Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

формула для нахождения сечения магнитопровода, как рассчитать обмотки

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

  • Теория и история
  • Расчёт параметров прибора
    • Определение мощности
    • Вычисление сечения сердечника
    • Расчёт количества витков
    • Токи в обмотках
    • Диаметр провода
  • Виды и применение трансформаторов

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода.

Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

  • Автотрансформатор имеет один магнитопровод, на котором собран индуктор. Часть витков выполняет функции первичной обмотки, а остальные витки действуют как вторичные катушки.
  • Преобразователи напряжения работают в измерительных приборах и в цепях релейной защиты.
  • Преобразователи тока предназначены для гальванической развязки в сетях сигнализации и управления.
  • Импульсные трансформаторы применяются в вычислительной технике, автоматике, системах связи.
  • Силовые устройства работают с напряжением до 750 киловольт.

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Как узнать мощность трансформатора?

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность

, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

P=Uн * Iн

,где Uн – напряжение в вольтах;

Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Как определить мощность резистора?

  • Как проводить измерение сопротивления цифровым мультиметром?

  • Зачем нужен супрессор?

 

23.

10: Трансформеры – Физика LibreTexts
  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    2713
    • OpenStax
    • OpenStax

    Цели обучения

    К концу этого раздела вы сможете:

    • Объяснить, как работает трансформатор.
    • Рассчитать напряжение, ток и/или количество витков, зная другие величины.

    Трансформаторы делают то, что следует из их названия — они преобразуют напряжение из одного значения в другое (используется термин напряжение, а не ЭДС, поскольку трансформаторы имеют внутреннее сопротивление). Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие бытовые приборы имеют трансформатор, встроенный в сменный блок (как на рис. \(\PageIndex{1}\)), который изменяет напряжение 120 В или 240 В. переменного тока в любое напряжение, которое использует устройство.

    Рисунок \(\PageIndex{1}\): Подключаемый трансформатор становится все более привычным по мере распространения электронных устройств, работающих от напряжения, отличного от обычного 120 В переменного тока. Большинство из них находятся в диапазоне от 3 до 12 В. (кредит: Shop Xtreme)

    Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке \(\PageIndex{2}\). Энергия передается на большие расстояния при высоком напряжении, потому что для заданной мощности требуется меньший ток, а это означает меньшие потери в линии, как обсуждалось ранее. Но высокое напряжение представляет большую опасность, поэтому для получения более низкого напряжения в месте нахождения пользователя используются трансформаторы.

    Рисунок \(\PageIndex{2}\): Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжении более 200 кВ, иногда до 700 кВ, для ограничения потерь энергии. Местное распределение электроэнергии в районы или предприятия проходит через подстанцию ​​и передается на короткие расстояния при напряжении от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для обеспечения безопасности на объекте отдельного пользователя.

    Тип трансформатора, рассматриваемого в этом тексте (рис. \(\PageIndex{3}\)) основан на законе индукции Фарадея и очень похож по конструкции на аппарат Фарадея, используемый для демонстрации того, что магнитные поля могут вызывать токи. Две катушки называются первичной и вторичной катушками . При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но и увеличивает его намагниченность. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется на вторичную обмотку, индуцируя ее выходное напряжение переменного тока.

    Рисунок \(\PageIndex{3}\): Типичная конструкция простого трансформатора состоит из двух катушек, намотанных на ферромагнитный сердечник, ламинированный для минимизации вихревых токов. Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и усиливается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке индуцирует ток во вторичной.

    Для простого трансформатора, показанного на рисунке \(\PageIndex{3}\), выходное напряжение \(V_{s}\) почти полностью зависит от входного напряжения \(V_{p}\) и отношения числа контуров в первичной и вторичной обмотках. Закон индукции Фарадея для вторичной катушки дает индуцированное выходное напряжение \(V_{s}\) равным

    \[V_{s} = -N\dfrac{\Delta \Phi}{\Delta t},\label{23.8.1}\]

    , где \(N_{s}\) — количество витков вторичной обмотки, а \(\Delta \Phi / \Delta t\) — скорость изменения магнитного потока. Обратите внимание, что выходное напряжение равно ЭДС индукции (\(V_{s} = ЭДС_{s}\)), при условии, что сопротивление катушки мало (разумное предположение для трансформаторов). Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому \(\Delta \Phi / \Delta t\) одинаково с обеих сторон. Входное первичное напряжение \(V_{p}\) также связано с изменением потока на

    \[V_{p} = -N_{p}\dfrac{\Delta \Phi}{\Delta t}.\label{23.8.2}\]

    Причина этого немного сложнее. Закон Ленца говорит нам, что первичная катушка сопротивляется изменению потока, вызванному входным напряжением \(V_{p}\), отсюда и знак минус подробности в последующих разделах). Предполагая пренебрежимо малое сопротивление катушки, петлевое правило Кирхгофа говорит нам, что ЭДС индукции точно равна входному напряжению. Соотношение этих двух последних уравнений дает полезное соотношение:

    \[\dfrac{V_{s}}{V_{p}} = \dfrac{N_{s}}{N_{p}}.\label{23.8.3}\]

    Это известно как уравнение трансформатора , и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению числа витков в его катушках.

    Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их обмотках. Некоторые трансформаторы даже обеспечивают переменную мощность, позволяя выполнять подключение в разных точках вторичной обмотки. А 9Повышающий трансформатор 0042 увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение. Предполагая, как и мы, что сопротивление пренебрежимо мало, выходная электрическая мощность трансформатора равна его входной мощности. На практике это почти так — КПД трансформатора часто превышает 99%. Приравнивание входной и выходной мощности,

    \[P_{p} = I_{p}V_{p} = I_{s}V_{s} = P_{s}.\label{23.8.4}\]

    Перестановка терминов дает

    \[\dfrac{V_{s}}{V_{p}} = \dfrac{I_{p}}{I_{s}}.\label{23.8.6}\]

    Комбинируя это с уравнением \ref{23.8.3} , мы находим, что

    \[\dfrac{I_{s}}{I_{p}} = \dfrac{N_{p}}{N_{s}}.\label{23.8.7}\]

    — соотношение между выходным и входным токами трансформатора. Таким образом, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

    Пример \(\PageIndex{1}\): Расчет характеристик повышающего трансформатора

    Портативный рентгеновский аппарат имеет повышающий трансформатор, входное напряжение которого 120 В преобразуется в рентгеновская трубка. Первичная обмотка имеет 50 витков и при использовании потребляет ток 10,00 А. а) Сколько петель во вторичном? (b) Найдите текущий выход вторичной обмотки. 9{4}. \end{align*}\]

    Обсуждение для (a):

    Большое количество петель во вторичной обмотке (по сравнению с первичной) требуется для создания такого большого напряжения. Это верно для трансформаторов неоновых вывесок и тех, которые обеспечивают высокое напряжение внутри телевизоров и ЭЛТ.

    Стратегия и решение для (b):

    Точно так же мы можем найти выходной ток вторичной обмотки, решив уравнение \ref{23.8.7} и \(I_{s}\) и введя известные значения. Это дает 9{4}} \\[5pt] &= 12,0 мА. \end{align*}\]

    Обсуждение для (b):

    Как и ожидалось, выходной ток значительно меньше входного. В некоторых впечатляющих демонстрациях для создания длинных дуг используются очень большие напряжения, но они относительно безопасны, поскольку выход трансформатора не обеспечивает большой ток. Обратите внимание, что потребляемая мощность здесь

    \[\begin{align*}P_{p} = I_{p}V_{p} &= \left(10.00 A \right) \left(120 V \right) \\ [5pt] &= 1,20 кВт. \end{выравнивание*}\]

    Это равно выходной мощности

    \[\begin{align*} P_{p} = I_{s}V_{s} &= \left(12,0 мА \right) \left(100kV \right) \\[ 5pt] &= 1,20 кВт \end{align*}\]

    , как мы предполагали при выводе используемых уравнений.

    Тот факт, что трансформаторы основаны на законе индукции Фарадея, проясняет, почему мы не можем использовать трансформаторы для изменения постоянного напряжения. Если первичное напряжение не меняется, то и вторичное напряжение не индуцируется. Одна из возможностей состоит в том, чтобы подключить постоянный ток к первичной катушке через переключатель. Когда переключатель размыкается и замыкается, вторичная обмотка создает напряжение, подобное показанному на рисунке \(\PageIndex{4}\). На самом деле это непрактичная альтернатива, и переменный ток широко используется везде, где необходимо увеличить или уменьшить напряжение.

    Рисунок \(\PageIndex{4}\): Трансформаторы не работают с чистым входным напряжением постоянного тока, но если его включать и выключать, как на верхнем графике, выход будет выглядеть примерно так, как на нижнем графике. Это не синусоидальный переменный ток, необходимый большинству приборов переменного тока.

    Пример \(\PageIndex{2}\): расчет характеристик понижающего трансформатора выход для зарядки аккумуляторов. В нем используется понижающий трансформатор с 200-контурной первичной обмоткой и входным напряжением 120 В. а) Сколько витков должно быть во вторичной обмотке? (б) Если зарядный ток равен 16,0 А, каков входной ток?

    Стратегия и решение для (a):

    Можно ожидать, что вторичный узел будет иметь небольшое количество циклов. Решение уравнения \ref{23.8.3} для \(N_{s}\) и ввод известных значений дает

    \[\begin{align*} N_{s} &= N_{p}\dfrac{V_{s} }{V_{p}} \\[5pt] &= \left( 200 \right) \dfrac{15.0 V}{120 V} \\[5pt] &= 25. \end{align*}\]

    Стратегия и решение для (b):

    Текущие входные данные можно получить, решив уравнение \ref{23.8.7} для \(I_{p}\) и введя известные значения. Это дает

    \[\begin{align*} I_{p} = I_{s}\dfrac{N_{s}}{N_{p}} \\[5pt] &= \left( 16,0 A \right) \dfrac {25}{200} \\[5pt] &= 2.00 A. \end{align*}\]

    Обсуждение:

    Количество витков во вторичной обмотке мало, как и положено для понижающего трансформатора . Мы также видим, что небольшой входной ток создает больший выходной ток в понижающем трансформаторе. Когда трансформаторы используются для работы с большими магнитами, они иногда имеют небольшое количество очень тяжелых петель во вторичной обмотке. Это позволяет вторичной обмотке иметь низкое внутреннее сопротивление и производить большие токи. Еще раз обратите внимание, что это решение основано на допущении о 100% эффективности — или выходная мощность равна входной мощности (\(P_{p} = P_{s}\)) — разумно для хороших трансформаторов. В этом случае первичная и вторичная мощность составляет 240 Вт. (Убедитесь в этом сами для проверки стабильности.) Обратите внимание, что никель-кадмиевые аккумуляторы необходимо заряжать от источника постоянного тока (как и аккумулятор на 12 В). Таким образом, выход переменного тока вторичной катушки необходимо преобразовать в постоянный. Это делается с помощью чего-то, называемого выпрямителем, в котором используются устройства, называемые диодами, которые пропускают ток только в одном направлении.

    Трансформаторы имеют множество применений в системах электробезопасности, которые обсуждаются в 23.9.

    ИССЛЕДОВАНИЯ PHET: ГЕНЕРАТОР

    Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этого явления, исследуя магниты и то, как вы можете использовать их, чтобы зажечь лампочку.

    Рисунок \(\PageIndex{5}\): Генератор

    Резюме

    • Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
    • Для трансформатора напряжения на первичной и вторичной обмотках связаны соотношением \[\dfrac{V_{s}}{V_{p}} = \dfrac{N_{s}}{N_{p}},\] где \(V_{p}\) и \(V_{s}\) – напряжения на первичной и вторичной обмотках, имеющих \(N_{p}\) и \(N_{s}\) витков.
    • Токи \(I_{p}\) и \(I_{s}\) в первичной и вторичной обмотках связаны соотношением \(\dfrac{I_{s}}{I_{p}} = \dfrac{N_ {p}}{N_{s}}.\)
    • Повышающий трансформатор увеличивает напряжение и уменьшает ток, а понижающий трансформатор снижает напряжение и увеличивает ток.

    Глоссарий

    трансформатор
    Устройство, преобразующее напряжение из одного значения в другое с помощью индукции
    уравнение трансформатора
    уравнение, показывающее, что отношение вторичных и первичных напряжений в трансформаторе равно отношению числа витков в их обмотках; \(\dfrac{V_{s}}{V_{p}} = \dfrac{N_{s}}{N_{p}}\)
    Повышающий трансформатор
    трансформатор повышающий напряжение
    Понижающий трансформатор
    трансформатор, понижающий напряжение

    Эта страница под названием 23. 10: Transformers распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с помощью исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или Страница
        Автор
        ОпенСтакс
        Лицензия
        СС BY
        Версия лицензии
        4,0
        Программа OER или Publisher
        ОпенСтакс
        Показать оглавление
        нет
      2. Теги
        1. source@https://openstax. org/details/books/college-physics
        2. понижающий трансформатор
        3. повышающий трансформатор
        4. Трансформатор
        5. уравнение трансформатора

      Формулы и уравнения для трансформаторов — электрические технологии

      Следующие параметры могут быть рассчитаны с использованием основных формул, уравнений и функций электрических трансформаторов при проектировании и анализе цепей и сетей, связанных с трансформаторами.

      Содержание

      ЭДС, индуцированная в первичной и вторичной обмотках :

      Где

      • E = ЭДС, индуцированная в первичной обмотке
      • E 2  = ЭДС во вторичной обмотке
      • N 1 = количество витков в первичной обмотке
      • N 2  = количество витков вторичной обмотки
      • f   = Частота сети
      • φ м  = максимальный поток в активной зоне
      • Б м  = Максимальная плотность потока
      • A = площадь сердечника

      Связанная запись: Уравнение ЭДС трансформатора

    2. В 1 I 1 = первичное напряжение и ток соответственно
    3. В 2 I 2 = вторичное напряжение и ток соответственно
    4. Эквивалентный сопротивление трансформаторных обмотков :

      , где

      • R 1
      • 99141414141414141491414141414 2

        04141041414141414141414 гг.

      • R 2   = Сопротивление вторичной обмотки в первичной
      • R 01  = эквивалентное сопротивление трансформатора с первичной стороны
      • Р 02  = эквивалентное сопротивление трансформатора со стороны вторичной обмотки
      • R 1 = Сопротивление первичной обмотки
      • R 2 = сопротивление вторичной обмотки

      Реактивное сопротивление утечки:

      Где

      • X 1  = Реактивное сопротивление первичной утечки
      • X 2  = Реактивное сопротивление вторичной утечки
      • e L1  = ЭДС самоиндукции в первичной обмотке
      • e L2  = ЭДС самоиндукции во вторичной обмотке

      Эквивалентная реактивность трансформаторных обмоток :

      , где

      • x 1 = Реактивная сторона первичной головного обмотка в второй головке = Reactance in Secondy in Secondy in Secondy in Secondy in Secondy in Secondy in Secondy in Secondy in Secondy in Secondy in Secondary.
      • X 2   = реактивное сопротивление вторичной обмотки в первичной
      • X 01  = Эквивалентное реактивное сопротивление трансформатора со стороны первичной обмотки
      • X 02  = эквивалентное реактивное сопротивление трансформатора со стороны вторичной обмотки

      Полное сопротивление обмотки трансформатора:

      Где

      • Z 1   = полное сопротивление первичной обмотки
      • Z 2   = Полное сопротивление вторичной обмотки
      • Z 01  = эквивалентное полное сопротивление трансформатора со стороны первичной обмотки
      • Z 02  = Эквивалентное полное сопротивление трансформатора со стороны вторичной обмотки

      Уравнения входного и выходного напряжения

      Входное и выходное напряжение трансформатора можно найти с помощью следующих уравнений.

      Потери в трансформаторе:
      Потери в сердечнике / в стали

      Потери в сердечнике;

      • Потеря гистерезиса

      За счет намагничивания и размагничивания сердечника

      • Потери на вихревые токи

      За счет ЭДС, возникающей внутри сердечника, возникает вихревой ток.

      Где

      • Вт ч  = Гистерезисные потери
      • Вт e = потери на вихревые токи
      • η = коэффициент гистерезиса Штейнмеца
      • K e = константа вихретока
      • B max  = Максимальный магнитный поток
      • f = частота потока
      • В = Объем ядра
      • t = толщина ламината
      Потери в меди:

      Потери из-за сопротивления обмотки

      Регулировка напряжения трансформатора:

      Когда входное напряжение первичной обмотки трансформатора поддерживается постоянным, а нагрузка подключена к вторичной терминале, вторичное напряжение уменьшается из-за внутреннего импеданса.

      Сравнение вторичного напряжения без нагрузки с вторичным напряжением при полной нагрузке называется регулированием напряжения трансформатора.

      • 0 В = Без нагрузки Вторичное напряжение
      • В 2  = Полная нагрузка Вторичное напряжение
      • В 1  = Без нагрузки Первичное напряжение
      • В 2 ’  = В 2 /K = Полная нагрузка Вторичное напряжение от первичной стороны
      • Регулирование вверх

      • Регулировка вниз

      Положение « Down»  обычно называют регулированием

      • Регулирование в терминах первичного напряжения:

      • Регулирование, когда вторичное напряжение должно быть постоянным

      После подключения нагрузки первичное напряжение должно быть увеличено с V 1 до V 1 , где регулирование напряжения дается:

    5. 5 . :

      Эти величины измерены при токе полной нагрузки с падением напряжения и выражены в процентах от нормального напряжения.

      • Процент сопротивления при полной нагрузке:

      • Реактивное сопротивление в процентах при полной нагрузке:

      • Полное сопротивление в процентах при полной нагрузке:

      КПД трансформатора:

      КПД трансформатора определяется делением выходной мощности на входную мощность. Часть входной мощности тратится на внутренние потери трансформатора.

      Общие потери = потери Cu + потери в железе

      КПД при любой нагрузке:

       КПД трансформатора при фактической нагрузке можно определить по формуле;

      Где

      x = Отношение фактической нагрузки к полной нагрузке кВА

      КПД в течение всего дня: 24 часа  называется эффективность в течение всего дня.
    6. Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *