Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как определить мощность электродвигателя без бирки? Формула

Общепромышленные асинхронные электродвигатели имеют срок службы и подлежат периодичной замене, ремонту. Дефекты электрической части, замыкание, обрывы, износ подшипников, перемотка, нарушение центровки, сырая обмотка. При отсутствии паспорта, бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технических характеристик?

Параметры для определения мощности электродвигателя:

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Габариты электродвигателей АИР:

Мощность, (Р) кВт 3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
D1, мм L1, мм D1, мм L1, мм >D1, мм L1, мм D1, мм L1, мм
1,5 22 50 22 50 24 50 28 60
2,2 24 28 60 32 80
3 24 32 80
4 28 60 28 60 38
5,5 32 80 38
7,5 32
80
38 48 110
11 38 48 110
15 42 110 48 110 55
18,5 55 60 140
22 48 55 60 >140
30 65
37 55 >60 140 65 75
45 75 75
55 65 80 170
75 65 140 75 80 170
90 90
110 70 80 170 90
132 100 210
160 75 90 100 210
200
250 85 170 100 210
315

Расчет мощности электродвигателя по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Р, кВт

3000 об.

1500 об.

1000 об.

750 об.

L10, мм

B10, мм

L10, мм

B10, мм

L10, мм

B10, мм

L10, мм

B10, мм

1,5

100

125

100

125

125

140

140

160

2,2

125

140

140

160

190

3

125

140

112

160

190

4

112

160

140

216

5,5

140

190

216

178

7,5

190

216

178

254

11

178

216

178

254

210

15

254

254

210

241

279

18,5

210

210

241

279

267

318

22

203

279

203

279

267

318

310

30

241

241

310

311

356

37

267

318

267

318

311

356

406

45

310

310

406

349

75

311

406

311

406

368

457

419

457

90

349

349

419

406

508

110

368

457

368

457

406

508

547

132

419

419

457

610

355

160

406

508

406

508

610

355

200

457

457

560

610

250

610

355

610

355

560

610

315

630/800

686/630

Подбор габарита двигателя с фланцем

Востребованные маркировки трехфазных асинхронных электродвигателей АИР: АИР63А2, АИР71А2, АИР80В4, АИР90L2, АИР100S2, АИР132М2, АИР180М6, АИР200L2, АИР250S4

Таблица для подбора мощности электродвигателя асинхронного по диаметру фланца (D20) и диаметру крепежных отверстий фланца (D22)

Мощность электродвигателя P, кВт

3000 об.

1500 об.

1000 об.

750 об.

D20, мм

D22, мм

D20, мм

D22, мм

D20, мм

D22, мм

D20, мм

D22, мм

1,5

165

11

165

11

215

14

215

14

2,2

215

14

265

3

215

14

365

4

265

300

19

5,5

265

300

19

7,5

265

300

19

11

300

19

15

350

18,5

350

400

22

350

350

400

30

500

37

400

400

500

45

400

55

500

500

550

24

75

500

550

24

90

500

28

110

550

24

550

24

28

132

550

680

160

550

28

28

680

200

550

740

24

250

680

680

740

24

315

680

Как определить мощность электродвигателя мультиметром

Измерение тока, напряжения, сопротивления, проверка обрывов выполняется мультиметром. Электродвигатель подключают к сети питания, замеряя напряжение. Амперметром поочередно замеряют ток в цепи каждой из обмоток статора. Производится проверка резисторов, диодов, конденсаторов, транзисторов.

Сумму потребляемых токов умножают на фиксированное напряжение. Полученное число – мощность электродвигателя в ваттах.

  • Р – мощность электродвигателя
  • U – напряжение
  • Iа – токи первой фазы
  • Iв – токи второй фазы
  • Iс – токи третьей фазы

Как проверить мощность электродвигателя по току холостого хода

Проверить мощность двигателя по току холостого хода можно с помощью таблицы.

Р двигателя, кВт

Ток холостого хода (% от номинального)

Обороты двигателя, об/мин

600

750

1000

1500

3000

0,75-1,5

85

80

75

70

50

1,5-5,5

80

75

70

65

45

5,5-11

75

70

65

60

40

15-22,5

70

65

60

55

30

22,5-55

65

60

55

50

20

55-110

55

50

45

40

20

Как рассчитать мощность трехфазного двигателя по сопротивлению обмоток

Соединение звездой. Измеряем сопротивление между выводами (1-2, 2-3, 3-1). Делим на 2 – получаем сопротивление одной обмотки. Мощность одной обмотки рассчитывается так: P=(220V*220V)/R. Цифру умножаем на 3 (количество обмоток) – получаем мощность двигателя.

Соединение треугольником. Измеряем сопротивление в начале и в конце каждой обмотки. По той же формуле определяем мощность и умножаем на 6.

Статья о схемах подключения электродвигателей к сети. Инструкция подключения трехфазного асинхронного электродвигателя к сети 220/380, 380/660 Вольт.

Нет возможности определить самостоятельно

Если Вы не уверены, рекомендуем доверить определение мощности электродвигателя или подбор профессионалам. Это сэкономит Ваше время и позволит избежать досадных ошибок в эксплуатации оборудования. Купить электродвигатель у «Слобожанского завода» – это профессиональный подбор или капитальный и текущий ремонт и перемотка электродвигателей любых типов.

Как определить мощность электродвигателя?


Какими способами можно определить мощность электродвигателя?

Электрический двигатель представляет собой электрическую машину, роль которой заключается в преобразовании электрической энергии в энергию механическую.

Нередко случаются ситуации, когда технический паспорт электродвигателя теряется, а маркировка на корпусе стирается в силу времени. В таком случае определить мощность электродвигателя становится сложно. Но существует несколько способов, которые помогут Вам справиться с подобной проблемой.

Определить мощность электродвигателя можно следующими способами:

  • используя практические измерения;
  • таблицы;
  • исходя из количества оборотов в минуту;
  • по габаритам;
  • на основе мощности, которая выдается двигателем.

Практическое определение мощности электродвигателя

Наиболее простым и доступным каждому способом определить мощность электродвигателя является снятие показаний счетчика электрической энергии.

Изначально необходимо отключить все бытовые электроприборы, выключить свет во всем помещении. Важно помнить, что работа даже небольшой маломощной лампочки может сильно исказить показания.

Обратите внимание на то, чтобы счетчик оставался неподвижным, а индикатор не мигал (все зависит от модели электрического счетчика).

В случае со счетчиком марки «Меркурий» процесс существенно облегчается, поскольку данная модель устройства отображает нагрузку в киловаттах (кВт). Следовательно, будет достаточно просто включить электродвигатель на всю мощность и посмотреть показания на счетчике.

В ситуации с индукционным счетчиком определить мощность электродвигателя будет несколько сложнее, поскольку учет ведется в киловаттах в час (кВт/ч). Сначала требуется записать показания счетчика до того, как включите мотор. После включения двигатель должен поработать в течение 10 минут. Для отслеживания времени пользуйтесь секундомером, точность периода работы очень важна. По прошествии 10 минут снимите новые показания счетчиков и способом вычитания выявите разницу. Разницу умножьте на 6. Итоговый результат будет обозначать мощность электродвигателя в киловаттах (кВт).

Определить мощность электродвигателя небольшой силы еще сложнее. Для этого нужно узнать количество оборотов (импульсов), равных 1 кВт/ч. Данную информацию Вы отыщите на счетчике. Возьмем для примера 1600 оборотов (в некоторых моделях вспышек индикатора). Итак, если при функционирующем электродвигателе электросчетчик совершает 20 об/мин, данную цифру нужно умножить на 60, т.е. количество минут в часе. В итоге получаем 1200 об/мин. После имеющиеся 1600 оборотов в минуту делим на 1200, получаем 1,3, что и являет собой мощность электродвигателя.

Определение мощности электродвигателя по таблицам

Сегодня люди за помощью все чаще обращаются к интернету, ведь там можно найти абсолютно любую информацию. Также при помощи глобальной сети Вы можете определить мощность электродвигателя по диаметру вала.

Для использования данного метода вычисления достаточно в интернете отыскать технические таблицы для распознавания типа мотора и его мощности, а также снять необходимые параметры (диаметр вала и частота его вращения, крепежные габариты, при фланцевом двигателе – диаметр фланца, расстояние до центра вала и расстояние до оси, длина мотора без выпирающего элемента вала).

Важно при таком способе быть терпеливым и внимательным, чтобы точно измерить все показатели и получить точный результат.

Как определить мощность электродвигателя по числу оборотов за одну минуту?

Применение данного способа для определения мощности электродвигателя требует визуального определения числа обмоток статора. Также необходимо применение специальных измерительных приборов, таких как тестер или миллиамперметр. для распознавания количества полюсов, чтобы избежать разбора мотора.

Измерительный прибор подключается к одной из обмоток. Вал при этом нужно вращать равномерно и постепенно. Отклонение стрелки и будет показывать количество полюсов. Важно учитывать тот факт, что частота вращения вала при таком способе определения мощности будет немного ниже полученного результата.

Определение мощности электродвигателя на основе его габаритов

Данный способ используется в основном для определения мощности трехфазных электродвигателей.

Для расчета мощности по габаритам необходимо знать:

  • диаметр сердечника (см) – D. Измерение происходит во внутренней части статора. При этом необходимо знать длину сердечника, учитывая вентиляционные отверстия;
  • показатель частоты валового вращения – n;
  • частота сети – f.

Используя данные значения, вычисляется полюсное деление. Для этого показатель диаметра (D) умножается на частоту валового вращения (n) и на число Пи. Итоговую цифру обозначим условно А.

Показатель частоты сети f умножается на 120, получаем (условно) В.

Получив значения А и В, осуществляем их деление, а именно: число А делим на число В. В итоге получаем необходимый нам показатель мощности электродвигателя.

На самом деле все не так уж сложно, достаточно вспомнить уроки математики в школе.

Способ определения по показателю мощности, что выдает электродвигатель

В данном случае необходимо снова обратиться к знаниям школьной математики, а также использовать калькулятор для точного вычисления.

Сначала узнайте количество оборотов вала в секунду (А), тяговое усилие мотора (В) и радиус вала (С). Подставьте значения в следующую формулу: Аx6,28xBxC. Результат и есть мощность электродвигателя.

Зная мощность электродвигателя, Вы без труда сможете выбрать необходимое сопутствующее оборудование (тепловые реле и автоматические выключатели). Также, знание данного показателя поможет Вам легко и быстро узнать пропускную способность и норму сечения кабельно-проводниковой продукции для подсоединения двигателя к сети. Самое главное – Вы сможете использовать электродвигатель без вероятности перегрузок.

Как видите, определить мощность электродвигателя без бирки можно и при чем довольно просто. Способов достаточное количество. Вам остается лишь выбрать наиболее удобный и правдивый на ваш взгляд и воспользоваться им.

Что такое номинальная мощность электродвигателя и как она расчитывается

Одна из естественных характеристик электродвигателя – его номинальная (эффективная) мощность Pном, которая для машин переменного и постоянного тока является механической мощностью на валу.

Это мощность двигателя, с которой он мог бы работать в номинальном режиме — режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.

номинальная мощность электродвигателя

При нагрузках, меньших Pном, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравнительно короткий промежуток времени можно считать, что он не используется в полную силу. В такой ситуации бывает целесообразна его кратковременная перегрузка, предел которой определяется перегрузочной мощностью двигателя.

В паспорте электродвигателя заводом-изготовителем всегда указываются номинальные величины мощности Pном, напряжения Uном, коэффициента мощности cosϕном, номинальная угловая скорость двигателя ωном.

Расчет номинальной мощности

Метод эквивалентного тока

Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:

Pном ≥ Iэк ∙ Uном ∙cosϕном,

где Iэк – показатель эквивалентного тока,

Uном – номинальное напряжение,

cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.

Метод эквивалентного момента

Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока коэффициент мощности cosϕ приближенно принимается за постоянную величину:

Pном = Мвр ∙ ωном,

где Мвр – значение вращающего момента,

ωном – номинальная угловая скорость двигателя.

Определение номинальной мощности опытным путем

Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?

Помогут практические измерения и счетчик электроэнергии:

  1. Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т.д.

  2. В случае использования электронного счетчика следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.

Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.

  1. Для маломощных двигателей можно подсчитать количество оборотов диска счетчика, для каждого из которых указана, чему равна величина полных оборотов в единицах мощности. Несложные расчеты помогут определить искомую величину мощности.

При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке определяемый показатель будет далек от номинальной мощности электродвигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил.
Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Всего доброго.
  • Twitter
  • Google
  • Печать
  • Reddit
  • Facebook
  • LinkedIn
  • по электронной почте

Как выбрать максимальная и номинальная мощность двигателей

В 2010 году европейские и американские производители двигателей прекратили указывать их мощность, ограничившись лишь показателями объема и крутящего момента, выраженного либо в Ньютонах на метр (Н/м) либо в американской системе – футов на фунт (Ft/Lbs). Во втором случае, чтобы получить более привычные для нас единицы, достаточно умножить значение на 1,356. Впрочем, полученные данные все равно не столь очевидны, чтобы сразу сориентироваться в мощности устройства.

Мощность измеряется по формуле P (Вт) = Момент (Н·м) *Частоту вращения (Об/мин) / 9.5492.

Нужно иметь в виду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность – при 3600 об/мин. Поэтому, для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать, на какие рабочие обороты он настроен, что не все производители указывают. Серьезные компании двигателей указывают для этого график, аналогичный представленному внизу, или конкретные значения мощности, зависящие оборотов. Если у вас есть регулятор оборотов двигателя, значит, максимальная мощность будет на максимальных оборотах.

Этим различием и пользовались производители двигателей: указывая мощность, которую можно получить при завышенных оборотах (например, 5.0 л.с., которую можно достичь при 4500 об/мин), при этом сам двигатель при постоянной работе был настроен на обороты 3600, выдавая всего 3.5 л.с. Численно мощность от оборотов зависит гораздо больше, чем от момента. Надо также понимать, что при завышении оборотов мощность растет, а крутящий момент падает.

Практически это означает, что для косилки, чем больше мощность, тем на большие обороты можно раскрутить нож или на те же обороты, но более длинный/тяжелый нож. Но при этом, если задрать обороты и соответственно уменьшить крутящий момент, то нож сможет преодолевать все меньшее сопротивление. То есть наступает ситуация, что при последующем увеличении оборотов, будет уменьшаться крутящий момент, и двигатель будет раньше глохнуть при увеличении сопротивления (нагрузки) и, значит, хуже будет косить густую траву.

Поэтому с 2010 года чаще всего указывается мощность двигателя, работающего в конкретной технике с учетом ее использования и установленным рабочим числом оборотов.   На двигателях же указывается только максимальный крутящий момент, на который и стоит ориентироваться, ведь чем он больше, тем лучше устройство будет справляться со своей задачей.

Все это касается нормальных (брендовых) производителей техники. Сейчас все больше и больше появляется двигателей из Китая, как и от европейских производителей (MTD, Emak, Stiga, Al-Ko и т.д.), так и собственно китайских брендов Zongshen, Loncin, Rato, Lifan и других. Также существует большое количество «заказных» марок сделанных на основе аутсорсинга, то есть владелец бренда заказывает двигатели под собственным названием на заводах в Китае. А тут уже все зависит от добросовестности заказчика/поставщика этих агрегатов. По вашей просьбе и за ваши деньги в Китае вам напечатают любой паспорт и наклейки с любыми цифрами. Поэтому, покупая культиватор/косилку с гордой надписью 7-8 л.с. с китайским мотором, вы можете получить двигатель реальной мощности 4-5 л.с. Но так как в России потребитель в первую очередь выбирает технику по мощности, то наша компания, по возможности, указывает для бензиновой техники с четырехтактными двигателями две мощности: максимальную — завышенная мощность, которую указывали до 2010 года и продолжают указывать некоторые производители/продавцы для увеличения привлекательности своего товара, и номинальную (реальную). Но номинальную мощность, к сожалению, указывают не все производители или указывают завышенную, выдавая ее за номинальную. При этом этот параметр можно замерить только в заводских условиях, поэтому не во всех товарах есть возможность указать данную характеристику.

Также мы рекомендуем в первую очередь обращать внимание на крутящий момент и объем двигателя. Учитывая, что двигатели на садовой технике сконструированы достаточно просто (нет никакого турбо наддува, форсажа и т.д.), то с одного объема невозможно снять больше мощности на 30-50%.

Определение КПД электродвигателя и его мощности

КПД и мощность электродвигателя

КПД и мощность – это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую. Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель.
Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач. Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры.
Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.

Определение КПД электродвигателя

Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:

η=P2/P1
где η – КПД

P2- полезная механическая мощность электромотора, Вт
P1- потребляемая двигателем электрическая мощность, Вт;


Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 – это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 – 0,95.
Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами.
Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность – это параметр, который  показывает, какую работу совершает механизм за определенную единицу времени.

КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия. Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье. При  уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей.


 Электродвигатель АИР характеристики
Тип двигателя  Р, кВт Номинальная частота вращения, об/мин кпд,* COS ф 1п/1н Мп/Мн Мmах/Мн 1н, А Масса, кг
Купить АИР56А2 0,18 2840 68,0 0,78 5,0 2,2 2,2 0,52 3,4
Купить АИР56В2 0,25 2840 68,0 0,698 5,0 2,2 2,2 0,52 3,9
Купить АИР56А4 0,12 1390 63,0 0,66 5,0 2,1 2,2 0,44 3,4
Купить АИР56В4 0,18 1390 64,0 0,68 5,0 2,1 2,2 0,65 3,9
Купить АИР63А2 0,37 2840 72,0 0,86 5,0 2,2 2,2 0,91 4,7
Купить АИР63В2 0,55 2840 75,0 0,85 5,0 2,2 2,3 1,31 5,5
Купить АИР63А4 0,25 1390 68,0 0,67 5,0 2,1 2,2 0,83 4,7
Купить АИР63В4 0,37 1390 68,0 0,7 5,0 2,1 2,2 1,18 5,6
Купить АИР63А6 0,18 880 56,0 0,62 4,0 1,9 2 0,79 4,6
Купить АИР63В6 0,25 880 59,0 0,62 4,0 1,9 2 1,04 5,4
Купить АИР71А2 0,75 2840 75,0 0,83 6,1 2,2 2,3 1,77 8,7
Купить АИР71В2 1,1 2840 76,2 0,84 6,9 2,2 2,3 2,6 10,5
Купить АИР71А4 0,55 1390 71,0 0,75 5,2 2,4 2,3 1,57 8,4
Купить АИР71В4 0,75 1390 73,0 0,76 6,0 2,3 2,3 2,05 10
Купить АИР71А6 0,37 880 62,0 0,70 4,7 1,9 2,0 1,3 8,4
Купить АИР71В6 0,55 880 65,0 0,72 4,7 1,9 2,1 1,8 10
Купить АИР71А8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
Купить АИР71В8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
Купить АИР80А2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
Купить АИР80А2ЖУ2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
Купить АИР80В2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
Купить АИР80В2ЖУ2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
Купить АИР80А4 1,1 1390 76,2 0,77 6,0 2,3 2,3 2,85 14
Купить АИР80В4 1,5 1400 78,5 0,78 6,0 2,3 2,3 3,72 16
Купить АИР80А6 0,75 905 69,0 0,72 5,3 2,0 2,1 2,3 14
Купить АИР80В6 1,1 905 72,0 0,73 5,5 2,0 2,1 3,2 16
Купить АИР80А8 0,37 675 62,0 0,61 4,0 1,8 1,9 1,49 15
Купить АИР80В8 0,55 680 63,0 0,61 4,0 1,8 2,0 2,17 18
Купить АИР90L2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
Купить АИР90L2ЖУ2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
Купить АИР90L4 2,2 1410 80,0 0,81 7,0 2,3 2,3 5,1 17
Купить АИР90L6 1,5 920 76,0 0,75 5,5 2,0 2,1 4,0 18
Купить АИР90LA8 0,75 680 70,0 0,67 4,0 1,8 2,0 2,43 23
Купить АИР90LB8 1,1 680 72,0 0,69 5,0 1,8 2,0 3,36 28
Купить АИР100S2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
Купить АИР100S2ЖУ2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
Купить АИР100L2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
Купить АИР100L2ЖУ2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
Купить АИР100S4 3,0 1410 82,6 0,82 7,0 2,3 2,3 6,8 21
Купить АИР100L4 4,0 1435 84,2 0,82 7,0 2,3 2,3 8,8 37
Купить АИР100L6 2,2 935 79,0 0,76 6,5 2,0 2,1 5,6 33,5
Купить АИР100L8 1,5 690 74,0 0,70 5,0 1,8 2,0 4,4 33,5
Купить АИР112M2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
Купить АИР112М2ЖУ2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
Купить АИР112М4 5,5 1440 85,7 0,83 7,0 2,3 2,3 11,7 45
Купить АИР112MA6 3,0 960 81,0 0,73 6,5 2,1 2,1 7,4 41
Купить АИР112MB6 4,0 860 82,0 0,76 6,5 2,1 2,1 9,75 50
Купить АИР112MA8 2,2 710 79,0 0,71 6,0 1,8 2,0 6,0 46
Купить АИР112MB8 3,0 710 80,0 0,73 6,0 1,8 2,0 7,8 53
Купить АИР132M2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
Купить АИР132М2ЖУ2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
Купить АИР132S4 7,5 1460 87,0 0,84 7,0 2,3 2,3 15,6 52
Купить АИР132M4 11 1450 88,4 0,84 7,0 2,2 2,3 22,5 60
Купить АИР132S6 5,5 960 84,0 0,77 6,5 2,1 2,1 12,9 56
Купить АИР132M6 7,5 970 86,0 0,77 6,5 2,0 2,1 17,2 61
Купить АИР132S8 4,0 720 81,0 0,73 6,0 1,9 2,0 10,3 70
Купить АИР132M8 5,5 720 83,0 0,74 6,0 1,9 2,0 13,6 86
Купить АИР160S2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
Купить АИР160S2ЖУ2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
Купить АИР160M2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
Купить АИР160М2ЖУ2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
Купить АИР160S4 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
Купить АИР160S4ЖУ2 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
Купить АИР160M4 18,5 1470 90,0 0,86 7,5 2,2 2,3 36,3 142
Купить АИР160S6 11 970 87,5 0,78 6,5 2,0 2,1 24,5 125
Купить АИР160M6 15 970 89,0 0,81 7,0 2,0 2,1 31,6 155
Купить АИР160S8 7,5 720 85,5 0,75 6,0 1,9 2,0 17,8 125
Купить АИР160M8 11 730 87,5 0,75 6,5 2,0 2,0 25,5 150
Купить АИР180S2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
Купить АИР180S2ЖУ2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
Купить АИР180M2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
Купить АИР180М2ЖУ2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
Купить АИР180S4 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
Купить АИР180S4ЖУ2 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
Купить АИР180M4 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
Купить АИР180М4ЖУ2 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
Купить АИР180M6 18,5 980 90,0 0,81 7,0 2,1 2,1 38,6 160
Купить АИР180M8 15 730 88,0 0,76 6,6 2,0 2,0 34,1 172
Купить АИР200M2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
Купить АИР200М2ЖУ2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
Купить АИР200L2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
Купить АИР200L2ЖУ2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
Купить АИР200M4 37 1475 92,0 0,87 7,2 2,2 2,3 70,2 230
Купить АИР200L4 45 1475 92,5 0,87 7,2 2,2 2,3 84,9 260
Купить АИР200M6 22 980 90,0 0,83 7,0 2,0 2,1 44,7 195
Купить АИР200L6 30 980 91,5 0,84 7,0 2,0 2,1 59,3 225
Купить АИР200M8 18,5 730 90,0 0,76 6,6 1,9 2,0 41,1 210
Купить АИР200L8 22 730 90,5 0,78 6,6 1,9 2,0 48,9 225
Купить АИР225M2 55 2970 93,0 0,90 7,5 2,0 2,3 100 320
Купить АИР225M4 55 1480 93,0 0,87 7,2 2,2 2,3 103 325
Купить АИР225M6 37 980 92,0 0,86 7,0 2,1 2,1 71,0 360
Купить АИР225M8 30 735 91,0 0,79 6,5 1,9 2,0 63 360
Купить АИР250S2 75 2975 93,6 0,90 7,0 2,0 2,3 135 450
Купить АИР250M2 90 2975 93,9 0,91 7,1 2,0 2,3 160 530
Купить АИР250S4 75 1480 93,6 0,88 6,8 2,2 2,3 138,3 450
Купить АИР250M4 90 1480 93,9 0,88 6,8 2,2 2,3 165,5 495
Купить АИР250S6 45 980 92,5 0,86 7,0 2,1 2,0 86,0 465
Купить АИР250M6 55 980 92,8 0,86 7,0 2,1 2,0 104 520
Купить АИР250S8 37 740 91,5 0,79 6,6 1,9 2,0 78 465
Купить АИР250M8 45 740 92,0 0,79 6,6 1,9 2,0 94 520
Купить АИР280S2 110 2975 94,0 0,91 7,1 1,8 2,2 195 650
Купить АИР280M2 132 2975 94,5 0,91 7,1 1,8 2,2 233 700
Купить АИР280S4 110 1480 94,5 0,88 6,9 2,1 2,2 201 650
Купить АИР280M4 132 1480 94,8 0,88 6,9 2,1 2,2 240 700
Купить АИР280S6 75 985 93,5 0,86 6,7 2,0 2,0 142 690
Купить АИР280M6 90 985 93,8 0,86 6,7 2,0 2,0 169 800
Купить АИР280S8 55 740 92,8 0,81 6,6 1,8 2,0 111 690
Купить АИР280M8 75 740 93,5 0,81 6,2 1,8 2,0 150 800
Купить АИР315S2 160 2975 94,6 0,92 7,1 1,8 2,2 279 1170
Купить АИР315M2 200 2975 94,8 0,92 7,1 1,8 2,2 248 1460
Купить АИР315МВ2 250 2975 94,8 0,92 7,1 1,8 2,2 248 1460
Купить АИР315S4 160 1480 94,9 0,89 6,9 2,1 2,2 288 1000
Купить АИР315M4 200 1480 94,9 0,89 6,9 2,1 2,2 360 1200
Купить АИР315S6 110 985 94,0 0,86 6,7 2,0 2,0 207 880
Купить АИР315М(А)6 132 985 94,2 0,87 6,7 2,0 2,0 245 1050
Купить АИР315MВ6 160 985 94,2 0,87 6,7 2,0 2,0 300 1200
Купить АИР315S8 90 740 93,8 0,82 6,4 1,8 2,0 178 880
Купить АИР315М(А)8 110 740 94,0 0,82 6,4 1,8 2,0 217 1050
Купить АИР315MВ8 132 740 94,0 0,82 6,4 1,8 2,0 260 1200
Купить АИР355S2 250 2980 95,5 0,92 6,5 1.6 2,3 432,3 1700
Купить АИР355M2 315 2980 95,6 0,92 7,1 1,6 2,2 544 1790
Купить АИР355S4 250 1490 95,6 0,90 6,2 1,9 2,9 441 1700
Купить АИР355M4 315 1480 95,6 0,90 6,9 2,1 2,2 556 1860
Купить АИР355MА6 200 990 94,5 0,88 6,7 1,9 2,0 292 1550
Купить АИР355S6 160 990 95,1 0,88 6,3 1,6 2,8 291 1550
Купить АИР355МВ6 250 990 94,9 0,88 6,7 1,9 2,0 454,8 1934
Купить АИР355L6 315 990 94,5 0,88 6,7 1,9 2,0 457 1700
Купить АИР355S8 132 740 94,3 0,82 6,4 1,9 2,7 259,4 1800
Купить АИР355MА8 160 740 93,7 0,82 6,4 1,8 2,0 261 2000
Купить АИР355MВ8 200 740 94,2 0,82 6,4 1,8 2,0 315 2150
Купить АИР355L8 132 740 94,5 0,82 6,4 1,8 2,0 387 2250

Мощность на валу насоса и мощность двигателя

    Мощность, переданная валу насоса от двигателя или от приводного устройства, называется мощностью насоса Вследствие гидравлических потерь в самом насосе Л н больше Л д. [c.141]

    Если на месте монтажа невозможно осуществить прямое измерение или если при испытании насос нельзя отсоединить от двигателя, то сначала измеряют величину мощности, подводимой к приводному двигателю, а по ней определяют мощность на валу насоса, учитывая КПД привода (включая промежуточную передачу, если она имеется). В двигателях трехфазного тока рекомендуется применять метод двух или трех ваттметров с использованием характеристики двигателя. Мощность на валу насоса определяют по потребляемой электрической мощности Р 1, умноженной на КПД двигателя а при наличии промежуточных передач— на КПД передачи по выражению [c.164]


    При соединении вала насоса с двигателем посредством муфты мощность двигателя определяют по формуле [c.53]

    Измерение мощности на валу. Мощность на валу измеряется только у насосов, у которых должна измеряться частота вращения, т. е. у насосов, не объединенных конструктивно с двигателем. Наиболее точный — механиче с к ий способ измерения момента на валу насоса с одновременным измерением частоты вращения. Измерение мощности электрическим способом у микро-, мелких и малых насосов допускается в случаях, когда насос должен по требованию технической документации испытываться со штатным электродвигателем или конструкция насоса затрудняет использование балансирного двигателя (например, вертикального насоса, крепящегося к электродвигателю). У крупных и средних насосов мощность может определяться как механическим, так и электрическим способом. [c.109]

    Нередко для измерения мощности на валу насоса пользуются электроизмерительными приборами, по которым определяют мощность электрического тока, питающего двигатель. Умножив эту мощность на к. п. д. двигателя, получают мощность на валу насоса. Однако этот метод не обеспечивает должной точности измерения мощности и поэтому не может быть рекомендован.  [c.167]

    Мощность насоса N — мощность, потребляемая наСосом (подводимая на вал насоса от двигателя). Очевидно, N>Nп на величину потерь мощности в насосе. [c.55]

    Вследствие ограниченного числа двойных ходов поршня двигатель передает мощность на вал насоса при помощи понижающей зубчатой передачи. [c.258]

    Мощность, потребляемая двигателем, или номинальная мощность двигателя Л д , больше мощности на валу вследствие механических потерь в передаче от электродвигателя к насосу и в самом электродвигателе. Эти потери учитываются введением в уравнение (П1,3) к. п. д. передачи т]пер и к. п. д. двигателя т)дв  [c.128]

    Указанный расчетный прием для нахождения рабочей точки применим лишь в том случае, когда число оборотов привода насоса не зависит от мощности, потребляемой насосом, т. е. от нагрузки на валу насоса. Это имеет место, например, при соединении насоса с электродвигателем переменного тока или с иным двигателем, мощность которого во много раз больше мощности насоса. [c.149]

    Рассмотрим, как пе)эе-дается мощность и оценивается КПД гидропривода с регулируемыми гидромашинами. Механическая энергия подается насосу от приводного двигателя через входное звено — вал насоса. [c.75]

    Механический КПД т н. и насоса определяется из технической характеристики насоса. Примерные значения т1н. и приведены в п. 1.3. По величинам и Л н подбирают приводящий двигатель. Для гидроприводов стационарных машин и технологического оборудования обычно используют асинхронные электродвигатели. В мобильной машине насос может присоединяться к валу отбора мощности от теплового двигателя. [c.111]


    Приводящий двигатель насосно-аккумуляторной установки выбирают после расчета крутящего момента и мощности на приводном валу насоса  [c.115]

    Полный к. п. д. насоса есть отношение полезной мощности Кп насоса к мощности на валу двигателя, т. е. [c.346]

    ГОСТ 10168.6—85 Насосы центробежные для химических производств , применяются в химической, нефтехимической и других отраслях промышленности. Их выпускают в различных исполнениях по материалу деталей проточной части, типу узла уплотнения вала, диаметру рабочего колеса, мощности и исполнению комплектующего двигателя. [c.475]

    Подача Напор, м Число оборотов вала в минуту Мощность, кВт Тнп электро- двигателя кпд насоса, % Допустимый кавитационный запас, м Длина рабочего колеса /, мм Масса, кг  [c.651]

    Мощностью, потребляемой насосом (или мощностью на валу), называется мощность, передаваемая двигателем на вал насоса. Полезная (или гидравлическая) мощность — это мощность, полученная жидкостью. Мощность выражается в л. с. или в кет и обозначается буквой N. [c.5]

    Индикаторная мощность в свою очередь меньше мощности, переданной двигателем на вал насоса Л нас, вследствие потерь на преодоление механического трения между деталями механизма насоса. [c.60]

    Если известны полный напор в м и секундная производительность в л, мощность, передаваемая двигателем на вал насоса, определяется по формуле [c.61]

    Так как в циркуляционных установках мощность двигателя может приниматься близкой к мощности на валу насоса, то в таких случаях для упрощения расчетов формулу (10.5) можно записать в виде [c.224]

    По данным 1958 г. были установлены затраты на основное оборудование экстракционной установки — стальной смеситель диаметром 0,457 м и отстойник (рассчитанный на время осаждения 10 мин), перемешивающее устройство (мешалка, вал, опоры, взрывобезопасный двигатель, редуктор и пр.) мощностью 13,3 вт1(м ч). Суммарная скорость фаз 2,83 м ]ч. Эти затраты без учета насосов определяются зависимостью [c.625]

    В реакторах емкостью 18 м , применяемых в нефтяной промышленности для сернокислотного алкилирования изобутана непредельными углеводородами под давлением 10 кгс/см , используют встроенный винтовой насос производительностью 10 ООО м /ч при напоре 4,5 м вод. ст. и мощности двигателя 220 кВт. Удельная мощность реактора составляет 220/18 = 12 кВт/м . Насос работает при частоте вращения 500 об/мин. Его удельная быстроходность равна 985, к, п. д. составляет 0,9. Следует отметить, что, несмотря на высокие гидравлические данные насоса при его эксплуатации встречаются большие трудности ввиду весьма значительных нагрузок на специальное торцевое уплотнение вала, диаметр которого составляет 95 мм. Такое уплотнение сложно в изготовлении и обслуживании. Оно требует непрерывной подкачки буферной жидкости с помощью вспомогательной установки, в которой имеется паровой центробежный насос, резервный электронасос, емкости, фильтры и органы автоматического поддержания избыточного давления буферной жидкости. [c.9]

    Трения — мощность, затрачиваемая на преодоление внутренних потерь в А. д. В современных А. д. составляет 12—19% от индикаторной мощности двигателя. Мощность трения состоит из а) мощности, затрачиваемой на преодоление трения деталей двигателя (поршней, коленчатого вала, шатунов, зубчатых передач и т. п.) б) мощности, потребляемой обслуживающими агрегатами (динамо, магнето, водяными и масляными насосами и т. п.) в) мощности, затрачиваемой на насосные потери, т. е. на потери наполнения и выхлопов. [c.9]

    Мощность, подводимую к насосу при помощи муфты или ременной передачи, называемую мощностью насоса, определяют косвенным или прямым замером, а именно по измеренным величинам крутящего момента на валу насоса и частоте вращения или по измеренной величине мощности приводного двигателя с исключением всех потерь, которые имеют место между точкой замера и валом насоса, [c.163]

    Нередко для измерения мощности, потребляемой насосом, пользуются электроизмерительными приборами, по которым определяют мощность электрического тока, питающего двигатель. Умножив эту мощность на к. п. д. двигателя, получают мощность на муфте двигателя. Однако такой метод не обеспечивает высокой точности измерения мощности насоса и должен применяться лишь в том случае, если балапсирный электродвигатель или крутильный динамометр не могут быть использованы, например, если вал двигателя и насоса общий, [c.221]

    Опрыскиватель ОНК-Б представляет собой агрегат, состоящий из колесного трактора (ХТЗ-7, ДТ-14, ДТ-14Б или ДТ-20) со смонтированными на нем двумя ци.линдрическими резервуарами общей емкостью 550 л, поршневым насосом производительностью 32 л1мин, вентилятором ЦАГИ № 2, предназначенным для опыливания, и эжекторного заправочного устройства производительностью 100 л1мин. Емкости оборудованы лопастными механическими мешалками для перемешивания раствора. Привод — от вала отбора мощности двигателя трактора. [c.27]

    Насосы для топлива и воздуха, компрессора, продувочные насосы. Форсуночные двигатели требуют управляемых регулятором насосов для подачи под давлением и отмеривания топлива (фиг. 24 стр. 441) двухтактные двигатели с зажиганием нуждаются также в отмеривающих насосах для воздуха и газа, управляемых регулятором, Вследствие такого регулирования отмеривающие насосы не могут быть отделены от двигателя. Наоборот, добыча распыливающего воздуха для распыливания жидкого топлива, например в компрессорных двигателях постоянного давления, как равно добыча продувочдого воздуха для всех двухтактных двигателей и для четырехтактных двигателей повышенной мощности, может производиться в особом месте отдельно от двигателя. Однако выгоднее и эти приводы сделать непосредственно от источника энергии, соединив их с поршнем или с коленчатым валом, чтобы уменьшить потери передачи, использовать станину двигателя, а в двухтактных чтобы объединить вместе воздушный насос с продувочным. [c.459]


    Мощность на валу насоса затрачивается двигателем на пр o a определяется формулой  [c.15]

    Определение мощности, потребляемой насосами, и мощности двигателей. Моишость на валу насоса (в квгп) гю заданным Q и Н находят из формулы  [c.24]

    Здание на электроснабжение. Готовя задание специалистам по проектированию электроснабжения, инженер-технолог прежде всего определяет характеристики механизмов с электрическим приводом — насосов, компрессоров, аппаратов с перемещивающйми устройствами, аппаратов роздущного охлаждения и т. д. Рассчитывается потребная мощность на валу двигателя Л/, а затем по N устанавливается рекомендуемая мощность двигателя Л/э. [c.79]

    Мощность iV, иодводи1мую от двигателя на вал насоса, называют мощностью насоса. [c.24]

    Действительная мощность, подводимая от двигателя валу насоса больше внутренней, так как часть ее идет на прсололен -10 механического трения. [c.251]

    Мощность насоса. Наиболее часто для определения мощности, потребляемой насосом, применяют балансир-ные электродвигатели, которые измеряют момент на муфте насоса. В отличие от обычного электромотора статор ба-лансирного электродвигателя подвешен на двух неподвижных стойках и может поворачиваться вокруг оси двигателя. Конструкция балансирного электродвигателя изображена на рис. 3-23. К крышкам электродвигателя жестко прикреплены цапфы 1 я 4. Через цапфу 4 проходит вал двигателя. Цапфы поворачиваются в двухрядных само-устанавливающихся шарикоподшипниках 2 и 5, закреп- [c.219]

    Момент, передаваемый на вал насоса, равен произведению показаний силоизмернтельного устройства Р на плечо г рычага. Мощность на муфте двигателя в Вт [c.221]

    Для входного звена (вала) насоса и выходного звена (вала или штона) двигателя эффективные мощности [c.32]

    Конечная цель регулирования насоса в режиме постоянной мощности — повысить производительность гидрофици-рованной машины в результате наиболее полного использования мощности приводящего двигателя (см. параграф 4.1). Стабилизируемую мощность Л/н,рас На приводном валу насоса определяют по формуле (4.22) или после окончательного выбора приводящего двигателя из выражения [c.281]

    Для стабилизации на валу насоса постоянной мощности (Л/ц = = onst) необходим относительно сложный регулятор. В него должны входить датчики угловой скорости Он и крутящего момента Ян, множительное устройство (N == блок сравнения (AN = Л н — Л н. рас) и регулирующий механизм, воздействующий на насос. Стремление упростить структуру регулятора привело к использованию закона регулирования в режиме постоянного момента на приводном валу насоса Ян = onst. Такая замена эквивалентна, когда приводящий двигатель обеспечивает при постоянной нагрузке неизменную скорость приводного вала (Он = onst). Расчетное значение стабилизируемого момента при этом [c.281]

    По найденным диаметрам горловины ( р = 35 мм и сопла ( с = 13 мм можно подобрать готовый струйный аппарат или рассчитать его, пользуясь рекомендациями, приведенными и п. 1.5. В данном случае в качестве водовоздушного эжектора можно принять гидроэлеватор № 3, применяемый в тепловых сетях и выпускаемый серийно промышленностью (65]. Зиая расход рабочей воды Ср = 13,3 м /ч и необходимое давление р ас = 0центробежный иасос. Ввиду того что перегрузка привода при работе центробежного насоса на рабочее сопло эжектора практически исключена, мощность двигателя может быть принята близкой к мощности на валу насоса. [c.223]

    Полученная формула содержит в себе ряд принципиальных положений, Во-первых, не нарушаются законы термодинамики. Чем ниже температура спая тем меньше АГтах- При Гх = О К АГ ах =- 0. Никаких технических параметров в этой формуле нет, что принципиально отличает термоэлектрический тепловой насос от других типов холодильных машин. Здесь имеются только электрические и тепловые параметры вещества. При увеличении Z увеличиваются и возможности охлаждения. Отсюда вытекае г важное следствие эффективность термоэлектрических холодильных машин не зависит от габаритов, в отличие от компрессионных холодильных машин, где от мощности на валу компрессора и двигателя зависит эффективность машины в целом. [c.26]

    При выборе двигателя поршневого насоса учитывается, что часть его мощности расходуется в редукторе, снижающем число оборотов, и в шатуннонкривошппном механизме. Поэтому запас мощности двигателя поршневого насоса должен быть больше, чем у центробежного насоса, двигатель которого присоединяется непосредственно к валу. [c.57]

    Опытную мощность на валу насоса N) в киловаттах при ба-лансирном электродвигателе или двигателе на качающейся платформе подсчитывают на формуле [c.354]


МОЩНОСТЬ НА ВАЛУ – это… Что такое МОЩНОСТЬ НА ВАЛУ?

МОЩНОСТЬ НА ВАЛУ
МОЩНОСТЬ НА ВАЛУ

(Shaft horsepower) — см. Мощность эффективная, или тормозная.

Самойлов К. И. Морской словарь. – М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941

.

  • МОЩНОСТЬ МОРСКОЙ АРТИЛЛЕРИИ
  • МОЩНОСТЬ НОМИНАЛЬНАЯ

Полезное


Смотреть что такое “МОЩНОСТЬ НА ВАЛУ” в других словарях:

  • Мощность на валу — Ндп. см. Мощность насоса Смотреть все термины ГОСТ 17398 72. НАСОСЫ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ Источник: ГОСТ 17398 72. НАСОСЫ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ …   Словарь ГОСТированной лексики

  • Мощность на валу приводного двигателя — 117. Мощность на валу приводного двигателя D. Aufgenommene Leistung der Antriebsmaschine, Leistungsaufnahme Сумма мощности на валу компрессора и мощности, теряемой в устройствах передачи движения от приводного двигателя к компрессору Источник:… …   Словарь-справочник терминов нормативно-технической документации

  • Мощность на валу компрессора — 116. Мощность на валу компрессора D. Kupplungsleistung, Wllenleistung E. Shaft power Сумма мощности компрессора и вспомогательной мощности компрессора Источник: ГОСТ 28567 90: Компрессоры. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • мощность на валу компрессора — Мощность, затрачиваемая на вращение компрессора. Примечание. Мощность компрессора может определяться по полной работе сжатия или по эффективной работе на валу компрессора. В первом случае механические потери не учитываются …   Политехнический терминологический толковый словарь

  • Мощность на валу насоса — Ндп. см. Мощность насоса Смотреть все термины ГОСТ 17398 72. НАСОСЫ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ Источник: ГОСТ 17398 72. НАСОСЫ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ …   Словарь ГОСТированной лексики

  • объявленная мощность на валу отбора мощности — 3.13 объявленная мощность на валу отбора мощности: Мощность, объявленная изготовителем на валу отбора мощности двигателя, поставляемого в комплекте с пропульсивной установкой, или на муфте, соединяемой с пропульсивной установкой двигателя,… …   Словарь-справочник терминов нормативно-технической документации

  • измеренная мощность на валу — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN measured shaft power output …   Справочник технического переводчика

  • механическая мощность на валу — (напр. турбины) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN mechanical output …   Справочник технического переводчика

  • приведённая мощность на валу нетто — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN net corrected shaft power output …   Справочник технического переводчика

  • Мощность двигателя — характеризует полезную работу, производимую двигателем в единицу времени. Мощность газотурбинного двигателя Ne = GB/Nуд зависит от секундного расхода воздуха GB и удельной мощности Nуд (при GB = 1 кг/с), определяемой параметрами… …   Энциклопедия техники

Расчет мощности насоса

| Neutrium

Энергия потребляется насосом, вентилятором или компрессором для перемещения и увеличения давления жидкости. Потребляемая мощность насоса зависит от ряда факторов, включая КПД насоса и двигателя, перепад давления и плотность жидкости, вязкость и скорость потока. В этой статье представлены соотношения для определения необходимой мощности насоса.

: Гидравлическая мощность насоса (кВт).
: Мощность на валу насоса (кВт).
: Требуемая мощность двигателя (кВт).
: Объемный расход жидкости через насос (м 3 / ч).
: Плотность перекачиваемой жидкости (кг / м 3 ).
: Плотность (9,81 м / с 2 ).
: Напор, создаваемый насосом (м).
: Перепад давления на насосе (кПа)
: КПД насоса (%).
: КПД двигателя (%).

Гидравлическая мощность, также известная как поглощенная мощность, представляет собой энергию, передаваемую перекачиваемой жидкости для увеличения ее скорости и давления. Гидравлическую мощность можно рассчитать по одной из приведенных ниже формул в зависимости от имеющихся данных.

Единицы Формула
P – кВт
Q – м 3 / ч
ρ – кг / м 3
г – м / с 2
ч – м
P – кВт
Q – м 3 / ч
dP – кПа
P – кВт
Q – л / мин
dP – кПа
P – кВт
Q – л / с
dP – кПа

Мощность на валу – это мощность, передаваемая двигателем на вал насоса.Мощность на валу – это сумма гидравлической мощности (обсужденной выше) и потерь мощности из-за неэффективности передачи мощности от вала к жидкости. Мощность на валу обычно рассчитывается как гидравлическая мощность насоса, деленная на эффективность насоса, следующим образом:

Мощность двигателя – это мощность, потребляемая двигателем насоса для вращения вала насоса. Мощность двигателя – это сумма мощности на валу и потерь мощности из-за неэффективности преобразования электрической энергии в кинетическую. Мощность двигателя можно рассчитать как мощность на валу, деленную на КПД двигателя.

Есть несколько других характеристик насоса и привода, которые увеличивают потребность в мощности для достижения конкретной передачи жидкости, к ним относятся:

  • Редукторы
  • Ременные приводы
  • Приводы с регулируемой скоростью (VSD)
Каждый из этих компонентов будет иметь их собственные показатели эффективности, которые необходимо учитывать в мощности, выдаваемой двигателем.

В таблице ниже представлены некоторые типичные значения КПД, которые можно использовать для оценки требований к мощности для выбора типов насосов.Эти значения предназначены для насосов правильного размера. Если насос слишком большого размера или плохо спроектирован, его эффективность может быть намного ниже, чем значения, указанные ниже, это особенно часто встречается в небольших насосах.

Тип насоса / компонент Типичный КПД
Центробежный насос 60-85%
Пластинчато-шиберный насос 60-90%
%
Ременный привод 70-96%
Привод с регулируемой скоростью
на полной скорости
80-98%
Привод с переменной скоростью
на полной скорости 75%
70-96%
Привод с регулируемой скоростью
при 50% полной скорости
44-91%
Привод с регулируемой скоростью
при 25% полной скорости
9-61%
  1. Игорь Карасик, Руководство по насосам, четвертый Издание
  2. Perry’s Chemical Engineers ‘Handbook, восьмое издание
Статья Создана: 9 июля 2012 г.
Теги статей

Shaft Power – обзор

10.8 Турбовинтовые

Мощность на валу, необходимая для привода воздушного винта, может поступать из разных источников: от обычного поршневого двигателя, который был источником энергии с первых дней полета; электродвигатель, которому в последние годы уделяется большое внимание; и газотурбинный двигатель, который мы изучаем как реактивный движитель. Преимущества воздушного винта с точки зрения тяги на низкой скорости и высокой тяги, а следовательно, и топливной эффективности, могут быть связаны с плавным ходом, высокой надежностью газовой турбины, а также с выгодой от некоторой реактивной тяги.Единственным серьезным техническим препятствием было их соединение, потому что частота вращения газовой турбины примерно в 10 раз выше, чем у пропеллера. Таким образом, между гребным винтом и газовой турбиной требуется редуктор. Вес и надежность таких агрегатов несколько снизили привлекательность, но эта комбинация пропеллер-реактивный двигатель по-прежнему обладала достаточными преимуществами, так что их использование широко распространено сегодня в приложениях для более крупных самолетов, которые не должны летать намного быстрее, чем около 300 узлов.

Турбовинтовой двигатель начался с добавления гребного винта и коробки передач непосредственно к газотурбинному двигателю и извлечения работы, необходимой для компрессора и гребного винта, оставляя меньший процент увеличения энтальпии для расширения через сопло для реактивной тяги. Стало очевидным, что это было менее эффективно, чем использование отдельного вала для гребного винта, который будет приводиться в движение так называемой свободной турбиной, выходную мощность и скорость которой можно было бы более эффективно адаптировать к различным требованиям к мощности на валу.Блок компрессор-горелка-турбина будет по существу генератором горячего газа для свободной турбины. Принципиальная схема типичного турбовинтового двигателя со свободной турбиной показана на рис. 10.19.

РИСУНОК 10.19. Турбовинтовой двигатель со свободной турбиной, ведущей пропеллер через коробку передач. Блок компрессор – горелка – турбина газогенератор питает свободную турбину и сопло.

Цикловая диаграмма для двигателя этого типа представлена ​​на рисунке 10.20. Воздух, поступающий через вход на станции 1, сжимается от станции 2 к станции 3 и попадает в камеру сгорания постоянного давления.Поскольку потери давления застоя невелики, для наглядности станции 3 и 4 показаны на одной линии постоянного давления торможения. Топливо добавляется и сжигается, а продукты выходят на станцию ​​4. Турбина привода компрессора извлекает работу, достаточную для приведения в действие компрессора путем расширения от станции 4 к станции 5. Дальнейшее расширение через свободную турбину от станции 5 к станции 5 FT извлекает достаточно работа для привода комбинации гребной винт – редуктор. Затем расширение продолжается по мере прохождения потока через сопло от станции 5 к станции 6.

РИСУНОК 10.20. Схема цикла турбовинтового двигателя со свободной турбиной.

На диаграмме цикла турбина обеспечивает работу, необходимую для приведения в действие компрессора, а свободная турбина обеспечивает работу для привода комбинации гребной винт-редуктор. Разделение работы, отправляемой на винт, и работы, отправляемой на сопло, является вопросом некоторой важности. Интуитивно можно было ожидать, что по мере приближения скорости полета к звуку скорости большая часть работы должна быть отправлена ​​на сопло, потому что эффективность воздушного винта падает с увеличением числа Маха полета.Кончик пропеллера достигнет звуковой скорости намного раньше, чем число Маха полета, что приведет к потерям из-за ударных волн и увеличению аэродинамического шума. Как следствие, турбовинтовой двигатель лучше всего подходит для скоростей ниже примерно 350 узлов или для числа Маха примерно 0,5.

Тяговая мощность, развиваемая турбовинтовым двигателем, может быть записана как

TP = ηpPFT + m˙V0 (Ve − V0).

Первое предположение, подразумеваемое в этом уравнении, заключается в том, что соотношение топлива и воздуха ( f / a ) примерно равно доле воздуха, отбираемого из компрессора для различных целей, таких как охлаждение лопаток турбины, так что массовый расход газа, проходящего через двигатель, можно считать постоянным.Второе предположение состоит в том, что скорость на выходе V 6 = V e , эффективная скорость истечения, поскольку ожидается, что число Маха на выходе из сопла будет дозвуковым. Третье предположение состоит в том, что тяговая эффективность η p включает комбинацию гребной винт-редуктор, так что η p P FT – это мощность, передаваемая воздуху. Тогда мощность тяги на единицу массы равна

(10.64) TPm˙ = ηp (ht, 5 − ht, 5TF) + V0 (Ve − V0).

Это можно выразить в терминах температуры торможения на входе в свободную турбину и перепада давлений на свободной турбине следующим образом:

(10,65) TPm˙ = ηpηad, ecp, 4Tt, 5 [1− (pt , 5FTpt, 5) γ5−1γ5] + V0 (Ve − V0).

В этом уравнении мы предполагаем, что знаем условия полета, эффективность и термодинамические свойства газа. Будем считать c p , 2 и γ 2 постоянными до станции 3 («холодное» значение) и c p , 4 и γ 4 быть постоянным на станции 4 и далее («горячее» значение).Неизвестно следующее: температура торможения на выходе турбины газогенератора T t , 5 , свободный перепад давления турбины и скорость на выходе из сопла. Мы знаем, что работа турбины газогенератора должна быть равна работе компрессора. Турбина, возможно, также должна обеспечивать работу некоторых принадлежностей, таких как насосы или генераторы, но для ясности и компактности здесь пренебрегаем дополнительной работой, поскольку она мала по величине. Таким образом, приравняв работу компрессора и ведущей турбины, получаем

(10.66) cp, 2Tt, 2ηad, c [(pt, 3pt, 2) γ2−1γ2−1] = cp, 4 (Tt, 5 − Tt, 4).

В этом уравнении мы предполагаем, что мы указали степень сжатия компрессора, поэтому единственными неизвестными являются температура на входе в турбину T t , 4 и температура на выходе из турбины газогенератора. Последнее может быть определено, если мы укажем первое, что можно сделать, учитывая баланс энергии в камере сгорания, который приводит к

(10,67) Tt, 4 = cp, 2cp, 4Tt3 + faηbHVcp, 4.

Здесь нам нужно знать температуру торможения компрессора на выходе, которая получается из уравнения работы компрессора следующим образом:

(10.68) Tt, 3 = Tt, 2 {1 + 1ηad, c [(pt, 3p, 2) γ2−1γ2−1]}.

Теперь, зная T t , 3 из уравнения (10.68), мы можем найти T t , 4 из уравнения (10.67), а затем T t , 5 из уравнения (10.66). Это оставляет уравнение (10.65) с двумя неизвестными: свободный перепад давления в турбине и скорость на выходе струи. Тогда возникает вопрос, как следует распределить мощность тяги между мощностью на свободном валу турбины и мощностью выхлопной струи, чтобы максимизировать мощность тяги? Простое и разумное приближение можно получить, изучив рисунок 10.21, который фокусируется на конце турбинной схемы цикла.

РИСУНОК 10.21. Изэнтропические процессы в двигателе от свободной турбины до среза сопла.

Поскольку энтальпия застоя на входе в свободную турбину h t , 5 фиксируется другими параметрами, как указано ранее, мы можем аппроксимировать падение энтальпии застоя в уравнении (10.64) следующим образом:

( 10.69) TPm˙≈ηp [(ht, 5 − h6) −ηad, eηn12Ve2] + V0 (Ve − V0).

Поскольку только второй и третий члены являются переменными, мы можем взять производную уравнения (10.69) относительно V e и установите его равным нулю, чтобы найти значение крайней точки, которое составляет

(10,70) Ve = ηnηpηad, cV0.

Поскольку вторая производная уравнения (10.69) отрицательна, значение для V e , заданное уравнением (10.70), является максимальным. Отношение расширения сопла к КПД расширения турбины η n / η ad, e ∼1, так что в сделанном приближении оптимальное значение скорости на выходе струи составляет

Ve, opt≈V0ηp .

Таким образом, оптимальная скорость реактивной струи примерно на 30-50% больше скорости полета, поэтому ясно, что реактивная тяга не является основным фактором в турбовинтовом двигателе. Более подробный анализ турбовинтового двигателя можно найти в Mattingly (1996).

Расчет мощности вала

Валы – очень важные механические элементы в машиностроении. И они обычно используются для передачи энергии. Электроэнергия вырабатывается электродвигателями или двигателями внутреннего сгорания.И к этим моторам прикреплены валы. Другой конец этих валов прикреплен к другим частям оборудования, которые будут выполнять ожидаемую работу.

Итак, проектирование валов – очень важная инженерная задача.

Здесь мы объясняем, как рассчитать мощность, передаваемую валом.

Как рассчитать мощность вала?

Применение механического вала (Источник изображения: log.chesterton.com/sealing/mechanical/mechanical-seals-three-basic-rules/).

Здесь мы покажем вам, как рассчитать мощность, передаваемую валом, в лошадиных силах и ваттах.

Прежде всего, вам необходимо знать значение крутящего момента, передаваемого валом. Крутящий момент можно легко рассчитать для вала в определенных ситуациях.

Затем вам нужно вычислить угол поворота в минуту в радианах.

Здесь мы создали калькуляторы, с помощью которых вы можете легко рассчитать мощность на валу как в лошадиных силах, так и в ваттах.

-calc-

Как вы видите выше, существует очень простой список, в котором вы можете выбрать расчет мощности как в «лошадиных силах», так и в «ваттах».Выберите один из них и введите нужные значения в скобки.

Затем нажмите кнопку «Рассчитать!», Чтобы увидеть результат. Если вы хотите выполнить другой расчет, нажмите кнопку «Сброс», а затем повторно введите значения.

Пожалуйста, введите значения правильно с указанными единицами измерения. Если ваши единицы не совпадают с данными единицами, вы можете использовать инструмент MB-Unit Converter.

Вывод

Как видно выше, расчет мощности на валу очень прост.

Mechanical Base не несет ответственности за расчеты, сделанные пользователями в калькуляторах. Хороший инженер должен снова и снова проверять расчеты.

Вы можете найти гораздо больше калькуляторов, чем в Mechanical Base! Взгляните на другие инженерные калькуляторы , доступные в Mechanical Base!

Не забывайте оставлять ниже свои комментарии и вопросы по поводу силовых расчетов валов и вычислителя.

Ваши ценные отзывы очень важны для нас.

Требуемая мощность на валу насоса – BPMA

Для точного выбора привода насоса и расчета эксплуатационных расходов или технико-экономического обоснования необходимо знать мощность привода, необходимую для работы насоса в требуемой рабочей точке. Требуемая мощность на валу или потребляемая мощность насоса, как и гидравлические характеристики, также показаны на графике.

  • Демонстрирует зависимость потребляемой мощности от расхода.
  • Требования к максимальной мощности на валу также достигаются при максимальном расходе.

Размер приводного двигателя соответствует этой точке, если насос должен работать без перегрузки в допустимом диапазоне производительности.

Насосы с мокрым ротором

всегда оснащаются двигателями, способными покрывать весь диапазон кривых. Таким образом, можно сократить количество типов насосов и, таким образом, обеспечить удобный склад запасных частей.

Если заданная рабочая точка насоса (насос с сухим ротором) находится в левой части рабочей кривой с соответственно меньшей потребляемой мощностью.

Возможно выбрать двигатель меньшего размера. Однако в таких случаях существует вероятность перегрузки двигателя, если фактическая рабочая точка допускает более высокий расход, чем рассчитанный (более пологая кривая системы).

Поскольку на практике всегда существует опасность смещения рабочей точки, рекомендуется выбирать двигатель для привода насоса с сухим ротором с запасом мощности прибл. От 5 до 20% выше теоретически необходимого.

Для определения эксплуатационных затрат на насос необходимо различать требуемую мощность на валу P2 (кВт) насоса, часто равную установленной номинальной мощности двигателя, и фактическую мощность, потребляемую приводным двигателем P1 (кВт).

Последний, P1, является основой для определения операционных затрат. Если задана только мощность на валу P2, можно определить фактическую потребляемую мощность путем деления P2 на КПД двигателя.

Потребляемая электрическая мощность P1 указана, если насос и приводной двигатель заключены в единый блок, такой как насос с мокрым ротором. Однако обычно указываются значения как P1, так и P2.

Требуемая мощность на валу P2 обычно задается, если насос и двигатель соединены, например насосы с сухим ротором.Это необходимо для того, чтобы можно было использовать разные типы двигателей с разной потребляемой мощностью.


Вернуться к ресурсам

Завод Инжиниринг | Соотношение крутящего момента и размера вала

Вы когда-нибудь задумывались, почему разные типы электродвигателей с одинаковой мощностью в лошадиных силах / киловаттах имеют разные диаметры валов или почему валы некоторых насосов намного меньше валов двигателей, которые их приводят в движение? А что насчет двигателей с полым валом? Элементарное понимание того, как определяются размеры вала, может быть полезно любому, кто работает с насосами, вентиляторами, лифтами или любым другим оборудованием с приводом от двигателя.

Чем больше, тем лучше – или, по крайней мере, раньше было

Отчасти благодаря традициям валы электродвигателей часто больше, чем валы оборудования, которым они управляют. Инженеры были очень консервативны сто лет назад, когда электродвигатели впервые получили широкое распространение в промышленности, поэтому при их проектировании обычно допускалась значительная погрешность. Сегодняшние инженеры в этом отношении мало что изменили. Например, стандартные размеры рамы NEMA, которые были пересмотрены только один раз с 1950 года, по-прежнему определяют гораздо большие размеры вала, чем того требуют общепринятые принципы машиностроения.

Основы конструкции вала

Размер вала определяется крутящим моментом, а не мощностью. Но изменения мощности и скорости (об / мин) влияют на крутящий момент, как показывает следующее уравнение:

Крутящий момент (фунт-фут) = л.с. x 5,252 / об / мин

Соответственно, для увеличения мощности потребуется больше крутящего момента, как и для уменьшения частоты вращения. Например, для двигателя мощностью 100 л.с., рассчитанного на 900 об / мин, потребуется вдвое больше крутящего момента, чем для двигателя мощностью 100 л.с., рассчитанного на 1800 об / мин.Каждый вал должен быть рассчитан на предполагаемую крутящую нагрузку.

Для определения необходимого минимального размера вала для двигателей используются два основных подхода, оба из которых дают консервативные результаты. Один метод требует сделать вал достаточно большим (и, следовательно, достаточно прочным), чтобы выдерживать указанную нагрузку без поломки. Инженеры-механики определяют это как способность передавать требуемый крутящий момент без превышения максимально допустимого напряжения сдвига при кручении материала вала.На практике это обычно означает, что минимальный диаметр вала может выдерживать, по крайней мере, двукратный номинальный крутящий момент двигателя.

Другой способ спроектировать вал – это рассчитать минимальный диаметр, необходимый для контроля крутильного прогиба (скручивания) во время эксплуатации. Для инженеров это означает, что допустимый крутящий момент или крутящий момент является функцией допустимого напряжения сдвига при кручении (в фунтах на квадратный дюйм или кПа) и модуля упругости полярного сечения (функция площади поперечного сечения вала).

Справочник по машинному оборудованию предоставляет следующие уравнения для определения минимальных размеров вала с использованием обоих подходов к проектированию: сопротивления крутильному прогибу и передачи крутящего момента.Обе системы уравнений основаны на стандартных значениях для стали с допустимыми напряжениями 4000 фунтов на квадратный дюйм (2,86 кг / мм 2 ) для приводных валов и 6000 фунтов на квадратный дюйм (4,29 кг / мм 2 ) для трансмиссионных валов с шкивы (иногда называемые шкивами). Некоторые из уравнений также относятся к валам с шпонкой или без шпонки, что удобно для пользователей насосов, которым необходимо знать, как рассчитать валы с шпонкой и без шпонки.

Передача момента приближения

Большинство валов двигателей имеют шпонку, что увеличивает напряжение сдвига, действующее на вал.Учитывая это, конструкции вала двигателя обычно используют не более 75% максимального рекомендованного напряжения для вала без шпонки. Это еще одна причина, по которой валы электродвигателей часто больше, чем валы насосов, которые они приводят.

>> Уравнения 3-5 и примеры 1-4 см. На следующих страницах.

Пример 1

Рассмотрим двигатель мощностью 200 л.с. (150 кВт), 1800 об / мин. Для применения с прямым соединением стандартный размер рамы составляет 445TS с диаметром вала (шпоночного) 2.375 дюймов (60 мм). Используя уравнение [1], минимальный размер вала будет:

Или, в метрических единицах:

Чтобы увидеть, какой коэффициент запаса прочности учитывается в приведенных выше уравнениях, замените номинальную мощность 200 л.с. на 400 л.с.

Поскольку расчетный диаметр вала для двигателя мощностью 200 л.с. рассчитан на то, чтобы выдерживать удвоенный номинальный крутящий момент, диаметр вала 2,371 дюйма является абсолютным минимумом для номинальной мощности 400 л.с.

Устойчивость к скручиванию

Другой способ рассчитать минимальный размер вала двигателя – установить предел величины крутильного отклонения (скручивания), которое может произойти.Сопротивление скручивающим нагрузкам прямо пропорционально размеру вала: чем больше диаметр, тем больше сопротивление скручиванию.

Практическое правило этого метода заключается в том, что вал должен быть достаточно большим, чтобы он не отклонялся более чем на 1 градус на длине, в 20 раз превышающей его диаметр. Чтобы рассчитать минимальный размер вала, соответствующий этой спецификации, используйте следующее уравнение:

Пример 2

Для двигателя 200 л.с. (150 кВт), 1800 об / мин из Примера 1, минимальный размер вала для ограничения крутильного прогиба будет:

Или, в метрических единицах:

Минимальные диаметры вала, рассчитанные с помощью методов передачи крутящего момента и крутильного отклонения, по существу одинаковы для примеров 1 и 2.Тем не менее, хороший подход – рассчитать размер в обоих направлениях, а затем использовать большее значение в качестве абсолютного минимума.

>> Конструкции полого вала, уравнение 5 и примеры 3-4 см. На следующей странице.

Конструкции с полым валом

Непосредственно связанные нагрузки оказывают скручивающее усилие (кручение) на вал, вызывая наибольшую деформацию вблизи поверхности или радиуса и очень небольшую – на внутренней части. Это делает конструкцию с полым валом практичной для вертикальных двигателей.Эти конструкции позволяют валу насоса проходить через полый вал двигателя, что упрощает процесс соединения валов насоса, которые должны поддерживать столб тяжелой воды, связанный с глубокой скважиной.

Расчет диаметра вала для вертикального двигателя с полым валом не такой простой. Две переменные – внешний и внутренний диаметры полого вала – не стандартизированы, что делает невозможным упрощение расчета с помощью соотношения. По этой причине легче продемонстрировать, достаточно ли конкретного полого вала для данной номинальной мощности.

Пример 3

Двигатель с полым валом мощностью 200 л.с. (150 кВт), 1800 об / мин имеет внешний диаметр вала 3 дюйма (76 мм) и внутренний диаметр 2 дюйма (51 мм). Чтобы определить, достаточно ли этого размера вала для передачи требуемого крутящего момента, решите следующее уравнение для P :

В этом примере мощность P должна быть больше 200 л.с., чтобы вал был достаточно большим, чтобы выдерживать крутящий момент двигателя.

Теоретически этот вал способен передавать 1700 л.с., так что этого более чем достаточно для 200 л.с.

Пример 4

Величина крутящего момента, который может передать полый вал, зависит от толщины стенки между его внутренним и внешним диаметрами. Более тонкая стена не может выдержать такой же крутящий момент, как более толстая. 3-дюйм. вал в Примере 3 был способен передавать 1700 л.с. и имел стенку толщиной ½ дюйма: (3 дюйма – 2 дюйма) / 2 дюйма = ½ дюйма. вал передачи, если бы стена была только ¼ дюйма толщиной?

Эффект от более тонкой стены впечатляет.Вал с диаметром 0,25 дюйма. стена может выдерживать менее 20% крутящего момента вала со стенкой ½ дюйма.

Подведение итогов

Инженеры

, как правило, проектируют с учетом достаточного запаса прочности, и, в частности, старое оборудование было сконструировано чрезмерно даже по сегодняшним стандартам. Конечно, это одна из причин, по которой многие из нас ценят старую технику. Это было достаточно сложно, чтобы противостоять человеческим ошибкам, таким как неправильная центровка.

В любом случае имейте в виду, что добавление шпоночной канавки к существующему валу ослабляет вал.Точно так же увеличение диаметра отверстия полого вала снижает допустимый крутящий момент. Рассматривайте модификацию вала только при наличии хорошей инженерной поддержки. Даже в этом случае помните, что чем серьезнее последствия отказа, тем более значительным должен быть коэффициент безопасности. В конце концов, кто хочет использовать лифт, который был спроектирован и построен без учета запаса прочности?

Чак Юнг (Chuck Yung) – старший специалист по технической поддержке Ассоциации обслуживания электроаппаратуры (EASA).

Производительность и эффективность – Torqeedo

В стандартизации мощности нет ничего нового.Он восходит к Джеймсу Ватту, который определил мощность в 18 веке, чтобы продемонстрировать производительность своего парового двигателя. С тех пор его единообразно измеряли в л.с. или, в честь изобретателя, в ваттах. И при этом все должно быть ясно, не так ли?

Не совсем. Это зависит от того, где и как вы измеряете. Наиболее значимым показателем эффективности системы привода является тяговая мощность, которая показывает производительность, фактически обеспечиваемую двигателем для движения лодки, с учетом всех потерь, включая потери гребного винта.Этот метод используется в коммерческом судоходстве почти 100 лет.
Для бензиновых и обычных электрических подвесных моторов тяговая мощность обычно не раскрывается. Вместо этого используются менее значимые индикаторы, такие как мощность на валу, входная мощность или даже статическая тяга.

Это было бы не так уж плохо, если бы разница между различными номинальными мощностями была минимальной. Но это не так; они очень большие. Например, тяговая мощность бензинового подвесного двигателя мощностью на валу 4 л.с. составляет всего 1 л.с.Как можно измерить различия в уровнях эффективности различных типов двигателей? Мы прольем на них свет.

Преимущество Torqeedo

Наша ориентация на оптимизацию тягового усилия и использование новейших технологий означает, что Torqeedo имеет самую высокую общую эффективность на рынке. То есть каждый привод Torqeedo преобразует доступную мощность аккумулятора в тяговую мощность лучше, чем любой другой подвесной двигатель. Это очень важно для электроприводов, потому что это означает большую мощность и диапазон от ограниченной емкости аккумулятора.

Torqeedo круиз 2.0 Обычный подвесной двигатель с электроприводом Бензиновый подвесной 5 л.с.
Вход
мощность
2000 Вт
(2,7 л.с.)
2000 Вт
(2,7 л.с.)
Вал
мощность
3700 Вт
(5 л.с.)
Пропульсивная
мощность
1,112 Вт
(1,5 л.с.)
660 Вт
(0.9 л.с.)
995 Вт
(1,4 л.с.)

Эквивалент 5 л.с.

Сравнение мощности электрических и бензиновых подвесных двигателей: эквивалент HP Torqeedo

Электродвигатели могут развивать ту же тяговую мощность, что и двигатели внутреннего сгорания, со значительно меньшей мощностью на валу. Причина кроется в разных кривых крутящего момента электродвигателей и бензиновых двигателей. В то время как кривая крутящего момента двигателей внутреннего сгорания имеет заметный пик, при этом максимальный крутящий момент доступен только в ограниченном диапазоне оборотов двигателя, электродвигатели имеют гораздо более пологую кривую крутящего момента с достаточным крутящим моментом, доступным при любой скорости двигателя.
Эта характеристика позволяет им использовать гребные винты с значительно более высоким КПД – даже в более низких классах мощности – по сравнению с двигателями внутреннего сгорания. Эффективность винта в низком классе мощности может различаться в 3 раза для бензиновых подвесных двигателей и электрических подвесных двигателей Torqeedo.

Чтобы облегчить сравнение лодочников, привыкших к номинальной мощности на валу бензиновых подвесных двигателей, мы всегда сравниваем фактическую тяговую мощность наших подвесных двигателей с бензиновыми подвесными двигателями. На следующих страницах подвесной двигатель Torqeedo, указанный как «эквивалент 3 л.с.», обеспечивает ту же тяговую мощность, что и бензиновый подвесной двигатель мощностью 3 л.с., даже несмотря на то, что его мощность на валу и входная мощность могут быть значительно ниже.

В разделе «Технические данные» мы предоставляем для справки всю информацию о потребляемой мощности, силовой мощности, общей эффективности и сопоставимых бензиновых подвесных двигателях.

Torqeedo круиз 2.0 Обычный подвесной двигатель с электроприводом Бензиновый подвесной 5 л.с.
Вход
мощность
2000 Вт
(2,7 л.с.)
2000 Вт
(2,7 л.с.)
Вал
мощность
3700 Вт
(5 л.с.)
Пропульсивная
мощность
1,112 Вт
(1.5 л.с.)
660 Вт
(0,9 л.с.)
995 Вт
(1,4 л.с.)

Эквивалент 5 л.с.

Torqeedo круиз 2.0 Обычный подвесной двигатель с электроприводом Бензиновый подвесной 5 л.с.
Вход
мощность
2000 Вт
(2,7 л.с.)
2000 Вт
(2,7 л.с.)
Вал
мощность
3700 Вт
(5 л.с.)
Пропульсивная
мощность
1,112 Вт
(1.5 л.с.)
660 Вт
(0,9 л.с.)
995 Вт
(1,4 л.с.)

Эквивалент 5 л.с.

Система привода и общий КПД


Архив решений для измерения мощности на валу

Обладая почти 30-летним опытом производства, Datum Electronics занимается исследованиями и разработкой решений для измерения мощности на валу для судостроения и других отраслей, для мониторинга производительности судов, контроля расхода топлива, состояния двигателя и потребностей в техническом обслуживании.

Наши судовые системы измерения мощности на валу измеряют крутящий момент на валу, мощность, тягу, частоту вращения и тягу (при необходимости), чтобы гарантировать поддержание оптимальной производительности на протяжении всего жизненного цикла судна. Благодаря использованию высокоточной и надежной технологии тензодатчиков в сочетании с современной электроникой точность нашей системы составляет 0,1%. Его можно установить и ввести в эксплуатацию в течение 1-2 дней на различных валах, включая промежуточные валы, подруливающие устройства, гребные винты и гребные винты с регулируемым шагом.Наша технология, наряду с нашим опытом в области динамического отбора образцов тензодатчиков, позволяет нам получить значительный объем информации о характеристиках двигателя и карданного вала, а также гребного винта.

Использование системы измерителя мощности на валу Datum Electronics позволяет судовладельцам и операторам судов соблюдать ВСЕ новые международные правила. Кроме того, точное измерение мощности на валу может выявить, когда требуется такое важное техническое обслуживание, как очистка корпуса, техническое обслуживание двигателя и гребного винта, что помогает еще больше снизить эксплуатационные расходы.

Кроме того, мы также проектируем и производим временные комплекты для измерения мощности на валу, позволяющие точно измерять и контролировать мощность на валу в полевых условиях, включая испытания на ходовых испытаниях. Доступный в двух форматах (компактный и стандартный), стандартный комплект предоставляет данные для длительных испытаний (30-60 дней) и поставляется в прочном всепогодном корпусе вала. Компактная версия с аккумулятором до 30 часов портативна и идеально подходит как для валов меньшего диаметра, так и для однодневных ходовых испытаний.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *