Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Стабилизированный источник питания 12В / 30А – Поделки для авто

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.

На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.

Примечания

Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.

Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.

Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.

Вычисления

Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.

Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.

Тестирование и ошибки

Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.

Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Мощный блок питания 12 вольт 30 ампер 500 Вт на транзисторах TIP2955 | РадиоДом

Схема очень мощного источника питания 12 вольт 30 ампер. С помощью всего одного стабилизатора LM7812 и нескольких мощных транзисторов, именно параллельное включение транзисторов обеспечивает выходной ток 30 ампер. Трансформатор нужен довольно мощный, с габаритной мощностью не менее 500 Вт, более слабые трансформаторы будут греться. Вторичная пониженная обмотка наматывается с расчетом холостого напряжения примерно 20 вольт. Далее выпрямляется мощным диодным мостом.
  Диодный мост обязательно на ток от 100 ампер. Через стабилизатор LM7812 проходит ток 1 ампер, значит устанавливаем на теплоотвод с площадью охлаждаемой поверхности не менее 30 кв.см. 6 составных транзисторов Дарлингтона TIP2955 обеспечивают ток на выходе устройства 30 ампер (на каждый транзистор приходится примерно 5 ампер), можно установить на большой общий алюминиевый ребристый теплоотвод с площадью не менее 300 – 400 кв.см. Схема покажется сложной на первый взгляд, но очень проста в сборке. Разберётся в ней радиолюбитель со средними навыками. Если дополнить цифровым вольтметром и амперметром, то получится довольно мощный лабораторный источник питания, чем-то может и имитировать автомобильный аккумулятор.
Все радиокомпоненты устройства импортные, но возможно их замена на отечественные аналоги:
Транзисторы TIP2955 можно заменить на 2SB713, 2SB829, BDV94, ECG391, TIP34C, MJE2955T

radiohome.ru

Еще один блок питания, 12 Вольт 30 Ампер и 360 Ватт

В продолжение темы блоков питания я заказал еще один БП, но в этот раз мощнее предыдущего.

Обзор будет не очень длинным, но как всегда, осмотрю, разберу, протестирую.

На самом деле данный обзор является лишь промежуточным шагом к тестам более мощных блоков питания, которые уже в пути ко мне. Но я подумал, что данный вариант также нельзя оставлять без внимания, потому и заказал его для обзора.

Буквально несколько слов об упаковке.

Обычная белая коробка, из опознавательных знаков только номер артикула, все.

При сравнении с блоком питания из предыдущего обзора выяснилось, что обозреваемый просто немного длиннее. Обусловлено это тем, что обозреваемый БП имеет активное охлаждение, потому при практически том же объеме корпуса мы имеем мощность в полтора раза больше.

Размеры корпуса составляют – 214х112х50мм.

Все контакты выведены на один клеммник. Назначение контактов выбито штамповкой на корпусе блока питания, такой вариант немного надежнее чем наклейка, но хуже заметен.

Крышка закрывается с заметным усилием и прочно фиксируется в закрытом состоянии. При открывании обеспечивается полный доступ к контактам. Иногда у БП встречается ситуация, когда крышка не открывается полностью, потому теперь я этот момент проверяю обязательно.

1. На корпусе блока питания присутствует наклейка с указанием базовых параметров, мощности, напряжения и тока.

2. Также присутствует переключатель входного напряжения 115/230 Вольт, который в наших сетях является лишним и не всегда безопасным.

3. Блок питания выпущен почти год назад.

4. Около клеммника присутствует светодиод индикации работы и подстроечный резистор для изменения выходного напряжения.

Сверху располагается вентилятор. Как я писал в предыдущем обзоре, мощность 240-300 Ватт является максимальной для блоков питания с пассивным охлаждением. Конечно есть безвентиляторные БП и на большую мощность, но встречаются они гораздо реже и стоят весьма дорого, потому введение активного охлаждения преследует цель сэкономить и сделать блок питания дешевле. Крышка фиксируется шестью небольшими винтами, но при этом и сама по себе сидит плотно, корпус алюминиевый и также как у других БП выполняет роль радиатора. В качестве сравнения приведу фото рядом с БП мощностью 240 Ватт. Видно что в основном они одинаковы, и по сути 360 Ватт Бп отличается от своего младшего собрата только наличием вентилятора и некоторыми небольшими коррективами связанными с большей выходной мощностью.
Например силовой трансформатор у них имеет одинаковый размер, а вот выходной дроссель у обозреваемого заметно больше.

Общая черта обоих БП – весьма свободный монтаж и если у БП с пассивным охлаждением это оправданно, то при наличии активного охлаждения размер корпуса можно было смело уменьшить.

Перед дальнейшей разборкой проверка работоспособности.

Исходно на выходе напряжение немного завышено относительно заявленных 12 Вольт, хотя по большому счету это не имеет никакого значения, меня больше интересует диапазон перестройки и он составляет 10-14.6 Вольта.

В конце выставляю 12 Вольт и перехожу к дальнейшему осмотру.

Как ни странно, но емкость входных конденсаторов совпадает с указанной на их корпусе 🙂

Емкость каждого из конденсаторов 470мкФ, суммарная около 230-235мкФ, что заметно меньше рекомендуемых 350-400 которые необходимы блоку питания мощностью 360 Ватт. По хорошему должны быть конденсаторы с емкостью хотя бы 680мкФ каждый.

Выходные конденсаторы имеют суммарную емкость в 10140мкФ, что также не очень много для заявленных 30 Ампер, но часто такую емкость имеют конденсаторы и у фирменных БП.

Транзисторы и выходные диоды прижаты к корпусу через теплораспределительную пластину, в качестве изоляции выступает только теплопроводящая резина.

Обычно в более дорогих БП применяется колпачок из более толстой резины, который полностью закрывает компонент и если для выходных диодов он особо не нужен, то вот для высоковольтных транзисторов явно не помешал бы. Собственно по этому я советую в целях безопасности заземлять корпус БП.

Теплораспределительные пластины прижаты к алюминиевому корпусу, но термопаста между ними и корпусом отсутствует.

После случая с одним из блоков питания я теперь всегда проверяю качество прижима силовых элементов. Здесь с этим проблем нет, впрочем обычно проблем со сдвоенными элементами и не бывает, чаще сложности когда мощный элемент один и прижат Г-образной скобой.

Вентилятор самый обычный, с подшипниками скольжения, но почему-то на напряжение 14 Вольт.

Размер 60мм.

Разбираем дальше.

Плата держится на трех винтах и элементах крепления силовых компонентов. Снизу корпуса присутствует защитная изолирующая пленка.

Фильтр довольно стандартен для подобных БП. Входной диодный мост имеет маркировку KBU808 и рассчитан на ток до 8 Ампер и напряжение до 800 Вольт.

Радиатор отсутствует, хотя при такой мощности уже желателен.

1. На входе установлен термистор диаметром 15мм и сопротивлением 5 Ом.

2. Параллельно сети присутствует помехоподавляющий конденсатор класса Х2.

3. Помехоподавляющие конденсаторы имеющие непосредственную связь с сетью установлены класса Y2

4. Между общим проводом выхода и корпусом БП установлен обычный высоковольтный конденсатор, но в этом месте его достаточно так как при отсутствии заземления он подключен последовательно с конденсаторами класса Y2, показанными выше.

ШИМ контроллер KA7500, аналог классической TL494. Схема более чем стандартна, производители просто штампуют одинаковые БП, которые отличаются только номиналами некоторых компонентов и характеристиками трансформатора и выходного дросселя.

Выходные транзисторы инвертора также классика недорогих БП – MJE13009.

1. Как я писал выше, входные конденсаторы имеют емкость 470мкФ и что интересно, если конденсаторы имеют изначально непонятное название, то чаще емкость указана реальная, а если подделка, например Rubicong, то чаще занижена. Вот такое вот наблюдение. 🙂

2. Магнитопровод выходного трансформатора имеет размеры 40х45х13мм, обмотка пропитана лаком, правда весьма поверхностно.

3. Рядом с трансформатором присутствует разъем для подключения вентилятора. Обычно в описании подобных БП указывают автоматическую регулировку оборотов, на самом деле ее здесь нет. Хотя вентилятор меняет обороты в небольших пределах в зависимости от выходной мощности, просто это скорее побочный эффект. При включении вентилятор работает очень тихо, а на полную мощность выходит при токе около 2.5 Ампера что составляет меньше 10% от максимальной.

4. На выходе пара диодных сборок MBR30100 по 30 Ампер 100 Вольт каждая.

1. Размеры выходного дросселя заметно больше чем у 240 Ватт версии, намотан в три провода на двух кольцах 35/20/11.

2. Как и ожидалось после предварительной проверки, выходные конденсаторы имеют емкость 3300мкФ, так как они новые, то в сумме показали не 9900, а 10140мкФ, напряжение 25 Вольт. Производитель, известный всем noname.

3. Токовые шунты для схемы защиты от КЗ и перегрузки. Обычно ставят одну такую ‘проволочку’ на 10 Ампер тока, соответственно здесь БП 30 Ампер и три такие проволочки, но мест 7, потому предположу что есть похожий вариант но с током в 60 Ампер и меньшим напряжением.

4. А вот и небольшое отличие, компоненты отвечающие за блокировку при пониженном выходном напряжении перенесли ближе к выходу, хотя при этом сохранили даже позиционные месте согласно схеме. Т.е. R31 в схеме БП 36 Вольт соответствует R31 в схеме БП 12 Вольт, хотя находятся в разных местах на плате.

При беглом взгляде я бы оценил качество пайки на твердую четверку, все чисто, аккуратно. Пайка довольно качественная, на плате в узких местах сделаны защитные прорезы. Но ‘ложка дегтя’ все таки нашлась. Некоторые элементы имеют непропай. Место особенно несущественно, важен сам факт.

В данном случае плохая пайка была обнаружена на одном из выводов предохранителя и конденсатора цепи защиты от снижения напряжения на выходе.

Исправить дело нескольких минут, но как говорится – ‘ложки нашлись, а осадочек остался’.

Так как схему подобного БП я уже чертил, то в данном случае просто внес коррективы в уже существующую схему.

Кроме того я выделил цветом элементы, которые изменены.

1. Красным – элементы которые меняются в зависимости от изменения выходного напряжения и тока

2. Синим – изменение номиналов этих элементов при неизменной выходной мощности мне непонятно. И если с входными конденсаторами отчасти понятно, они были указаны как 680мкФ, но реально показывали 470, то зачем увеличили в полтора раза емкость С10?

В схеме ошибка, С10 имеет емкость 3.3мкФ, а не 330нФ.

С осмотром закончили, переходим к тестам, для этого я использовал привычный ‘тестовый стенд’, правда дополненный Ваттметром.

1. Электронная нагрузка 2. Мультиметр 3. Осциллограф 4. Тепловизор 5. Термометр 6. Ваттметр, обзора нет.

7. Ручка и бумажка.

На холостом ходу пульсации практически отсутствуют. Небольшое уточнение к тесту. На дисплее электронной нагрузки вы увидите значения токов заметно ниже чем я буду писать. Дело в том, что нагрузка аппаратно умеет нагружать большими токами, но программно ограничена на уровне в 16 Ампер. В связи с этим пришлось сделать ‘финт ушами’, т.е. откалибровать нагрузку на двукратный ток, в итоге 5 Ампер на дисплее равны 10 Ампер в реальности.

При токе нагрузки 7.5 и 15 Ампер блок питания вел себя одинаково, полный размах пульсаций в обоих случаях составил около 50мВ.

При токах нагрузки 22.5 и 30 Ампер пульсации заметно выросли, но при этом были на одном уровне. Рост уровня пульсаций был при токе около 20 Ампер.

В итоге полный размах составил 80мВ.

Отмечу очень хорошую стабилизацию выходного напряжения, при изменении тока нагрузки от нуля до 100% напряжение изменилось всего на 50мВ. Причем с ростом нагрузки напряжение растет, а не падает, что может быть полезным. В процессе прогрева напряжение не изменялось, что также является плюсом.

Результаты теста я свел в одну табличку, где показана температура отдельных компонентов.

Каждый этап теста длился 20 минут, тест с полной нагрузкой проводился два раза для термопрогрева.

Крышка с вентилятором вставлялась на место, но не привинчивалась, для измерения температуры я ее снимал не отключая БП и нагрузку.

В качестве дополнения я сделал несколько термограмм.

1. Нагрев проводов к электронной нагрузке при максимальном токе, также через щели в корпусе видно тепловое излучение от внутренних компонентов.

2. Самый большой нагрев имеют диодные сборки, думаю если бы производитель добавил радиатор как это сделано в 240 Ватт версии, то нагрев существенно снизился.

3. Кроме того большой проблемой был отвод тепла от всей этой конструкции, так как суммарная рассеиваемая мощность всей конструкции составила более 400 Ватт.

Кстати насчет отвода тепла. Когда я готовил тест, то больше боялся что нагрузке тяжело будет работать при такой мощности. Вообще я проводил уже тесты на такой мощности, но 360-400 Ватт это предельная мощность которую моя электронная нагрузка может рассеивать длительно. Кратковременно же она без проблем ‘тянет’ и 500 Ватт.

Но проблема вылезла в другом месте. На радиаторах силовых элементов у меня установлены термовыключатели рассчитанные на 90 градусов. Один контакт у них припаян, а второй припаять не получилось и я применил клеммники.

При токе 15 Ампер через каждый выключатель эти контакты начинали довольно сильно нагреваться и срабатывание происходило раньше, пришлось принудительно охлаждать еще и эту конструкцию. А кроме того пришлось частично ‘разгрузить’ нагрузку подключением к БП нескольких мощных резисторов.

Но вообще выключатели рассчитаны максимум на 10 Ампер, потому я и не ожидал от них нормальной работоспособности при токе в 1.5 раза больше их максимума. Теперь думаю как их переделать, видимо придется делать электронную защиту с управлением от этих термовыключателей.

А кроме того теперь у меня появилась еще одна задача. По просьбе некоторых читателей я заказал для обзора блоки питания мощностью 480 и 600 Ватт. Теперь думаю чем их лучше нагружать, так как такую мощность (не говоря о токах до 60 Ампер), моя нагрузка точно не выдержит.

Как и в прошлый раз я измерил КПД блока питания, этот тест я планирую проводить и в дальнейших обзорах. Проверка проходила при мощности 0/33/66 и 100%

Вход – Выход – КПД.

5.2 – 0 – 0

147,1 – 120,3 – 81,7%

289 – 241 – 83,4%

437,1 – 362 – 82,8%

Что можно сказать в итоге.

Блок питания прошел все тесты и показал довольно неплохие результаты. В плане нагрева есть даже заметный запас, но выше 100% я бы не советовал его нагружать. Порадовала весьма высокая стабильность выходного напряжения и отсутствие зависимости от температуры.

К тому что не очень понравилось я отнесу безымянные входные и выходные конденсаторы, огрехи пайки некоторых компонентов и посредственную изоляцию между высоковольтными транзисторами и радиатором.

В остальном блок питания самый обычный, работает, напряжение держит, сильно не греется.

На этом все, как обычно жду вопросов.

Ссылка на блок питания, цена $22.87

3dtoday.ru

Мощный блок питания 1,5…30 вольт – 25 ампер на транзисторах КТ819Б | РадиоДом

Представленный в статье блок питания способен выдавать ток в нагрузке до 25 ампер, выходное напряжение регулируется плавно в диапазоне 1,5…30 вольт. Устройство можно также использовать как зарядное устройство для АКБ.
Напряжение от силового трансформатора выпрямляется двухполупериодным выпрямителем на диодах VD1…VD6. Параллельное включение диодов позволило использовать относительно легкодоступные диоды КД21ЗА. Допускается использование более мощных диодов.
Выпрямленное напряжение с диодного моста поступает на интегральный стабилизатор DAI – KP142Eh22, на выходе которого, с помощью резистора R1, регулируем постоянное напряжение в пределах от 1,5 до 30 вольт. Выходящий ток DA1 не более 1,5 ампер, потому, на его выходе подключен мощный эмиттерный повторитель на трёх включенных параллельно мощных кремниевых транзисторах VT1 – VT3. Транзисторы устанавливаются на общий алюминиевый теплоотвод с общей площадью охлаждения не менее 600 кв.см.
 
В качестве силового трансформатора применён отечественный ТС-200 от лампового черно-белого телевизора. У данного трансформатора удаляем все вторичные обмотки, оставляем только сетевые промаркированные 1 – 3 и Г – 3. Новые вторичные обмотки мотаем медным обмоточным проводом ПЭВ-1 диаметром 0,96 мм, и содержат по 87 витков.
Все радиокомпоненты устройства отечественные:
T1 – ТС200 – низкочастотный трансформатор
VD1…VD6 – КД213 – диффузионный кремниевый диод – Аналог BYW17-200
VT1…VT3 – КТ819Б – кремниевый транзистор – Зарубежные аналоги 2N5490, BD949, BDT91, BDV91, MJE3055, TIP41A
DA1 – КР142ЕН12 – стабилизатор напряжения – Импортный аналог LM317
R1 – 6,8 кОм – резистор переменный
R2 – 220 Ом – резистор постоянный 0,25 Вт
C1 – 100 мкФ х 63 вольт – электролитический конденсатор

radiohome.ru

Блок питания 12 В 30 А — Меандр — занимательная электроника

Примечания:
Входной трансформатор вероятнее всего будет самой дорогой частью устройства. В качестве альтернативного варианта можно использовать два автомобильных аккумулятора на 12 вольт. Входное напряжение на стабилизатор должно быть, по крайней мере на несколько вольт выше выходного напряжения (12 В), с тем чтобы стабилизатор мог поддерживать свой выход. В случае использования трансформатора выпрямительные диоды должны быть в состоянии пропускать прямой ток с высоким пиком, обычно 100 или более ампер. Интегральный стабилизатор будет пропускать только 1 ампер (или меньше) выходного тока, при этом остальной ток будет пропускаться через вынесенные проходные транзисторы. Конструкция устройства задумана так, что должна выдерживать нагрузку до 30 ампер, и для реализации этого требования параллельно соединены шесть транзисторов TIP2955. Рассеивание на каждом транзисторе равняется одной шестой полной нагрузки, однако всё-таки требуется использовать адекватный теплоотвод. При максимальном токе нагрузки будет создаваться максимальная мощность рассеивания, поэтому в этой части схемы потребуется большой теплоотвод. При выборе теплоотвода можно рассмотреть возможности установки вентилятора или теплоотвода с водяным охлаждением. В случае отказа мощных транзисторов стабилизатору придётся обеспечивать полный ток нагрузки, что приведёт к его выходу из строя с катастрофическими последствиями.

Поэтому хорошей мерой предосторожности будет установка на выходе стабилизатора предохранителя 1 А. Нагрузка 400 мОм используется только в испытательных целях и не должна включаться в готовую схему. Вот как выглядит смоделированная работа схемы:

Расчёты:
Эта схема является прекрасным примером для иллюстрации законов Кирхгофа и законов напряжений. Если резюмировать: сумма токов, входящих в узел, должна быть равна току выходящему из узла, а суммарное напряжение цепи равняется нулю. Например, в приведённой выше диаграмме входное напряжение равняется 24 В. Падение напряжения на R7 составляет 4 вольта, а падение напряжения на входе стабилизатора составляет 20 вольт, 24 — 4 — 20 = 0. На выходе: суммарный ток нагрузки составляет 30 ампер, стабилизатор обеспечивает 0,866 А, а шесть транзисторов 4,855 А каждый, 30 = 6×4.855 + 0.866. Каждый мощный транзистор вносит в общую нагрузку примерно 4,86 А. Ток базы составляет примерно 138 мА на транзистор. При токе коллектора 6 ампер требуется коэффициент усиления по постоянному току равный 35. Это вполне соответствует возможностям транзистора TIP2955. Резисторы R1…R6 используются для создания стабильности и предупреждения чрезмерного тока на транзисторах, в связи с тем, что производственные допуски на коэффициент усиления по постоянному току могут быть разными для каждого транзистора. Сопротивление резистора R7 равно 100 Ом и напряжение на нём при максимальной нагрузке составляет 4 вольта. Следовательно, мощность рассеивания равняется (4^2)/200 или примерно 160 мВт. Поэтому в качестве R7 следует использовать резистор мощностью 0,5 Вт. Входной ток на стабилизатор подводится через резистор в цепи эмиттера и через переход база–эмиттер мощных транзисторов. И снова, применяя правила Кирхгофа, входной ток стабилизатора 871 мА выводится из базовой цепи и 40,3 мА, проходящих через резистор 100 Ом. 871,18 = 40,3 + 830,88. Ток, выходящий из стабилизатора не может быть больше входного тока. Как видно, ток на стабилизаторе будет составлять всего 5 мА и, следовательно, стабилизатор не должен перегреваться.

Возможно, вам это будет интересно:

meandr.org

Блок питания 12 В 30 А

Используя один интегральный стабилизатор напряжения и несколько вынесенных проходных транзисторов можно собрать блок питания, способный обеспечивать ток нагрузки до 30 А. Конструкция показана на схеме ниже:

Примечания:
Входной трансформатор вероятнее всего будет самой дорогой частью устройства. В качестве альтернативного варианта можно использовать два автомобильных аккумулятора на 12 вольт. Входное напряжение на стабилизатор должно быть, по крайней мере на несколько вольт выше выходного напряжения (12 В), с тем чтобы стабилизатор мог поддерживать свой выход. В случае использования трансформатора выпрямительные диоды должны быть в состоянии пропускать прямой ток с высоким пиком, обычно 100 или более ампер. Интегральный стабилизатор будет пропускать только 1 ампер (или меньше) выходного тока, при этом остальной ток будет пропускаться через вынесенные проходные транзисторы. Конструкция устройства задумана так, что должна выдерживать нагрузку до 30 ампер, и для реализации этого требования параллельно соединены шесть транзисторов TIP2955. Рассеивание на каждом транзисторе равняется одной шестой полной нагрузки, однако всё-таки требуется использовать адекватный теплоотвод. При максимальном токе нагрузки будет создаваться максимальная мощность рассеивания, поэтому в этой части схемы потребуется большой теплоотвод. При выборе теплоотвода можно рассмотреть возможности установки вентилятора или теплоотвода с водяным охлаждением. В случае отказа мощных транзисторов стабилизатору придётся обеспечивать полный ток нагрузки, что приведёт к его выходу из строя с катастрофическими последствиями. Поэтому хорошей мерой предосторожности будет установка на выходе стабилизатора предохранителя 1 А. Нагрузка 400 мОм используется только в испытательных целях и не должна включаться в готовую схему. Вот как выглядит смоделированная работа схемы:


Расчёты:

Эта схема является прекрасным примером для иллюстрации законов Кирхгофа и законов напряжений. Если резюмировать: сумма токов, входящих в узел, должна быть равна току выходящему из узла, а суммарное напряжение цепи равняется нулю. Например, в приведённой выше диаграмме входное напряжение равняется 24 В. Падение напряжения на R7 составляет 4 вольта, а падение напряжения на входе стабилизатора составляет 20 вольт, 24 — 4 — 20 = 0. На выходе: суммарный ток нагрузки составляет 30 ампер, стабилизатор обеспечивает 0,866 А, а шесть транзисторов 4,855 А каждый, 30 = 6×4.855 + 0.866. Каждый мощный транзистор вносит в общую нагрузку примерно 4,86 А. Ток базы составляет примерно 138 мА на транзистор. При токе коллектора 6 ампер требуется коэффициент усиления по постоянному току равный 35. Это вполне соответствует возможностям транзистора TIP2955. Резисторы R1…R6 используются для создания стабильности и предупреждения чрезмерного тока на транзисторах, в связи с тем, что производственные допуски на коэффициент усиления по постоянному току могут быть разными для каждого транзистора. Сопротивление резистора R7 равно 100 Ом и напряжение на нём при максимальной нагрузке составляет 4 вольта. Следовательно, мощность рассеивания равняется (4^2)/200 или примерно 160 мВт. Поэтому в качестве R7 следует использовать резистор мощностью 0,5 Вт. Входной ток на стабилизатор подводится через резистор в цепи эмиттера и через переход база–эмиттер мощных транзисторов. И снова, применяя правила Кирхгофа, входной ток стабилизатора 871 мА выводится из базовой цепи и 40,3 мА, проходящих через резистор 100 Ом. 871,18 = 40,3 + 830,88. Ток, выходящий из стабилизатора не может быть больше входного тока. Как видно, ток на стабилизаторе будет составлять всего 5 мА и, следовательно, стабилизатор не должен перегреваться.
 

radiomaster.ru

Мощный регулируемый блок питания 12 вольт 20 ампер на транзисторе КТ827 | РадиоДом

В статье представлена схема довольно простого, но к тому же мощного блока питания, вполне пригоден не только для зарядки автомобильных АКБ 12 вольт, но и для питания и тестирования многих самодельных схем, требующих мощное стабилизированное напряжение. Незаменимая вещь в гараже автолюбителя. Нужное напряжение на выходе прибора плавно может быть изменён в диапазоне 0 – 12 вольт. Нагрузка на выходе может быть до 20 ампер. Коллекторы силовых транзисторов соединены между собой и можно установить на одном алюминиевом ребристом теплоотводе с площадью охлаждаемой поверхности не менее 200 кв.см.
  Трансформатор подойдёт от старых советских телевизоров, например, ТС-270, вполне подойдёт и большей мощности но при этом увеличатся габаритные размеры блока. Все вторичные обмотки удаляются и поверх сетевой наматывают медным эмалированным проводом диаметром 2 мм обмотку, на напряжение 14 – 16 вольт. Витки следует распределять равномерно по всей ширине каркаса трансформатора. Схема легка в повторении и не требует особых навыков в радиолюбительском деле, не требует настроек и наладки, работает сразу при исправных деталях и правильной сборке.
Все радиокомпоненты устройства отечественные и имеют множество зарубежных аналогов:
SA1 – сетевой выключатель на 5 ампер
FU1 – плавкий предохранитель на 2 ампера
VT1 – КТ827 – импортные аналоги 2N6059, 2N6284, BDX63, BDX65A, MJ4035
VT2 – КТ947 – возможна замена на 2N6047, BDP620
VD1 – Д132-50
VD2 – Д132-50
VD3 – Д815Е
C1 – 1000 мкФ х 25 вольт
C2 – 0,01 мкФ
C3 – 1000 мкФ х 25 вольт
R1 – 1 кОм
R2 – 10 кОм – подстроечный
R3 – 1 кОм

radiohome.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *