных между ними |
В случае охлаждения компонентов до температур ниже комнатных (в частности, ниже «точки росы») стоит ожидать появления конденсата на переохлажденных поверхностях. Понятно, что вода в таком виде является главным врагом пользователя, и ее выделение необходимо предупредить. Делается это путем тщательной теплоизоляции любых поверхностей (частей РСВ, околосокетного пространства с обеих сторон платы, собственно ТЭМ, теплораспределителя процессора и GPU) материалами, не пропускающими воздух. Лучше всего для этих целей подходит стандартный теплоизоляционный материал для труб водоснабжения (на основании вспененного каучука), специальные замазки, отдельные виды поролона, поставляемого в комплекте с компонентами ПК, на худой конец термопаста и бумажные салфетки. В последнем случае допустима эксплуатация ПК лишь для проведения кратковременных бенчинг-сессий. Теплоизоляция обеспечит повышение общего КПД установки.
Итоговые температуры, полученные в различных режимах работы компонентов, их сравнение с показателями, обеспечиваемыми исключительно системой водяного охлаждения, приведены в диаграмме. Как видите, модули Пельтье позволили понизить температуру компонентов ощутимо ниже комнатной (в зависимости от загрузки). В таких условиях не составило особого труда разогнать процессор до частоты 4,3 ГГц с повышением напряжения питания до 1,35 В, а GPU заставить функционировать на 800 МГц (штатное значение – 600 МГц). В то же время мы получили ощутимый нагрев СО тестового стенда (в корпусе ситуация усугубилась бы более существенно) и резкий рост уровня энергопотребления ПК (собственно, вся конструкция потребляет больше, чем отдельно взятый компьютер на базе компонентов тестового стенда). Подобное решение однозначно пригодится в зимнюю пору, однако летом вряд ли порадует большинство пользователей.
Готовы ли вы на такие жертвы ради достижения сравнительно низких температур на компонентах ПК? Решайте сами, но помните о базовых советах, приведенных в этой части материала, – они помогут правильно применить модули Пельтье на практике. Использование систем охлаждения на основе ТЭМ разумно и оправданно в случае с маломощными компонентами (чипсетами материнских плат, GPU низко- и среднеуровневых видеокарт). Не забывайте и о теплоизоляции охлаждаемых элементов – ведь конденсат является главным врагом системы во время экспериментов с ТЭМ.
Выводы
Подытоживая вышесказанное относительно особенностей работы модулей Пельтье и целесообразности их практического применения, повторимся: ТЭМ имеют упомянутые преимущества и недостатки, которые не позволяют дать однозначного ответа на вопрос: «А стоит ли…?» Их использование оправданно для отвода незначительных тепловых нагрузок (именно к таковым относятся компактные холодильники, термостатированные лазеры; СО для маломощных компонентов ПК – чипсетов и отдельных GPU).
На базе элементов Пельтье можно создавать различные самодельные охлаждающие и нагревающие устройства, существуют примеры успешной реализации маломощных генераторов. Но прежде чем заниматься изготовлением подобных конструкций, ознакомьтесь все же с теоретической составляющей – предварительная подготовка избавит от ошибок и сэкономит время в момент практического воплощения проектов.
Говорить о применении модулей Пельтье в ПК следует достаточно осторожно: прочитав о получении низких температур на охлаждаемых элементах, новички часто забывают о значительной потребляемой и выделяемой мощности подобных СО, не учитывают параметры и «запас прочности» отдельно взятой конструкции. ТЭМ заинтересуют в первую очередь оверклокеров, для которых любой выигрышный градус и каждый мегагерц важны. Рассматриваемые элементы – промежуточное звено между классическими системами водяного охлаждения и чиллерами или фреонками, работающими по принципу фазового перехода. Впрочем, применение ТЭМ отнюдь не назовешь простым, поэтому прежде чем приступать к серьезным экспериментам, тщательно взвесьте все «за» и «против».
Готовые СО на базе ТЭМ
Модули Пельтье используются производителями систем охлаждения для ПК в качестве основных и вспомогательных компонентов кулеров. Порой из этого получаются эффектные действенные устройства, иногда все выходит не так гладко, как изначально задумывалось. Мы решили вспомнить об основных СО, применяющих ТЭМ, которым прочили роль революционеров своего времени.
Thermaltake SubZero4G Один из первых кулеров с элементом Пельтье, наделавший сравнительно много шума в сфере охлаждения CPU (2003 год). Однако невысокий запас прочности, значительное по тем временам энергопотребление, громоздкость конструкции и шумность в работе не позволили ему закрепиться на рынке. Появись эта модель на год-два раньше – возможно, все обернулось бы иначе.
Titan Elena Суперкулер для видеокарт, построенный по тому же принципу, что и Titan Amanda: одна половина радиатора работает непосредственно на отвод тепла от GPU, другая охлаждает горячую сторону ТЭМ. В свое время оказался одним из лучших во время тестирования СО для графических адаптеров. (Мы писали о нем в «Домашнем ПК» в 2007 году.)
Swiftech MCW6500-T Самое мощное современное решение для охлаждения CPU, использующее элемент Пельтье. Представляет собой производительный водоблок, отводящий тепло от ТЭМ (около 400 Вт потребляемой электрической мощности), который, в свою очередь, создает оптимальный температурный режим процессора. Эта система способна обеспечить функционирование Core i7 на частоте порядка 4 ГГц при температуре около 0 ºС (режим простоя) и 20–30 ºС в режиме максимальной нагрузки.
Swiftech MCW60-T Аналогично процессорному решению представляет собой высокопроизводительный водоблок для графического адаптера, дополненный модулем Пельтье. В зависимости от TDP видеочипа способно удерживать его температуру на уровне комнатной или ниже.
Cooler Master V10 Элементы Пельтье этой СО охлаждают часть тепловых трубок. Подход достаточно интересный и правильный, применение модулей позволяет сбить пару-тройку градусов на процессоре. Однако экономическая целесообразность такого хода – под большим вопросом, ввиду того что V10 при существенной цене не в состоянии обогнать лучшие воздушные суперкулеры. Скорее всего, виноваты особенности конструкции и недостаточная мощность ТЭМ.
Titan Amanda Серия достаточно современных процессорных суперкулеров на тепловых трубках, использующих термоэлектрический модуль (2007–2008 гг). Часть радиатора отводила тепло непосредственно от ТЭМ, тогда как другая половина охлаждала греющийся компонент. Подобный подход к проектированию позволяет избежать резкой перегрузки СО вследствие превышения лимитов тепловыделения модуля Пельтье. Кулеры линейки Amanda демонстрировали отличные результаты с процессорами, обладающими сравнительно невысоким TDP.
XtremeLabs.org MONSTER T.E.C. Project
Владельцев СВО и тех, кто собирается обзавестись жидкостными системами, могут заинтересовать так называемые чиллеры на базе элементов Пельтье. В зависимости от типа подключения ТЭМ в контур они позволят немного понизить температуру теплоносителя, а при создании мощных СО даже обеспечат температуру хладагента, близкую к нулевой.
Известный нашим читателям энтузиаст Wehr-Wolf давно интересовался затронутой темой эффективного охлаждения компонентов ПК и их дальнейшего экстремального разгона. Начиналось все в далеком 2005 году с теоретических набросков, рассуждений и одного из главных компонентов системы – массивного «бутерброда», состоящего из больших водоблоков. Однако заброшенные на длительное время задумки удалось реализовать лишь совместно с автором данного материала, в середине этого года запустив энтузиастский проект XtremeLabs.org MONSTER T.E.C. Project.
Первый пуск ТЭМ-чиллера в полевых условиях
Принцип работы системы достаточно прост: модули Пельтье (8 ТЭМ с максимальной потребляемой мощностью 136 Вт каждый) охлаждают с двух сторон большой медный водоблок, а сами, в свою очередь, охлаждаются аналогичными водоблоками. «Холодный» и «горячий» контуры СВО полностью разделены между собой. Для питания такого количества ТЭМ в процессе первого запуска использовались два компьютерных БП с общей заявленной мощностью 1200 Вт, в качестве охладителя «горячего» контура выступала СЖО с двумя радиаторами под два 120-миллиметровых вентилятора каждый, прокачиваемая мощной помпой. Однако даже такой СВО оказалось недостаточно, и радиаторы пришлось продувать высокопроизводительными промышленными вентиляторами. В «холодный» контур были подключены помпа Hydor L20 II и водоблок Swiftech Apogee GT, охладителем выступал большой водоблок, контактирующий с «холодной» стороной ТЭМ. В результате первого эксперимента удалось добиться температуры воды в контуре порядке 5–7 ºС, при этом в качестве нагрузки для системы использовался процессор Core i7 965 Extreme Edition, разогнанный до частоты 4 ГГц.
Редакция сайта iXBT.com обращается к вам с просьбой отключить блокировку рекламы на нашем сайте.
Дело в том, что деньги, которые мы получаем от показа рекламных баннеров, позволяют нам писать статьи и новости, проводить тестирования, разрабатывать методики, закупать специализированное оборудование и поддерживать в рабочем состоянии серверы, чтобы форум и другие проекты работали быстро и без сбоев.
Мы никогда не размещали навязчивую рекламу и не просили вас кликать по баннерам. Вашей посильной помощью сайту может быть отсутствие блокировки рекламы.
Спасибо вам за поддержку!
Элементы Пельтье или мой путь к криогенным температурам / Хабр
Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…
Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.
Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.
Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).
Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:
Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…
Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.
Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.
Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…
Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).
Ну а с оставшимся сухим льдом можно поступить следующим образом:
PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.
Разновидности популярных модулей пельтье – ООО «УК Энерготехсервис»
Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.
Устройство и принцип действия элемента Пельтье.
Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.
При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.
Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.
Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.
Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.
Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.
Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.
- Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.
- Применение.
- Термоэлектрические модули Пельтье применяются:
- в небольших бытовых и автомобильных холодильниках;
- в охладителях воды;
- в системах охлаждения электронных приборов;
- в термоэлектрических генераторах.
Я, используя элемент Пельтье, сделал холодильник для вина.
Достоинства и недостатки модулей Пельтье.
Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками.
Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем.
Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.
К достоинству элементов Пельтье можно отнести:
- отсутствие механически движущихся частей, газов, жидкостей;
- бесшумная работа;
- небольшие размеры;
- возможность обеспечивать как охлаждение, так и нагревание;
- возможность плавного регулирования мощности охлаждения.
Недостатки:
- низкий кпд;
- необходимость в источнике питания;
- ограниченное число старт-стопов;
- высокая стоимость мощных модулей.
Параметры элементов Пельтье.
- Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
- Delta Tmax (град) — максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
- Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
- Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
- Resistance (Ом) – сопротивление модуля постоянному току.
- COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.
Эксплуатационные требования к элементам Пельтье.
Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.
- Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор. Иначе:
- Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
- Допустимый нагрев горячей стороны как правило + 80 °C ( в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
- При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
- Важен надежный тепловой контакт модуля с радиатором охлаждения.
- Источник питания для модуля должен обеспечивать ток с пульсациями не более 5%. При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
- Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
- К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
- Недопустимо, для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию.
- Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность, т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
- Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В, или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
- Модули имеют герметичное исполнение, их можно использовать даже в воде.
- Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.
Мною был разработан контроллер элемента Пельтье для холодильника, удовлетворяющим всем этим требованиям. Он:
- Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
- Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
- Обеспечивает плавное включение модуля.
- Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
- Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
- Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
- Имеет высокий кпд, широкие функциональные возможности.
Термоэлектрический модуль Пельтье TEC1-12706.
Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.
Характеристики модуля TEC1-12706 привожу в переводе на русский из документации TEC1-12706.pdf компании производителя – HB Corporation.
Технические параметры TEC1-12706.
Обозначение | Параметр | Значение, при температуре горячей стороны | |
25 °C | 50 °C | ||
Qmax | Холодопроизводительность | 50 Вт | 57 Вт |
Delta Tmax | Разность температур | 66 °C | 75 °C |
Imax | Максимальный ток | 6.4 А | 6.4 А |
Umax | Максимальное напряжение | 14.4 В | 16.4 В |
Resistance | Сопротивление | 1.98 Ом | 2.3 Ом |
- Графические характеристики.
- Габаритный чертеж модуля TEC1-12706.
Обозначение | Размер |
A | 40 мм |
B | 40 мм |
C | 3.8 мм |
Рекомендации по эксплуатации.
- Максимально – допустимая температура 138 °C.
- Не допустимо превышение значения параметров Imax и Umax.
- Срок службы 200 000 часов.
- Параметр частота отказов основан на длительных испытаниях с выборкой 0.2%.
- Производитель — HB Corporation.
Пример разработки на элементе Пельтье — холодильник для вина.
TEC1-12705 Термоэлектрический охладитель Пельтье 40 * 40 ММ 12 В Модуль охлаждения Пельтье Полупроводниковый холодильный лист
Характеристики
Страна производитель | Китай |
Вес |
0.025 (кг) Показать все
Описание
Характерная черта:
- Размеры: 40 * 40 * 3,8 мм номер элемента 127
- Внутреннее сопротивление: 2,5 ~ 2,8 Ом (температура окружающей среды 23 ± 1, 1 кГц, испытание по переменному току)
- Максимальная температура: Tmax (Qc = 0) более 67.
- Рабочий ток: Imax = 4,3-4,6 А (номинал при 12 В)
- Номинальное напряжение: 12 В (Vmax: пусковой ток 15 В 5.8 А)
- Мощность охлаждения: Qcmax 50-60 Вт
- Рабочая среда: диапазон температур -55 ~ 83 (сильное падение температуры окружающей среды напрямую влияет на эффективность охлаждения)
Процесс упаковки: четыре недели стандарт 704 силиконовой резины
В коплект входит:
1 х TEC1-12705 термоэлектрический охладитель Пельтье
Доступные разновидности товара:
https://imgaz.staticbg.com/images/oaupload/ser1/banggood/images/05/58/906d47d1-6ab2-45d1-963b-7238f098dbfe.JPG
Отзывы о компании ???? ВАМ НА ДОМ — доставим из Китая!
81% положительных
из 51 отзыва
Актуальность цены | 95% |
Актуальность наличия | 83% |
Актуальность описания | 83% |
Выполнение заказа в срок | 75% |
Применение элементы пельтье – Что такое элемент Пельтье и как его сделать своими руками?
Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар ( в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это — медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.
Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.
В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами — при протекании и под действием электрического тока создается разница температур в местах контактов термопар — полупроводников «n» и «р» — типа.
Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.
Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.
В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n — p и процесс выделения тепловой энергии на p — n контакте. В итоге часть термопары полупроводника, который сопрягается с n — p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны — соответственно, нагреваться.
В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.
Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.
Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.
Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.
Основными элементами термопреобразователя являются: полупроводники р — типа, n — типа, керамические пластины, медные сопряжения — проводники; контакты подвода электрического тока «плюс» и «минус».
Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.
Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.
Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.
Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.
Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования.
Согласно законов физики — любой нагрев материала приводит к его тепловому расширению, а охлаждение — к сжатию.
Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.
Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».
Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело — газ или жидкость ( к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.
Элементы Пельтье. Работа и применение. Обратный эффект
Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).
Ни для кого не секрет, что электронные устройства при работе греются.
Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье.
Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.
1 — Изолятор керамический 2 — Проводник n — типа 3 — Проводник p — типа
4 — Проводник медный
В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.
Принцип действияЧтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости.
При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются.
При течении тока в обратную сторону происходит обычный эффект нагревания контакта.
Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:
- Свойства металла.
- Температуры среды.
Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.
На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.
Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.
При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.
Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.
Сфера использованияЧтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.
Вот их некоторые области использования:
- Устройства ночного видения.
- Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
- Телескопы с охлаждением.
- Кондиционеры.
- Точные часовые системы охлаждения кварцевых электрических генераторов.
- Холодильники.
- Кулеры для воды.
- Автомобильные холодильники.
- Видеокарты.
Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.
В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств.
Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.
Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.
Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.
Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД.
Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление.
Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.
Обратный эффект элементов ПельтьеТехнология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.
Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.
Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых.
В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры.
А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.
Преимущества и недостаткиДостоинствами элементов Пельтье можно назвать следующие факты:
- Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
- Нет движущихся и трущихся частей, что повышает его срок службы.
- Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
- При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.
Недостатками можно назвать такие моменты:
- Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
- Довольно сложная система отведения тепла от поверхности охлаждения.
Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.
Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.
Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.
Другие применения термоэлектрических модулейЭффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.
Основные места использования модулей:
- Охлаждение микропроцессоров.
- Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
- В бытовых устройствах, действующих на нагревание или охлаждение.
Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.
Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.
Похожие темы:
Термоэлектрические модули и элементы Пельтье35
Термоэлектрические модули, или модули Пельтье относятся к термоэлектрическим преобразователям, принцип работы которых основан на т.н.
эффекте Пельтье — при протекании тока через пластину, состоящую из двух соприкасающихся полупроводников, одна сторона пластины нагревается, а вторая — охлаждается. Этот эффект также известен как «обратный эффект термопары».
Перепад температур при этом на обеих сторонах пластины — одинаков. По этой причине модуль Пельтье можно назвать «термонасосом», так как на самом деле происходит именно «перекачка» тепла с одной стороны модуля на другую.
То есть, модуль Пельтье выполняет функцию «активного» радиатора, отводя тепло от какого-либо объекта «холодной» стороной и рассеивая его «горячей» стороной.
Важно понимать, что выделяемое тепло необходимо куда-то отводить, причем не только тепло, выделяемое охлаждаемым объектом, но также и тепло, образующееся на «горячей» стороне модуля во время его работы.
Таким образом, применение модуля Пельтье в радиоэлектронном оборудовании оправдано лишь совместно с использованием вентилятора обдува, который будет рассеивать горячий воздух. По эффективности охлаждение с помощью модуля Пельтье можно сравнить с водяным охлаждением.
Наиболее известным отечественным производителем модулей Пельтье является завод «Криотерм».
Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Гомель, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Саратов, Тверь, Томск, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Евросеть» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Ярославль, Владивосток, Махачкала, Томск, Оренбург, Кемерово, Новокузнецк, Астрахань, Пенза, Липецк, Киров, Чебоксары, Калининград, Курск, Улан-Удэ, Ставрополь, Сочи, Иваново, Брянск, Белгород, Сургут, Владимир, Нижний Тагил, Архангельск, Чита, Смоленск, Курган, Орёл, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и др.
Товары из группы «Термоэлектрические модули и элементы Пельтье» вы можете купить оптом и в розницу.
Какая частота радиотелефонов вредна для человека
Цель данной статьи — дать описание процессов, которые протекают в организме под действием на него электромагнитного излучения, и дать оценку разным факторам электромагнитного излучения в процессе контакта с живым организмом.
Проблема действия НТП на жизнь и деятельность человека уже сто лет будоражит умы многих людей. С возникновением сотовых телефонов вопрос уровня действия электромагнитных полей разного диапазона на человека снова оказался в центре внимания.
Объективная действительность такова, что организм человека не может адаптироваться к электромагнитному техногенному излучению, так как у него нет соответствующих адаптационных механизмов.
Согласно радиобиологическим выводам, ионизирующие действия вредны при сколь угодно маленькой дозе. Причина зла скрыта только в недостатке информации у людей, с чем конкретно они имеют дело.
Если Вам необходима помощь справочно-правового характера (у Вас сложный случай, и Вы не знаете как оформить документы, в МФЦ необоснованно требуют дополнительные бумаги и справки или вовсе отказывают), то мы предлагаем бесплатную юридическую консультацию:
- Для жителей Москвы и МО — +7 (499) 653-60-72 Доб. 448
- Санкт-Петербург и Лен. область — +7 (812) 426-14-07 Доб. 773
Вред вай-фай роутера для здоровья человека должен быть верно оценен, поскольку большинство населения городов практически постоянно находится в зоне излучения.
Невозможно представить жизнь современного человека без телевизора, планшета, телефона, компьютера, игровой приставки с мгновенным доступом в интернет. Как правило, такая связь обеспечивается wi-fi проводниками.
Но, помимо пользы, существует и деструктивная составляющая такой услуги. Возникает вопрос: насколько же велико воздействие на здоровье человека?
В году операторами мобильной связи была повышена частота связи насыщают воздух положительными зарядами, что вредно для человека.
Влияние мобильных радиопереговорных устройств на здоровье человека неоднократно Человеческое ухо особенно чувствительно к звукам с частотой в диапазоне герц, Согласно документу, учёные опубликовали большое количество статей, опровергающих вред мобильных телефонов.
Сейчас у нас появился 3G, который использует частоту чуть выше 2 ГГц. В повседневной жизни человек подвергается воздействию в том числе и от радиотелефонов, домашних стационарных трубок, и от.
Здоровье и мобильный телефон
Удивительное человечество! Сначала мы придумываем различные удобные средства для того, чтобы упростить жизнь, а после — всячески пытаемся доказать их вред. Не обошли пытливые умы и радиоволны. Но такое изобретение, как радиотелефон, хоть и будоражит еще некоторых скептиков, но уже значительно реже.
Попробуем в рамках обывателя рассмотреть, реально ли радиотелефон приносит вред, так как польза от него понятна удобная стационарная связь. Это цифровой режим, который с начала х годов плотно вошел в жизнедеятельность, как предприятий, так и отдельных лиц, и держит позиции до сих пор. Все потому, что является удобным, не приковывая человека к основной телефонной станции.
Терминалы или трубки — легко перемещаются в радиусе действия устройства. Частота волн — до МГц. Такие телефоны в широком ассортименте представлены в интернет-магазине www. Больше всего претензий со стороны скептиков было именно в отношении частоты волновых колебаний радиотелефона. Какие только гипотезы не выдвигались.
Итак, давайте не будем хвататься за сердце, а включим логику и вспомним физику средних классов. Радиоволна — это волны, располагающиеся в электромагнитном спектре.
Рнпц гигиены: наибольший вред от излучения приносит сотовый телефон, а не базовая станция
Электрик Инфо — мир электричества. Электрика в квартире и доме, электроснабжение, электромонтаж, ремонт, освещение, домашняя автоматизация, практическая электроника.
Пельтье Часть 2. Самое производительное охлаждение, которое войдёт в обычный корпус. – PC-01
Часть 1
Напомню, что в прошлой части я делал первые пристрелки к тому что вообще из себя представляют элементы пельтье и как с ними работать, какие особенности их работы. Это нужно было чтобы сформировать более точные планы дальнейшей работы, ну либо вообще отказаться от идеи не потратив сразу много денег, в случае если бы оказалось, что с ними ничего толкового не сделать (вопреки массе комментариев в видеоверсии о том, что с Пельтье ничего не получиться могу сказать, что получиться и на базе Пельтье по схеме в данной статье можно сделать, возможно, самое эффективное охлаждение которое возможно уместить в стандартном корпусе компьютера).
И напомню основную проблему этих элементов. Она заключается в их принципе работы и функциональных ограничениях. Внутри элемента собрано много пар полупроводниковых сборок и при протекании тока электронам не хватает собственной энергии и они как бы берут энергию в долг из окружающей среды, то есть забирают часть тепла.
Естественно эта энергия потом опять рассеивается в тепло, но суть в том, что рассеиваться в объеме всего модуля, а забирается с одной из плоскостей. Кроме того тепла, что переноситься есть и тепло выделяемое от электрического сопротивления модуля. И как раз в прошлом видео было выяснено насколько эффективно работают модули. В благоприятных условиях реально решаемой задачи вышло, что отношение передаваемой энергии к потребляемой модулем составляет 0,46. То есть для переноса 46 Ватт тепла затрачивается 100 Ватт энергии. Ну и естественно от самого модуля нужно отвести и 46 и 100 Ватт тепла.
Но проблема не столько в этом сколько в том, что для электронов нужно не бесконечное количество энергии, то есть если к охлаждаемой стороне подать тепла больше, чем нужно для электронов в модуле — то происходит постепенный разогрев и холодной и горячей стороны и в конечном итоге элемент выходит из строя. И проблема в том, что этого тепла элементам нужно не так уж и много. А если точно — то при хорошем охлаждении горячей части 15 Амперного модуля при питании в 12 Вольт модулю нужно 69 Ватт тепла. То есть одного модуля недостаточно для процессора. Именно поэтому сейчас не продаются кулера с модулями Пельтье. Раньше были варианты где тепло разделялось, и только часть уходило на Пельтье с процессора, но проблема в том, что сам модуль сильно нагревал радиатор, а очень крупный радиатор в районе сокета уже не поставить и эта вся тема сошла на нет.
И в общем-то то, что раньше делали с готовыми решениями на Пельтье закономерно плохо работало в ограниченных условиях эксплуатации и в прошлой части я предложил сделать другую компоновку, которая сильно отличается от того что ранее продавалось. И самое главное было уйти от ограничений габаритов крышки процессора путём передачи тепла в теплоноситель. И разделить систему на два контура. Холодный и горячий.
Поставить несколько модулей Пельтье так чтобы все холодные части забирали тепло из холодного контура, а все горячие части отдавали тепло в горячий контур. В таком случае мы получим складывание необходимого модулями тепла. То есть если одному модулю нужно 69 Ватт, то двум нужно будет 138 Ватт и т.д. И изначальный план у меня был поставить 4, может быть 5 модулей. То есть так чтобы они могли отвести под 300 Ватт тепла. Но практические тесты показали всё же значимую проблему с количеством потребляемой энергии. Допустим если процессор у нас потребляет 300 Ватт, то вместе с системой охлаждения это было бы 900 Ватт тепла, которые нужно куда-то делать. Ну и в целом — такая система точно не сможет поместиться в корпусе компьютера. Поэтому я решил что надо делать по другому. Делать так чтобы это имело адекватные габариты, то есть можно было поставить в фулл тауер или даже в некоторые мидл тауэры, чтобы для всей системы хватало одного блока питания ватт на 700-900 при этом с запасом. То есть поставил задачу сделать такую систему которую можно впихнуть в обычный компьютер, но при этом так чтобы она всё равно была на голову выше, чем водянка.
Естественно тут чудес не бывает, нельзя вдруг так сделать что оно не получается, захотел и получилось и совершенно без компромиссов.
И тут уже, чтобы понять что можно сделать надо углубляться в то как вообще происходит управление модулями Пельтье. А управляются они и ограничением тока и управлением напряжения. По сути у Модуля Пельтье есть несколько характеристик.
Первая — разница температур между холодной и горячей частью, вторая — количество передаваемого тепла от горячей части к холодной и третья — эффективность работы. Это тот самый коэффициент 0,46, который я посчитал в прошлой части для китайских 15 Амперных элементов при питании от 12 Вольт без ограничений по току.
И как я уже сказал — изменяются эти характеристики от напряжения и от тока, а так же от условий работы, но условия работы у нас — передавать столько тепла сколько возможно, и с обеспечением достаточного отвода тепла, это мы не меняем. Поэтому по сути у нас меняются только ток и напряжение.
Для того чтобы понять что и как от чего зависит — предлагаю рассмотреть графики зависимости всех этих параметров. На китайские модули Пельтье всех данных я не нашёл, так что предлгаю рассмотреть графики на примере модуля TB-127-2.0-1.15 от Криотерм, это наиболее похожий элемент на китайский 15 Амперный модуль (для тех кто захочет повторить проект ссылки на все комплектующие будут в конце статьи, так же вы найдёте «выкройки» для деталей которые я делал из листового металла).
Для начала предлагаю рассмотреть вольт амперную характеристику на нижним правом графике.
Видно, что если подать 12 Вольт, то и ток будет примерно те же 12 Амер. У Китайских в реальности на 12 Вольтах около 10-11,5 Ампер в зависимости от качества теплоотвода.
Это исходя из моего личного опыта который я показал в прошлой статье. Далее на этом графике видно, что при снижении подаваемого напряжения — падает и ток. Зависимости линейные. Ну и тут такой модуль, что напряжение и ток практически равны друг другу. Китайские 15 Амперные в Целом — тоже близки к этому, далее ещё на цифры посмотрим.
Ну и понятно, что допустим на 12 Вольтах получается 12 Ампер и выходит потребление 144 Ватта, а на 10 Вольтах выходит 10 Ампер и уже всего 100 Ватт. Естественно при этом должны ухудшиться какие-то основные характеристики модуля.
Переходим на верхний правый график. Тут мы видим зависимость напряжения и максимальной разницы температур между холодной и горячей частью. Видно, что чем выше напряжение, тем больше разница температур. Именно эта цифра говорит о виртуальном снижении температур окружающей среды для процессора. То есть находясь, допустим, в условиях 20 градусов окружающего воздуха, при разнице в 60 градусов процессор будет выдавать цифры как будто он находиться в помещении при -40 градусах. И как видно, если мы снижаем напряжение, то получается и меньше эта разница которая нам так нужна. Китайский 15 Амперный элемент с питанием 12 Вольт у меня выдал разницу температур порядка 56 градусов в не лабораторных условиях, то есть в условиях которые я смогу создать просто у себя дома. Забегая вперёд скажу, что дальше будет работа модулей на 6 Вольтах. Китайский 15 Амперный модуль на 6 Вольтах выдал разницу между холодной и горячей части около 40 градусов. То есть уже сейчас можно говорить о том, что мы точно теряем сразу 16 градусов в охлаждении, а это не мало. Но кроме этого и предельное количество теплоты передаваемое модулем так же зависит от тока, и скорее всего линейно. То есть если у нас ток падает в два раза, то и передаваемые 69 Ватт тепла на один модуль превращаются в 34,5. Но из-за того, что кроме тока падает и напряжение, то получается, что начинает расти эффективность работы модулей.
И того подведем промежуточные итоги: чтобы нам увеличить эффективность и впихнуть всё в корпус нам надо уменьшить напряжение работы элементов Пельтье, при этом потеряв в температуре охлаждения и нам потребуется больше элементов Пельтье для такого же объёма отводимой энергии.
Но я естественно решил, что систему можно обмануть и получить и высокую энергетическую эффективность и при этом высокую разницу температур.
Скажу сразу, что я не предусмотрел одну важную вещь, поэтому эта хитрость не вышла, но оно в целом исправимо. Я расскажу, что я сделал не так, чтобы вы не повторяли мои ошибки и как это поправить, чтобы можно было получить и эти 16 градусов обратно и при этом сохранить энергетическую эффективность, но сам я делать это не буду скорее всего.
А решение у меня было довольно простое. Из школьного курса некоторые могут помнить о том как вычисляется напряжение участка цепи. Но у нас модули Пельтье одинаковые, так что никакие формулы не нужны, напряжение всей цепи делить на все модули поровну, если подключить их не параллельно, а последовательно.
То есть если мы возьмём питание в 12 Вольт и подключим последовательно два модуля, то на каждом будет по 6 Вольт.
В общем — никаких преобразователей напряжения, КПД преобразований 100%. Но это нисколько не решает проблем с потерей 16 градусов. Вопрос количества элементов решается при этом тоже просто. Мы параллельно друг к другу можем подключить несколько пар элементов.
Такая схема называется последовательно Параллельной. То есть на концах каждой пары будет по 12 Вольт, а на каждом элементе по 6 Вольт. И далее в силу вступает моя простая идея. Нам не всегда нужны эти 16 градусов, допустим если мы хотим пройти какой-то бенчмарк на высокой частоте нам нужно несколько минут низких температур. А так как мы охлаждаем не процессор, а теплоноситель, то мы можем переохладить теплоноситель пока тест не идёт, получить эти дополнительные -16 градусов, и пройти бенчмарк на низких температурах просто накопленных в теплоносители. Но при этом для длительной работы нам нужно получить высокую эффективность, при этом в обоих режимах имея схожее энергопотребление, чтобы все кабели и блок питания не имели разные требования.
И в общем я решил, что если в каждой паре мы сможем отключать один из двух модулей, то есть подключать цепь в обход второго модуля и все модули включать чисто параллельно, то мы сможем в простое системы копить недостающие 16 градусов, а потом в процессе нагрева жидкости в нагрузке переключаться обратно на параллельно последовательную схему подключения.
И звучит всё правдоподобно. С электрической точки зрения я даже это реализовал и далее покажу как.
Ещё я решил, что далеко не всегда нужно иметь все параллельные ветви сборок из модулей, то есть надо реализовать возможность подключения и отключения параллельных ветвей схемы. Допустим если система в простое отключать вообще всё. Если нагрузка малая — включать только одну ветвь, большая — две ветви, то есть 4 модуля, ещё выше нагрузка — три ветви, то есть 6 модулей Пельтье.И в турбо режиме переключаться на полностью параллельную схему. Естественно 3 модуля в последовательной схеме будут потреблять больше, чем 6 в последовательно параллельной, так как мощность — это произведения тока на напряжение, а мы уже выяснили, что они у 15 Амперных модулей Пельтье практически линейно связанные, то есть при падении напряжения в 2 раза потребляемая мощность падает в 4 раза (передаваемое количество тепла в два раза).
Тем не менее — разница уже такая, что в целом — на оба варианта, то есть 6 последовательно параллельных и 3 параллельных в целом — нужны схожие блоки питания и сечения проводов, то есть не нужно делать суперизлишних запасов на временный турбо режим заморозки хладогента.
Реализация схемы подключения
Сделать я её решил довольно просто. Перед входом на первый модуль я поставил твердотельное реле на каждую параллельную ветвь. Они не щёлкают, ну и в целом на практике показали, что и не особо и греются. Их ресурс срабатываний — вечность. Внутри там уже есть оптронная развязка и всё что нужно для нормальной работы, то есть собирать из мосфета самому было бы сложнее и дороже, чем купить готовое реле. Но такие реле не умеют выполнять работу по переключению, которая нужна уже между модулями, чтобы пускать ток в обход второго модуля. Поэтому была куплена плата с 4-мя обычными электромеханическими реле на 30 Ампер каждый. Тут так же вся необходимая обвязка есть, то есть ничего не пробъёт в обратку на управляющий контроллер и т.д.
Эти реле просто переключает напрямую первый элемент Пельтье на плюс питания, а второй элемент пельтье остаётся с оборванный контактом, так что через него обратно или ещё как-то ток не пойдёт. Естественно всё куплено было с расчётом управления от 5 Вольт. То есть с любого 5 Вольтового контроллера, и в частности выбрана была «ардуина», как наиболее простое решение. На цифровые выходы «ардуины» подаются цифровые высокие сигналы, которые у «атмеги» 5 Вольт, и ими управляются и твердотельные и электромеханические реле, вернее там на плате с электромеханическими реле всё сложнее, управление происходит от отдельного питания, а с контроллера идут сигналы которые тригерят уже переключения отдельным питанием. Это надо чтобы можно было на одну ногу контроллера повесить очень много реле. Управляющие токи реле хоть и не очень большие, но если реле много, то контроллер может не вывести. В общем — купил всё готовое, потому что там уже всё продумано (ещё раз напомню, что ссылки на всё будут в конце).
Я всё установил, и скажу, что оно даже всё заработало как я и планировал, то есть можно включать все параллельные цепи по отдельности и переключать режим работы из последовательно параллельного в параллельный. но на деле — это всё сделать сложнее, чем мне бы хотелось. Когда перейдём к практике я расскажу, что пошло не так, и дело не в электрической части.
Сделать планировалось примерно так, 4 одинаковых радиатора я поставил на рендере для красоты. В этой части было собрано не 6 модулей, как на рендере, а четыре. Верхние водоблоки — водоблоки холодной части, нижние, находящиеся внутри кожуха — водоблоки горячей части. Радиаторы и одна из помп являются частью горячего контура, другая помпа и верхние водоблоки — часть холодного контураВ целом я запланировал сделать 3 ветви модулей, то есть 6 модулей пельтье, но сейчас пока собрал две ветви, так как это довольно затратно покупать всё за раз, в добавок я не знаю сколько секций СВО нужно на один модуль на 6-ти Вольтах.
А вот установка живьём в которой собрана только горячая часть, видно трубки уходящие внутрь кожуха на радиаторы и водоблоки.А это внутренние убранства. Всего на 4 модуля Пельтье нужно 9 водоблоков. по два на элемент, который лежит как мясная котлета гриль, а две булочки с кунжутом — это водоблоки, плюс ещё один водоблок на процессор.Полностью собранная система уже с двумя контурамиПодключаются пары модулей к блоку питанию обычными разъёмамиВентеляторы и помпа подключены через специальный разветвительArduini UNO и два реле внутри кожухаЕщё изображение с внутренним убранствомИ да, пока управлял я всем не ардуиной, а перетыкивая 5 Вольт на макетной плате для всех реле, и темодатчики, которые нужны будут для автоматического управления я тоже поставил в отельный блок который просто выводил комнатную температуру и температуру жидкости в холодном контуре.
Для лучшего понимания компоновки лучше подойдёт анимация.В общем — это ещё не последняя часть, но в целом — какие-то практически значимые результаты привести всё же я считаю нужно уже сейчас.
Сравнение с другими системами охлаждения
И для практических результатов я решил, что стоит сравнить эту систему с чем-то другим.
Я выставил у своего i9 9900k частоту 4,8 ГГц без снижения на AVX, чуть задрал напряжение, чтобы было побольше тепла.
При комнатной температуре я прогнал Cinebench R20 с несколькими системами охлаждения.
Первая — тонкая башня на 4 трубки и вентилятор на 2 тысячи оборотов.
Самое горячее ядро нагрелось до 80 градусов при комнатной температуре 28 градусов. Да, за окном уже за двадцать было, а отопление не выключили, так что в квартире Ташкент.
нажмите для увеличенияДалее я пока собирал систему решил ещё собрать другую конфигурацию, вообще без пельтье. А взять тот водоблок, который я купил на процессор, взять те два радиатора, которые будут трудиться в системе с пельтье и собрать обычную кастомную СВО.
И вышла температура 70 градусов при температуре в помещении 27 градусов.
То есть с коррекцией комнатных температур разница между тонкой башней и 5 секционной кастомной водой с дорогим водоблоком с микроканалами — 9 градусов. Это к слову о том, как в прошлой части я писал, что если поставить несколько радиаторов от грузовиков — то температура в сравнении с парой секций хорошо если упадёт ещё на градус. В целом — на хорошем воздухе можно было бы получить меньше градусов 6-7 от тонкой башни, ну и ещё пару-тройку градусов при переходе на воду. И всё. Это потолок. Без изменения температуры среды — ниже температуры не опустить, в этом то и вся соль Пельтье, фреонок, и систем с расходом холодных веществ, то есть сухого льда или азота. Иных средств кроме как изменения температуры среды — нет.
Осталось только протестировать саму систему на пельте. Думаю особо подробно рассказывать про устройство не стоит. Скажу только то, что она состоит из двух водяных контуров. Горячий находится внутри самодельного кожуха, он собирает тепло с 4-х горячих частей модулей пельтье посредством процессорных водоблоков. И рассеивает это тепло двумя радиаторами, один на 3 секции, второй на две секции. Вентиляторы по 2000 оборотов. Помпа с маленькой колбой.
Второй контур — холодный. Контактирует с холодными половинками модулей, так же посредством водоблоков. А так же с процессором посредством водоблока. Для этого контура стоит вторая помпа. Контуры, естественно друг с другом не пересекаются.
С элементами Пельтье первое что я решил проверить — это насколько они вообще хорошо проводят тепло когда выключены, то есть можно ли пользоваться этой СВО когда элементы Пельтье отключены.
И в этих же условиях теста система показала нагрев самого горячего ядра до 73 градусов.
То есть потери в 3 градуса в сравнении с СВО в которой не было элементов Пельтье. В общем — эффективность падает, но результат всё равно не плохой, то есть если строить эту систему внутри корпуса и рассчитывать пользоваться её возможностями время от времени, а не на постоянку, то она и так будет нормально работать. Опять же можно и в систему управления вывести режим работы с отключенными модулями, чтобы они почём зря в холостую не нагоняли холода когда вам это не нужно.
Далее посмотрим на паралельно последовательную схему работы.
Перед тестом холодный контур остыл до 11,5 градусов при 28 градусной жаре в квартире. То есть на самом деле те 40 градусов разницы в идеальных условиях превратились в куда меньшие цифры. Естественно тут разницу нужно вычислять от температуры горячей части. А она была 35 градусов. То есть в условиях тепловой нагрузки разница между холодной и горячей сторонами модулей Пельте составила около 24 градусов.
Самое горячее ядро в этом тесте набрало 52 градуса. И это на 18 градусов ниже, чем просто с СВО. То есть между тонкой башней и кастомной водой вышло 9 градусов, а между кастомной водой и Пельтье в экономичном режиме 18 градусов. Если считать, что башни и вода — это считаются разными классами охлаждения, то учитывая разницу температур — вода на Пельтье — это тоже уже отдельный класс. При этом он находиться от водянок в большем отрыве, чем водянки от башенных кулеров. В целом — результат есть. Конечно, всегда хочется больше, но забегая вперёд скажу, что эта конфигурация мне в итоге очень понравилась, в конце я расскажу вообще про ощущения от неё и, что тут не в этих 18 градусах дело.
Потребялли эти 4 модуля вместе около 138 Ватт питания из блока питания. Тем не менее нагрузка в примерно 145 Ватт (от Cb R20) выше, чем модули могут передать, то есть в процессе прохождения теста температура хладогента (которым была обычная вода) в холодном контуре поднялась с 11,5 до 14,2 градусов. То есть нагрев от внешней среды и процессора в 145 Ватт оказался выше, чем выводилось из холодного контура. Трубки холодильного контура, я кстати, пока не утеплял, лишь немного отодвинул от горячей видеокарты, чтобы уменьшить нагрев от теплого воздуха.
Но остается важный вопрос — как изменилась эффективность отвода тепла в параллельно последовательной схеме подключения, в сравнении с параллельной.
Для того чтобы вычислить эффективность нужно создать условия при которых холодный контур не будет нагреваться или охлаждаться окружающим воздухом и создать условия с контролируемым тепловым поток в контур. Иными словами привести температуру хладогента до комнатной и поигравшись напряжениями или поверлимитами процессора, зная то количества тепла, что он выделяет, добиться теплового баланса контура.
Помпа выделяет в контур около 6 Ватт, от процессора поступает в равновесном состоянии около 129 Ватт тепла. И того выходит 135 Ватт тепла.
При этом 4 модуля в параллельно последовательной схеме подключения потребляли 138 Ватт тепла, то есть коэффициент эффективности системы охлаждения выходит около 0,98. Напомню, что на 12 Вольтах он был 0,46. То есть эффективность выросла чуть более, чем в два раза (примерно 2,1 раза). Но опять же напомню, что с потерей разницы температур.
Теперь перейдем к переключению в параллельную схему.
Как только я включил параллельную схему я увидел что температура хладагента в контуре в простоте начала расти, вопреки ожиданию. И от изначальной при включении 11,5 градусов она выросла до 18. И когда система была уже собрана и стояла перед глазами — причина этого была очевидна. Дело в том, что два модуля из 4-х были в это время отключены (как и планировалось), но я не учёл очень важную вещь. Эти модули становятся мостиками перетекания тепла из горячего контура в холодный.
А как показали тесты с отключенными модулями — модули не плохо передают тепло, и медные водоблоки — тоже. То есть для работоспособности такой системы нужно чтобы водяной контур был разделён на два независимых контура (один с модулями которые работают всегда, второй с модулями которые отключаются для перехода схемы в полностью параллельный режим), но так как они оба должны сходиться у процессора, а процессор маленький, то два независимых контура не сделать. Чтобы реализовать эту схему с турбо режимом нужно разделять холодный контур на две параллельные ветви и ставить на одной из ответвлений электроклапан. То есть одновременно с отключением модулей, нужно перекрывать и поток жидкости через них. Но тут есть ряд сложностей. Вообще мне некоторые люди после первой части говорили, мол надо все водоблоки подключать не последовательно, а параллельно. Но тут не всё так просто как хотелось бы. Дело в том, что нельзя просто так параллелить потоки, потому что добиться равномерного течения жидкости очень сложно, и для этой цели делаются специальные ресиверы которые надо рассчитывать под определённый поток, под давление, турбулентность и скорость этого потока. Допустим на радиаторах СВО вы можете видеть ёмкости по бокам — это ресиверы. Если потоки быстрые, то надо жидкости направлять, или выравнивать. Вдобавок — сильно уменьшается скорость потока, а затем она сильно увеличивается в местах соединения. И это тоже влияет на то как распределиться скорости по ветвям. При том что между началом контура и концом разница температур хладогента не превышает и одного градуса (теплоёмкость воды очень большая, за доли секунды прохождения через водоблоки от 300 Ватт сильно разогреть её не получиться), то есть проблема с последовательностью не такая острая, в добавок скорость потока через параллельные ветви будет ниже (при той же помпе) и нагрев в них будет выше именно из-за более долгого нагрева, в общем — замена схемы на параллельную даст доли градуса в лучшем случае, и в случае закупорки ветвей, допустим сплющило трубку — закупорка не будет никак видна а модуль Пельтье перегреется и сгорит. Но частично параллельная схема с электро магнитным клапаном позволит реализовать гибридную электрическую параллельную/параллельно-последовательную схему подключения модулей Пельтье и позволит морозить хладагент до более низких температур перед прохождением бенчмарка, а в долгой работе можно будет получить большую электроэффективность системы. Но делать эту схему с клапаном я скорее всего не буду, далее я доделаю систему до 3-х параллельных ветвей по два модуля, то есть наращу систему до 6-ти модулей Пельтье, при этом большая часть проводов, которые сейчас есть нужны именно для смены схем подключения и они уйдут.
И в тесте сенбенч Р20 полностью параллельные модули набрали 59 градусов по самому горячему ядру, против 52 в последовательно-параллельной схеме.
Если бы был разделённый контур с электроклапаном, то, естественно, эта схема могла бы дать температуры ниже, чем у параллельно последовательной, но я не предусмотрел перетекание тепла из горячего контура в холодный через выключенные модули.
Система охлаждения | t самого горячего ядра, град. Цельсия | t помещения, град. Цельсия |
Тонкая башня | 80 | 27 |
СВО без Пельтье | 70 | 28 |
СВО с выключенными Пельтье | 73 | 28 |
Пельтье последовательно-параллельная схема | 52 | 28 |
Пельтье параллельная схема | 59 | 28 |
Первые результаты разгона
Ну и несмотря на то что систему я не доделал мне очень понравилось как она работает, поэтому немного практики я решил добавить именно в это видео. Вышло, конечно, пальцем в небо, но я считаю, что именно такая конфигурация 2+2 15 Амерных модуля — самая лучшая если вы захотите её повторить, а некоторые из вас, я уверен, захотят после того как я расскажу о реальности эксплуатации.
Во первых — большая головная боль — это конденсат. Данная система в простое процессора и тепловыделении процессора около 20-25 Ватт и помпы в 6 Ватт смогла охладиться только до 11,5 градусов.
При этом водоблоки и трубки имеют некоторое температурное сопротивление, то есть температуры трубок и водоблоков были чуть выше. А процессорный водоблок так и вовсе нагреваясь от процессора и не уходил ниже 25 градусов. Так что конденсата почти нигде не было, конденсат был только на металлических фитингах. При этом если применить немного теплоизоляции, то не будет контакта тёплого воздуха с холодными поверхностями с появлением точки росы. В общем — на самом деле можно просто купить пачку губок для мытья посуды — сделать в каждой пару отверстий под трубки и надеть на водоблоки. Всё, конденсата не будет. Вторая особенность — температуры не уходят ниже ноля. У меня было 28 градусов в комнате и вышло около 11,5 градусов жидкости. А значит замерзание воды в такой системе будет только при комнатной температуре ниже 16 градусов. То есть если в квартире не очень холодно, то в холодном контуре можно просто использовать обычную воду, в том числе и жидкости для водянок, красители и всё такое. Опять — никаких проблем не будет. Ну и теперь немного про практику использования.
Во первых не для кого не секрет, что с ростом температур у полупроводников увеличивается сопротивление. Это можно увидеть даже в уже показанных тестах разных систем из данной статьи.
Допустим с тонкой башней Cinebench R20 в начале теста потреблял 155 Ватт процессора, а под конец, когда процессор нагрелся — потребление было уже 166 Ватт, при том что нагрузка осталась такая же.
С 5 секционной СВО — температуры были ниже и вначале теста нагрузка была 150 Ватт, а под конец с нагретым процессором — 154 Ватта.
С Пельтье нагрузка была в начале теста 142 Ватта, а под конец 147 Ватт.
Даже в таких сравнительно невысоких диапазонах температур при одной и той же нагрузке мы увидели разницу в потреблении 166 и 142 Ватта. Это довольно большая разница.
Но куда выше разница оказалась в стабильности работы при разгоне. У меня не самый удачный i9 9900k для степинга R0, ну и плюс может быть сказывается ещё и старая прошивка платы с которой работает кофемод, чтобы поставить i9 9900k на Z170 чипсет. И в целом — 5 Ггц я на воде взять не смог на все ядра без занижения AVX. С Пельтье я просто загрузил свои сохранения на 5 ГГц, запускаюсь и чувствую, что стабильности гора, то есть там уже не просто на прохождение бенчмарков было стабильности, а намного больше, вполне возможно что разгон был действительно полностью стабильный. Дальше я взял и просто на тех же настройках поставил множитель 51, то есть 5100 МГц, и тех настроек что на воде не хватало для 5 ГГц хватило для 5,1 на Пельтье. При этом владельцы intel процессоров знают, что 5 ГГц и 5,1 ГГц — это вообще две большие разницы. 5,1 взять намного сложнее, чем 5. Но на этом я не остановился естественно.
И тут можно проследить хранометраж тестов, благо при захвате видео захватывается и системные часы Winows.
5 ГГц5,1 ГГц5,2 ГГцНа 5 Ггц я прошёл сенибенч в 17:29, на 5,1 ГГц я прошёл сенибенч в 17:34, то есть для взятия 5,1 ГГц мне понадобилось 5 минут. А 5,2 ГГц в сенибенч R15 я взял в 17:51. То есть покорение 5,2 ГГц заняло у меня 17 минут при том что это был мой первый опыт похода за 5,1 ГГц. Более того на 5,2 ГГц без занижения для AVX при прохождении сенинбенч R20 у меня самое горячее ядро нагрелось только до 73 градусов. Очевидно, что тут есть явный задел и на большие частоты. Естественно тут нет речи про полную стабильность, да и сенбенч R20 не такой требовательный бенчмарк к стабильности. Он куда требовательнее, чем R15. R15 иногда удаётся пройти на системах которые загружаются не с первого раза. R20 уже посложнее даётся. Ну и в целом — это охлаждение нужно только для энтузиастов, которые не получили того чего хотели, допустим от кастомной воды. И именно в такой конфигурации вы не получаете конденсата, замерзаний, и всё это требует, как показала практика, два тонких радиатора на 2+3 секции, что поместиться в много какие корпуса. Сами водоблоки тоже разместить внутри корпуса не так сложно. При этом с отключенными модулями СВО тоже хорошо работает. То есть когда не надо — оно просто отключается и всё. От блока питания тоже никаких серьёзных требований нет. У меня 800 Ваттный блок во время долгих тестов так и не перешёл в режим активного охлаждения, то есть для него это вообще не нагрузка. С шестью модулями я добавлю ещё один радиатор и такая система у же в обычный корпус не войдёт. При этом температуры не будут ниже, чем в этой системе. Просто будет больше времени на тесты. Но и с этим охлаждением тоже времени достаточно. Допустим когда я прогревал систему для замеров эффективности и мне надо было набрать для холодного контура комнатную температуру при нагрузке в почти 170 Ватт у меня с 20 до 27 с половиной градусов контур нагревается около 14 минут. Это ещё при условии длинных не тепло изолированных трубок холодного контура через которые тоже происходит нагрев жидкости. В общем — четыре 15 Ампераных модуля по последовательно параллельной схеме это идеальное решение для незапарного серьёзного улучшения охлаждения. Более того — они делают ограничивающим фактором материнскую плату. Допустим явно мне можно было пойти на 5,3 ГГц (а то и дальше), но я понимаю, что моя материнская плата уже может такое не выдержать, при том что пусть она серии Pro Gaming от асус, но элементы VRM у i версии (mini ITX) от ASUS Extreme, с урезанием фаз, то есть у этой платы лучший VRM из всех Z170 гейминг да и возможно всех стриксов, включая новые.
Те кто беспокоится ещё за систему управления, то и без ардуины такую систему собрать тоже очень легко. Каждая параллельная ветвь потребляет 11 Ампер. Так что на каждую можно поставить механические выключатели которые выдержат 11 Ампер и всё.
Вообще без электроники, подключение элементарное. Самая большая сложность — это припаять 6 или 8 пиновый коннектор для подключения к блоку питания (если кто не знал 8 pin коннектор для видеокарт имеет точно так же 3 провода +12 Вольт, как и 8 pin, так что какой вы будите припаивать: 6 или 8 — значения не имеет). Это сделать очень просто. Вдобавок — собрав эту схему вы сможете практически без вложений потом переделать её на параллельную (4 модуля Пельтье в параллельной схеме жрать энергии будут как не в себя, но и морозить будут очень мощно). Получить ещё градусов на 15 меньше температуры, но уже потребуется много радиаторов, незамерзающий хладагент, будут проблемы с конденсатом, нужен будет отдельный блок питания для запитки модулей и т.д. В общем — совсем другие вопросы, но уже без серьёзных финансовых вложений. Но именно 2 по 2 модуля — это в самый раз для домашнего незапарного оверклокинга. Вдобавок никуда не пропадает зимний разгон. Если системы на основе испарений азота или сухого льда выдают одинаковые температуры в любых условиях, фреонки имеют ограничения по климату, то Пельтье могут снизить температуру относительно зимней, если просто всю установку вынести на балкон (и сменить хладагент на незамерзающий), то есть никаких модификаций не требуется.
Ну а я всё же буду доделывать систему до 6 элементов Пельтье и будем делать систему автоматического управления, а также делать теплоизоляцию холодного контура в следующих частях этого проекта.
Ссылки на комплектующие и материалы
Водоблок Alphacool Eisblock XPX (промокод на 5 Евро FWIJZJ1)
Твердотельное реле (постоянное напряжение/постоянное напряжение)
Дешёвые 2/3/4 секционные алюминиевые радиаторы
Гибкие многожильные (с очень тонкими жилами) провода разных сечений в силиконовой изоляции
Плата с 4-мя 30 Амперными реле (у продавца есть с управлением от 5, 12 и 24 Вольт, а также не только на 4 реле, есть больше и есть меньше)
Разветвитель на подключение 10 вентиляторов или помп с питанием от БП
Штуцер с внешней резьбой ¼ с двух сторон
Компрессионный фитинг ¼ (есть чёрные, есть хромированные)
Комплект из помпы, резервуара, креплений в корпус и фитингов для подключения воды к помпе и резервуару
У меня при покупке у этого продавца хомуты были не такая как на фото, а самозатягивающиеся — нормальныеВодоблок с набором фитингов для подключения воды к водоблоку
Индикаторный дисплей температур в комплекте с двумя термодатчиками (есть разные цвета и сочетания цветов цифр)
ПВХ трубки прозрачные 2 метра (на систему нужно минимум 4 метра брать, а лучше 6, мне 4 хватило впритык)
Адаптер для запуска одного блока питания от другого (в 4 pin вставляется кабель от ведущего блока питания, а 24 pin кабель от ведомого блока питания)
Коннекторы под распайку 6 pin (как у видеокарт) от блока питания
8 pin тут как у процессора, а не как у видеокартыМодули Пельтье (не ошибитесь с выбором, нужен 15 амперный — TEC1-12715)
Дешёвая термопаста GD900 30 грамм
Набор Arduino UNO R3 + макетная плата + перемычки + USB кабель в ПК
Механический включатель/выключатель на 16 Ампер
Индикаторные светодиодные лампы для монтажа на корпус (разные цвета, размеры, напряжения питания)
Кнопки без фиксации с подсветкой для монтажа на корпус (разные цвета и напряжения питания подсветки)
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Видео на YouTube канале “Этот компьютер”
InfoCAST #042 | Главные компьютерные новости марта
Intel Sandy Bridge 10 лет. Что старый i7 может сейчас?
Компьютер без видеокарты. Vega 11 в тяжёлых играх
Круглый кулер со скрытым вентилятором. Обзор Aigo Shadow max
Только 8,4% людей смогли отличить графику от реальных видео!
InfoCAST #041 | Карт нет, но вы держитесь
Тест. Сможешь отличить компьютерную графику от реальных видео?
GTX 1050 Ti в 2021 году (карта, которую пока не скупают майнеры)
Управление модулями пельтье. Дальнейшие планы развития системы охлаждения.
Железные новости Января | InfoCAST #040
Обзор Windows 10X (будущая ОС от Microsoft)
Железные новинки Intel, AMD, Nvidia на CES 2021
Элементы Пельтье для охлаждения компьютера (часть 1, теория и замеры эффективности) – PC-01
Зачем нужны и чем отличаются от обычного охлаждения?
К практике предлагаю перейти чуть позже, так как надо вообще вначале определиться, что могут и что не могут элементы пельтье и зачем они нужны.
Допустим есть у вас некоторый процессор, вы в силу желаний улучшения производительности или спортивного интереса начинаете его разгонять и рано или поздно сталкиваетесь с вопросом перегрева процессора. Вы покупаете более производительный кулер, температуры немного снижаются. Вы ставите ещё более производительное охлаждение, температуры ещё чуть-чуть падают. Вы переходите на водяное охлаждение с большим радиатором и температуры падают ещё на пару градусов, потом вы заменяете большой радиатор на 4 радиатора от грузовиков, которые могут рассеять сотню киловатт тепла и получаете ещё выгоду в пол градуса и начинаете подозревать, что вы делаете что-то не так.
Условное изображение графика снижения температур от улучшения охлажденияВсякие жидкие металлы скальпирования и прочие действия помогут сдвинуть все эти графики вниз на какое-то количество градусов, но суть — не изменится.
Условный график скорректированный для случая минимальных градиентов при передачи тепла от процессораПроблема тут в том, что мы производим охлаждение относительно температуры воздуха. И не важно обдуваем мы радиатор установленный на процессоре или радиатор к которому подаётся тепло через жидкость. И чтобы мы не обдували воздухом комнатной температуры — рано или поздно мы придём к теоретически наименьшей температуре, которая нас может не устраивать. Конечно другой вопрос, что если процессор выделяет 50 ватт тепла то мы придём к этой температуре на маленьком радиаторе, а если 300 Ватт, то на большом, но суть в том, что предел есть и для процессоров он наступает очень быстро.
Выход из этой ситуации остаётся только один — в качестве среды использовать что-то, что холоднее комнатного воздуха, иначе никак.
И тут есть разные способы. Самый технологически простой — холодная проточная вода.
Есть ещё малозатратные способы — поместить компьютер в холодильник и на обычном кулере вы получите температуры ниже, чем на 4-х радиаторах охлаждения от грузовиков.
Компьютер в холодильникеЛогичным продолжением данной идея стало избавление от холодильника, а использование только самого принципа работы, а именно то, что можно взять некий газ с низкой температурой кипения и заставлять его вскипать там где нам нужно и вскипая он будет забирать тепло.
Проблем в данном решении несколько. Во первых — использование фреона, и опасности связанные с работой с ним, а так же тот факт что одна из частей контура с фреоном находится под высоким давлением. Вторая проблема — шум компрессора, который и обеспечивает нам то самое давление.
Ну и третья — технологически это сложная система состоящая из множества собранных друг с другом элементов. Но зато можно получить целый холодильник который работает не на большую камеру, а на кусок меди который прижат к крышке процессора и этот кусок меди может быть на градусов 60 холоднее окружающего воздуха, что существенно решает вопрос ограничения комнатными температурами, но одновременно с этим создаёт проблемы с конденсатом, так как в жилых помещениях в зависимости от влажности и температуры точка росы составляет от 5 до 20 градусов. Вдобавок данные системы практически неуправляемые, то есть работать в полсилы не могут и мощность отвода тепла закладывается при проектировании самой системы.
Ну и третий глобальный метод отводить тепло относительно более холодной среды — использование модулей Пельтье, о чём далее и будет идти речь.
Что из себя представляют модули Пельтье и как они работают?
Модули Пельтье являются сборками из множества пар полупроводниковых сборок в которых при протекании тока один из элементов каждый пары берет из окружающей среды энергию для перевода электронов в более возбуждённые состояния. То есть при подаче питания начинается охлаждение элемента.
Но не всё так радужно. Дело в том, что в силу своей конструкции и используемых материалов элементы Пельтье далеки от идеальных проводников тока, а значит греются просто от внутреннего сопротивления. И это крайне печально, потому что для энергии перехода электронов годиться и тепло от собственного нагрева. То есть если не отводить тепло от нагрева при протекании тока, то элемент Пельтье будет просто очень быстро разогреваться до тех пор пока не выйдет из строя. Поэтому пары полупроводников собирают в упорядоченном порядке, так чтобы «высасывание» тепла было с одной из сторон, ну а нагрев есть, к сожалению, во всём объёме. Таким образом мы получаем виртуально существенно более холодную среду, нежели комнатный воздух. Чем, естественно, можно воспользоваться для получения более низких температур процессора.
Недостатки элементов Пельтье
Во первых элементу Пельтье требуется не бесконечное количество тепла для работы. То есть если подать слишком большой тепловой поток, то элемент Пельтье просто начнёт греться и будет нагреваться до тех пор пока не выйдет из строя.
Вторая проблема — это закон сохранения энергии. И холод, как и тень от света — это не некая отрицательная энергия — а её отсутствие в том или ином месте или меньшее её количество в сравнении с окружающим пространством. То есть тепло процессора и холод элемента пельтье не аннигилируют друг с другом. Та энергия, что нужна была для перевода электронов тоже превращается потом в тепловую и её тоже надо отводить вместе с нагревом от электрического сопротивления.
Вкупе с самим нагревом от сопротивления выходит две вещи. Во первых элементы Петльте надо очень хорошо охлаждать, а иначе они перегреются и выйдут из строя, а во вторых у них крайне низкий КПД. Вернее КПД у них близок к 0. С точки зрения электричества — это нагреватель с интересными особенностями работы, но если считать за работу не сам перенос тепла, а количество переносимого тепла, то некое подобие КПД у этой вещи появляется.
Возвращаясь к элементам Пельте их можно купить и у нас, и вроде как они получше и число полупроводниковых блоков у них на одну и ту же площадь выше, но стоят они чуть ли не в десять раз дороже китайских. Китайские элементы Пельтье называются TEC1, далее указывается число пар полупроводников, для типоразмера 40 на 40 мм это 127 пар и далее указывается ток в Амперах. Чем выше ток — тем больше тепла элемент перетаскивает с одной стороны своего корпуса на другую. Я купил 15 Амперные модули.
Что касается 15 Амперного элемента, то свои 15 Ампер он потребляет на 15 Вольтах и обещается, что выводит он в идеальных условиях при этом около 130 Ватт тепла. В реальных условиях и на 12 Вольтах цифры ожидать стоит порядка 50-60 Ватт.
Как я выше уже писал — при перенасыщении теплом элемент Пельте уходит в разнос. И для мощного процессора одно элемента мало. Именно поэтому большинство экспериментов с элементами Пельтье которые вы можете найти в интернете сводятся к тому, что либо поставив этот элемент на «селрон» он хорошо охлаждается, либо при установки на i7/i9 или 9-тысячный FX всё это дело вообще не работает. Вернее становится всё ещё хуже чем было.
Ставить элементы пельтье «бутербродом» друг на друга когда и так они перегружены тоже не имеет никакого смысла. Если один элемент не может перевести 100 Ватт, то второй ещё сильнее не сможет перевести 250 Ватт уже от первого.
Трёхкаскадный модуль пельтьеЕсть двухкаскадные (и даже трёхкаскадные) заводские сборки этих элементов, но они рассчитаны на то, что источник тепла очень слабый и обычно задача просто охладить что-то, допустим датчик какого-то чувствительного прибора.
Достоинства элементов Пельтье
Простота конструкции, отсутствие подвижных частей и специальных навыков при построении системы, низкая стоимость в сравнении с фреоном и при этом высокая разница температур сопоставимая с фрионными чиллерами.
Минусы фрионок тут тоже есть — а именно конденсат. Но вопрос с конденсатом частично решается тем, что Модули Пельтье поддаются управлению как по напряжению, так и по току. Но не так просто как хотелось бы. Питание должно быть без пульсаций, так как все переменные составляющие питания дают нагрев, но не дают перенос тепла, то есть и без того низкая эффективность ещё сильнее падает. То есть взять «ардуину», датчик температуры и контроллер каких-нибудь двигателей с ШИМ управлением и всё подключить — не получится. Вернее получится, но работать не будет.
Можно, конечно, питать используя силовые транзисторы в режиме управления, но при управлении всё равно сопротивление транзисторов далеко не бесконечное, так что потери эффективности и необходимость отвода от транзисторов тепла будет. Но в теории управлять этим можно динамически, так чтобы все компоненты были по температуре выше точки росы. Но две проблемы, а именно сложности управления и то, что одного элемента мало — дают и выходы из данной проблемы с управлением.
Во первых есть стандартное решение в вопросе нехватки производительности чего-то одного в «холодильных» или «нагревальных» делах. А решение это — объединение нескольких элементов чего-либо в один контур с общим теплонасителем. Мы не можем поставить модули Пельтье друг на друга, но это не значит, что мы не можем поставить их рядом друг с другом и прогонять через их холодные поверхности жидкость и чтобы они все вместе в сумме эту жидкость охлаждали. Так мы можем решить проблему ограниченности максимального переноса тепла одним элементом. В данном случае тут вопрос только в количестве этих элементов. Если есть желание и возможности можно и 100 элементов объединить в один контур.
И вопрос управления становится проще, так как не надо регулировать питание а можно просто подключать нужное количество элементов. Можно для снижения дискретности ещё поставить один более слабый элемент. Допустим если будет 10 мощных отводящих по 50 Ватт и один слабый на 25, то можно варьировать отбор тепла в пределах от ноля до 525 Ватт с шагом в 25 Ватт. А включать выключать элементы можно разрывая цепи питания, допустим электромеханическими реле, что шумно, либо твердотельными, что дорого для больших токов. Либо использовать транзисторы в ключевом режиме полностью их открывая, и автоматизировав всё это дело, измеряя температуру хладагента, влажность и температуру в помещении (для вычисления температуры точки росы), избавляясь от конденсата и лишней траты энергии в простое системы, то есть частично компенсировать имеющиеся недостатки, при этом в максимальной производительности давая виртуальную более холодную среду, чем окружающий воздух.
Практическая часть. Особенности конструкции.
Вообще конструкция этого всего довольно простая. Вам понадобится сделать два жидкостных контура охлаждения. Один низкотемпературный, второй — высокотемпературный.
Схема холодного и горячего контуров. (нажмите для увеличения)Холодный контур
Низкотемпературный контур включает в себя исключительно водоблоки и помпу. Один водоблок на процессор и ещё число водоблоков равное числу элементов пельте. В принципе можно вместо процессорных или видеочиповых водоблоков найти какой-то один большой и налепить все элементы пельтье на него (но ничего подходящего с хотя бы каким-то оребрением я не нашёл). На стороне холодной части по идее очень важно чтобы водоблоки были хорошими, так как там происходит борьба за то кто будет отдавать тепло — жидкость в конутре или тепло будет браться из нагрева самого модуля. И надо чтобы бралось тепло из контура, и это увеличит эффективность сборки. Поэтому просто плоские железки омываемые как-то жидкостью скорее всего будут малоэффективны. Ну и в этом контуре должна быть ещё помпа. На этом всё. Далее вопрос уже температур. Если предполагается уход ниже ноля градусов, что возможно в простое системы, то вода для контура не подойдёт. У меня с тремя 15 Амерными модулями без тепловой нагрузки температура в контуре упала с примерно 26 до 5 градусов Цельсия за 15 минут, далее я эксперимент прервал во избежание закупорки контура льдом и разрыва контура давлением помпы.
5 градусов ЦельсияВ качестве хладагента стоит использовать нетоксичные жидкости. На мой взгляд самый лучший вариант примерно 70% раствор этанола с водой. Или чистый 95-96 процентный этанол. Но купить его сейчас проблематично.
Как вариант можно использовать водку, но в простое температура может упасть ниже 20 градусов при которой уже могут появляться центры кристаллизации, жидкость начнёт становится вязкой, сопротивление контура начнёт расти и если у вас хорошая помпа, то она сможет выдавить уплотнения в стыковочных элементах и жидкость выльется в компьютер.
Второй вариант, который проще купить — это пропиленгликоль он же пищевая добавка Е1520.
Вещество нетоксичное, в том числе его пары или аэрозоли, но в редких случаях вызывает раздражение кожи и слизистых. Наименьшие температуры замерзания достигаются в примерно 60% растворах с водой.
Такая жижа замерзает при -70, а кристаллики начинают образовываться примерно при -50. Если вы не будете делать каскады из элементов Пельте, то при комнатной температуре вы не получите ничего холоднее -35 градусов. При комнатной температуре в 26 градусов элемент пельтье у меня смог выдать -30 градусов Цельсия, то есть это теоретический минимум.
Омываемый водой он уже будет теплее даже без тепловой нагрузки просто потому что сами трубки, вода в резервуаре и корпуса водоблоков тоже нагреваются от воздуха, так что разбавлять можно пропиленгликоль до 50/50, так он будет менее вязким и будет иметь лучшую теплопроводность, но начало образования кристаллов будет уже при -30 … -40 градусах. Из недостатков — пропеленгликоль чувствителен к ультрафиолету и со временем разлагается от солнечного света, так что заменять его надо будет не реже чем раз в год.
Я себе пропиленгликоль не купил ещё, просто слежу за температурами в контуре. Так что практическая сторона этой жидкости для меня пока под вопросом, но как антифриз в жидкостных контурах пропиленгликоль промышленно тоже используется.
Горячий контур
Горячий контур уже будет состоять не только из помпы и водоблоков, но и из радиаторов. Для 15 амперных элементов надо исходить из теплоотдачи 200 Ватт на элемент, но более точно требования мы в этой статье и рассмотрим.
При использовании одинаковых водоблоков элементы пельте просто зажимаются между двумя водоблоками, так что думать над монтажём этих элементов тоже не придётся, скорее всего комплектные винты от водоблоков подойдут.
Сборка пары водоблоков горячей и холодных частей одного модуляТестовая реализация
Я же пока решил сразу не собирать всю систему целиком, а для начала попробовать как это работает, так что полноценно эта схема ещё не собрана и вместо горячего контура у меня просто к каждому элементу пельтье подсоединён процессорный кулер.
Упрощённая схема без горячего контураИ задача сейчас стоит оценить элементы в работе, понять стоит оно вообще потраченных денег (и денег которые могут быть потрачены на полноценный вариант) или нет, оценить эффективность и т.д.
В кадре можно увидеть два блока питания. Один питает компьютер, второй систему охлажденияДля подключения элементов Пельтье я использовал отдельный компьютерный блок питания, и на провода самих элементов просто распаял 8 pin коннекторы (правда затупил и купил по форме как процессорные 8pin, так что используются они как 6-pin). Элементов я купил только 3. Все три — это 15-ти амперные TEC1-12715 чего для экспериментов более чем достаточно, больше элементов было покупать незачем, так как свободных кулеров у меня только 3.
Кулеры с элментами пельте и водоблокамиНа 12 Вольтах без подачи тепла на холодную сторону и хорошем охлаждении горячей все три потребляют около 12 Ампер, то есть потребляемая мощность у всех около 150 Ватт.
Единственное я бы всё таки советовал не питать их максимальными допустимыми 15 Вольтами, на которых они и будут по идее потреблять 15 Амер, то есть около 225 Ватт, потому что и на 150 провода уже тёплые (в длительной нагрузке градусов 40 набирают), в максимальных нагрузках эти провода уже не выдержат.
С креплениями для кулеров тут сложнее — пришлось чутка поколхозить, задачи сделать красиво не было. Была задача сделать быстро и так чтобы не сверлить и портить родные крепления кулеров, то есть чтобы потом можно было всё разобрать и пользоваться кулерами как и до доработки.
Ещё надо было куда-то поключить помпу и все вентеляторы. Разветвителя у меня не было и переходников на моликсы не хватило, так что я использовал плату от ардуиновского набора для управления подсветкой от Gelid.
GELID CODI6Сама Arduino в этом всём никак не участвовала, просто нужна была разводка на плате отвечающая за разветвление питания на вентиляторы. Вообще обычные разветвители стоят копейки, в хороших компьютерных корпусах они есть как правило в наборе с самим корпусом.
Помпа, крепления и резервуар куплены на алиэкспрессе.
Водоблоков всего в системе 4. Три — самые дешёвые что я нашёл с хоть каким-то подобием микроканалов и фиттингами в комплекте.
Четвёртый, на процессор, по сути тоже-же самое только никилированный и с креплением, но без фитингов и чуть дороже (фиттинги купил тоже на али, кстати, попались неплохие). У трёх дешёвых крепление тоже было, но чисто номинальное, без бэксплейта, одни винты (и ставить на винты без бэкплейта крайне не рекомендую, на этот случай есть даже отдельная статья на сайте).
Везде я всё обмазал дешёвой термопастой с алиэкспресса.
Не лучшая паста, зато 30 граммПрактические тесты, задачи и методика
Для начала меня интересует вопрос того, насколько сложно отвести 200 Ватт тепла от элемента Пельте. Они обладают большой площадью, так что по идее это не должно быть так сложно, как отвести 200 Ватт, например от процессора.
В моей сборке есть 3 кулера. Один — крупный, с мощным серверным вентилятором с оборотами около 5200 в минуту.
Gelid SirocoВторой — тонкий, по площади примерно как одна тонкая секция СВО с вентилятором на 2000 оборотов.
Третий — по толщине примерно такой же, вентилятор такой же.
Но самое важное у этого кулера — не полное покрытие самого модуля Пельте, то есть подошва радиатора узкая и короткая.
Габариты модуля выходят за пределы подошвы кулераДля замера эффективности охлаждения предлагаю взять практические результаты, а не температуры самих модулей, да и как измерить эти температуры когда модуль закрыт кулером — не ясно.
Я включал на компьютере постоянную нагрузку и изменял поврелимит процессора до тех пор пока установившаяся температура жидкости в контуре не станет равной комнатной (ограничение TDP и нагрузка задавались в Intel Extreme Tuning Utility).
(нажмите для увеличения)То есть потери тепла в нагрев или охлаждение комнаты прекратятся, иными словами — то значение поверлимита которые будет выставлено для нагрузки и будет значением отводимой из контура тепловой мощности модулем Пельте. Наибольшую погрешность вносить будет только помпа водяного контура. Я замерил реальное потребление помпы и оно составило порядка 6,1 Ватта, я буду 6 ватт добавлять к TDP, но в реальность корпус помпы нагревался выше 30 градусов, то есть часть этих 6 Ватт отводятся воздухом помещения, сколько реально уходит в жидкость от помпы — неизвестно.
Температура помпыВ теории если окажется, что один элемент сможет с большим кулеров отвести намного больше тепла, чем средний кулер, то значит одной секции СВО на один 15 Амерный элемент мало. А если разница в поверлимитах будет маленькой, то значит и площади одной секции небольшой толщины радиатора будет достаточно на один модуль Пельте. Самый слабый кулер (с маленькой подошвой не покрывающей весь модуль) расскажет насколько критично внутренне распространение тепла в элементе и насколько высоки требования к качеству водоблоков горячего контура.
Замеры температуры воды производятся термодатчиком посаженным на термопасту на фитинг резервуара. Это место не охлаждается дополнительно через корпус водоблоков и более точно передаёт температуры жидкости. Данные с датчика я в режиме реального времени выводились на экран, чтобы точно отслеживать динамику процессов.
Полученные результаты покажут — реально ли собрать такую систему в обычном корпусе или нет. Если хватает одной секции малой толщины радиатора, то в корпусе где можно установить сверху 360 и с переди 240 или 280 радиатор можно будет использовать целых 5 модулей Пельте и сейчас мы узнаем и то сколько высасывает тепла каждый модуль, соответственно эту цифру можно в таком случае будет умножить на 5, по числу элементов — это и будет тот TDP процессора при котором хладогент будет комнатной температуры в длительных непрерывных тестах, ну и конечно холодный контур жидкости можно переохладить и в коротких тестах получать меньшие температуры или рассчитывать на больший временный предельный TDP за счёт того что контуры объёмные и вода будет прогреваться какое-то длительное время за которое тест закончится.
Практические тесты, результаты
И так, при жидкости в холодном контуре комнатной температуры модуль с самыми худшими условиями смог вывести 27 Ватт тепла от процессора и плюс ещё 6 Ватт помпы. Стоит отметить, что модуль потерблял не 12 с небольшим Ампер как без нагрузки, а только чуть больше 10 Ампер, об этом я ещё потом скажу.
Модуль со средними условиями смог вывести 32 Ватта тепла от процессора плюс 6 помпа, это больше, чем модуль который не помещался на основание кулера. Ток так же был около 10 Ампер.
Модуль с лучшими условиями, то есть на большой башне с минимальными оборотами вентилятора около 3 тыс. смог отвести уже целых 58 Ватт тепла от процессора плюс ещё 6 помпа. При этом модуль потреблял почти 12 Ампер. То есть практически столько же, сколько и при холостой работе, при которой все три модуля потребляли чуть больше 12 Ампер.
Этот же кулер с максимальными оборотами позволил элементу Пельтье отвести от процессора 63 Ватта тепла плюс 6 Ватт помпа. А Ток как раз достиг тех же чуть более 12 Ампер как и в холостой работе без нагревания холодной стороны.
Выводы
В общем — выводы не утешительные. По сути на каждый элемент Пельте надо либо по секции 60 мм СВО, либо по две секции тонких радиаторов на элемент. Я, честно, говоря, рассчитывал на чуть меньшие требования, и надеялся что секции 45 мм радиаторов на модуль будет достаточно, но судя по тестам — не достаточно.
Кроме того я замерил ток и напряжением для каждого модуля в нагрузке и зная их и зная тепловыделение процессора можно рассчитать условный КПД модулей. Условный, потому что я повторюсь с точки зрения электричества КПД у модулей 0.
КПД будет показывать отношение выведенной из контура тепловой энергии к затраченной электрической энергии модулем.
Энергоэффективность модулей Пельтье
Модуль Пельте у которого свисали края показал условные КПД примерно 27%.
Модуль примерно с таким же радиатором но более крупным основанием показал условное КПД около 31%.
На башне большей толщины эффективность вышла примерно 44%. И это, на самом деле, не очень плохая цифра, она хуже чем в дата центрах со специальными системами кондиционирования и отвода нагретого воздуха (по разным данным от 50% до 1 к 1), но в целом — уже не 27%. С максимальной скоростью вращения вентилятора эффективность ещё чуть выросла и достигла уже примерно 46,5%. Полагаю, если использовать хорошие водоблоки и хорошую термопасту, то реально получить 50% эффективности. То есть, на 100 Ватт тепла от процессора нужно будет 200 Ватт на питание элементов Пельте. В таком случае полуторакиловатного блока питания для элементов Пельтье может хватить на охлаждение 750 Ваттного процессора. Однако отмечу, что 50% я всё же не получил. С моей эффективностью если бы все элементы были в лучших полученных условиях мне бы полутора киловатного блока питания для элементов Пельтье хватило только на примерно 700 Ватт отведённого тепла (и то надо понимать, что мы получаем условные -40 градусов к температуре воздуха, так что стоит рассчитывать на то что разгон будет в тех пределах как буде-то мы могли бы на процессоре держать не до 100 градусов, а до 140, так что никакие 700 Ватт через процессор мы не получим).
Анализ масштабируемости
Далее встаёт вопрос масштабируемости. Будут ли два элемента работать в сумме так же эффективно как в сумме два по отдельности.
Включим два модуля из трёх и найдем для них то тепловыделение процессора при котором жидкость будет иметь устоявшуюся комнатную температуру. TDP на процессор выставлен был 62 Ватта. Теоретически должно было бы быть 27+32+6 Ватт то есть около 65 Ватт, а не 62+6=68. Но тут надо понимать, что условия были не идеальными, и в целом можно говорить, что эффективность элементов друг с другом складывается.
С тестами трёх уже сложнее — процессор с увеличением поверлимита упирается в ограничение частотной формулы турбобуста, тут ещё возможно накладывается то, что у меня i9 9900k стоит на материнской плате с чипсетом z170, то есть с биос и пин модом. В общем — стресс тест от интел, который очень чтёко держит TDP, даже с разблокированным разгоном через BIOS не захотел нагрузить процессор как следует.
Линпак тоже что-то не особо желал у меня нормально работать. Выдавал нагрузку очень неравномерно. Для трёх модулей я должен был получить около 134 Ватт, я подобрал частоту и напряжение при которых и выходили примерно 134 Ватта, но иногда линпак выдавал потребление около 200 Ватт, то есть среднее по времени потребление было выше, что сказалось и на температуре жидкости.
Перед тестом теплоноситель немного переморозился, потому что долго подбирал режимы и начал я тесты на воде примерно в 18 градусов, и через менее чем десять минут жидкость нагрелась уже до 30 градусов, то есть из-за того что среднее потребление было выше теоретически необходимого — и пошёл рост температур.
Касаемо цифр температур процессора тут в общем-то всё не очень показательно, потому что отпечаток термопасты от процессора на китайском водоблоке примерно такой:
Но для справки — у меня с заводской СВО процессор при потребление около 200 Ватт сразу уходил под 100 градусов, тут же такого не было, какая температура устоялась бы в этих условиях я не замерил.
Итоги
Во первых — это работает и на этом можно сделать экстремальное охлаждение и это не требует специальных знаний и навыков, как, например, самодельная фреонка.
Во вторых — на каждый модуль нужна секция толстой СВО для оптимальной работы 15 Амперных модулей.
В третьих — по потребляемому току можно понять насколько хорошо охлаждается элемент. То есть при недостаточном охлаждении они потребляли меньше тока (в моих условиях 10 Ампер вместо 12).
В четвёртых — в близких к идеальным условиях можно получить эффективность приближенную к 50%, то есть на один отводимый ватт тепла нужно подать на модули 2 Ватта питания.
В пятых — система линейно масштабируемая.
Дальше встаёт вопрос уже полномасштабной реализации.
И тут возникает два этапа которые скорее всего и разделятся на две статьи.
Первый — отработка системы управления автоматической регулировки включения модулей, то есть надо сделать так чтобы температура жидкости не уходила ниже точки росы чтобы на водоблоке процессора не было конденсата, и чтобы не требовалась термоизоляция трубок через которую были бы потери холода и чтобы модули не морозили жидкость в простое зря и не тратили лишнюю энергию.
И по итогу уже можно будет оценить насколько энергозатратна установка в повседневной жизни и уже попробовать разогнать что-нибудь в рамках этих трёх модулей и того железа, что у меня есть.
Ну и последняя третья часть — закупка всего необходимого для полноценной установки, скорее всего нужна будет материнская плата для которой существуют моноблочные водоблоки покрывающие VRM, так как разгон будет очень не слабый. Выбор и закупка корпуса, куда можно установить две помпы и кучу радиаторов и там уже устроим разгон на все деньги. И в итоге должен получится компьютер размером с обычный компьютер, и выглядящий как обычный компьютер, с шумностью обычного компьютера, но с существенно лучшим охлаждением. Как будет в реальности — в текущий момент не известно.
Видео на YouTube канале “Этот компьютер”
InfoCAST #042 | Главные компьютерные новости марта
Intel Sandy Bridge 10 лет. Что старый i7 может сейчас?
Компьютер без видеокарты. Vega 11 в тяжёлых играх
Круглый кулер со скрытым вентилятором. Обзор Aigo Shadow max
Только 8,4% людей смогли отличить графику от реальных видео!
InfoCAST #041 | Карт нет, но вы держитесь
Тест. Сможешь отличить компьютерную графику от реальных видео?
GTX 1050 Ti в 2021 году (карта, которую пока не скупают майнеры)
Управление модулями пельтье. Дальнейшие планы развития системы охлаждения.
Железные новости Января | InfoCAST #040
Обзор Windows 10X (будущая ОС от Microsoft)
Железные новинки Intel, AMD, Nvidia на CES 2021
Технология– термоэлектрическая
Основы термоэлектрического модуля
При подаче питания постоянного тока низкого напряжения на модуль TE тепло будет перемещаться через модуль от одной стороны к другой. Таким образом, одна поверхность модуля будет охлаждаться, в то время как противоположная поверхность будет одновременно нагреваться. Важно отметить, что это явление можно обратить вспять, когда изменение полярности (плюс и минус) приложенного напряжения постоянного тока приведет к перемещению тепла в противоположном направлении.Следовательно, термоэлектрический модуль может использоваться как для нагрева, так и для охлаждения, что делает его очень подходящим для приложений точного контроля температуры. Термоэлектрический модуль также может использоваться для выработки электроэнергии. В этом режиме разность температур, приложенная к модулю, будет генерировать ток.
Практический термоэлектрический модуль обычно состоит из двух или более элементов из легированного полупроводникового материала n- и p-типа, которые электрически соединены последовательно, а термически – параллельно.Эти термоэлектрические элементы и их электрические соединения обычно устанавливаются между двумя керамическими подложками. Подложки скрепляют всю конструкцию механически и электрически изолируют отдельные элементы друг от друга и от внешних монтажных поверхностей. Большинство термоэлектрических модулей имеют размер примерно от 2,5 до 50 мм (от 0,1 до 2,0 дюймов) в квадрате и от 2,5 до 5 мм (от 0,1 до 0,2 дюйма) в высоту. Доступны различные формы, материалы подложки, рисунки металлизации и варианты монтажа.
На схематической диаграмме выше показан типичный термоэлектрический модуль в сборе. В термоэлектрическом охладителе используются термоэлектрические материалы из теллурида висмута N-типа и P-типа. Такая компоновка заставляет тепло проходить через охладитель только в одном направлении, в то время как электрический ток попеременно перемещается вперед и назад между верхней и нижней подложками через каждый N- и P-элемент. Материал N-типа легирован так, что в нем будет избыток электронов (больше электронов, чем необходимо для завершения идеальной структуры молекулярной решетки), а материал P-типа легирован так, что в нем будет недостаток электронов (меньше электронов, чем необходимо. чтобы завершить идеальную решетчатую структуру).Дополнительные электроны в материале N и «дырки», возникающие из-за недостатка электронов в материале P, являются носителями, которые перемещают тепловую энергию через термоэлектрический материал. Большинство термоэлектрических охлаждающих модулей изготавливаются с равным количеством элементов N-типа и P-типа, где одна пара элементов N и P образуют термоэлектрическую «пару». Например, проиллюстрированный выше модуль имеет две пары элементов N и P и называется «двухпарным модулем».
Холодопроизводительность (тепло, активно прокачиваемое через термоэлектрический модуль) пропорциональна величине приложенного постоянного электрического тока и тепловым условиям на каждой стороне модуля.Изменяя входной ток от нуля до максимума, можно регулировать тепловой поток и контролировать температуру поверхности.
Модули Пельтье
Элементы Пельтье , которые также называют термоэлектрическими модулями или TEC, представляют собой тепловой насос с электрическим приводом. Здесь энергия в виде тепла передается с одной стороны модуля на другую и должна там рассеиваться. Модуль Пельтье основан на так называемом эффекте Пельтье , который описывает квазиинверсию эффекта Зеебека.Эффект Пельтье утверждает, что энергия может переноситься в виде тепла посредством электрического тока в полупроводнике, который создает разницу температур. Эффект Зеебека означает, что ток возникает, когда к полупроводнику прикладывается разность температур. Эффект Зеебека используется для измерения температуры или сбора электроэнергии.
Элемент Пельтье – это тепловой насос, в основе которого лежит перенос электрического тока в полупроводнике.
Термоэлектрические модули часто используются в:
- Медицинский
- Лазерные технологии
- Лаборатория / аналитическая техника
- Техника газового анализа
- Для конденсации
- Автомобильная техника для рекуперации энергии
- Военная техника
Основные преимущества элемента Пельтье:
- Точное управление электричеством
- Путем изменения полярности может быть создано реверсирование теплового потока
- Работа без вибрации
- Продолжительность действия (> 20 лет)
- Малые размеры
uwe electronic предлагает очень большую программу элементов Пельтье, которая может охватывать множество приложений.
30 золотых правил для технологии Пельтье
- Количество твердотельных пар, а также плотность пакетов модуля Пельтье определяет размер модуля.
- На каждую твердотельную пару падает ок. 0,12 Вольт. Большое количество твердотельных пар увеличивает максимально возможное напряжение, и, таким образом, можно уменьшить ток.
- Сильный ток влияет на срок службы модуля, так как со временем увеличивает количество микротрещин твердотельного материала.
- Сильный ток ведет к более высокому тепловому нагреву и, следовательно, снижает эффективность.
- Отношение охлаждающей способности (Qc) к используемому току математически можно рассматривать как экспоненциальный подход к максимальному значению. Следовательно, необходимо задействовать много электроэнергии для последних 30% достижения максимального охлаждения.
- Теплоотдача на теплой стороне модуля Пельтье складывается из охлаждающей мощности и задействованной электрической энергии (рабочей энергии).
- КПД модуля Пельтье – это отношение теплопередачи к задействованной электрической энергии.
- Очень высокая эффективность охлаждения с помощью Пельтье достигается при работе прибл. 50% максимального значения напряжения / тока.
- Информация о максимальной мощности охлаждения Qc модуля Пельтье основана на разнице температур между обеими сторонами (0 Кельвинов), максимальном токе / напряжении и температуре окружающей среды 300K (27 ° C). Реальная мощность охлаждения ниже и может быть оценена с помощью диаграммы производительности.
- Стандартные модули достигают в условиях вакуума и температуры окружающей среды 300K (27 ° C) максимальной разницы температур прибл. 70 Кельвинов.
- Высококачественные модули могут достигать значений примерно 72 Кельвина и более, в то время как недорогие модули едва достигают примерно 60 Кельвинов.
- Специальные модули, такие как многоступенчатые каскады, создают разницу температур до 120 К. Недостаток – малая теплопроизводительность и высокая цена.
- Хороший отвод тепла на теплой стороне модуля Пельтье улучшает охлаждающую способность, эффективность и максимальную разницу температур deltaT.
- Отвод тепла в окружающую среду зависит от мощности радиатора. Более высокая активная поверхность радиатора (размер, а также количество ребер) улучшает тепловое сопротивление.
- Большие вентиляторы с большим потоком воздуха улучшают тепловое сопротивление радиатора.
- Прямой обдув корпуса радиатора наиболее эффективен, поскольку наибольшее количество тепла всегда отводится на землю корпуса.
- Жидкостные радиаторы в большинстве случаев обладают еще более высокими тепловыми качествами, тем не менее, они значительно более затратны.
- Между модулем Пельтье и радиатором следует нанести хороший термоинтерфейсный материал (термопрокладки, термопаста или термоклей) для увеличения теплопередачи
- Очень хорошая теплопередача между материалами достигается с помощью тонкого слоя термопасты, так как она может адаптироваться к микроскопическим неровностям.
- PCM (материал с фазовым переходом) показывает особенно высокий коэффициент заполнения. Она увлажняет поверхности даже лучше, чем обычная термопаста, а также имеет то преимущество, что не высыхает.
- Высокое контактное давление также улучшает теплопередачу, но при сборке очень важно предотвратить срезающее усилие.
- Прижимное давление к модулю Пельтье должно быть в пределах 3-8 кг / см².
- Опционально можно покрывать металлизацией только небольшие модули размером до 12×12 мм. Их можно паять в процессе производства прямо на радиатор.
- Максимальная кратковременная рабочая температура всегда должна быть на 20–30 ° C ниже температуры припоя отвеса (139 ° C; 183 ° C и 232 ° C).
- Длительное использование модуля Пельтье при температуре> 120 ° C приводит к процессу диффузии меди в твердотельный материал и, как следствие, к снижению производительности.
- Для защиты от влаги обязательно наличие пломбы. Но за счет рекуперации тепла производительность ок. На 4% ниже.
- Для защиты от конденсата лучше всего подходит силикон, так как он очень хорошо адаптируется к частым перепадам температуры.
- Уплотнение эпоксидной смолой имеет то преимущество, что не происходит заметного выделения газа.Рабочая температура не должна превышать 80 ° C и не должна изменяться часто.
- Частые и высокие перепады температуры приводят к возникновению напряжений между материалами (вызванных разным удлинением материалов) и, следовательно, сокращают срок службы.
- Аналоговое управление, а также кратковременные импульсы создают меньшее механическое напряжение, чем обычные двухточечные системы управления.
Загрузить: 30 золотых правил для технологии Пельтье
Спецификации могут быть изменены без предварительного уведомления.
Вот как работает термоэлектрический модуль от ADVANCED THERMOELECTRIC (POLLOCK INDUSTRIES)
Вот как работают термоэлектрические охладители
Типичный термоэлектрический (ТЭ) модуль состоит из двух керамических подложек, на которых размещено множество пар или «пар» кубиков из теллурида висмута. Кости (пары) соединены электрически последовательно и термически параллельно между керамическими элементами. Одна из этих керамик будет «горячей стороной», а другая – «холодной стороной».«
Керамические подложки из оксида алюминия обычно используются для изготовления ТЕ-модулей. Они ребристые, теплопроводные и отличные электроизоляторы. Помимо обеспечения прочного основания, керамика изолирует электрические элементы внутри модуля от радиатора на горячей стороне модуля и охлаждаемого объекта на холодной стороне.
Подушечки из электропроводящего материала, обычно из меди, достаточно большие, чтобы вместить каждую из многих «пар» игральных костей в модуле, прикреплены к внутренним поверхностям керамики.По одной из кубиков P-типа и N-типа электрическое соединение с каждой площадкой. Расположение контактных площадок на двух керамических элементах различается, чтобы создать цепь с кубиками, которая зигзагообразно перемещается по модулю. Обычно все кубики припаяны, чтобы улучшить электрическое соединение и скрепить модуль.
Большинство модулей имеют четное количество игральных костей P-типа и N-типа, и по одному из каждого из них, совместно использующих электрическое соединение, называют «парой». Вышеупомянутый модуль можно было бы описать как модуль из 11 пар.
Хотя материалы как P-типа, так и N-типа представляют собой сплавы висмута и теллура, оба имеют разную плотность свободных электронов при одной и той же температуре. Кости P-типа состоят из материала, имеющего недостаток электронов, в то время как игральные кости N-типа имеют избыток электронов. Когда ток (сила тока) течет вверх и вниз через модуль, он пытается установить новое равновесие в материалах. Ток рассматривает материал P-типа как горячий спай, требующий охлаждения, а материал N-типа – как холодный спай, который необходимо нагреть.Поскольку материал фактически имеет одинаковую температуру, в результате горячая сторона становится горячее, а холодная – холоднее. Направление тока будет определять, будет ли конкретный кристалл охлаждаться или нагреваться. Короче говоря, изменение полярности переключит горячую и холодную стороны.
Провода, ведущие к модулям, прикреплены к (медным) контактным площадкам на керамике с горячей стороны. Если модуль опломбирован, вы можете определить горячую сторону без подачи питания. Расположив модуль на плоской поверхности, направьте провода на себя так, чтобы положительный вывод, обычно с красной изоляцией, находился справа.Нижняя поверхность будет горячей стороной.
Исследователи материалов изучают возможность использования других материалов для повышения эффективности термоэлектрических модулей, но теллурид висмута остается наиболее экономичным материалом для охлаждающих модулей, используемых при температуре окружающей среды. Однако при низкой температуре (около минус 110 градусов Цельсия) этот материал перестает превращаться в полупроводник, и его характеристики сильно ухудшаются. Как правило, максимальная температура, при которой могут работать модули, примерно на 30 ° C ниже точки плавления припоя, используемого при сборке, обычно +150 или 200 ° C (302 или 392 ° F).
TM 127-1.4-8.5 – наш самый популярный выбор для большинства применений по производству электроэнергии с термоэлектрическими модулями (ТЭГ) с температурами до 200 ° C (392 ° F).
Некоторые модули на основе теллурида висмута для производства электроэнергии изготавливаются с использованием припоя с высокой температурой плавления или полностью без припоя. Некоторые из них можно использовать при температуре до +400 ° C.
Ссылки по теме:
продажи @ electracool.com
Бесплатный звонок в Северной Америке: 1 866.665.5434
Международный: 603.888.2467
Эффект Пельтье и термоэлектрическое охлаждение
Эффект Пельтье это явление, которое потенциально разница применяется через термопара вызывает температуру разница между стыками разных материалы в термопаре.
Этот эффект противоположен
Эффект Зеебека
(назван в честь ученого, открывшего его в 1821 году).В
Эффект Зеебека заключается в том, что если разные металлы соединены в двух
отдельные места, а перекрестки хранятся в разных
температуры, то разность потенциалов между «спаями» (
перекрестки).
Так как горячий спай можно разместить вне утепленная область, а холодный спай может быть размещен внутри области, Пельтье эффект можно использовать для охлаждения области (или объекта).
Элементы Пельтье (термоэлектрические охладителей)
Метод термоэлектрического
охлаждение
(с использованием эффекта Пельтье) полезен, потому что он может охладить объект
без каких-либо движущихся частей или другого сложного оборудования, которое изолирует
прохладнее из окружающей среды. Устройства, которые
построенные, чтобы воспользоваться этим явлением, известны как Пельтье.
элементы, или термоэлектрические
кулеры (ТИК). Основные идеи из простых
Элементы Пельтье можно соединять последовательно, чтобы получить гораздо больше
сложный Пельтье
модули (также
известные как практические ТИК),
которые обладают большей охлаждающей способностью.Тем не менее
величайший
разница температур между радиатором и прохладной областью для
Устройство Пельтье имеет температуру порядка 50 ° C.
Общие области применения элементов Пелье включают:
охлаждение компонентов компьютера, особенно процессора.
Наиболее распространенное сочетание материалов в термопарах Элементами Пельтье (ТЕС) являются два полупроводника висмут и Теллурид. Как правило, TEC состоит из кубиков или гранул. сделали полупроводников, каждый из которых контактирует с радиаторами на горячей и холодной стороне элемента Пельтье.Эти кубики являются «легированный» – то есть добавляются дополнительные примеси, так что там лишние или меньшее количество свободных электронов в каждом кубе. В полупроводник кубы с лишними свободными электронами (и поэтому несут в основном отрицательный заряд) известны как полупроводники N-типа, а те, у которых мало свободных электронов (и несут в основном положительный заряд) являются полупроводниками P-типа. В пары полупроводниковых кубов P и N устанавливаются и соединяются в массив так, чтобы пары имели последовательное электрическое соединение, но тепловое параллельное соединение.Когда ток подается на это система (TEC), способ протекания тока через полупроводники вызывает разность температур и приводит к тому, что сторона радиатора Элемент Пельтье для нагрева, а холодная сторона – для охлаждения (или охлаждения). все, что находится в тепловом контакте с этой стороной).
Ан
вид изнутри ТЕС (элемент Пельтье). | Элемент Пельтье, с
керамические пластины для частичной изоляции |
Сторона теплоотвода ТЕС становится очень
горячо, поэтому необходимо иметь
вентилятор и / или какой-то радиатор, чтобы рассеять это
высокая температура.В противном случае весь ТЭО начнет нагреваться, и
шт
слились бы вместе.
«Нормальные» элементы Пельтье примерно
несколько сантиметров толщиной и
сторона в несколько миллиметров или сантиметров. Чтобы получить больше
охлаждение
способностей, отдельные элементы соединяются в стеки, или они могут
быть подключенным в некоторой комбинации последовательного и параллельного электрического
соединения.
Модуль Пельтье с Вентилятор и радиатор отводят тепло от радиатора. |
.
S H Цена 26 марта 2007 Веб-проект Physics 212 |
в термоэлектрическом исполнении | Ферротек-Норд
МодульПельтье – это устройство, использующее физическое явление, известное как эффект Пельтье, для создания охлаждающего или нагревающего эффекта за счет проведения электрического тока через контакт двух разных проводящих материалов.Модули Пельтье также могут называться термоэлектрическими охладителями, хотя их функции выходят далеко за рамки охлаждения на основе энергии.
МодулиПельтье также могут использоваться для выработки электроэнергии. Такого эффекта (известного как эффект Зеебека или термоэлектрический эффект) можно достичь, нагревая «горячую» часть модуля Пельтье.
Изначально в модулях Пельтье использовались две пластины, сделанные из разных металлов, но в настоящее время в усовершенствованных модулях Пельтье используются различные полупроводниковые материалы, что делает их более эффективными и обеспечивает большую точность регулирования температуры и потребления или выработки электроэнергии.
Преимущества
МодулиПельтье имеют ряд преимуществ по сравнению с традиционными технологиями, которые используются для преобразования электроэнергии для охлаждения / обогрева или наоборот:
- Прочная конструкция без движущихся частей снижает предрасположенность модулей Пельтье к механическим повреждениям и снижает потребность в техническом обслуживании
- Безопасная конструкция, не содержащая жидкостей, газов или опасных материалов, делает модули Пельтье более безопасными и надежными, чем традиционные технологии охлаждения или нагрева.
- Способность работать как нагреватели, так и охладители позволяет использовать эти модули для различных приложений Модули Пельтье
- обеспечивают эффективное «точечное охлаждение», а также быстрые циклы охлаждения-нагрева, позволяя обеспечить точное поддержание температуры или использовать их для целей тестирования.
- Идеально подходит для точной калибровки температуры
- Гибкие форм-факторы и масштабируемость, а также возможности миниатюризации
Технологические ограничения
МодулиПельтье используются, когда энергоэффективность преобразования тепла в электричество и наоборот не является решающим фактором, поскольку их уровень эффективности составляет от 5 до 8 процентов, но преимущества технологии и ее гибкость по-прежнему многочисленны. , что позволяет эффективно использовать его во многих секторах и отраслях.
Охладители, нагреватели, датчики
Диапазон применения модулей Пельтье просто поражает. Они используются для выработки электроэнергии в автомобильной и аэрокосмической промышленности, охлаждения в биомедицине, телекоммуникациях, фотонике и бытовых устройствах, и количество приложений постоянно растет.
Например, в сфере биомедицины модули Пельтье используются для обеспечения необходимой температуры во время тестирования ДНК; в телекоммуникации они используются для охлаждения лазеров и обеспечения оптимальных температур для оптических каналов.Они также используются в салонах холодильников и автомобилей
.Модуль Пельтье Хэбэй TEC1-12706
Международные перевозки и морские перевозки
Мы отправляем товары практически в любую точку мира, используя услуги FedEx International Priority . Ставки рассчитываются при оформлении заказа, чтобы обеспечить справедливую цену. Обратите внимание, что время доставки сильно различается.
Если у вас есть особый запрос на доставку (или у вас есть собственный курьер), пожалуйста, свяжитесь с нами, прежде чем размещать заказ, и мы сделаем все возможное, чтобы поддержать вас.
Пожалуйста, имейте в виду, что мы находимся в Европе, и иногда мы не можем использовать вашего собственного курьера или вариант доставки.
Если вы не получили заказ вовремя, немедленно свяжитесь с нами по адресу [email protected] или [email protected] для получения дополнительной помощи.
Доставка по P.O. КОРОБКА
Пожалуйста, имейте в виду, мы не отправляем посылку на P.O. КОРОБКА (из-за ограничений FedEx)
Если вы предоставите нам P.O. КОРОБКА в качестве адреса доставки, мы свяжемся с вами по возвращении и попросим указать другой адрес.Если вы не дадите нам новый адрес, мы вернем вам деньги, и ваш заказ будет отменен.
Расчетное время доставки
США и Канада
Международный приоритет FedEx – 1 ~ 3 рабочих дня
Европа
Международный приоритет FedEx – 1-2 рабочих дня
Остальной мир
4 ~ 5 рабочих дней, в зависимости от выбранной страны (для получения дополнительной информации свяжитесь с нами)
Таможенные сборы и налоги при международных перевозках
Покупатель несет ответственность за любые сборы и налоги.Пожалуйста, свяжитесь с нами, если у вас возникнут какие-либо вопросы.
Доставка на чужой адрес
Вы можете отправить товар на любой адрес, если ваш платежный адрес правильный. Когда вы зарегистрируете свою учетную запись, у вас будет адресная книга, в которой вы можете хранить несколько адресов и отправлять по любому из них по вашему выбору.
Electron.com имеет право удерживать любые заказы, подозреваемые в мошеннической деятельности.
TEC1-12706 Термоэлектрическое охлаждающее устройство Пельтье
Описание
TEC1-12706 работает при 12В при 6А и используется в термоэлектрических охлаждающих устройствах.
В ПАКЕТЕ:- TEC1-12706 Устройство Пельтье
- Обеспечивает компактный форм-фактор охлаждения
- 12 В при 6 А в рабочем состоянии
Термоэлектрические модули охлаждения Пельтье – это твердотельные тепловые насосы, которые используют поток постоянного тока для передачи тепла от одной стороны устройства (холодная сторона) к другой стороне устройства (горячая сторона).
Эти устройства используются в небольших системах охлаждения, таких как изолированные охладители, небольшие шкафы для винных холодильников, а также для охлаждения процессоров в компьютерах.Эта технология даже используется в космических кораблях для переноса тепла с горячей солнечной стороны космического корабля на холодную сторону космического корабля.
TEC1-12706 является наиболее часто используемым из этих устройств.
После сборки в законченный модуль горячая сторона устройства обычно крепится к большому алюминиевому радиатору с большим охлаждающим вентилятором для отвода тепла от устройства. Холодная сторона может включать алюминиевый радиатор меньшего размера, который действует как холодный радиатор. Кроме того, при желании можно использовать небольшой вентилятор для распределения холода.Это также повысит температуру поверхности радиатора и предотвратит образование инея, хотя может вызвать образование конденсата в зависимости от уровня влажности.
На одном из рисунков показано устройство, установленное в полной системе и работающее достаточно холодно для образования льда. Для получения дополнительной информации о том, как использовать эти устройства или для полного решения, ознакомьтесь с нашим полным комплектом ниже.
Примечание. Важно не полностью запитывать это устройство, если только радиатор и вентилятор с горячей стороны не установлены, иначе устройство может быстро выйти из строя.
Модуль питания
Модуль TEC работает от источника питания 12 В, который должен обеспечивать до 6 А постоянного тока. После первоначального скачка напряжения модуль обычно стабилизируется и потребляет около 50-60 Вт энергии. Для питания этого модуля хорошо подходит один из наших блоков питания Meanwell 12 В 75 Вт.
Обратите внимание, что рабочее напряжение может быть увеличено до более 14 В, поэтому их можно использовать от автомобильного аккумулятора. Если вам нужно меньше охлаждения для конкретного приложения, рабочее напряжение можно снизить до менее 12 В.
Печатная сторона устройства ТЕС – холодная сторона. Чтобы проверить модуль TEC, не беспокоясь о повреждении устройства, вы можете отключить его от источника питания с более низким напряжением, например, 5 В, где он будет потреблять около 1,5 А, и вы почувствуете, что одна сторона становится холоднее, а другая – теплее.
ПРИМЕЧАНИЯ ПО ПРИМЕНЕНИЮ:
УстройстваПельтье, как правило, не любят больших циклов термического воздействия, поскольку со временем они могут привести к механическому отказу из-за постоянного теплового расширения и сжатия.Как правило, лучше использовать его постоянно или длительными циклами, чем постоянно включать и выключать его.
В зависимости от приложения, он может быть соединен с нашими модулями контроллера температуры W1209 или XH-W1219, которые могут контролировать температуру и управлять мощностью источника питания, используемого для питания устройства TEC. При использовании в этом режиме лучше всего допускать некоторый температурный гистерезис на стороне управления, чтобы уменьшить термоциклирование. Устройства W1209 и XH-W1219 позволяют программировать этот гистерезис.
Также можно управлять устройством при более низком напряжении, что приводит к меньшему охлаждению. С этой целью некоторые контроллеры управляют устройством с помощью ШИМ, что нормально, если оно работает на частоте 10 Гц или выше, но этот подход менее энергоэффективен, чем работа при более низком напряжении постоянного тока, чтобы производить меньше привода. Если форма волны ШИМ сглажена для создания более низкого напряжения постоянного тока, пульсации должны быть менее 10%, а для максимальной эффективности предпочтительнее 5%.
РЕЗУЛЬТАТЫ НАШИ ОЦЕНКИ:
Это интересные устройства для работы.Они не обладают охлаждающей способностью или эффективностью больших систем охлаждения на основе фреона, которые вы найдете в обычном холодильнике, но они могут быть удобны для небольших задач охлаждения и в основном предназначены для охлаждения относительно небольших изолированных пространств, таких как пенополистирол. холодильной камеры или для охлаждения металлической тарелки, например для охлаждения установленного на ней напитка. Приложив трубку и проявив изобретательность, можно использовать его для охлаждения циркулирующей воды, которую затем можно использовать для охлаждения процессора, спортивного костюма или чего-то подобного.
ДО ОТГРУЗКИ ЭТИ МОДУЛИ ЯВЛЯЮТСЯ:
- Проверено
- Протестировано для базовой эксплуатации
Примечания:
- Нет
Технические характеристики
Эксплуатационные характеристики | ||
Вход питания постоянного тока | Типичный | 12 В постоянного тока |
Рабочий ток | ТЕС1-12706 | 6A (макс. |