Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ внСшний Π½Π°ΠΊΠΎΠΏΠΈΡ‚Π΅Π»ΡŒ для всСх iOS-устройств, совмСстим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 Π΄ΠΎ 24:00 ΠΏΠ½-ΠΏΡ‚ | c 10:00 Π΄ΠΎ 18:00 сб
0 Comments
9 Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… нСисправностСй элСктродвигатСля ΠΈ способы ΠΈΡ… устранСния

Π’ этом ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΌΡ‹ рассмотрим Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Π΅ нСисправности Ρ‚Ρ€Π΅Ρ…Ρ„Π°Π·Π½Ρ‹Ρ… асинхронных элСктродвигатСлСй ΠΈ способы ΠΈΡ… прСдупрСТдСния ΠΈ устранСния.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ЭлСктричСскиС нСисправности элСктродвигатСля

ЭлСктричСскиС нСисправности двигатСля всСгда связаны с ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΎΠΉ.

  1. ΠœΠ΅ΠΆΠ²ΠΈΡ‚ΠΊΠΎΠ²ΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ ΠΏΡ€ΠΈ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠΈ изоляции Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹: ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ, нСкачСствСнная изоляция, износ изоляции вслСдствиС Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΌΠ΅ΠΆΠ²ΠΈΡ‚ΠΊΠΎΠ²ΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ Π±Ρ‹Π²Π°Π΅Ρ‚ слоТно. Основной ΠΌΠ΅Ρ‚ΠΎΠ΄ диагностики – сравнСниС сопротивлСния ΠΈ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ Ρ‚ΠΎΠΊΠ° всСх Ρ‚Ρ€Π΅Ρ… ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ. ΠŸΠ΅Ρ€Π²Ρ‹Π΅ симптомы ΠΌΠ΅ΠΆΠ²ΠΈΡ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ замыкания – ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π² двигатСля ΠΈ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° Π½Π° Π²Π°Π»Ρƒ. ΠŸΡ€ΠΈ этом ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Ρ„Π°Π· Ρ‚ΠΎΠΊ большС, Ρ‡Π΅ΠΌ ΠΏΠΎ Π΄Π²ΡƒΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠΌ.
  2. Π—Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ°ΠΌΠΈ происходит ΠΈΠ·-Π·Π° смСщСния ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ, мСханичСской Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ΡƒΠ΄Π°Ρ€ΠΎΠ². ΠŸΡ€ΠΈ отсутствии Π΄ΠΎΠ»ΠΆΠ½ΠΎΠΉ элСктричСской Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠΆΠ°Ρ€.
  3. Π—Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ Π½Π° корпус. ΠŸΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΉ нСисправности ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ, Ссли Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π·Π°Π·Π΅ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΈ Π·Π°Ρ‰ΠΈΡ‚Π° ΠΎΡ‚ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замыкания. Однако Π² Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠ΅Ρ€Ρ‚Π΅Π»ΡŒΠ½ΠΎ опасСн, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ ΠΏΠΎΠ΄ Ρ„Π°Π·Π½Ρ‹ΠΌ напряТСниСм.
  4. ΠžΠ±Ρ€Ρ‹Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ. Π­Ρ‚Π° Π½Π΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π° ΠΏΡ€ΠΎΠΏΠ°Π΄Π°Π½ΠΈΡŽ Ρ„Π°Π·Ρ‹. Если ΠΎΠ±Ρ€Ρ‹Π² происходит Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Ρ‚ΠΎ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Ρ€Π΅Π·ΠΊΠΎ тСряСт ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²Π°Ρ‚ΡŒΡΡ. ΠŸΡ€ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Π΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚ΠΎΠΊ ΠΏΠΎ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ„Π°Π·Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½.

Для устранСния Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΈΠ· этих ΠΏΠΎΠ»ΠΎΠΌΠΎΠΊ трСбуСтся ΠΏΠ΅Ρ€Π΅ΠΌΠΎΡ‚ΠΊΠ° двигатСля.

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ нСисправности элСктродвигатСля

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ нСисправности элСктродвигатСля связаны с Π΅Π³ΠΎ конструкциСй.

  1. Износ ΠΈ Ρ‚Ρ€Π΅Π½ΠΈΠ΅ Π² ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ°Ρ…. ΠŸΡ€ΠΎΡΠ²Π»ΡΠ΅Ρ‚ΡΡ Π² ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ мСханичСской Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅. Π’ этом случаС трСбуСтся Π·Π°ΠΌΠ΅Π½Π° подшипников, ΠΈΠ½Π°Ρ‡Π΅ Π½Π΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Ρ‚ ΠΊ ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²Ρƒ ΠΈ падСнию ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ двигатСля.
  2. ΠŸΡ€ΠΎΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ Ρ€ΠΎΡ‚ΠΎΡ€Π° Π½Π° Π²Π°Π»Ρƒ. Π ΠΎΡ‚ΠΎΡ€ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ Π² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ статора, Π° Π²Π°Π» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ΅Π½. ВрСбуСтся мСханичСская фиксация Ρ€ΠΎΡ‚ΠΎΡ€Π° Π½Π° Π²Π°Π»Ρƒ.
  3. Π—Π°Ρ†Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ Ρ€ΠΎΡ‚ΠΎΡ€Π° Π·Π° статор. Π­Ρ‚Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° связана с мСханичСской ΠΏΠΎΠ»ΠΎΠΌΠΊΠΎΠΉ подшипников, ΠΈΡ… посадочных мСст ΠΈΠ»ΠΈ корпуса двигатСля. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, подобная Π½Π΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΡŽ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ статора. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈ Π½Π΅ ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Ρƒ.
  4. ΠŸΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ корпуса двигатСля. ΠœΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΠ·-Π·Π° ΡƒΠ΄Π°Ρ€ΠΎΠ², ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Ρ… Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ, Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ крСплСния ΠΈΠ»ΠΈ Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ качСства двигатСля. Π Π΅ΠΌΠΎΠ½Ρ‚ являСтся Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΌ ΠΈΠ·-Π·Π° трудностСй соосной установки ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ ΠΈ Π·Π°Π΄Π½Π΅Π³ΠΎ подшипников.
  5. ΠŸΡ€ΠΎΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΡ€Ρ‹Π»ΡŒΡ‡Π°Ρ‚ΠΊΠΈ ΠΎΠ±Π΄ΡƒΠ²Π°. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ, ΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ сущСствСнно сократит срок Π΅Π³ΠΎ слуТбы. ΠšΡ€Ρ‹Π»ΡŒΡ‡Π°Ρ‚ΠΊΡƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ (для этого ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ шпонка ΠΈΠ»ΠΈ стопорноС ΠΊΠΎΠ»ΡŒΡ†ΠΎ) ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ.

АварийныС ситуации ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ элСктродвигатСля

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ нСисправности, Π½Π΅ связанныС нСпосрСдствСнно с Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΌ, Π½ΠΎ Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρƒ, характСристики ΠΈ срок слуТбы. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ этих нСисправностСй Π²Ρ‹Π·Π²Π°Π½Ρ‹ мСханичСской ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ, ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΠΊΠ°, ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²ΠΎΠΌ ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ ΠΈ корпуса.

  1. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π½Π° Π²Π°Π»Ρƒ вслСдствиС заклинивания ΠΏΡ€ΠΈΠ²ΠΎΠ΄Π° Π»ΠΈΠ±ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ².
  2. ΠŸΠ΅Ρ€Π΅ΠΊΠΎΡ напряТСния питания, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π·Π²Π°Π½ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅ΠΉ сСти Π»ΠΈΠ±ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄Π°.
  3. ΠŸΡ€ΠΎΠΏΠ°Π΄Π°Π½ΠΈΠ΅ Ρ„Π°Π·Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠΈΠ·ΠΎΠΉΡ‚ΠΈ Π½Π° любом участкС питания двигатСля – ΠΎΡ‚ ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅ΠΉ трансформаторной подстанции Π΄ΠΎ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ двигатСля.
  4. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° с ΠΎΠ±Π΄ΡƒΠ²ΠΎΠΌ (ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ). ΠœΠΎΠΆΠ΅Ρ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ ΠΈΠ·-Π·Π° поврСТдСния ΠΊΡ€Ρ‹Π»ΡŒΡ‡Π°Ρ‚ΠΊΠΈ двигатСля ΠΏΡ€ΠΈ собствСнном ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠΈ, ΠΈΠ·-Π·Π° останова вСнтилятора внСшнСго ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ охлаТдСния ΠΈΠ»ΠΈ вслСдствиС Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды.

Бпособы Π·Π°Ρ‰ΠΈΡ‚Ρ‹ элСктродвигатСля

Для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ элСктродвигатСля ΠΎΡ‚ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΈ Π²Π½Π΅ΡˆΠ½ΠΈΡ… нСисправностСй, Π° Ρ‚Π°ΠΊΠΆΠ΅ для ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… Ρ‚Ρ€ΡƒΠ΄ΠΎΠ·Π°Ρ‚Ρ€Π°Ρ‚ ΠΏΠΎ Π΅Π³ΠΎ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ устройства.

1. ΠœΠΎΡ‚ΠΎΡ€-Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρ‹ ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π»Π΅

ΠœΠΎΡ‚ΠΎΡ€-Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρ‹ (Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Ρ‹ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ двигатСля) ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π»Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ для обнаруТСния ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‚ΠΎΠΊΠ° ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ всСм Ρ„Π°Π·Π°ΠΌ двигатСля. Π’ случаС ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя происходит ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄Π°.

Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΌΠΎΡ‚ΠΎΡ€-Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚Π°, Ρƒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π»Π΅ Π½Π΅Ρ‚ силовой ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ. Оно ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ€Π°Π·ΠΌΡ‹ΠΊΠ°Π΅Ρ‚ ΠΏΠΈΡ‚Π°Π½ΠΈΠ΅ силовой Ρ†Π΅ΠΏΠΈ. ΠœΠΎΡ‚ΠΎΡ€-Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ являСтся ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ устройством, способным Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ.

ΠœΠΈΠ½ΡƒΡ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π»Π΅ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² отсутствии Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замыкания. ΠœΠΎΡ‚ΠΎΡ€-Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π°Ρ‰ΠΈΡ‚Ρƒ ΠΎΡ‚ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΡƒΡŽ Π·Π°Ρ‰ΠΈΡ‚Ρƒ ΠΎΡ‚ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замыкания, которая ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎ срабатываСт ΠΈ Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΏΡ€ΠΈ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ Ρ‚ΠΎΠΊΠ° уставки Π² 10-20 Ρ€Π°Π·.

Π”Π°Π½Π½Ρ‹Π΅ устройства ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ установкС ΠΈ настройкС способны с большой Π΄ΠΎΠ»Π΅ΠΉ вСроятности Π·Π°Ρ‰ΠΈΡ‚ΠΈΡ‚ΡŒ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΈ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡ‚ ΠΏΠΎΠ»ΠΎΠΌΠΊΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… послСдствий.

2. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹Π΅ Ρ€Π΅Π»Π΅ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ

Π”Π°Π½Π½Ρ‹ΠΉ Π²ΠΈΠ΄ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ обСспСчиваСт большой Π²Ρ‹Π±ΠΎΡ€ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Ρ‰ΠΈΡ‚. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ элСмСнтом Ρ‚Π°ΠΊΠΈΡ… Ρ€Π΅Π»Π΅ являСтся микропроцСссор, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Ρ‹Π΅ значСния напряТСния ΠΈ Ρ‚ΠΎΠΊΠ° ΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π° основС Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… настроСк. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π΄Π°Ρ‡Π° сигнала Π½Π° ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΡŽ Π»ΠΈΠ±ΠΎ Π½Π° ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ двигатСля.

3. ВСрмисторы ΠΈ Ρ‚Π΅Ρ€ΠΌΠΎΡ€Π΅Π»Π΅

Когда ΠΏΠΎ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ Π½Π΅ сработала тСпловая Π·Π°Ρ‰ΠΈΡ‚Π° ΠΏΠΎ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠ΅, послСдний Ρ€ΡƒΠ±Π΅ΠΆ ΠΎΠ±ΠΎΡ€ΠΎΠ½Ρ‹ β€” Ρ‚Π΅Ρ€ΠΌΠΎΠ·Π°Ρ‰ΠΈΡ‚Π°. Π’Π½ΡƒΡ‚Ρ€ΡŒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ устанавливаСтся Ρ‚Π΅Ρ€ΠΌΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ элСмСнт (ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, тСрмистор ΠΈΠ»ΠΈ позистор), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ мСняСт своС сопротивлСниС Π² зависимости ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. ΠŸΡ€ΠΈ пСрСсСчСнии ΠΏΠΎΡ€ΠΎΠ³Π° срабатываСт ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π·Π°Ρ‰ΠΈΡ‚Π°, ΠΈ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ.

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ простых дискрСтных Ρ‚Π΅Ρ€ΠΌΠΎΡ€Π΅Π»Π΅ (Ρ‚Π΅Ρ€ΠΌΠΎΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ²), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π·ΠΌΡ‹ΠΊΠ°ΡŽΡ‚ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΈΠ»ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΡƒΡŽ Ρ†Π΅ΠΏΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π°Π²Π°Ρ€ΠΈΠΉΠ½ΠΎΠΉ остановкС элСктродвигатСля.

4. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΠΈ частоты

ΠžΠ±Ρ‹Ρ‡Π½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΠΈ частоты Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ нСсколькими Π²ΠΈΠ΄Π°ΠΌΠΈ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ – ΠΏΠΎ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈ Ρ‚ΠΎΠΊΠ°, ΠΏΠΎ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ напряТСния, ΠΎΠ±Ρ€Ρ‹Π²Ρƒ Ρ„Π°Π·Ρ‹ ΠΈ ΠΏΡ€ΠΎΡ‡. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈ Ρ‚ΠΎΠΊΠ°. Π’ этом случаС Π½Π° Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ΄Π°Π²Π°Ρ‚ΡŒΡΡ напряТСниС с мСньшим ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ΠΈ частотой, Ссли Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠ°. ΠŸΡ€ΠΈ этом Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π΄Π°Π½ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ сообщСниС ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Ρƒ, Π° Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ.

Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΈ частотных ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒ Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ Π½Π° Π²Ρ…ΠΎΠ΄Π΅ ПЧ, Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π»Π΅ Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄Π΅ ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΡΡ‚ΠΎΡ€Π½ΡƒΡŽ Π·Π°Ρ‰ΠΈΡ‚Ρƒ.

Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹:
Π’Ρ‹Π±ΠΎΡ€ элСктродвигатСля для компрСссора
Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ двигатСля Π±Π΅Π· шильдика?
Π’Ρ‹Π±ΠΎΡ€ ΠΌΠΎΡ‚ΠΎΡ€-Ρ€Π΅Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° для Π±ΡƒΡ€ΠΎΠ²ΠΎΠΉ установки

НСисправности асинхронных элСктродвигатСлСй | Π­Π»Π΅ΠΊΡ‚Ρ€ΠΈΠΊ

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ

нСисправности

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Ρ‹

Π Π΅ΠΌΠΎΠ½Ρ‚

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ запускаСтся

ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΠ΅Ρ‚ Ρ‚ΠΎΠΊ Π² статорС, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚

Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒΡΡ вслСдствиС пСрСгорания

ΠΏΡ€Π΅Π΄ΠΎΡ…Ρ€Π°Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈΠ»ΠΈ Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ нСисправного автоматичСского Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π°Ρ‚Π΅Π»Ρ

ΠŸΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΠΎΡ…Ρ€Π°Π½ΠΈΡ‚Π΅Π»ΠΈ; ΠΈΡΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ автоматичСский Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π°Ρ‚Π΅Π»ΡŒ

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ запускаСтся,

нСсмотря Π½Π° Ρ‚ΠΎ Ρ‡Ρ‚ΠΎ напряТСниС Π½Π° Π²Ρ‹Π²ΠΎΠ΄Π°Ρ… статора номинальноС, Π°

Ρ‚ΠΎΠΊ Π²ΠΎ всСх Ρ‚Ρ€Π΅Ρ… Ρ„Π°Π·Π°Ρ…

статора ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ². ВсС

Ρ‚Ρ€ΠΈ напряТСния Π½Π° ΠΊΠΎΠ»ΡŒΡ†Π°Ρ… Ρ€Π°Π²Π½Ρ‹ ΠΏΡ€ΠΈ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ Ρ€Π°Π·ΠΎΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ Ρ€ΠΎΡ‚ΠΎΡ€Π΅

ΠžΠ±Ρ€Ρ‹Π² Π² Π΄Π²ΡƒΡ… (ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ…) Ρ„Π°Π·Π°Ρ… пускового рСостата ΠΈΠ»ΠΈ Π² ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ… ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ пусковым рСостатом.

БильноС одностороннСС притяТСниС Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΊ статору вслСдствиС большого износа Π²ΠΊΠ»Π°Π΄Ρ‹ΡˆΠ΅ΠΉ подшипников, смСщСния ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠΎΠ²Ρ‹Ρ… Ρ‰ΠΈΡ‚ΠΎΠ²

ΠΈΠ»ΠΈ ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠΎΠ²Ρ‹Ρ… стояков

ΠžΡ‚Ρ‹ΡΠΊΠ°Ρ‚ΡŒ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΌΠ΅Π³ΠΎΠΌΠΌΠ΅Ρ‚Ρ€Π° ΠΈΠ»ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π»Π°ΠΌΠΏΡ‹ мСсто ΠΎΠ±Ρ€Ρ‹Π²Π° ΠΈ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ.

Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π²ΠΊΠ»Π°Π΄Ρ‹ΡˆΠΈ подшипников ΠΈ ΠΎΡ‚Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠΎΠ²Ρ‹Π΅ Ρ‰ΠΈΡ‚Ρ‹.

ΠžΠ±ΠΌΠΎΡ‚ΠΊΠ° статора

пСрСгрСваСтся

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠΆΠ΅Π½ ΠΈΠ»ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½Π°

Π΅Π³ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ вСнтиляция

НапряТСниС Π½Π° Π²Ρ‹Π²ΠΎΠ΄Π°Ρ… двигатСля Π½ΠΈΠΆΠ΅ номинального, вслСдствиС Ρ‡Π΅Π³ΠΎ происходит ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠ° двигатСля ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ

ΠžΠ±ΠΌΠΎΡ‚ΠΊΠ° статора соСдинСна Π½Π΅ Π² Π·Π²Π΅Π·Π΄Ρƒ, Π° Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π‘Π½ΠΈΠ·ΠΈΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΈΠ»ΠΈ ΡƒΡΠΈΠ»ΠΈΡ‚ΡŒ

Π²Π΅Π½Ρ‚ΠΈΠ»ΡΡ†ΠΈΡŽ (Π·Π°ΠΏΡ€ΠΎΡΠΈΡ‚ΡŒ Π·Π°Π²ΠΎΠ΄-

ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒ ΠΎ способах

усилСния вСнтиляции).

ΠŸΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ напряТСниС Π΄ΠΎ

номинального ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ

Ρ‚ΠΎΠΊ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π΄ΠΎ номинального

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΡƒ статора Π² Π·Π²Π΅Π·Π΄Ρƒ

ΠžΠ±ΠΌΠΎΡ‚ΠΊΠ° статора сильно

нагрСваСтся.

Π’ΠΎΠΊ Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°Π·Π°Ρ… Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ. Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ сильно Π³ΡƒΠ΄ΠΈΡ‚ ΠΈ тормозится

Π’ΠΈΡ‚ΠΊΠΎΠ²ΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅.

ΠšΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ

двумя Ρ„Π°Π·Π°ΠΌΠΈ

Π’ основном опрСдСляСтся

ΠΎΡ‰ΡƒΠΏΡ‹Π²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ послС Π΅Π΅ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ.

ΠŸΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½ΠΎΠ΅ мСсто ΠΎΡ‚Ρ€Π΅ΠΌΠΎΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ»ΠΈ ΠΆΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠΎΡ‚Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½ΡƒΡŽ

Ρ‡Π°ΡΡ‚ΡŒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ

Π ΠΎΡ‚ΠΎΡ€, Π° ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈ статор ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²Π°ΡŽΡ‚ΡΡ. Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π³ΡƒΠ΄ΠΈΡ‚, Ρ‚ΠΎΠΊ Π² статорС сильно ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΠ΅Ρ‚. Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ с Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ ΠΏΠ»ΠΎΡ…ΠΎ запускаСтся ΠΈ Π½Π΅ Ρ€Π°Π·Π²ΠΈΠ²Π°Π΅Ρ‚ номинальной частоты вращСния;

ΠΌΠΎΠΌΠ΅Π½Ρ‚ вращСния мСньшС номинального

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹Π·Π²Π°Π½Π° ΠΏΠ»ΠΎΡ…ΠΈΠΌ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠΌ Π² Ρ†Π΅ΠΏΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π°: ΠΏΠ»ΠΎΡ…ΠΎΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ Π² ΠΏΠ°ΠΉΠΊΠ°Ρ… Π»ΠΎΠ±ΠΎΠ²Ρ‹Ρ…

частСй ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ ΠΈΠ»ΠΈ Π² Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… соСдинСниях ΠΌΠ΅ΠΆΠ΄Ρƒ стСрТнями ΠΈΠ»ΠΈ Π² соСдинСниях ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ ΠΏΠ»ΠΎΡ…ΠΎΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ Π² соСдинСниях ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ с ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠ»ΡŒΡ†Π°ΠΌΠΈ ΠΏΠ»ΠΎΡ…ΠΎΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ Π² соСдинСниях ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠ»ΡŒΡ†Π°ΠΌΠΈ ΠΈ пусковым рСостатом ΠΈΠ»ΠΈ Π² пусковом рСостатС

Для устранСния этой нСисправности Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ:

ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ всС ΠΏΠ°ΠΉΠΊΠΈ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ

Ρ€ΠΎΡ‚ΠΎΡ€Π°; Ρ‚Π΅ ΠΈΠ· Π½ΠΈΡ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅

нСисправны ΠΈΠ»ΠΈ Π²Π½ΡƒΡˆΠ°ΡŽΡ‚ ΠΏΠΎΠ΄ΠΎΠ·Ρ€Π΅Π½ΠΈΠ΅, ΠΏΠ΅Ρ€Π΅ΠΏΠ°ΡΡ‚ΡŒ. Если Π½Π°Ρ€ΡƒΠΆΠ½Ρ‹ΠΌ осмотром Π½Π΅

удаСтся ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ мСсто

ΠΏΠ»ΠΎΡ…ΠΎΠΉ ΠΏΠ°ΠΉΠΊΠΈ, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ

ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ падСния напряТСния ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ Ρ‚ΠΎΠΊΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² Π² мСстах соСдинСния ΠΈΡ… с ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΎΠΉ ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠ»ΡŒΡ†Π°ΠΌΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² Π² мСстах присоСдинСния ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€ΠΎΡ‚ΠΎΡ€Ρƒ ΠΈ рСостату, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ ΠΈ Ρ‰Π΅Ρ‚ΠΊΠΈ пускового рСостата

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ достигаСт Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΉ частоты вращСния, сильно пСрСгрСваСтся 

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠΆΠ΅Π½
Подшипник Π²Ρ‹ΡˆΠ΅Π» ΠΈΠ· строя

Π£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΡƒ
Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ подшипник 

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ запускаСтся:

ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠΈ Ρ€ΡƒΠΊΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Ρ‚ΠΎΠ»Ρ‡ΠΊΠ°ΠΌΠΈ ΠΈ Π½Π΅Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ Π³ΡƒΠ΄ΠΈΡ‚;

Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Π΅ статора

Π½Π΅Ρ‚ Ρ‚ΠΎΠΊΠ°

ΠžΠ±Ρ€Ρ‹Π² Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Π΅ Ρ†Π΅ΠΏΠΈ сСти ΠΈΠ»ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ ΠΎΠ±Ρ€Ρ‹Π² Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅ статора. Если ΠΎΠ±Ρ€Ρ‹Π² Ρ„Π°Π·Ρ‹ ΠΏΡ€ΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ‚ Π²ΠΎ врСмя Ρ€Π°Π±ΠΎΡ‚Ρ‹ двигатСля, Ρ‚ΠΎ ΠΏΡ€ΠΈ отсутствии Π½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ максимальной Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π³ΠΎΡ€Π΅Ρ‚ΡŒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ° статора ΠΈΠ»ΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π°

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Π²ΠΎΠ»ΡŒΡ‚ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ напряТСниС Π½Π° Π²Ρ‹Π²ΠΎΠ΄Π°Ρ… статора. Если имССтся ΠΎΠ±Ρ€Ρ‹Π² Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Π΅ сСти ΠΈΠ»ΠΈ напряТСниС Π²ΠΎ всСх Ρ‚Ρ€Π΅Ρ… Ρ„Π°Π·Π°Ρ… нСсиммСтрично (Π² случаС пСрСгорания прСдохранитСля ΠΈΠ»ΠΈ ΠΎΠ±Ρ€Ρ‹Π²Π° Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ трансформатора), Ρ‚ΠΎ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ Π½Π΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ сСти. Если ΡΠ΅Ρ‚ΡŒ исправна, Ρ‚ΠΎ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Ρ‹Π² Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅ статора

Π Π°Π±ΠΎΡ‚Π° двигатСля сопровоТдаСтся ΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Π³ΡƒΠ΄Π΅Π½ΠΈΠ΅ΠΌ, появился Π΄Ρ‹ΠΌΒ 

ΠŸΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ Π²ΠΈΡ‚ΠΊΠΎΠ² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΠ°Ρ‚ΡƒΡˆΠ΅ΠΊ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ статора; ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹Β 

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π² Ρ€Π΅ΠΌΠΎΠ½Ρ‚

Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ с

ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹ΠΌ

Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ…ΠΎΡ€ΠΎΡˆΠΎ запускаСтся

Π±Π΅Π· Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ;

с Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ Π½Π΅ запускаСтся

Нагрузка ΠΏΡ€ΠΈ пускС Π²Π΅Π»ΠΈΠΊΠ°

Π£ΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΏΡ€ΠΈ пускС

Π˜ΡΠΊΡ€Π΅Π½ΠΈΠ΅ сопровоТдаСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ Π½Π°Π³Ρ€Π΅Π²ΠΎΠΌ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Ρ‰Π΅Ρ‚ΠΎΠΊ

Π©Π΅Ρ‚ΠΊΠΈ Π² ΠΏΠ»ΠΎΡ…ΠΎΠΌ состоянии ΠΈ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ установлСны Π² щСткодСрТатСлях. Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΎΠ±ΠΎΠΉΠΌ Ρ‰Π΅Ρ‚ΠΊΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ Π½Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚

Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ Ρ‰Π΅Ρ‚ΠΎΠΊ, ΠΏΠ»ΠΎΡ…ΠΎΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ

Ρ‰Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΈ ΠΈΡ… Π°Ρ€ΠΌΠ°Ρ‚ΡƒΡ€ΠΎΠΉ

Π£Π³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ‰Π΅Ρ‚ΠΊΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Π½Π΅Ρ€ΠΎΠ²Π½ΡƒΡŽ ΠΎΠ±ΠΎΠ³Ρ€Π΅Π²Π°ΡŽΡ‰ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‡ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ с Ρ†Π°Ρ€Π°ΠΏΠΈΠ½Π°ΠΌΠΈ; ΠΏΠ»ΠΎΡ…ΠΎ ΠΏΡ€ΠΈΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Π½Ρ‹; ΠΈΡ… края ΠΎΠ±Π»ΠΎΠΌΠ°Π½Ρ‹ ΠΈΠ»ΠΈ ΠΎΠ±Π³ΠΎΡ€Π΅Π»ΠΈ.

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ‰Π΅Ρ‚ΠΊΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚Π΅Π»ΠΈ ΠΈ Ρ‰Π΅Ρ‚ΠΊΠΈ

Π‘Ρ‚ΡƒΠΊ Π² ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ°Ρ…

качСния

Π Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π΄ΠΎΡ€ΠΎΠΆΠ΅ΠΊ ΠΈΠ»ΠΈ Ρ‚Π΅Π» качСния

Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ подшипник

ОслаблСниС крСплСния подшипника Π² подшипниковом Ρ‰ΠΈΡ‚Π΅

Блишком большая Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Π°Ρ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ° Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠ½Π΅Ρ† Π²Π°Π»Π°, ΠΏΡ€ΠΈΠ²Π΅Π΄ΡˆΠ°Ρ ΠΊ износу мСста посадки подшипника Π² Ρ‰ΠΈΡ‚Π΅
ΠžΡ‡Π΅Π½ΡŒ большая вибрация ΠΌΠ°ΡˆΠΈΠ½Ρ‹Β 

Π£ΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΈ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ; ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π°, способный Π±Π΅Π· Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π²Ρ‹Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ
Π£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ сильной Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΒ 

ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ

ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅

ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ балансировки Ρ€ΠΎΡ‚ΠΎΡ€Π° шкивами ΠΈΠ»ΠΈ ΠΌΡƒΡ„Ρ‚Π°ΠΌΠΈ; нСточная Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²ΠΊΠ° Π²Π°Π»ΠΎΠ² Π°Π³Ρ€Π΅Π³Π°Ρ‚Π°;

пСрСкос ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΌΡƒΡ„Ρ‚

Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‚Π±Π°Π»Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€ΠΎΡ‚ΠΎΡ€, ΡˆΠΊΠΈΠ²Ρ‹ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΡƒΠΌΡƒΡ„Ρ‚Ρ‹; произвСсти Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²ΠΊΡƒ двигатСля ΠΈ ΠΌΠ°ΡˆΠΈΠ½Ρ‹;

ΡΠ½ΡΡ‚ΡŒ ΠΈ вновь ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΠΌΡƒΡ„Ρ‚Ρƒ. Найти мСсто ΠΎΠ±Ρ€Ρ‹Π²Π° ΠΈΠ»ΠΈ ΠΏΠ»ΠΎΡ…ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΈ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅

Активная ΡΡ‚Π°Π»ΡŒ статора

Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Ρ‚Π°,

хотя Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ° двигатСля Π½Π΅

ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ номинальной

НапряТСниС сСти Π²Ρ‹ΡˆΠ΅ номинального

НСисправСн вСнтилятор

Π‘Π½ΠΈΠ·ΠΈΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΈΠ»ΠΈ

ΡƒΡΠΈΠ»ΠΈΡ‚ΡŒ Π²Π΅Π½Ρ‚ΠΈΠ»ΡΡ†ΠΈΡŽ двигатСля

Π‘Π½ΡΡ‚ΡŒ Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΉ ΠΊΠΎΠΆΡƒΡ… ΠΈ

ΠΎΡ‚Ρ€Π΅ΠΌΠΎΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ вСнтилятор

Активная ΡΡ‚Π°Π»ΡŒ статора

ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ

напряТСнии 

сильно нагрСваСтся

ΠœΠ΅ΡΡ‚Π½Ρ‹Π΅ замыкания ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ листами Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ стали, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Π΅ заусСнцами ΠΈΠ»ΠΈ Π·Π°Π΄Π΅Π²Π°Π½ΠΈΠ΅ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΎ статор. Π—ΡƒΠ±Ρ†Ρ‹ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ стали Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… мСстах Π²Ρ‹Π³ΠΎΡ€Π΅Π»ΠΈ ΠΈ ΠΎΠΏΠ»Π°Π²Π»Π΅Π½Ρ‹ вслСдствиС ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠΉ Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅ статора ΠΈΠ»ΠΈ пробоя ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ Π½Π° корпус

Π£Π΄Π°Π»ΠΈΡ‚ΡŒ заусСнцы,

Ρ€Π°Π·ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ соСдинСнныС

листы стали ΠΈ ΠΎΡ‚Π»Π°ΠΊΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ…

изоляционным Π»Π°ΠΊΠΎΠΌ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ ΡΡƒΡˆΠΊΠΈ.

Π’Ρ‹Ρ€ΡƒΠ±ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ Π²Ρ‹Ρ€Π΅Π·Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ мСста.

ΠœΠ΅ΠΆΠ΄Ρƒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ листами ΠΏΡ€ΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Ρ‚ΠΎΠ½ΠΊΠΈΠΉ элСктрокартон ΠΈΠ»ΠΈ

пластинки ΡΠ»ΡŽΠ΄Ρ‹ ΠΈ ΠΎΡ‚Π»Π°ΠΊΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… изоляционным Π»Π°ΠΊΠΎΠΌ.

Π’ случаС большого количСства ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ

произвСсти ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΡˆΠΈΡ…Ρ‚ΠΎΠ²ΠΊΡƒ стали с ΠΏΠ΅Ρ€Π΅ΠΌΠΎΡ‚ΠΊΠΎΠΉ статора

ΠœΠΎΡ‚ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ нСустойчиво 

Π‘ΠΈΠ»ΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля Π½Π΅ ΡΠΎΠ·Π΄Π°ΡŽΡ‚ устойчивого соСдинСния

Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΏΡƒΡΠΊΠ°Ρ‚Π΅Π»ΡŒ ΠΈΠ»ΠΈ ΠΏΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ пластины ΠΈ ΠΏΠΎΠ΄ΠΎΠ³Π½ΡƒΡ‚ΡŒΒ 

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Β ΠΏΡ€ΠΈ Π½Π°ΠΆΠ°Ρ‚ΠΈΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ «Бтоп» 

Β«Π—Π°Π»ΠΈΠΏΠ»ΠΈΒ» ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля 

Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΏΡƒΡΠΊΠ°Ρ‚Π΅Π»ΡŒ ΠΈΠ»ΠΈ ΠΏΠΎΡ‡ΠΈΠ½ΠΈΡ‚ΡŒ

ΠšΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΉ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ стартуСт – Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΈΠ²ΠΎΠ΄

10 часов Π½Π°Π·Π°Π΄, Π’Π°Π΄ΠΈΠΌ666 сказал:

А Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ,Ρ‚ΠΎΡ‡Π½ΠΎ кондСнсаторный.

Β 

Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Ρ‚Π°ΠΊΠΎΠΉ. Π’Π°Π» 14ΠΌΠΌ, ΠΎΠ±Ρ‰ΠΈΠΉ вСс 6.1 ΠΊΠ³. Π Π°Π±ΠΎΡ‚Π°Π» с кондСнсатором 4 ΠΌΠΊΡ„. Π‘ΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ Π±Ρ‹Π» снят со старой стиралки. ΠšΡ€Π°ΡΠΊΠ° Π½Π° шильдикС ΠΎΠ±Π»Π΅Π·Π»Π°, ΠΈ Π²ΠΈΠ΄Π½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Ρ‹Π±ΠΈΡ‚ΡƒΡŽ Ρ†ΠΈΡ„Ρ€Ρƒ “70”, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π³ΠΎΠ΄ выпуска.

Π”ΠΎ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ я Π΅Π³ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π», ΠΎΠ½ Ρ€Π°Π±ΠΎΡ‚Π°Π». Π Π°Π·Π±ΠΈΡ€Π°Π» с Ρ†Π΅Π»ΡŒΡŽ Π·Π°ΠΌΠ΅Π½Ρ‹ подшипников, (ΠΎΠ½ΠΈ ΠΏΡ€ΠΎΡ€ΠΆΠ°Π²Π΅Π»ΠΈ Π·Π° 20 Π»Π΅Ρ‚ простоя) ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»ΠΊΠΈ Π΅Π³ΠΎ Π½Π° Π»Π΅Π²ΠΎΠ΅ Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅. Для этого я ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π» ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΡŒ Π²Π°Π»ΠΎΠΌ Π² хвост. БобствСнно, всС это я ΠΈ сдСлал, послС Ρ‡Π΅Π³ΠΎ ΠΌΠΎΡ‚ΠΎΡ€ пСрСстал Π·Π°ΠΏΡƒΡΠΊΠ°Ρ‚ΡŒΡΡ. МоТно ΠΊΡ€ΡƒΡ‚Π°Π½ΡƒΡ‚ΡŒ Ρ€ΡƒΠΊΠΎΠΉ, ΠΈ ΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ Π²Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Π·Π°ΠΊΡ€ΡƒΡ‚ΠΊΠΈ. МоТно ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΡƒ ΠΊ сСти ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. ВсС Ρ‚ΠΎΠΆΠ΅ самоС, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π³ΡƒΠ» ΠΈ Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ сильнСС.

2 часа Π½Π°Π·Π°Π΄, ΡΠ°ΠΌΠΎΠ΄Π΅Π»ΡŒΡ‰ΠΈΠΊ сказал:

ΠΊΠ°ΠΊ Π²Ρ‹ соСдиняСтС ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ? рабочая Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡΡ сразу Π² ΡΠ΅Ρ‚ΡŒ. пусковая Ρ‡Π΅Ρ€Π΅Π· кондСнсатор. ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ±Ρ‰ΠΈΠΌ

Π’Π°ΠΊ ΠΈ сдСлал. ΠžΠ±ΠΌΠΎΡ‚ΠΊΡƒ с ΠΌΠ°Π»Ρ‹ΠΌ сопротивлСниСм Π² ΡΠ΅Ρ‚ΡŒ, с высоким сопротивлСниСм – Π² ΡΠ΅Ρ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· кондСнсатор. Π‘Ρ…Π΅ΠΌΠ° ΠΊΠ°ΠΊ Π±Ρ‹ стандартная.

Β 

2 часа Π½Π°Π·Π°Π΄, ΡΠ°ΠΌΠΎΠ΄Π΅Π»ΡŒΡ‰ΠΈΠΊ сказал:

ΠΊΠ°ΠΊ Π²Ρ‹ описываСтС запуск  получаСтся Π²Ρ‹ кондСнсатор ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ с ΠΎΠ±ΠΎΠΈΠΌΠΈ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ°ΠΌΠΈ.

НС знаю, Π³Π΄Π΅ Π²Ρ‹ это ΠΏΡ€ΠΎΡ‡Π»ΠΈ.

Β 

10 часов Π½Π°Π·Π°Π΄, 546 сказал:

Π’Π°Π» крутится Π»Π΅Π³ΠΊΠΎ,Π½Π΅ ΠΊΠ»ΠΈΠ½ΠΈΡ‚?

НС ΠΊΠ»ΠΈΠ½ΠΈΡ‚. НовыС подшипники -2RS. Они, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ Ρ‚ΡƒΠΆΠ΅ раскатанных, Π½ΠΎ с Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΡƒΠ³ΠΈΠΌΠΈ Ρ€ΠΆΠ°Π²Ρ‹ΠΌΠΈ, Ρ‡Ρ‚ΠΎ стояли Π΄ΠΎ, ΠΌΠΎΡ‚ΠΎΡ€ прСкрасно запускался.

ИзмСнСно ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΌ telegraphist

НСисправности элСктродвигатСлСй – ООО ПЀ “ΠšΠ Π­Π”Πž”

Π§Ρ‚ΠΎΠ±Ρ‹ быстро ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΏΠΎΡ‡Π΅ΠΌΡƒ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π²Ρ‹ΡˆΠ΅Π» ΠΈΠ· строя ΠΈ Π² ΠΊΠ°ΠΊΠΈΡ… ΡƒΠ·Π»Π°Ρ… ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ΅Π» сбой – рСкомСндуСтся ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с ΠΏΠ΅Ρ€Π΅Ρ‡Π½Π΅ΠΌ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ популярных нСисправностСй. НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΎΠΌΠΊΠΈ, ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ возникновСния ΠΈ способы ΠΈΡ… ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ устранСния.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ сильно Π³ΡƒΠ΄ΠΈΡ‚ ΠΏΡ€ΠΈ запускС, Π½Π΅ Π½Π°Π±ΠΈΡ€Π°Π΅Ρ‚ ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ², ΠΈΠ»ΠΈ Π½Π΅ запускаСтся совсСм.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΠ±Ρ€Ρ‹Π² Ρ†Π΅ΠΏΠΈ статора, ΠΎΠ±Ρ€Ρ‹Π² Ρ†Π΅ΠΏΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Ρ„Π°Π· (Π½Π°ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΈΠΊ, кабСль, ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΡ€), ΠΏΠ΅Ρ€Π΅Π³ΠΎΡ€Π΅Π»Π° защитная вставка.
РСшСниС: Π’ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ†Π΅ΠΏΡŒ питания, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΈ ΡΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΎΡ…Ρ€Π°Π½ΠΈΡ‚Π΅Π»ΡŒ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΠ±Ρ€Ρ‹Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ статора.
РСшСниС: ΠŸΠ΅Ρ€Π΅ΠΌΠΎΡ‚Π°Ρ‚ΡŒ статор.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΠ±Ρ€Ρ‹Π² Π² Ρ†Π΅ΠΏΠΈ Ρ„Π°Π·Π½ΠΎΠ³ΠΎ Ρ€ΠΎΡ‚ΠΎΡ€Π° (кабСль, рСостат, Ρ‰Π΅Ρ‚ΠΊΠΈ).
РСшСниС: Π’ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ†Π΅ΠΏΡŒ Ρ€ΠΎΡ‚ΠΎΡ€Π°.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅ΠΆΠ΄Ρƒ стСрТнями ΠΈ ΠΊΠΎΠ»ΡŒΡ†Π°ΠΌΠΈ Π² ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ Ρ€ΠΎΡ‚ΠΎΡ€Π΅ (Π΄Ρ‹ΠΌ ΠΈ искры).
РСшСниС: Π Π΅ΠΌΠΎΠ½Ρ‚ Ρ€ΠΎΡ‚ΠΎΡ€Π°.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π—Π°ΠΊΠ»ΠΈΠ½ΠΈΠ²Π°Π½ΠΈΠ΅ Π²Π°Π»Π° Π­Π” ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄Π°.
РСшСниС: ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ очистку двигатСля ΠΈΠ»ΠΈ Π΅Π³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… загрязнСний.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Низкий пусковой ΠΌΠΎΠΌΠ΅Π½Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π΅ позволяСт Ρ€ΠΎΡ‚ΠΎΡ€Ρƒ Π½Π°Π±Ρ€Π°Ρ‚ΡŒ ΠΎΠ±ΠΎΡ€ΠΎΡ‚Ρ‹.
РСшСниС: Π—Π°ΠΌΠ΅Π½Π° Π½Π° Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΉ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ с большим пусковым ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π·Π²Π΅Π·Π΄ΠΎΠΉ вмСсто Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°
РСшСниС: ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ схСмы соСдинСния, произвСсти ΠΏΠ΅Ρ€Π΅ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π‘ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π² Π² ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ°Ρ… скольТСния.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ΠΈΠ»ΠΈ нСдостаточноС количСство смазки.
РСшСниС: ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ смазку подшипников Π΄ΠΎΠ»ΠΆΠ½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π’ маслС ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ примСси ΠΈ мСханичСскиС частицы.
РСшСниС: ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ Π·Π°ΠΌΠ΅Π½Ρƒ смазки.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Износ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΏΠΎΠ»ΡƒΠΌΡƒΡ„Ρ‚, Π΄Π΅Ρ„Π΅ΠΊΡ‚ ΠΊΠΎΠ»ΡŒΡ†Π°, Π±ΠΎΠΉ шСйки Π²Π°Π»Π° ΠΈ Ρ‚.ΠΏ.
РСшСниС: Π Π΅ΠΌΠΎΠ½Ρ‚ мСханичСской части двигатСля.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π‘ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π² Π² ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ°Ρ… качСния.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ΠΈΠ»ΠΈ нСдостаточноС поступлСниС смазки, ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΠΊ смазки.
РСшСниС: ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ смазку подшипников Π΄ΠΎΠ»ΠΆΠ½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΎΡΠ»Π΅Π΄ΠΈΡ‚ΡŒ Π·Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌΠΈ ΡƒΡ‚Π΅Ρ‡ΠΊΠ°ΠΌΠΈ, ΡƒΠ±Ρ€Π°Ρ‚ΡŒ излишки смазки.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π”Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ подшипника, Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ посторонним ΡˆΡƒΠΌΠΎΠΌ.
РСшСниС: Π—Π°ΠΌΠ΅Π½Π° подшипника.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: ΠšΠΎΡ€ΠΏΡƒΡ элСктродвигатСля сильно нагрСваСтся ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Блабая Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ систСмы охлаТдСния.
РСшСниС: ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΈ тСхнологичСских отвСрстий.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π—Π°Π±ΠΈΡ‚Ρ‹ вСнтиляционныС ΠΊΠ°Π½Π°Π»Ρ‹ для пропускания Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡƒΡ…Π°.
РСшСниС: ΠŸΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠ° сТатым Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΌ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Π°Ρ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ.
РСшСниС: ΠŸΠΎΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π½Π° Π­Π” большСй мощности.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π˜ΡΠΊΡ€Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ Π­Π” ΠΈ появлСниС Π΄Ρ‹ΠΌΠ°.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π ΠΎΡ‚ΠΎΡ€ соприкасаСтся с ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ статора.
РСшСниС: Π Π΅ΠΌΠΎΠ½Ρ‚ двигатСля.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: НСкоррСктная Ρ€Π°Π±ΠΎΡ‚Π° Π² Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΏΡƒΡΠΊΠΎΡ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмС.
РСшСниС: Диагностика Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΏΡƒΡΠΊΠΎΡ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмы ΠΈ устранСниС Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ².

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Π΅ Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ Π­Π”.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Износ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΡƒΡ„Ρ‚
РСшСниС: ΠžΡ‚ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ ΠΌΡƒΡ„Ρ‚Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Π­Π” Π±Π΅Π· ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΊ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡƒ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠΠ°Ρ€ΡƒΡˆΠ΅Π½Π° Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²ΠΊΠ° двигатСля ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°.
РСшСниС: ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΈ Π·Π°Ρ‚ΡΠ½ΡƒΡ‚ΡŒ ΠΊΡ€Π΅ΠΏΠ΅ΠΆΠ½Ρ‹Π΅ Π΄Π΅Ρ‚Π°Π»ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ крСплСния ΠΊ станинС.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Износ подшипников, разбалансировка Ρ€ΠΎΡ‚ΠΎΡ€Π°, Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ смСщСниС полоТСния Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΈ статора.
РСшСниС: Π Π΅ΠΌΠΎΠ½Ρ‚ Π­Π”.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: КолСбания потрСблСния Ρ‚ΠΎΠΊΠ° статора Π­Π” Π² процСссС Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠŸΠ»ΠΎΡ…ΠΎΠ΅ соСдинСниС Π² Ρ†Π΅ΠΏΠΈ – для Ρ„Π°Π·Π½ΠΎΠ³ΠΎ Ρ€ΠΎΡ‚ΠΎΡ€Π°, для ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠ³ΠΎ Ρ€ΠΎΡ‚ΠΎΡ€Π° – ΠΏΠ»ΠΎΡ…ΠΎΠ΅ соСдинСниС ΠΌΠ΅ΠΆΠ΄Ρƒ стСрТнями ΠΈ ΠΊΠΎΠ»ΡŒΡ†Π°ΠΌΠΈ.
РСшСниС:Β Π Π΅ΠΌΠΎΠ½Ρ‚ Π­Π” (ΠΏΡ€ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… колСбаниях – Π½Π΅Π·Π°ΠΌΠ΅Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… скачках – Ρ‡Π΅ΠΌ Ρ€Π°Π½ΡŒΡˆΠ΅ – Ρ‚Π΅ΠΌ Π»ΡƒΡ‡ΡˆΠ΅).

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π˜ΡΠΊΡ€Ρ‹ ΠΈΠ· ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ-Ρ‰Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΡƒΠ·Π»Π°. Π‘ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π² ΠΈ ΠΎΠ±Π³ΠΎΡ€Π°Π½ΠΈΠ΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π°Ρ€ΠΌΠ°Ρ‚ΡƒΡ€Ρ‹.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π©Π΅Ρ‚ΠΊΠΈ ΠΏΠ»ΠΎΡ…ΠΎ ΠΎΡ‚ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Π½Ρ‹.
РСшСниС: ΠžΡ‚ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Ρ‚ΡŒ Ρ‰Π΅Ρ‚ΠΊΠΈ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: НСдостаточный Π·Π°Π·ΠΎΡ€ для свободного двиТСния Ρ‰Π΅Ρ‚ΠΎΠΊ Π² щСткодСрТатСлях.
РСшСниС: Π’Ρ‹ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ допустимый Π·Π°Π·ΠΎΡ€ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 0.2-0.3 ΠΌΠΌ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ЗагрязнСниС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ† ΠΈΠ»ΠΈ Ρ‰Π΅Ρ‚ΠΎΠΊ.
РСшСниС: ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ очистку, ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ источник распространСния загрязнСния.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: На ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»ΡŒΡ†Π°Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ Π±ΠΎΡ€ΠΎΠ·Π΄Ρ‹ ΠΈ нСровности.
РСшСниС: ΠŸΡ€ΠΎΡ‚ΠΎΡ‡ΠΈΡ‚ΡŒ ΠΈ произвСсти ΡˆΠ»ΠΈΡ„ΠΎΠ²ΠΊΡƒ ΠΊΠΎΠ»Π΅Ρ†.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π‘Π»Π°Π±Ρ‹ΠΉ ΠΏΡ€ΠΈΠΆΠΈΠΌ Ρ‰Π΅Ρ‚ΠΎΠΊ.
РСшСниС: ΠžΡ‚Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ усилиС наТатия.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΠ΅Ρ‚ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ распрСдСлСниС Ρ‚ΠΎΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‰Π΅Ρ‚ΠΊΠ°ΠΌΠΈ.
РСшСниС: ΠžΡ‚Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ усилиС Π½Π°ΠΆΠ°Ρ‚ΠΈΠ΅ Ρ‰Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΈΡ… свободный Ρ…ΠΎΠ΄ Π² щСткодСрТатСлях, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ состояниС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ВравСрс, ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ состояниС Ρ‚ΠΎΠΊΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ².

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Активная ΡΡ‚Π°Π»ΡŒ статора пСрСгрСваСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΏΠΎ всСй повСрхности.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ΅ напряТСниС питания.
РСшСниС: ΠžΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ элСктродвигатСля ΠΈ ΠΏΠΎΠ½ΠΈΠ·ΠΈΡ‚ΡŒ напряТСниС элСктросСти Π΄ΠΎ ΡˆΡ‚Π°Ρ‚Π½ΠΎΠ³ΠΎ уровня.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π‘ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ стали статора Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΌ мСстС Π½Π° холостом Ρ…ΠΎΠ΄Ρƒ ΠΏΡ€ΠΈ ΡˆΡ‚Π°Ρ‚Π½ΠΎΠΌ напряТСнии Π² сСти.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠœΠ΅ΡΡ‚Π½ΠΎΠ΅ ΠšΠ— ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ листами Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ стали.
РСшСниС: ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ ΠΈ ΠΏΡ€ΠΎΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Ρ‚ΡŒ мСсто соприкосновСния листов, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΡŒ ΠΈΡ… диэлСктричСским Π»Π°ΠΊΠΎΠΌ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠΠ°Ρ€ΡƒΡˆΠ΅Π½Π° изоляция Π² мСстах стяТки Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ стали.
РСшСниС: Π’ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΠ»ΡΡ†ΠΈΡŽ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… участках.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π­Π” с Ρ„Π°Π·Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ Π½Π΅ Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ Π½Π° Π½ΠΎΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±ΠΎΡ€ΠΎΡ‚Ρ‹.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: НСкачСствСнноС соСдинСниС Π² ΠΏΠ°ΠΉΠΊΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΡŒΡ†Π° Ρ€ΠΎΡ‚ΠΎΡ€Π°.
РСшСниС:Β ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ надСТности ΠΏΠ°ΠΉΠΊΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΈ Β«ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΎΠΉ с ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ΠΌ напряТСния».

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π‘Π»Π°Π±Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π° с ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΌ ΠΊΠΎΠ»ΡŒΡ†ΠΎΠΌ.
РСшСниС: ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΈ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ токопроводящиС соСдинСния.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π‘Π»Π°Π±ΠΎΠ΅ соСдинСниС Π² Ρ‰Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ ΡƒΠ·Π»Π΅ ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ΅ ΠšΠ— Ρ€ΠΎΡ‚ΠΎΡ€Π°.
РСшСниС: ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ ΡˆΠ»ΠΈΡ„ΠΎΠ²ΠΊΡƒ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΡƒ усилия приТатия Ρ‰Π΅Ρ‚ΠΎΠΊ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π‘Π»Π°Π±ΠΎΠ΅ соСдинСниС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² Π² пусковой Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π΅.
РСшСниС: Π’ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ†Π΅Π»ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌ участкС.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ с Ρ„Π°Π·Π½Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ запускаСтся ΠΏΡ€ΠΈ Π½Π΅Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π°, Π° ΠΏΠΎΠ΄ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹ΠΉΡ‚ΠΈ Π½Π° Π½ΠΎΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠšΠ— Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅ якоря, ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ…ΠΎΠΌΡƒΡ‚Π°Ρ… Π»ΠΎΠ±ΠΎΠ²Ρ‹Ρ… соСдинСний.
РСшСниС: Π˜Π·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΎΠΏΡ€ΠΈΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ…ΠΎΠΌΡƒΡ‚Ρ‹, Π£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠšΠ— ΠΈ произвСсти Π·Π°ΠΌΠ΅Π½Ρƒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ якоря.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠšΠ— ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π° ΠΏΠΎ Π΄Π²ΡƒΠΌ участкам ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.
РСшСниС: Π£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠšΠ— ΠΈ произвСсти Π·Π°ΠΌΠ΅Π½Ρƒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ нСисправной ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ с ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹ΠΌ Ρ€ΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π½Π΅ Π½Π°Π±ΠΈΡ€Π°Π΅Ρ‚ ΡˆΡ‚Π°Ρ‚Π½ΠΎΠ΅ количСство ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ².

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π»Π΅, Π²Ρ‹ΡˆΠ»ΠΈ ΠΈΠ· строя ΠΏΡ€Π΅Π΄ΠΎΡ…Ρ€Π°Π½ΠΈΡ‚Π΅Π»ΠΈ ΠΈΠ»ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚.
РСшСниС: ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° ΠΈ устранСниС Π΄Π°Π½Π½Ρ‹Ρ… нСисправностСй.

Β 

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ: ΠŸΡ€ΠΈ запускС элСктродвигатСля элСктричСская Π΄ΡƒΠ³Π° ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Π΅ ΠΊΠΎΠ»ΡŒΡ†Π°.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Π’ Ρ‰Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ ΡƒΠ·Π»Π΅ ΠΈΠ»ΠΈ Π½Π° ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»ΡŒΡ†Π°Ρ… присутствуСт ΠΏΡ‹Π»ΡŒ, Π³Ρ€ΡΠ·ΡŒ.
РСшСниС: ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ чистку.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: Высокая Π²Π»Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ Π² мСстС эксплуатации Π­Π”.
РСшСниС: НанСсти Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ слой диэлСктрика ΠΈΠ»ΠΈ произвСсти Π·Π°ΠΌΠ΅Π½Ρƒ Π­Π” Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ, ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹ΠΉ для эксплуатации Π² Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… условиях.

ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°: ΠžΠ±Ρ€Ρ‹Π² Π² ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… соСдинСниях рСостата ΠΈΠ»ΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π°.
РСшСниС: ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ диагностику всСх соСдинСний, ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ нСисправности.

НСисправности асинхронных элСктродвигатСлСй

ΠΠ΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°Π‘ΠΏΠΎΡΠΎΠ± устранСния
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅
запускаСтся, Π½Π΅ вращаСтся ΠΈ Π½Π΅ ΠΈΠ·Π΄Π°Π΅Ρ‚ ΡˆΡƒΠΌΠ°.
1. НС Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΏΡƒΡΠΊΠ°Ρ‚Π΅Π»ΡŒ.ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ напряТСниС Π½Π° ΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ…, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π²Ρ‹Ρ…ΠΎΠ΄ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля.
2. К Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŽ Π½Π΅ подходят всС Ρ‚Ρ€ΠΈ ΠΈΠ»ΠΈ подходят Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ Ρ„Π°Π·Ρ‹ ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅Π³ΠΎ напряТСния.ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Π½Π΅Ρ‚ Π»ΠΈ ΠΎΠ±Ρ€Ρ‹Π²Π° Π² Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅ статора. ΠŸΡ€ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ нСисправности Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ статор ΠΈΠ»ΠΈ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Ρ†Π΅Π»ΠΈΠΊΠΎΠΌ.
3. Π’Ρ‹ΡˆΠ»Π° ΠΈΠ· строя ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ° статора.Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ статор
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡΠΠ΅ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΏΡƒΡΠΊΠ°Ρ‚Π΅Π»ΡŒ ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ пусковой Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π˜Π·ΠΌΠ΅Ρ€ΠΈΡ‚ΡŒ напряТСниС Π½Π° ΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ…,
Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π²Ρ‹Ρ…ΠΎΠ΄ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ вращаСтся ΠΈ Π½Π΅Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ Π³ΡƒΠ΄ΠΈΡ‚1. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΡΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ Ρ„Π°Π·Ρ‹ ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅Π³ΠΎ Π½Π°ΠΏΡ€ΡΠΆΠ΅Π½ΠΈΡΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ напряТСниС Π½Π° ΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ…, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π²Ρ‹Ρ…ΠΎΠ΄ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля
2. ΠžΠ±Π³ΠΎΡ€Π΅Π» Π·Π°ΠΆΠΈΠΌ Π² ΠΊΠΎΡ€ΠΎΠ±ΠΊΠ΅ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡΠ Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ, ΠΏΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ ΠΈ снова ΡΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π·Π°ΠΆΠΈΠΌ ΠΈΠ»ΠΈ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ соСдинСниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ΡΡΠ’Ρ‹ΡˆΠ΅Π» ΠΈΠ· строя ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ подшипник
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π΅ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΠœΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΏΡƒΡΠΊΠ°Ρ‚Π΅Π»ΡŒ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ
нСустойчиво ΠΈ искрит
Π£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ Π½Π΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ Π² Ρ†Π΅ΠΏΠΈ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля ΠΈΠ»ΠΈ Π² Π΅Π³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ систСмС
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ запускаСтся ΠΈ останавливаСтсяБлабоС Π½Π°ΠΆΠ°Ρ‚ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ
пускатСля
Π£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ Π½Π΅ΠΈΡΠΏΡ€Π°Π²Π½ΠΎΡΡ‚ΡŒ Π² Ρ†Π΅ΠΏΠΈ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ пускатСля ΠΈΠ»ΠΈ Π² Π΅Π³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ систСмС
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ Ρ€Π°Π·Π²ΠΈΠ²Π°Π΅Ρ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ² ΠΈ нагрСваСтся1. Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ с ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠΎΠΉΠ£ΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΡƒ двигатСля
2. Π’Ρ‹ΡˆΠ΅Π» ΠΈΠ· строя ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠ—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ подшипник
Π”Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π³ΡƒΠ΄ΠΈΡ‚ ΠΈ Π½Π΅ Ρ€Π°Π·Π²ΠΈΠ²Π°Π΅Ρ‚ номинального ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°Π’ΠΈΡ‚ΠΊΠΎΠ²ΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅
ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹ Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅ статора, ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ°Ρ… статора
Найти мСсто поврСТдСния ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ ΠΈ
ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅, Π² случаС нСобходимости, ΠΏΠ΅Ρ€Π΅ΠΌΠΎΡ‚Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ
Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π² всСго элСктродвигатСляНСисправСн Π²Π΅Π½Ρ‚ΠΈΠ»ΡΡ‚ΠΎΡ€Π‘Π½ΡΡ‚ΡŒ Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΉ ΠΊΠΎΠΆΡƒΡ… ΠΈ ΠΎΡ‚Ρ€Π΅ΠΌΠΎΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ
вСнтилятор
Π‘ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π² подшипников1. ΠΠ΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ установлСны ΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠΈΠžΡ‚Ρ€Π΅ΠΌΠΎΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ с устранСниСм Π½Π΅ΠΏΠΎΠ»Π°Π΄ΠΎΠΊ
2. ΠŸΠ»ΠΎΡ…ΠΎΠ΅ состояниС ΠΌΠ°ΡΠ»Π°Π”ΠΎΠ»ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ масло
3. Подшипники ΠΈΠ·Π½ΠΎΡΠΈΠ»ΠΈΡΡŒΠ—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ подшипники
Π’Ρ‹Ρ…ΠΎΠ΄ ΠΈΠ· строя двигатСля, ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΈΠ»ΠΈ
частичноС ΠΎΠ±ΡƒΠ³Π»ΠΈΠ²Π°Π½ΠΈΠ΅ изоляции ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ
Π‘ΠΎΠ»ΡŒΡˆΠΎΠΉ, Π²Ρ‹ΡˆΠ΅ номинального Ρ‚ΠΎΠΊ Π² ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ΅
двигатСля появляСтся ΠΈΠ·-Π·Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°, Π΅Π³ΠΎ
заклинивания, ΠΏΡ€ΠΈ нСсиммСтрии напряТСния Π² ΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ…, ΠΏΡ€ΠΈ
Π°Π²Π°Ρ€ΠΈΠΉΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…
Π—Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ

Π’ΠΈΠ΄Ρ‹ нСисправности элСктродвигатСля

01.04.2015

НСисправности элСктричСского двигатСля

Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ нагрСваСтся, Π³ΡƒΠ΄ΠΈΡ‚, стучит ΠΈΠ»ΠΈ вовсС Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ. Π’ΠΎΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнныС Π²ΠΈΠ΄Ρ‹ нСисправностСй элСктродвигатСлСй. ΠŸΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ‚Π°ΠΊΠΈΡ… ΠΏΠΎΠ»ΠΎΠΌΠΎΠΊ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ самыС Ρ€Π°Π·Π½Ρ‹Π΅.

Асинхронный Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ

Одна ΠΈΠ· ΠΏΡ€ΠΈΡ‡ΠΈΠ½ β€” Π·Π°ΠΊΠΎΡ€ΠΎΡ‡Π΅Π½Π½Ρ‹Π΅ полоТСния пускового рСостата ΠΈΠ»ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ†. Если ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π° пСрвая, Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ привСсти пусковой рСостат Π² Π½ΡƒΠΆΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅. Если ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² ΠΊΠΎΠ»ΡŒΡ†Π°Ρ…, Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π½ΡΡ‚ΡŒ приспособлСниС, ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ ΠΈΡ…. Π’Π°ΠΊΠΆΠ΅ Π½Π°Ρ€ΡƒΡˆΠΈΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρƒ элСктродвигатСля ΠΌΠΎΠΆΠ΅Ρ‚ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΅ Π·Π°ΠΌΡ‹ΠΊΠ°Π½ΠΈΠ΅ Π² Ρ†Π΅ΠΏΠΈ статора. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΎΡ‰ΡƒΠΏΡŒ ΠΏΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΌΡƒ Π½Π°Π³Ρ€Π΅Π²Ρƒ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ. НС Π·Π°Π±ΡƒΠ΄ΡŒΡ‚Π΅, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ ΠΎΡ‚ сСти. Если ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΎΡΡŒ ΠΈ ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠ° Π½Π°Π³Ρ€Π΅Π»Π°ΡΡŒ, Ρ‚ΠΎ Ρ€Π΅ΠΌΠΎΠ½Ρ‚ ΠΈ Ρ‚.ΠΎ элСктродвигатСля Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎ.

Асинхронный Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π½Π΅ трогаСтся с мСста

ΠžΠ±Ρ€Ρ‹Π² Ρ„Π°Π· питания (ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π΄Π²ΡƒΡ…) ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Ρ‚Π°ΠΊΠΎΠΉ нСисправности. Π Π°ΡΠΏΠΎΠ·Π½Π°Ρ‚ΡŒ Π΅Π³ΠΎ удастся ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ внСшнСго осмотра, Π»ΠΈΠ±ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ² измСрСния ΠΌΠ΅Π³ΠΎΠΌΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ. Если ΠΎΠ±Ρ€Ρ‹Π² случится Π²ΠΎ врСмя Ρ€Π°Π±ΠΎΡ‚Ρ‹ элСктродвигатСля, ΠΎΠ½ Π½Π΅ остановится, Π½ΠΎ Π½Π°Ρ‡Π½Π΅Ρ‚ Π³ΡƒΠ΄Π΅Ρ‚ΡŒ сильнСС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ.

Асинхронный Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π³ΡƒΠ΄ΠΈΡ‚ Π²ΠΎ врСмя Ρ€Π°Π±ΠΎΡ‚Ρ‹

Помимо ΠΎΠ±Ρ€Ρ‹Π²Π° ΠΎΠ΄Π½ΠΎΠΉ Ρ„Π°Π·Ρ‹, Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ излишнСго ΡˆΡƒΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π³Ρ€ΡƒΠ·ΠΊΠ° элСктродвигатСля. Π§Ρ‚ΠΎΠ±Ρ‹ Π² этом ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, достаточно Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ Π΅Π³ΠΎ с ΠΏΡ€ΠΈΠ²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΈ Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ…ΠΎΠ»ΠΎΡΡ‚ΡƒΡŽ.

НагрСваСтся подшипник

Π£ Ρ‚Π°ΠΊΠΎΠΉ нСисправности нСсколько ΠΏΡ€ΠΈΡ‡ΠΈΠ½. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСдостаточная Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π·Π°Π·ΠΎΡ€Π° ΠΌΠ΅ΠΆΠ΄Ρƒ шСйкой Π²Π°Π»Π° ΠΈ Π²ΠΊΠ»Π°Π΄Ρ‹ΡˆΠ΅ΠΌ подшипника, слишком ΠΌΠ°Π»ΠΎ ΠΈΠ»ΠΈ слишком ΠΌΠ½ΠΎΠ³ΠΎ масла Π² подшипникС, Π° Ρ‚Π°ΠΊΠΆΠ΅ загрязнСниС ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ масла Π½Π΅ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ°Ρ€ΠΎΠΊ.

Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ искрит ΠΈ Π΄Ρ‹ΠΌΠΈΡ‚ Π²ΠΎ врСмя Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π‘ΠΊΠΎΡ€Π΅Π΅ всСго ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π° кроСтся Π² Π·Π°Π΄Π΅Π²Π°Π½ΠΈΠΈ Ρ€ΠΎΡ‚ΠΎΡ€Π° Π·Π° статор. Π’Π°ΠΊΠΆΠ΅ искры ΠΏΠΎΠ΄ Ρ‰Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΡΠ²ΠΈΡ‚ΡŒΡΡ ΠΈΠ·-Π·Π° Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Ρ‰Π΅Ρ‚ΠΎΠΊ, ΠΈΡ… слабого наТатия Π½Π° ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€, Π΅Π³ΠΎ нСдостаточно гладкая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ΅ располоТСниС Ρ‰Π΅Ρ‚ΠΎΠΊ. Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Π½Π΅ΠΏΠΎΠ»Π°Π΄ΠΊΠΈ достаточно Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Ρ‰Π΅Ρ‚ΠΊΠΈ Π½Π° Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ.

ΠŸΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠΎΡ‚ΠΊΠ΅ элСктродвигатСлСй, Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π΅ сварочного оборудования ΠΈ устранСнии Π½Π΅ΠΏΠΎΠ»Π°Π΄ΠΎΠΊ ΠΎΠ±Ρ€Π°Ρ‰Π°ΠΉΡ‚Π΅ΡΡŒ Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊ профСссионалам. Они Π² ΠΊΡ€Π°Ρ‚Ρ‡Π°ΠΉΡˆΠΈΠ΅ сроки ΠΏΡ€ΠΈΠ²Π΅Π΄ΡƒΡ‚ любой ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π² Ρ€Π°Π±ΠΎΡ‡Π΅Π΅ состояниС!

Π”Ρ€ΡƒΠ³ΠΈΠ΅ события 90000 Starting Motor With Auto-transformer 90001 90002 90002 Starting Motor With Auto-transformer 90004 Circuit and function 90005 90006 An auto-transformer starter makes it possible to start squirrel-cage induction motors with reduced starting current, as the voltage across the motor is reduced during starting. 90007 90006 In contrast to the star-delta connection, only three motor leads and terminals are required. On starting, the motor is connected to the tappings of the auto-transformer; transformer contactor K2M and star contactor K1M are closed.90007 90006 90011 90012 The motor starts at the voltage reduced by the transformer, with a correspondingly smaller current. 90013 90014 90007 90006 By this means the feeding current in comparison to direct starting would be 90011 90012 reduced by the square of the transformer voltage ratio 90013 90014; nevertheless, it is in most cases noticeably higher, as it also covers the 90011 90012 relatively high transformer losses 90013 90014. 90007 90006 Depending on the tapping and starting current ratio of the motor, the 90011 90012 starting current 90013 90014 lies at 90011 90012 (1 … 5) Β· Ie 90013 90014.In contrast, the motor torque falls with the square of the voltage across the windings. Auto-transformers usually have three available taps in each phase (90011 90012 for example 80%, 65%, 50% 90013 90014), so that the motor starting characteristic can be adjusted to the load conditions. 90007 90006 If the motor has reached 90011 90012 80 … 95% of its rated speed 90013 90014 (90011 depending on the desired reduction of the current surge after switching-over 90014), the 90011 90012 star contactor K1M 90013 90014 on the transformer is opened.90007 90006 Now the transformer part-windings act as chokes. The motor voltage is only reduced by the chokes below the supply voltage and the motor speed does not fall. The 90011 90012 main contactor K3M 90013 90014 closes via auxiliary contacts of the star contactor and applies the full supply voltage to the motor. 90007 90006 For its part, the main contactor K3M drops out the 90011 90012 transformer contactor K2M 90013 90014. 90007 90006 90011 90012 The entire procedure is thus uninterrupted.90013 90014 90007 90070 90070 Figure 1 – Auto-transformer starter with uninterrupted switching over (KorndΓΆrfer starting method) 90072 90072 90074 Rating of the starter 90075 90006 90011 90012 The main contactor K3M and the motor protective device F1 are selected according to the motor rated operational current I 90079 e 90080. 90013 90014 Transformer contactor and star contactor are only briefly closed during starting. 90007 90006 Their rating is determined by the 90011 90012 required contact breaking capacity 90013 90014, as they must reliably cope with any unforeseen disconnection during start up.90007 90006 The star contactor also operates with every start-up during switching-over. The values ​​of the rated operational currents for the transformer contactor K2M, depending on the start time and starting current, are between 90011 90012 (0.3 … 1) Β· I 90079 e 90080 90013 90014, for the star contactor between 90011 90012 (0.45 … 0.55 ) Β· I 90079 e 90080 90013 90014. 90007 90072 90074 Testing AC Motors and Working on Westinghouse Generator 90075 90006 90108 90109 90007 90006 90011 90012 Resource: 90013 Allen Bradley – Low Voltage Switchgear and Controlgear 90014 90007 .90000 Brushed DC motor 90001 90002 By Dmitry Levkin 90003 90004 Brushed DC electric motor 90005 is a rotating DC electric machine that converts DC electric power into mechanical energy, in which at least one of the windings involved in the main process of energy conversion is connected to a commutator. 90002 Figure 1 – Permanent magnet DC motor in the section 90003 90002 90004 Rotor 90005 is rotating part of the electric machine.90003 90002 90004 Stator 90005 is a fixed part of the motor. 90003 90002 90004 Inductor 90005 (excitation system) is part of the DC commutator machine or synchronous machine, creating magnetic flux for the formation of the torque. The inductor includes either 90004 permanent magnets 90005 or a 90004 field winding 90005. The inductor can be part of both the rotor and the stator. In the motor shown in fig. 1, the excitation system consists of two permanent magnets and is part of the stator.90003 90002 90004 Armature 90005 is a part of a DC commutator machine or a synchronous machine in which an electromotive force is induced and a load current flows [2]. As the armature can act as a rotor and stator. In the motor shown in fig. 1, the rotor is an armature. 90003 90002 90004 Brushes 90005 is a part of the electrical circuit through which the electric current is transmitted from the power source to the armature. Brushes are made from graphite or other materials. The DC motor contains one pair of brushes or more.One of the two brushes is connected to the positive and the other to the negative terminal of the power supply. 90003 90002 90004 Commutator 90005 is a part of the motor in contact with the brushes. With the help of brushes and a commutator, the electric current is distributed across the coils of the armature winding [1]. 90003 90002 According to the stator construction, the brushed motor can be with permanent magnets and with wound stator. 90003 90038 Permanent magnet DC motor 90039 90002 Permanent magnet DC motor scheme 90003 90002 Permanent magnet DC motor (PMDC motor) is the most common among the brushed DC motor.The inductor of this motor includes permanent magnets that create a magnetic field of the stator. Permanent magnet DC motors are usually used in tasks that do not require high power. PMDC motors are cheaper in production than wound field DC motors. At the same time, the torque of the PMDC motor is limited by the field of permanent magnets of the stator. The PMDC motor reacts very quickly to voltage changes. Thanks to the constant field of the stator, it is easy to control the speed of the motor.The disadvantage of a PM DC motor is that over time the magnets lose their magnetic properties, as a result of which the stator field decreases and the motor performance decreases. 90003 90044 90004 Advantage: 90005 90047 best price / quality ratio 90048 90047 high torque at low speed 90048 90047 fast voltage response 90048 90053 90044 90004 Disadvantage: 90005 90047 permanent magnets over time, as well as under the influence of high temperatures lose their magnetic properties 90048 90053 90038 Wound field DC motor 90039 90002 Separately excited DC motor scheme 90003 90002 Shunt wound DC motor scheme 90003 90002 Series wound DC motor scheme 90003 90002 Compound wound DC motor scheme 90003 90070 Separately excited and shunt wound motors 90071 90002 In separately excited electric motors, the field winding is not electrically connected to the armature winding (figure above).Usually, the excitation voltage U 90073 FW 90074 differs from the voltage in the armature circuit U. If the voltages are equal, then the field winding is connected in parallel with the armature winding. The use in the electric drive separately excited or shunt wound motor is determined by the electric drive scheme. Properties (characteristics) of these motors are the same [3]. 90003 90002 In shunt wound brushed DC motors, the currents of the field winding (inductor) and the armature are independent of each other, and the total motor current is equal to the sum of the field winding current and the armature current.During normal operation, 90004 increasing the supply voltage 90005 increases the total current of the motor, which leads to an increase in the stator and rotor fields. With an increase in the total motor current, the speed also increases, and the torque decreases. 90004 When the motor load increased 90005, the armature current increases, with the result that the armature field increases. As the armature current increases, the inductor (field winding) current decreases, resulting in a decrease in the inductor field, which leads to a decrease in motor speed and an increase in torque.90003 90044 90004 Advantage: 90005 90047 almost constant torque at low speed 90048 90047 good adjusting properties 90048 90047 no loss of magnetism over time (since there are no permanent magnets) 90048 90053 90044 90004 Disadvantage: 90005 90047 more expensive than PMDC motor 90048 90047 the motor goes out of control if the inductor current drops to zero 90048 90053 90002 Shunt-wound DC motor has the torque / speed characteristic with decreasing torque at high speeds and high, but more constant torque at low speeds.The current in the inductor winding and the armature does not depend on each other, thus, the total current of the electric motor is equal to the sum of the currents of the inductor and the armature. As a result, this type of motor has excellent speed control characteristics. Shunt-wound brushed DC motor is commonly used in applications that require a power of more than 3 kW, in particular in automotive applications and industry. In comparison with PMDC motor, the shunt wound DC motor does not lose its magnetic properties with time and is more reliable.The disadvantages of the shunt wound brushed DC motor is higher cost and the possibility of the motor runaway if the inductor current decreases to zero, which in turn can lead to motor failure [5]. 90003 90070 Series wound DC motor 90071 90002 In series wound brushed DC motors, the field winding is connected in series with the armature winding, and the excitation current is equal to the armature current (I 90073 e 90074 = I 90073 a 90074), which gives the motors special properties. Under small loads, when the armature current is less than the rated current (I 90073 a 90074 & lt I 90073 rat 90074) and the magnetic system of the motor is not saturated (Π€ ~ I 90073 Π° 90074), the electromagnetic torque is proportional to the square of the current in the armature winding: 90003 90002, 90003 90044 90047 where 90120 M 90121 is the motor torque, N βˆ™ m, 90048 90047 90120 Π· 90073 М 90074 90121 is a constant coefficient determined by the design parameters of the motor ,, 90048 90047 Π€ is main magnetic flux, Wb, 90048 90047 90120 I 90073 a 90 074 90121 is armature current, A.90048 90053 90002 With load increasing, the magnetic system of the motor is saturated and the proportionality between the current I 90073 a 90074 and the magnetic flux Π€ is disturbed. With significant saturation, the magnetic flux Π€ with increasing I 90073 a 90074 practically does not increase. The graph of the dependence M = f (I 90073 a 90074) in the initial part (when the magnetic system is not saturated) has the shape of a parabola, then, when saturated, deviates from the parabola and in the region of large loads turns into a straight line [3].90003 90002 Performance characteristic of series wound DC motor 90003 90002 Electromechanical characteristic of series wound DC motor 90003 90002 90004 Important: 90005 It is unacceptable to include a series wound brushed DC motor in the power grid at idle (no load on the shaft) or with a load of less than 25% of the rated, as at low loads the armature speed increases dramatically, reaching values ​​at which mechanical damage to the motor is possible, therefore in drives with series wound DC motors, it is unacceptable to use a belt drive, if it is broken, the motor goes to idling mode.An exception is made for series wound DC motors with a power of up to 100-200 W, which can operate in idle mode since their mechanical and magnetic losses at high speeds are commensurate with the rated motor power. 90003 90002 The ability of series wound DC motors to develop a large electromagnetic torque provides them with good starting properties. 90003 90044 90004 Advantage: 90005 90047 high torque at low speed 90048 90047 no loss of magnetism over time 90048 90053 90044 90004 Disadvantage: 90005 90047 low torque at high speed 90048 90047 more expensive than PMDC motor 90048 90047 poor speed control due to the series connection of the armature and inductor windings 90048 90047 the motor goes out of control if the inductor current drops to zero 90048 90053 90002 Series wound brushed DC motor has a high torque at low speed and develops high speed with no load.This electric motor is ideal for devices that need to develop a high torque (cranes and winches), as the current of the stator and the rotor increases under load. Unlike PMDC motors and shunt wound brushed DC motors, the series wound DC motors does not have the exact characteristics of speed control, and in case of a short circuit of the field winding it can become uncontrollable. 90003 90070 Compound wound DC motor 90071 90002 Compound wound brushed DC motor has two field windings, one of them is connected in parallel with the armature winding, and the second is connected in series.The ratio between the magnetizing forces of the windings can be different, but usually one of the windings creates a large magnetizing force and this winding is called main, the second winding is called auxiliary. If the windings are connected such that the series field aids the shunt field, then the motor is called 90004 Cumulative compound brushed DC motor 90005. On the other hand, if the windings are connected such that the two fields oppose each other, then the motor is called the 90004 Differential compoud brushed DC motor 90005.The speed characteristics of cumulative compound brushed DC motor are located between the speed characteristics of shunt wound and series wound DC motors. Opposite connection of the windings (differential compounding) is used when it is necessary to obtain a constant rotational speed or an increase in the rotational speed with increasing load. Thus, the performance characteristics of a compound wound DC motor is close to those of a shunt or series wound brushed DC motor, depending on which field winding plays the main role [4].90003 90044 90004 Advantage: 90005 90047 good speed control 90048 90047 high torque at low speed 90048 90047 motor runaway less likely 90048 90047 no loss of magnetism over time 90048 90053 90044 90004 Disadvantage: 90005 90047 more expensive than other brushed DC motors 90048 90053 90002 Compound brushed DC motors has the performance characteristics of shunt and series wound brushed DC motors.It has a high torque at low speed, as well as a series wound brushed DC motor and good speed control, like, a shunt wound brushed DC motor. Compound wound brushed DC motor runaway is less likely, because the shunt current should decrease to zero, and the serial field winding should be short-circuited. 90003 90002 The performance properties of brushed DC motors are determined by their operating, electromechanical and mechanical characteristics, as well as their adjustment properties. 90003 90002 Torque-speed curves of brushed DC motors 90003 90038 Torque constant 90039 90002 For a brushed DC motor, the torque constant is determined by the formula: 90003 90002, 90003 90044 90047 where Z is total number of conductors, 90048 90047 Π€ is magnetic flux, Wb [1] 90048 90053 90222 Also read 90223 .90000 Single-phase induction motor 90001 90002 By Dmitry Levkin 90003 A 90004 single-phase induction electric motor 90005 is an induction electric motor that operates from a single-phase AC power grid without using a frequency converter and which, in the basic mode of operation (after starting), uses only one winding (phase) of the stator. 90002 90004 Split-phase motor 90005 is a single-phase induction motor having an auxiliary (starting) winding on the stator, offset from the main one, and a squirrel-cage rotor [2].90003 90010 Construction of Single-phase Induction Motor with auxillary or starting winding 90011 The main components of any electric motor are the rotor and the stator. The rotor is the rotating part of the electric motor, the stator is the fixed part of the electric motor, with the help of which a magnetic field is created for the rotation of the rotor. 90002 The main parts of a single-phase induction motor: rotor and stator 90003 90002 The 90015 stator 90005 has two windings located at an angle of 90 Β° relative to each other.The main (working) winding usually occupies 2/3 of the slots of the stator core, the other winding is called auxiliary (starting) and usually takes 1/3 of the slots of the stator. 90003 90002 The motor is actually two-phase, but since only one winding is working after starting, the electric motor is called single-phase. 90003 90002 The 90021 rotor 90005 usually represents itself a short-circuited winding, also called “squirrel cage” due to the similarity. Whose copper or aluminum rods are closed with rings at the ends, and the space between the rods is often filled with an aluminum alloy.The rotor of a single-phase motor can also be made in the form of a hollow nonmagnetic or hollow ferromagnetic cylinder. 90003 90002 Single-phase induction motor with auxiliary winding has two windings located perpendicularly relative to each other 90003 90010 Working principle of single-phase induction motor 90011 90002 To better understand the working of a single-phase induction motor, let’s consider it with only one turn in the main and auxiliary windings. 90003 90002 Analysis of the case with two windings having one turn 90003 90002 Consider the case when no current flows in the auxiliary winding.When the main stator winding is turned on, the alternating current, passing through the winding, creates a pulsating magnetic field, stationary in space, but varying from + Π€ 90033 max 90034 to-Π€ 90033 max 90034. 90003 90002 Start 90003 90002 Stop 90003 90002 Fluctuating magnetic field 90003 90002 If you place a squirrel-cage rotor having an initial rotation in a fluctuating magnetic field, it will continue to rotate in the same direction.90003 90002 To understand the working principle of a single-phase induction motor, we separate the fluctuating magnetic field into two identical rotating fields having an amplitude equal to Π€ 90033 max 90034/2 and rotating in opposite directions with the same frequency: 90003 90002, 90003 90052 90053 where n 90033 90055 f 90056 90034 is the rotational speed of the magnetic field in the forward direction, rpm, 90058 90053 n 90033 90055 r 90056 90034 is the rotational speed of the magnetic field in the opposite direction, rpm, 90058 90053 f 90033 1 90034 is stator current frequency, Hz, 90058 90053 p is a number of poles pairs, 90058 90053 n 90033 1 90034 is the rotational speed of magnetic flux, rpm 90058 90075 90002 Start 90003 90002 Stop 90003 90002 The decomposition of the fluctuating magnetic flux into two rotating 90003 90082 The action of the fluctuating field on a rotating rotor 90083 90002 Consider the case when the rotor in a fluctuating magnetic flux has an initial rotation.For example, we manually spun the shaft of a single-phase motor, one winding of which is connected to an AC power grid. In this case, under certain conditions, the motor will continue to develop torque, since the rotor 90004 slip 90005 relative to the forward and reverse magnetic flux will be unequal. 90003 90002 Assume that the forward magnetic flux Π€ 90033 f 90034, rotates in the direction of rotor rotation, and the reverse magnetic flux Π€ 90033 r 90034 in the opposite direction. Since, the rotational speed of the rotor n 90033 2 90034 is less than the rotational speed of the magnetic flux n 90033 1 90034, the slip of the rotor relative to the flux Π€ 90033 f 90034 will be: 90003 90002, 90003 90052 90053 where s 90033 90055 f 90056 90034 is rotor slip relative to the forward magnetic flux, 90058 90053 n 90033 2 90034 is rotor speed, rpm, 90058 90053 s is induction motor slip 90058 90075 90002 Forward and reverse rotating magnetic flux instead of fluctuating magnetic flux 90003 90002 The magnetic flux Π€ 90033 r 90034 rotates counter to the rotor rotation, the rotor rotation speed n 90033 2 90034 relative to this flux is negative, and the slip of the rotor relative to Π€ 90033 r 90034 90003 90002, 90003 90052 90053 where s 90033 90055 r 90056 90034 is rotor slip relative to reverse magnetic flux 90058 90075 90002 Start 90003 90002 Stop 90003 90002 Rotating magnetic field penetrating the rotor 90003 90002 Current induced in the rotor by an alternating magnetic field 90003 90002 According to the law of electromagnetic induction, the forward Π€ 90033 f 90034 and reverse Π€ 90033 r 90034 magnetic fluxes generated by the stator winding induce EMF in the rotor winding, which, respectively, in the short-circuited rotor generate currents I 90033 2f 90034 and I 90033 2r 90034.The frequency of the current in the rotor is proportional to the slip, therefore: 90003 90002, 90003 90052 90053 where f 90033 2f 90034 is frequency of the current I 90033 2f 90034 induced by the forward magnetic flux, Hz 90058 90075 90002, 90003 90052 90053 where f 90033 2r 90034 is frequency of the current I 90033 2r 90034 induced by the reverse magnetic flux, Hz 90058 90075 90002 Thus, when the rotor rotates, the electric current I 90033 2r 90034 induced by the reverse magnetic field in the rotor winding has a frequency f 90033 2r 90034 much higher than the frequency f 90033 2f 90034 of the rotor current I 90033 2f 90034 induced by the forward field.90003 90004 Example: 90005 for a single-phase induction motor working from the mains with a frequency f 90033 1 90034 = 50 Hz at n 90033 1 90034 = 1500 and n 90033 2 90034 = 1440 rpm, 90002 slip of the rotor relative to the forward magnetic flux s 90033 f 90034 = 0.04; 90195 the frequency of the current induced by the forward magnetic flux f 90033 2f 90034 = 2 Hz; 90195 slip of the rotor relative to the reverse magnetic flux Π° s 90033 r 90034 = 1,96; 90195 the frequency of the current induced by the reverse magnetic flux f 90033 2r 90034 = 98 Hz 90003 90002 According to Ampere’s law, a torque occurs as a result of the interaction of the electric current I 90033 2f 90034 with the magnetic field F 90033 f 90034 90003 90002, 90003 90052 90053 where M 90033 90055 f 90056 90034 is the magnetic torque created by the forward magnetic flux, N βˆ™ m, 90058 90053 Π· 90033 90055 M 90056 90034 is constant coefficient determined by the motor construction 90058 90075 90002 The electric current I 90033 2r 90034, interacting with the magnetic field Π€ 90033 r 90034, creates a braking torque M 90033 r 90034 directed against the rotation of the rotor, that is, opposite to the torque M 90033 f 90034: 90003 90002, 90003 90052 90053 where M 90033 r 90034 is magnetic torque created by reverse magnetic flux, N βˆ™ m 90058 90075 90002 The resulting torque acting on the rotor of a single-phase induction motor, 90003 90002, 90003 90002 90004 Note: 90005 Due to the fact that in a rotating rotor forward and reverse magnetic field will induce a current of different frequency, the torques acting on the rotor in different directions will not be equal.Therefore, the rotor will continue to rotate in a fluctuating magnetic field in the direction in which it had an initial rotation. 90003 90082 The braking effect of the reverse field 90083 90002 When a single-phase motor is operating within the rated load, that is, at small slip values ​​s = s 90033 f 90034, the torque is generated mainly due to the torque M 90033 f 90034. The braking effect of the torque of the reverse field M 90033 r 90034 slightly. This is due to the fact that the frequency f 90033 2r 90034 is much higher than the frequency f 90033 2f 90034, therefore, the inductive reactance of the rotor winding Π° Ρ… 90033 2r 90034 = x 90033 2 90034 s 90033 r 90034 to the current I 90033 2r 90034 is much more than its active resistance.Therefore, the current I 90033 2r 90034 having a large inductive component has a strong demagnetizing effect on the reverse magnetic flux Π€ 90033 r 90034, significantly weakening it. 90003 90002, 90003 90052 90053 where r 90033 2 90034 is rotor rods resistance, Ohm, 90058 90053 x 90033 2r 90034 is reactive impedance of rotor rods, Ohm. 90058 90075 90002 If we consider that the power factor is small, then it will become clear why the M 90033 r 90034 under the load of the motor does not have a significant braking effect on the rotor of a single-phase motor.90003 90002 With one phase, the rotor can not be started. 90003 90002 The rotor having the initial rotation will continue to rotate in the field created by the single-phase stator 90003 90082 The action of a fluctuating field on a fixed rotor 90083 90002 With a stationary rotor (n 90033 2 90034 = 0) slip s 90033 f 90034 = s 90033 r 90034 = 1 and M 90033 f 90034 = M 90033 r 90034, therefore the initial starting torque of a single-phase induction motor M 90033 f 90034 = 0.To create the starting torque, it is necessary to bring the rotor in rotation in one direction or another. Then s β‰  1, the equality of the torques М 90033 f 90034 and М 90033 r 90034 is violated and the resulting electromagnetic torque acquires some value M = M 90033 90055 f 90056 90034 – M 90033 90055 r 90056 90034 β‰  0. 90003 90010 Starting of a single-phase induction motor. How to create an initial rotation? 90011 90002 One way to create a starting torque in a single-phase induction motor is to position the auxiliary (start) winding B, which is offset in space relative to the main (run) winding A at an angle of 90 electrical degrees.In order that the stator windings to create a rotating magnetic field, the currents I 90033 A 90034 and I 90033 B 90034 in the windings must be out of phase relative to each other. To obtain a phase shift between the currents I 90033 A 90034 and I 90033 B 90034, the auxiliary (start) winding B is connected to a phase-shifting element, which is resistance (resistor), inductance (choke) or capacitance (capacitor) [1]. 90003 90002 After the motor rotor accelerates to a rotational speed close to steady, the starting winding B is disconnected.The auxiliary winding is disconnected either automatically using a centrifugal switch, a time delay relay, a current or a differential relay, or manually using a button. 90003 90002 Thus, during start-up, the single-phase induction motor operates as two-phase, and after the start-up, as single-phase. 90003 90010 Single-phase induction motor connection 90011 90082 Resistance start induction motor 90083 90002 90004 Resistance start 90005 induction motor is a split-phase motor, in which the auxiliary winding circuit is distinguished by increased resistance.90003 90002 Ohmic phase shift, bifilar starting winding 90003 90002 Different resistance and inductance of the windings 90003 90002 To start a single-phase induction motor, you can use a starting resistor, which is connected in series to the starting winding. In this case, it is possible to achieve a phase shift of 30 Β° between the currents of the main and auxiliary windings, which is quite enough to start the motor.In a motor with starting resistance, the phase difference is explained by the different complex impedance of the circuits. 90003 90002 Also, a phase shift can be created by using a start winding with a lower inductance and higher resistance. For this, the starting winding is done with a smaller number of turns and using a thinner wire than in the main winding. 90003 90082 Capacitor start induction motor 90083 90002 90004 Capacitor start 90005 induction motor is a split-phase motor, in which the auxiliary winding circuit with a capacitor is switched on only for the duration of the start.90003 90002 Capacitive phase shift with a starting capacitor 90003 90002 To achieve the maximum starting torque, it is required to create a circular rotating magnetic field, this requires that the currents in the main and auxiliary windings are shifted relative to each other by 90 Β°. The use of a resistor or choke as a phase-shifting element does not allow for the required phase shift. Only the inclusion of a capacitor of a certain capacity allows for a phase shift of 90 Β°.90003 90002 Among phase shifting elements, only a capacitor allows achieving the best starting properties of a single-phase induction electric motor. 90003 90002 Motors in the circuit of which a permanently switched on capacitor use two phases for operation and are called capacitor ones. The working principle of these motors is based on the use of a rotating magnetic field. 90003 90002 90004 Shaded pole induction motor 90005 is a split-phase motor in which the auxiliary winding is short-circuited.90003 90002 The 90004 stator 90005 of a shaded pole single-phase induction motor usually has salient poles. Each stator pole is divided into two unequal sections by an axial groove. A smaller section of the pole has a short-circuited turn. The 90004 rotor 90005 of a shaded pole single-phase motor is short-circuited in the form of a squirrel cage. 90003 90002 When the single-phase stator winding is turned on to the power grid, a fluctuating magnetic flux is created in the motor magnetic circuit.One part of which passes through unshaded Π€ ‘, and the other Π€ “along the shaded section of the pole. Flow Π€” induces EMF E 90033 k 90034 in a short-circuited turn, resulting in a current I 90033 k 90034 lagging from E 90033 k 90034 in phase due to the inductance of the coil. The current I 90033 k 90034 creates a magnetic flux Π€ 90033 k 90034, directed oppositely to Π€ “, creating the resulting flux in the shaded section of the pole Π€ 90033 s 90034 = Π€” + Π€ 90033 k 90034. Thus, in a motor, the flows of the shaded and unshaded sections of the pole are shifted in time by a certain angle.90003 90002 The spatial and temporal shear angles between the flows Π€ 90033 s 90034 and Π€ ‘create conditions for a rotating elliptical magnetic field to appear in the motor, since Π€ 90033 s 90034 β‰  Π€’. 90003 90002 Starting and working properties of the considered motor are low. Efficiency is much lower than that of capacitor start induction motors of the same power, which is associated with significant electrical losses in a short-circuited coil. 90003 90002 The 90004 stator 90005 of such a single-phase motor is made with salient poles on a non-symmetrical laminated core.The 90004 rotor 90005 has squirrel-cage winding. 90003 90002 This motor for an operation does not require the use of phase-shifting elements. The disadvantage of this motor is low efficiency. 90003 90415 Also read 90416 .90000 The basics of Built-in Motor Protection for Beginners 90001 90002 Why is motor protection necessary? 90003 90004 In order to avoid unexpected breakdowns, costly repairs and subsequent losses due to motor downtime, it is important that the motor is fitted 90005 with some sort of protective device 90006. 90007 90008 90008 The basics of Built-in Motor Protection for Beginners (on photo: View of installed thermostat inside motor; credit: johndearmond.com) 90004 This article will deal with 90005 built-in motor protection 90006 with thermal overload protection to avoid damage and breakdown of motor.The built-in protector always require an external circuit breaker while some built-in motor protection types even require an overload relay. 90007 90014 Internal protection // Built into the motor 90015 90004 Why have built-in motor protection, when the motor is already fitted with overload relays and fuses? Sometimes the overload relay does not register a motor overload. 90007 90004 90005 Here are a couple examples of this // 90006 90007 90022 90023 If the motor is covered and is slowly warmed up to a high damaging temperature.90024 90023 In general, high ambient temperature. 90024 90023 If the external motor protection is set at a too high trip current or is installed in a wrong way. 90024 90023 If a motor, within a short period of time, is restarted several times, the locked rotor current warms up the motor and eventually damages it. 90024 90031 90004 The degree of protection that an internal protection device provides is classified in the IEC 60034-11 standard. 90007 90034 90035 TP designation 90036 90004 TP is the abbreviation for thermal protection.Different types of thermal protection exist and are identified by a 90005 TP-code (TPxxx) 90006 which indicates: 90007 90041 90023 The type of thermal overload for which the thermal protection is designed (1 digit) 90024 90023 The numbers of levels and type of action (2 digit) 90024 90023 The category of the built-in thermal protection (3 digit) 90024 90048 90004 90005 When it comes to pump motors, the most common TP designations are: 90006 90007 90041 90023 90005 TP 111 90006 – Protection against slow overload 90024 90023 90005 TP 211 90006 – protection against both rapid and slow overload.90024 90048 90063 90063 Internal protection built into windings 90004 90005 Indication of the permissible temperature level when the motor is exposed to thermal overload. Category 2 allows higher temperatures than category 1 does. 90006 90007 90069 90070 90071 90072 Symbol 90034 (TP) 90074 90072 Technical overload with variation 90034 (1 digit) 90074 90072 Number of levels and function area (2 digits) 90074 90072 Category 90034 (3 digits) 90074 90083 90071 90072 TP 111 90074 90087 Only slow (i.e. constant overload) 90074 90089 1 level at cutoff 90074 90072 1 90074 90083 90071 90072 TP 112 90074 90072 2 90074 90083 90071 90072 TP 121 90074 90089 2 levels at emergency signal and cutoff 90074 90072 1 90074 90083 90071 90072 TP 122 90074 90072 2 90074 90083 90071 90072 TP 211 90074 90087 Slow and fast (i.e. constant overload and blocked condition) 90074 90089 1 level at cutoff 90074 90072 1 90074 90083 90071 90072 TP 212 90074 90072 2 90074 90083 90071 90072 TP 221 90074 90089 2 levels at emergency signal and cutoff 90074 90072 1 90074 90083 90071 90072 TP 222 90074 90072 2 90074 90083 90071 90072 TP 311 90074 90089 Only fast (i.e. blocked condition) 90074 90089 1 level at cutoff 90074 90072 1 90074 90083 90071 90072 TP 312 90074 90072 2 90074 90083 90160 90161 90004 Information about which type of protection has been applied to a motor can be found on the nameplate using a TP (thermal protection) designation according to 90005 IEC 60034-11 90006. 90007 90004 90005 In general, internal protection can be implemented using two types of protectors: 90006 90007 90022 90023 Thermal protectors or 90024 90023 Thermistors.90024 90031 90034 90035 Thermal protectors – built into the terminal box 90036 90004 Thermal protectors or thermostats use a snapaction, bi-metallic, disc type switch to open or to close the circuit when it reaches a certain temperature. Thermal protectors are also referred to as Klixons, (trade name from Texas Instruments). 90007 90004 When the bi-metal disc reaches a predetermined temperature, 90005 it opens or closes a set of contacts in an energized control circuit 90006. Thermostats are available with contacts for normally open or normally closed operation, but the same device can not be used for both.90007 90004 Thermostats are precalibrated by the manufacturer and can not be adjusted. The discs are hermetically sealed and are placed on the terminal board. 90007 90187 90187 Top nameplate: TP 211 in a MG 3.0 kW motor equipped with PTC; Bottom nameplate: TP 111 in a Grundfos MMG 18.5 kW motor equipped with PTC. 90034 90190 90190 Motor thermal switch symbols 90004 90005 Symbols (left to right): 90006 90007 90022 90023 Thermal switch without heater 90024 90023 Thermal switch with heater 90024 90023 Thermal switch without heater for three-phase motors (star-point protector) 90024 90031 90004 A thermostat can either 90005 energize an alarm circuit 90006, if normally open, or 90005 de-energize the motor contactor 90006, if normally closed and in series with the contactor.90007 90004 Since thermostats are located on the outer surface of the coil ends, they sense the temperature at that location. In connection with three-phase motors, thermostats are considered unstable protection against stall or other rapidly changing temperature conditions. 90007 90004 90005 In single phase motors thermostats do protect against locked-rotor conditions. 90006 90007 90004 Go back to Index ↑ 90007 90034 90035 Thermal switch – built into the windings 90036 90004 Thermal protectors can also be built into the windings, see the illustration below.They operate as a sensitive power cut-out for both single and three-phase motors. In single-phase motors, up to a given 90005 motor size around 1.1 kW 90006 it can be mounted directly in the main circuit to serve as an on-winding protector. 90007 90225 90225 Thermal protection symbol 90004 Thermal protection to be connected in series with the winding or to a control circuit in the motor. 90007 90229 90229 Thermal protection built into the windings 90004 Klixon and Thermik are examples of thermal switch These devices are also called PTO (Protection Thermique Γ  Ouverture).90007 90034 90234 90234 Current and temperature sensitive thermal switches: Top: Klixons; Bottom: Thermik – PTO 90034 90035 Internal fitting 90036 90004 In single-phase motors one single thermal switch is used. In three-phase motors 2 thermal switches connected in series are placed between the phases of the motor. In that way all three phases are in contact with a thermal switch. 90007 90004 Thermal switches can be retrofitted on the coil end, but the result is an increased reaction time.The switches have to be connected to an external monitoring system. In that way the motor is protected against a slow overload. The thermal switches do not require an amplifier relay. 90007 90004 Thermal switches CAN NOT protect against locked- rotor conditions. 90007 90004 Go back to Index ↑ 90007 90034 90014 How does a thermal switch function? 90015 90004 The curve on your right-hand side shows the resistance as a function of the temperature for a typical thermal switch. Depending on the thermal switch manufacturer, the curve changes.90007 90004 90005 TN is typically around 150 – 160 Β° C. 90006 90007 90256 90256 Resistance as a function of the temperature for a typical thermal switch 90004 Go back to Index ↑ 90007 90034 90035 Connection 90036 90004 Connection of a three-phase motor with built-in thermal switch and overload relay. 90007 90034 90035 TP designation for the diagram 90036 90004 Protection according to the IEC 60034-11 standard: 90005 TP 111 (slow overload) 90006. In order to handle a locked-rotor, the motor has to be fitted with an overload relay.90007 90272 90272 Automatic reclosing (left) and manual reclosing (right) 90004 Where: 90007 90041 90023 90005 S1 90006 – On / off switch 90024 90023 90005 S2 90006 – Off switch 90024 90023 90005 K 90006 1 – Contactor 90024 90023 90005 t 90006 – Thermal switch in motor 90024 90023 90005 M 90006 – Motor 90024 90023 90005 MV 90006 – Overload relay 90024 90048 90004 90005 Thermal switches can be loaded as followed: 90006 90007 90004 U 90307 max 90308 = 250 V AC 90034 I 90307 N 90308 = 1.5 A 90007 90004 90005 I 90307 max 90308 90006 = 5.0 A (cut-in and cut-out current) 90007 90004 Go back to Index ↑ 90007 90034 90035 Thermistors – also built into the windings 90036 90004 The second type of internal protection is the thermistors or 90005 Positive Temperature Coefficient sensors (PTC) 90006. The thermistors are built into the motor windings and protect the motor against locked-rotor conditions, continuous overload and high ambient temperature. 90007 90004 Thermal protection is then achieved by monitoring the temperature of the motor windings with PTC sensors.If the windings exceed the rated trip temperature, the sensor undergoes a rapid change in resistance relative to the change in temperature. 90007 90004 As a result of this change, the internal relays de-energize the control coil of the external line break contactor. As the motor cools and an acceptable motor winding temperature has been restored, the sensor resistance decreases to the reset level. 90007 90004 At this point, the module resets itself automatically, unless it was set up for manual reset.When the thermistors are retrofitted on the coil ends, the thermistors can only be classified as 90005 TP 111 90006. The reason is that the thermistors do not have complete contact with the coil ends, and therefore, it can not react as quickly as it would if they were fitted into the winding originally. 90007 90336 90336 Thermistor / PTC 90004 The thermistor temperature sensing system consists of 90005 positive temperature coefficient sensors (PTC) embedded in series of three 90006 – one between each phase – and a matched solid-state electronic switch in an enclosed control module.A set of sensors consists of three sensors, one per phase. 90007 90342 90342 PTC protection built into windings 90004 90345 Only temperature sensitive. The thermistor has to be connected to a control circuit, which can convert the resistance signal, which again has to disconnect the motor. Used in three-phase motors. 90346 90007 90004 The resistance in the sensor remains relatively low and constant over a wide temperature band and increases abruptly at a pre-determined temperature or trip point.90007 90004 When this occurs, the sensor acts as a 90005 solid-state thermal switch 90006 and 90005 de-energizes a pilot relay 90006. 90007 90004 The relay opens the machine’s control circuit to shut down the protected equipment. When the winding temperature returns to a safe value, the module permits manual reset. 90007 90004 Go back to Index ↑ 90007 90004 90345 90005 Reference // 90006 Grundfos – Motor Book (Download here) 90346 90007 .

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *