Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Максимальная и номинальная мощность квт. Что такое номинальная мощность электродвигателя и как она расчитывается

Одна из естественных характеристик электродвигателя – его номинальная (эффективная) мощность (Pном ), которая для машин переменного и постоянного тока является механической мощностью на валу.

Это мощность двигателя, с которой он мог бы работать в номинальном режиме — режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.

, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравнительно короткий промежуток времени, можно считать, что он не используется в полную силу. В такой ситуации бывает целесообразна его кратковременная перегрузка, предел которой определяется перегрузочной мощностью двигателя.

В паспорте электродвигателя заводом-изготовителем всегда указываются номинальные величины мощности

Pном , напряжения Uном , коэффициента мощности cosϕном , номинальная угловая скорость двигателя ωном .

Расчет номинальной мощности

Метод эквивалентного тока

Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:

Pном ≥ Iэк ∙ Uном ∙cosϕном,

где Iэк – показатель эквивалентного тока,

Uном – номинальное напряжение,

cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки.

Для большинства электродвигателей составляет 0,8-0,9.

Метод эквивалентного момента

Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока, коэффициент мощности cosϕ приближенно принимается за постоянную величину:

Pном = Мвр ∙ ωном,

где Мвр – значение вращающего момента,

ωном – номинальная угловая скорость двигателя.

Определение номинальной мощности опытным путем

Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?

Помогут практические измерения и :

  1. Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т. д.
  2. В случае использования электронного счетчика, следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.

Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины, отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.

При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке, определяемый показатель будет далек от номинальной мощности электродвигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.

Это мощность двигателя, с которой он мог бы работать в номинальном режиме – режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.

При нагрузках, меньших P ном, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравнительно короткий промежуток времени можно считать, что он не используется в полную силу. В такой ситуации бывает целесообразна его кратковременная перегрузка, предел которой определяется перегрузочной мощностью двигателя.

В паспорте электродвигателя заводом-изготовителем всегда указываются номинальные величины мощности P ном, напряжения U ном, коэффициента мощности cosϕ ном, номинальная угловая скорость двигателя ω ном.

Расчет номинальной мощности

Метод эквивалентного тока

Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:

P ном ≥ I эк ∙ U ном ∙cosϕ ном,

где I эк – показатель эквивалентного тока,

U ном – номинальное напряжение,

cosϕ ном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.

Метод эквивалентного момента

Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока коэффициент мощности cosϕ приближенно принимается за постоянную величину:

P ном = М вр ∙ ω ном,

где М вр – значение вращающего момента,

ω ном – номинальная угловая скорость двигателя.

Определение номинальной мощности опытным путем

Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?

Помогут практические измерения и счетчик электроэнергии:

  1. Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т.д.

  2. В случае использования электронного счетчика следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.

Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины отнять из полученного значения записанные показания и умножить на 6.

Полученное число и будет являться активной механической мощностью двигателя.

  1. Для маломощных двигателей можно подсчитать количество оборотов диска счетчика, для каждого из которых указана, чему равна величина полных оборотов в единицах мощности. Несложные расчеты помогут определить искомую величину мощности.

При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке определяемый показатель будет далек от номинальной мощности электродвигателя.

Номинальная активная мощность ЭП () – это мощность, потребляемая из сети при номинальной нагрузке ЭП, при которой он должен работать длительное время в установившемся режиме без превышения допустимой температуры.

Для длительного режима работы ЭП равна паспортной величине

:


.

Для приемников, работающих в повторно-кратковременном режиме, номинальную мощность определяют по паспортной мощности путем приведения ее к длительному режиму работы (ПВ=1) в соответствии с формулами:

Или

,

где

паспортная величина, о. е.; – коэффициент включения, рассчитывается по графику нагрузки ЭП, см. формулу (2.1).

Для электродвигателей мощность, потребляемая из сети, называется присоединенной мощностью

и определяется по выражению:


,

где – номинальная мощность, развиваемая на валу двигателя, кВт;

–номинальный КПД электродвигателя, о.е.

Номинальная реактивная мощность ЭП () – реактивная мощность, потребляемая им из сети при номинальной активной мощности и номинальном напряжении.

Для ЭП, работающего в длительном режиме, величина вычисляется по формуле


,

где

соответствует номинальному

ЭП (

– паспортная величина).

Для ЭП, работающего в повторно-кратковременном режиме, величина вычисляется по формуле


.

Номинальная полная мощность ЭП


.

12. Расчетная мощность (определение)

Одним из основных этапов проектирования систем электроснабжения объекта является правильное определение ожидаемых (расчетных) электрических нагрузок как отдельных ЭП, так и узлов нагрузки на всех уровнях системы электроснабжения.

Расчетные значения нагрузок – это нагрузки, соответствующие такой неизменной токовой нагрузке (), которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию (не превышая допустимых значений) на элемент системы электроснабжения.

Существуют различные методы определения расчетных электрических нагрузок, которые в свою очередь делятся на основные; и вспомогательные.

К расчётным электрическим нагрузкам относятся расчётные значения активной мощности (), реактивной мощности (), полной мощности () и тока ().

13. Среднеквадратичная мощность (определение)

Среднеквадратичное значение активной мощности отдельного ЭП за рассматриваемый промежуток времени


,

где

– среднеквадратичное значение активной мощности электроприемника, кВт;– активная мощность, потребляемая ЭП за рассматриваемый промежуток времени(определяется из графика нагрузки по активной мощности), кВт;– интервал времени за который определяется, мин, ч.

При наличии графиков потребления реактивной мощности среднеквадратичное значение реактивной мощности определяется аналогично.

Среднеквадратичное значение реактивной мощности ЭП за рассматриваемый промежуток времени


,

где

– среднеквадратичное значение реактивной мощности электроприемника, кВ·Ар;– активная мощность, потребляемая ЭП за рассматриваемый промежуток времени (определяется из графика нагрузки по реактивной мощности), кВ·Ар;– интервал времени, за который определяется, мин, ч.

При отсутствии графиков потребления реактивной мощности, среднеквадратичное значение реактивной мощности


,

где

– соответствует номинальному

ЭП (

– паспортная величина).

По известным среднеквадратичным значениям активной и реактивной мощностей определяются среднеквадратичные значения полной мощности и тока.

Среднеквадратичное значение полной мощности ЭП за рассматриваемый промежуток времени


,

где

– среднеквадратичное значение полной мощности ЭП, кВ·А.

Среднеквадратичное значение тока ЭП за рассматриваемый промежуток времени


,

где

– среднеквадратичное значение тока ЭП, А;

– номинальное напряжение ЭП, кВ.

МОЩНОСТЬ НОМИНАЛЬНАЯ – это… Что такое МОЩНОСТЬ НОМИНАЛЬНАЯ?

МОЩНОСТЬ НОМИНАЛЬНАЯ
МОЩНОСТЬ НОМИНАЛЬНАЯ

(Nominal power) — придается на машиностроительных заводах наименованиям выпускаемых из производства типов двигателей и служит вернее признаком различных типов, нежели целям характеристики истинной мощности двигателя. Номинальная лошадиная сила (Nominal horse power) — число, условное обозначение, изменяющееся в пределах от 1/4 до 1/8 HP и нисколько не характеризующее мощности механизмов. Термин этот встречается иногда в судовых регистрах.

Номинальной мощностью электрических машин называется указываемая на щитке машины мощность, которую машина должна развивать или отдавать при своем номинальном режиме. Номинальной мощностью электродвигателей называется механическая мощность на валу машины, выражаемая в л. с. или квт.

Самойлов К. И. Морской словарь. – М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941

.

  • МОЩНОСТЬ НА ВАЛУ
  • МОЩНОСТЬ ПАРОВЫХ ТУРБИН

Смотреть что такое “МОЩНОСТЬ НОМИНАЛЬНАЯ” в других словарях:

  • номинальная полная мощность (номинальная отдаваемая мощность) — 3.1.1 номинальная полная мощность (номинальная отдаваемая мощность) [rated output (rated apparent power)]; Sr: Полная электрическая мощность на выводах, выражаемая в вольт амперах (В · А) непосредственно или в виде произведения значащих чисел на… …   Словарь-справочник терминов нормативно-технической документации

  • длительная мощность (номинальная мощность) — 3. 18 длительная мощность (номинальная мощность): Мощность, которую двигатель может развивать без ограничения времени в период между техническими обслуживаниями, указанный изготовителем, при заданных частоте вращения и окружающих условиях при… …   Словарь-справочник терминов нормативно-технической документации

  • номинальная выходная мощность — номинальная отдаваемая мощность — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия Синонимы номинальная отдаваемая мощность …   Справочник технического переводчика

  • Номинальная потребляемая мощность — 2.2.4. Номинальная потребляемая мощность потребляемая мощность при номинальном напряжении, указанная для машины изготовителем. Источник: ГОСТ 12.2.013 …   Словарь-справочник терминов нормативно-технической документации

  • номинальная скорость — 3. 46 номинальная скорость: Скорость движения кабины, на которую рассчитан лифт. Источник: ГОСТ Р 53780 2010: Лифты. Общие требования безопасности к устройству и установке оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • номинальная скорость движения — 3.7 номинальная скорость движения: Скорость движения АТС на данной передаче, соответствующая номинальной частоте вращения коленчатого вала (ротора) двигателя, при которой он развивает свою номинальную мощность. Примечание В случае если… …   Словарь-справочник терминов нормативно-технической документации

  • Мощность — [power; capacity] физическая величина, измеряющая количеством работы в единицу времени. В теплотехнике применяют понятие «тепловая мощность» в качестве теплотехнического параметра печи Рп, характеризующего максимальное количество теплоты,… …   Энциклопедический словарь по металлургии

  • мощность излучения — [radiation intensity] отношение количества энергии, излучаемого телом, к отрезку времени, в течение которого продолжалось излучение. Смотри также: Мощность установленная мощность номинальная мощность …   Энциклопедический словарь по металлургии

  • Номинальная мощность — 4а. Номинальный ток светового прибора Ток, указанный изготовителем на световом приборе Источник: ГОСТ 16703 79: Приборы и комплексы световые. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • номинальная мощность светового прибора — номинальная мощность Суммарная номинальная мощность ламп, на которую рассчитан световой прибор. [ГОСТ 16703 79] Тематики лампы, светильники, приборы и комплексы световые Синонимы номинальная мощность …   Справочник технического переводчика

потребляемая мощность электродвигателя

Причем, как нетрудно заметить, ток, указанный при включении звездой на линейное напряжение 380В, меньше тока при включении треугольником на линейное напряжение, но уже не 380В, а 220В. Почему так? Потому что при таком включении в обоих случаях на обмотках двигателя будет расчетное фазное напряжение 220В, на которое и мотались обмотки электродвигателя. Т.е. как бы вы не включали двигатель, звездой ли на линейное напряжение 380В или треугольником на линейное напряжение 220В, в обоих вариантах на каждой из обмоток будет 220В. Однако, электрическая мощность электродвигателя при этом останется, что и требуется в таких случаях, неизменной – 16кВА. И проверить это легко. А вот линейные токи будут разными. И если при включении такого двигателя на 3-х фазное линейное напряжение 380В линейный ток во всех фазах будет равен току через обмотки и составит 24,3А, то при включении двигателя на 3-х фазное линейное напряжение 220В ток во всех фазах составит 43А, а вот через обмотки будет равен, как и при включении “звездой”, 24,3А. Такая особенность возникает из-за того, что согласно закона Кирхгофа для узлов, мы получим, что токи через обмоткм равны: IAB=IA+IAC=24,3А, IBC=IB+IAB=24,3А, ICA=IC+IBC=24,3А. Все это продемонстрировано на рис.1 и рис.2.
Иногда на шильдике двигателя можно увидеть обозначение не 220/380 для включения треугольником и звездой соответственно, а 380/660. Это означает, что данный двигатель для его работы в номинальном режиме должен включаться либо “треугольником” на линейное напряжение 380В, либо “звездой” на линейное напряжение 660В. Пример такого шильдика приведен на рисунке. Рссмотрим его параметры. Полезная механическая мощность на валу 5,5кВт. КПД двигателя не приведен, поэтому найти активную электрическую его мощность по формуле Ра=Р/η, как по первому шильдику мы не можем. Однако, мы всегда можем воспользоваться формулой мощности 3-х фазной цепи с учетом cosφ. При включении “треугольником” на 380В имеем:. Откуда Ра=1,732*380*11,8*0,83=6,45кВт. Таким же образом можно было найти активную мощность первого двигателя по первому шильдику. Но вернемся к рассматриваемому двигателю. Если нас интересует его КПД, то мы можем воспользоваться уже выше рассмотренной формулой Ра=Р/η, откуда η=Р/Ра. Поэтому η=5,5/6,45=0,853. А это 85,3%. Для случая 660В имеем: Ра=1,732*660*6,8*0,83=6,45кВт. Т.е. как и говорилось выше, независимо от схемы включения в соответствии с заданными линейными напряжениями, номинальная электрическая мощность двигателя неизменна. Полную мощность данного электродвигателя можно вычислить либо как S=Pa/cosφ=6,45/0,853=7,56кВА, либо как для “треугольника”, либо как . Небольшая разница в сотых из-за предыдущих округленных значений. Но, в общем-то, как видим, нет разницы каким образом вычислять.

Электродвигатели Номинальная мощность – Энциклопедия по машиностроению XXL

По каталогу выбирается электродвигатель, номинальная мощность которого для данной ПВ равна или больше требуемой мощности двигателя, т. е. Л н Л д. Если ПВ>60 %, двигатель /V выбирается так же, как и для длительного режима.  [c.18]

Если это условие не выполняется, то по каталогу выбирают электродвигатель, номинальная мощность которого Л н > Л ппк/>-Для привода вращения резьбонарезных шпинделей не рекомендуют устанавливать электродвигатели большой мощности во избежание повышенных ударных нагрузок из-за работы электродвигателя в реверсивном режиме. Поэтому максимальная мощность электродвигателя привода вращения резьбонарезных шпинделей не должна превышать значений, указанных в табл. 6.  [c.67]


Крановые тележки — Механизмы поступательного движения — Расчёт 9 — 783 Крановые фермы — см. Фермы крановые Крановые электродвигатели — Номинальная мощность S — 22  [c.120]

При расчетах КПД электропривода для определения сопротивления электродвигателей номинальная мощность может быть получена по эмпирическим формулам  [c.75]

Тип электродвигателя Номинальная мощность на валу в кет Скорость вращения в об/мин тах Маховой момент ротора D в кГм  [c.461]

Тип электродвигателя Номинальная мощность на валу в кет Коэффициент запаса мощности по нагреву /С Скорость вращения в об/мин нач Маховой момент ротора СО 2 кГм  [c.465]

Тип электродвигателя Номинальная мощность При номинальной мощности нач – тах Наибольшая допустимая мощность в кат при ПИ в о о ,- и о. а г. й со  [c.468]

Номинальная мощность электродвигателя Рд кВт  [c. 230]

Номинальная мощность электродвигателя Рд,ц. кВт  [c.236]

Номинальная мощность электродвигателя – д н> КВт  [c.250]

Частота вращения электродвигателя Пд, об/мин ст Номинальная мощность двигателя Рд, кВт  [c.255]

Расчет передачи был начат с выбора электродвигателя, требуемая мощность которого оказалась равной 12,5 л. с. По каталогу выбрали двигатель с номинальной мощностью 10 кет. По какой мощности следует производить расчет передачи  [c.286]

После определения номинальной мощности, исходя из конкретных условий работы, выбирают тип электродвигателя.  [c.18]

Номинальная мощность электродвигателей питательных насосов, кВт, может быть найдена из формулы  [c.396]

Допускается при кратковременном процессе резания перегрузка электродвигателя станка до 20% его номинальной мощности, при кратковременности до 1 ман перегрузка электродвигателя допускается до 50%.[c.470]

Например, для силовых узлов АЛ, когда их конструкция еще не известна, из числа возможных параметров (мощности, условного диаметра сверления, размеров инструмента, усилия подачи, длины хода) за основной параметр наиболее целесообразно принять номинальную мощность электродвигателя или номинальную мощность на шпинделе Л/дв. Мощность силового узла отражается на его размерах во всех конструкциях, кроме того, мощность учитывается при выборе узлов для всех видов обработки. Этот параметр относится к числу стандартизируемых и в наибольшей степени удовлетворяет перечисленным выше требованиям.  [c.172]


По ряду. RIO стандартизованы номинальные мощности электродвигателей и генераторов. Так, например, синхронные трехфазные электродвигатели имеют ряд номинальных мощностей  [c.167]

Следует иметь в виду, что перегрузка электродвигателей при эксплуатации сокращает срок службы обратно пропорционально восьмой степени от перегрузки сверх номинальной величины поэтому нельзя допускать использования электродвигателей на полную номинальную мощность в тех случаях, когда температура окружающей среды превыщаст номинальную расчетную температуру.[c.268]

Номинальная мощность электродвигателя, кВт 7360 2400  [c.285]

Характеристика 13 — 445 Электродвигатели постоянного тока МП — Номинальная мощность 8 — 22 Номинальное число оборотов в минуту 8 — 22  [c.357]

Мгновенные перегрузочные мощности электродвигателей. Эти мощности характеризуются отношением максимального мгновенно или весьма кратковременно допустимого перегрузочного момента М а к номинальному Коэфициент перегрузки по моменту  [c.33]

Номинальная мощность электродвигателя в кет  [c.237]

Для привода грузоподъёмных машин в основном применяются электродвигатели кранового типа, предназначенные для режима работы с частыми пусками, торможениями и переменами направления вращения. Их номинальная мощность нормируется для относительной продолжительности включения = 250,0 и для нормальной температуры окружающей среды 9 = 35°.  [c.845]

Номинальная мощность электродвигателя определяется на его валу и выражается в ваттах или киловаттах.[c.380]

Нагрузка обычных электродвигателей не должна превосходить номинального значения. Если температура окружающей среды выше 35° С, то нагрузка электродвигателей должна быть снижена по сравнению с их номинальной мощностью до величины, при которой температурный режим обмоток, стали и других частей будет удовлетворять требованиям ГОСТ, т. е. на число процентов, равное окр. р — —35°, где окр. ср — фактическая температура окружающей среды в °С.  [c.19]

Большая часть описанных простых и маятниковых прикрепляемых дебалансных внбровозбудителей, выпускаемых серийно, имеет частоту около 2800 кол/мин, электродвигатели номинальной мощностью 0,25—1,5 кВт, наибольший статический момент массы дебалансов 2,5—35 кг-см, наибольшую вынуждающую силу 0,2—3 тс, массу 12—80 кг (простые вибровозбудители с круговой вынуждающей силой) и 15—105 кг  [c.237]

Проверка по длительности технологического цикла или по допускаемой работе. Кривошипные прессы и автоматы оборудованы маховичным приводом с асинхронным электродвигателем, номинальная мощность которого меньше мгновенной мощности рабочего хода. Дополнительный приток энергии получают за счет торможения маховнка. В связи с этнм возникает необходимость в разгоне маховика электродвигателем к началу каждого следующего рабочего хода в противном случае вследствие исчерпания запаса энергии в маховике машина после совершения некоторого числа рабочих ходов остановится. Величина торможении, т. е. расход кинетической энергии маховика, зависит от работы иа пластическое формоизменение, треиие в шарнирах и направляющих, иа включение муфты и др. Поэтому иа прессе или автомате можно осуще-  [c.514]

Тип электродвигателя Номинальная мощность на валу в кет При номинальной нагрузке писк макс Мпуск га 1-, п и Э ра Маховой момент ротора в кГ/м  [c.237]

Ременная передача была рассчитана по номинальной мощности электродвигателя А61-4 (10 кет, 1450 об1мин). Диаметры шкивов Di = 250 мм = 560 мм. В дальнейшем оказалось необходимым заменить электродвигатель А61-4 электродвигателем А62-6 (10 кет, 970 об/мин). Определить, можно ли осуществить передачу ремнем того же сечения и какие шкивы в этом случае надо установить, чтобы угловая скорость ведомого вала осталась той же, что и в начальном расчете (допустимое отклонение 5%).  [c.136]

Рассчитать клиноременную передачу от электродвигателя к редуктору привода ленточного транспортера (рис. 8.13) при следующих условиях передаваемая мощность равна номинальной мощности электродвигателя АП61-6 (7 квт = 950 об/мин)-угловая скорость первого вала редуктора = 330 об/мин работа в одну смену.  [c.140]


Номинальные мощности (кВт), частоты вращения и к. п. д. Т (%) электродвигателей серии П напрпжением 110, 220 н 440 В  [c.117]

Для привода машин с повторно-кратковременной нагрузкой рекомендуют использовать электродвигатели с повышенным скольжением типа АОС. Выбираем двигатель с П(. = 1000 об/лик (сйс = 105 рад сек), среднее номинальное число оборотов которого п = 900 об1мин ш = 94,5 рад/сек), к.п.д. агрегата принимаем г) = 0,85. Номинальная мощность двигателя  [c.328]

Анализ полученных результатов показывает, что при одной и той же функции спроса (кривая /, рис. 1, а) изменение программы выпуска и цены головок в рассматриваемых пределах не оказывает влияния на число цпт и номинальную мощность электродвигателей Л/дв оптимального ряда. Для этих условных исходных данных Йопт= = 5 (табл. 2). При изменении функции спроса [сдвиг в сторону увеличения УУдв при тех же вероятностях Р (N) спроса (кривая II, рис. 1, а)] число членов оптимального ряда увеличивается (kouT = 6), и возрастает мощность головки минимального ти-  [c.173]

В процессе этих испытаний допускается нагрузка электродвигателя до 135с/ от номинальной мощности (при непрерывной работе не более 10 мин.)  [c.437]

Номинальная мощность генератора переменного тока определяется на зажимах машины и выражается в еа (вольтамперах), ква или мгва. Номинальная мощность электродвигателя определяется на его валу и выражается в ет или Ktm.  [c.468]

Передачи с регулированием путем изменения рабочих радиусов ведущих и ведомых тел] Дщах обычно до S (в передачах с раздвижными конусами до 16). Для вариаторов клиноременных и колодочных удельный объем около 40 дм /кет, к. п, д. 0,8 — 0,95 для вариаторов с жесткими телами качения и малым скольжением удельный объем около 8 дм /квт. к. п. д. около 0,95 Зубчатые коробки скоростей с приводом от электродвигателей постоянного тока с шунтовым регулированием Дщах – тах практически не ограничиваются. Может быть обеспечена передача номинальной мощности на всем диапазоне регулирования. Характеристика жесткая  [c.332]


Расчет мощности и выбор электродвигателей для ЭП

Элементы электропривода

Выбор электродвигателя предполагает:

а) выбор рода тока и номинального напряжения, исходя из экономических соображений, с учетом того, что самыми простыми, дешевыми и надежными являются асинхронные дви­гатели, а самыми дорогими и сложными — двигатели посто­янного тока.

б) выбор номинальной частоты вращения,

в) выбор конструктивного исполнения двигателя, учиты­вая три фактора: защиту его от воздействия окружающей среды, способ и обеспечение охлаждения и способ монтажа.

Расчет мощности двигателей для длительного режима работы

При постоянной нагрузке (рис. 17.3, а) определяется мощ­ность Рс или момент Mс механизма, приведенные к валу дви­гателя, и по каталогу выбирается двигатель, имеющий бли­жайшую не меньшую номинальную мощность

 

Для тяжелых условий пуска осуществляется проверка ве­личины пускового момента двигателя так, чтобы он превышал момент сопротивления механизма. Пусковой момент, Н*м,

где λ — кратность пускового момента двигателя, выбираемого по каталогу.

При  длительной переменной нагрузке (рис. 17.3, б) определение номинальной мощности двигателя производят по

методу средних потерь, либо методу эквивалентных ве­личин (мощности, момента или тока).

Расчет мощности двигателя по методу средних потерь

Метод основан на предположении, что при равенстве но­минальных потерь двигателя ΔРН и средних потерь ΔРср, опреде­ляемых по диаграмме нагрузки, температура двигателя не будет превышать допустимую, °С:

 

1. Определяется средняя мощность нагрузки, кВт,

 

2. Предварительно подбирается двигатель с номинальной мощностью Рн. При этом

 

3. Определяются номинальные потери подобранного дви­гателя, кВт,

 

4. Определяются по диаграмме потери ΔP1, ΔР2,…, ΔРп, кВт,

 

где ηп — КПД, соответствующий мощности Рп и зависящий

от загрузки двигателя. При

5. Определяются по диаграмме средние потери, кВт,

где а — отношение постоянных потерь в двигателе, указанных в каталоге, к номинальным

 

 

6. Проверяется условие равенства средних и номинальных потерь. При их расхождении более чем на 10% подбирают другой двигатель и повторяют расчет.

Расчет мощности двигателя по методу эквивалентных величин

Метод основан на понятии среднеквадратичного или экви­валентного тока (мощности, момента). Переменные потери в двигателе пропорциональны квадрату тока нагрузки. Эквива­лентным, неизменным по величине током называют ток, создающий в двигателе такие же потери, как и изме­няющийся во времени фактический ток нагрузки.

1. Определяют величину эквивалентного тока, А,

2. По каталогу выбирают двигатель, номинальный ток ко­торого равен или несколько больше 1$.

3. Двигатель проверяют по перегрузочной способности: отношение наибольшего момента сопротивления к номиналь­ному не должно превышать допустимого значения, приводи­мого в каталогах (см. также, например, гл. 6 и 7).

или эквивалентного момента, Н*м:

Если мощность и вращающий момент двигателя пропорцио­нальны величине тока, то для расчета можно воспользоваться выражениями для эквивалентной мощности, кВт:

 

 

 

Расчет мощности двигателей

для повторно-кратковременного

и кратковременного режимов работы

Повторнократковременный режим работы (рис. 17.3, б).

По нагрузочной диаграмме определяют среднюю мощ­ность Рср.

Выбирают двигатель, номинальная мощность которого не меньше средней мощности.

Определяют эквивалентную мощность Р$ ( или Мэ).

Эквивалентную мощность (момент, ток) пересчитывают для ближайшего стандартного значения ПВН0М:

По каталогу выбирают двигатель с номинальной мощностью Рн при ПВН0М так, чтобы Рн Р.

Выбранный двигатель проверяют по перегрузочной способ­ности.

Кратковременный режим работы (рис. 17.3, а).

Стандартные продолжительности рабочего периода для этого режима составляют 15, 30, 60 и 90 мин. Мощность двигателя определяется по методу эквивалентных величин.

В этом режиме могут использоваться и двигатели» рассчитанные на длительный режим работы. Двигатель вы­бирают заниженной мощности. Следовательно, ток двигателя в период работы в этом режиме может существенно превышать номинальный, однако превышение температуры при этом не должно быть больше допустимого, X:

Ток двигателя в кратковременном режиме работы, допус­тимый в течение времени tP, A:

 

— постоянная времени нагрева двигателя, с.

Коэффициент тепловой перегрузки двигателя

Если постоянные потери К неизвестны, то для номинального режима их ориентировочно принимают равными переменным

потерям в двигателе, Вт:

Если известны потери ΔРкр и ΔРн, то постоянная времени, с, определяется из соотношения



Выбор мощности электродвигателя | мтомд.инфо

От правильного выбора мощности электродвигателя зависят технико-экономические показатели электропривода (себестоимость, габариты, экономичность, надежность в эксплуатации и другие). Если нагрузка на электродвигатель стабильная, то определение его мощности ограничивается лишь выбором по каталогу:

Рн ≥ Рнагр,

где Рн — мощность выбираемого двигателя,
Рнагр – мощность нагрузки.

Если же нагрузка на электродвигатель переменная, то, чтобы провести выбор мощности электродвигателя, необходимо иметь график нагрузки I = f(t). Плавную кривую заменяют ступенчатой линией, полагая, что за время t1 в двигателе течет ток I1, за время t2 — ток I2 и так далее.

График нагрузки электродвигателя

Изменяющийся ток заменяют эквивалентным ему током Iэ, который за время одного цикла работы tц производит одинаковое, тепловое действие с током, изменяющимся ступенями. Тогда:


Номинальный ток электродвигателя должен быть равным или больше эквивалентного, то есть Iн ≥ Iэ.

Поскольку почти у всех двигателей вращающий момент прямо пропорционален току нагрузки М ~ Iн, то можно записать и выражение для эквивалентного вращающего момента:

Учитывая, что мощность Р = Мw, выбор мощности электродвигателя может также производиться по эквивалентной мощности:

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время перерыва в работе не охлаждается до температуры окружающей среды.

График повторно-кратковременной нагрузки электродвигателя

Для этого режима вводится понятие относительной продолжительности включения (ПВ). Она равна отношению суммы рабочего времени ко времени цикла tц, состоящего из времени работы и времени паузы tо:

Чем больше ПВ, тем меньше номинальная мощность при, равных габаритах. Следовательно, двигатель, рассчитанный на работу в течение 25% времени цикла при номинальной мощности, нельзя оставлять под нагрузкой 60% времени цикла при той же мощности. Электродвигатели строятся для стандартных ПВ — 15, 25, 40, 60%, причем ПВ — 25% принимается за номинальную. Двигатель рассчитывается на повторно кратковременный режим, если продолжительность цикла не превышает 10 мин. Если расчетные значения ПВ отличаются от стандартных, то при выборе мощности двигателя Рэ следует вносить поправку:

Электродвигатели. Общие сведения. – www.motors33.

ru

Преобразование энергии в современных электродвигателях осуществляется посредством магнитного поля. Такие электродвигатели называются индуктивными. Возможно также создание электродвигателей, в которых энергия преобразуется посредством электрического поля (емкостные электродвигатели), однако такие двигатели существенного практического распространения не имеют. Это объясняется следующим.
В обоих классах двигателей взаимодействие между отдельными частями электродвигателя и преобразование энергии происходят через поле, существующее в среде, которая заполняет пространство между взаимодействующими частями электрической машины. Этой средой обычно является воздух или другое вещество с подобными же магнитными и электрическими свойствами. Однако при практически достижимых интенсивностях магнитного и электрического полей количество энергии в единице объема такой среды будет при магнитном поле в тысячи раз больше, чем при электрическом. Поэтому при одинаковых внешних размерах или габаритах электродвигателей обоих классов, индуктивные электродвигатели будут развивать значительно большую мощность.
Для получения по возможности более сильных магнитных полей применяются ферромагнитные сердечники, которые являются неотъемлемыми частями каждого электродвигателя. При переменных магнитных полях сердечники с целью ослабления вихревых токов и уменьшения вызываемых ими потерь энергии изготовляются из листовой электротехнической стали. Другими неотъемлемыми частями электродвигателя являются обмотки из проводниковых материалов, по которым протекают электрические токи. Для электрической изоляции обмоток применяются различные электроизоляционные материалы.
Как известно, электродвигатели тока обладают свойством обратимости: каждый электрический генератор может работать в качестве двигателя и наоборот, а в каждом трансформаторе и электромашинном преобразователе электрической энергии направление преобразования энергии может быть изменено на обратное. Однако каждая выпускаемая электромашиностроительным заводом вращающаяся машина обычно предназначается для одного, определенного режима работы, например, в качестве генератора или двигателя. Точно так же в трансформаторах одна из обмоток предусматривается для работы в качестве приемника электрической энергии (первичная обмотка), а другая (вторичная обмотка) — для отдачи энергии. При этом оказывается возможным наилучшим обра зом приспособить электродвигатель для заданных условий работы и добиться наилучшего использования материалов, т.е. получить наибольшую мощность на единицу в еса двигателя.
Преобразование энергии в электродвигателях неизбежно связано с ее потерями, вызванными перемагничиванием ферромагнитных сердечников, прохождением тока через проводники, трением в подшипниках и о воздух и т. д. Поэтому потребляемая мощность всегда больше отдаваемой, или полезной, мощности, а коэффициент полезного действия (КПД) меньше 100%.
Тем не менее, электродвигатели по сравнению с тепловыми и некоторыми другими типами машин, являются весьма совершенными преобразователями энергии с относительно высокими коэффициентами полезного действия. Так, в самых мощных электродвигателях КПД равен 98—99,5%, а в электродвигателях мощностью 10 вт. к. п. д. составляет 20—40%. Такие величины к. п. д. при столь малых мощностях во многих других типах электродвигателей недостижимы.
Высокие энергетические показатели электродвигателей , удобство подвода и отвода энергии, возможность выполнения на самые разнообразные мощности, скорости вращения, а также удобство обслуживания и простота управления обусловили повсеместное их широкое распространение.
Теряемая в электродвигателях энергия превращается в тепло и вызывает нагревание отдельных их частей. Для надежности работы и достижения приемлемого срока службы нагревание частей электродвигателей должно быть ограничено. Наиболее чувствительными в отношении нагревания являются электроизоляционные материалы, и именно их качеством определяются допустимые уровни нагревания электродвигателей . Большое значение имеет также создание хороших условий отвода тепла и охлаждения двигателей.
Потери энергии в электрической машине увеличиваются с повышением ее нагрузки, а вместе с этим увеличивается и нагревание машины. Поэтому наибольшая мощность нагрузки, допускаемая для данной машины, определяется главным образом допустимым уровнем ее нагревания, а также механической прочностью отдельных частей двигателя, условиями токосъема на скользящих контактах и т. д. Напряженность режима работы электродвигателей переменного тока в отношении электромагнитных нагрузок (величины магнитной индукции, плотности тока и т.д.), потерь энергии и нагревания определяется не активной, а полной мощностью, так как величина магнитного потока в машине определяется полным напряжением, а не его активной составляющей. Полезная мощность, на которую рассчитан электродвигатель, называется номинальной. Все другие величины, которые характеризуют работу двигателя при этой мощности, также называются номинальным. К ним относят ся: номинальные напряжение, ток, скорость вращения, к. п. д. и другие величины, а для двигателя переменного тока также номинальная частота и номинальный коэффициент мощности.
Основные номинальные величины указываются в паспортной табличке (на щитке), прикрепленной к двигателю. Принято, что для двигателя номинальная мощность является полезной мощностью на его валу, а для генератора — электрической мощностью, отдаваемой с его выходных зажимов. При этом для генераторов переменного тока дается либо полная, либо активная номинальная мощность (по последним стандартам — полная мощность). Для трансформаторов и некоторых других машин переменного тока в табличке всегда указывается полная номинальная мощность. Номинальные величины, методы испытаний электрических машин, а также другие их технико-экономические данные и требования регламентируются в России государственными стандартами (ГОСТ) на электродвигатели .
Номинальные напряжения электродвигателей согласованы в ГОСТ со стандартными номинальными напряжениями электрических сетей. Номинальные напряжения для электрических двигателей и первичных обмоток трансформаторов при этом берутся равными стандартным напряжениям электрических сетей, а для генераторов и вторичных обмоток трансформаторов — на 5—10% больше с целью компенсации падения напряжения в сетях. Наиболее употребительные номинальные напряжения электродвигателей следующие: для двигателей постоянного тока ПО, 220 и 440 в, для генераторов постоянного тока 115, 230 и 460 в, для двигателей переменного тока и первичных обмоток трансформаторов 220, 380, 660 б и 3, 6, 10 кв, для генераторов и вторичных обмоток трансформа торов 230, 400, 690 в и 3,15; 6,3; 10,5; 21 кв (для вторичных обмоток трансформаторов также 3,3; 6,6; 11 и 22 кв). Из более высоких напряжений для первичных обмоток трансфо рматоров стандартными являются 35, 110, 150, 220, 330, 500 и 750 кв и для вторичных обмоток 38,5; 121; 165; 242; 347; 525 и 787 кв.
В России, а также в большинстве других стран мира промышленная частота тока равна 50 гц, и большинство асинхронных электродвигателей поэтому также строится на 50 гц. В США и других странах Америки промышленная частота тока равна 60 гц. Для разных специальных назначений (электротермические установки, устройства автоматики и др.) применяются также электродвигатели с другими значениями частоты тока.
По мощности электродвигатели можно подразделять на следующие группы: до 0,5 квт – электродвигатели весьма малой мощности, или микроэлектродвигатели, 0,5 – 20 квт – электродвигатели малой мощности, 20 – 250 электродвигатели средней мощности и более 250 квт — электродвигатели большой мощности. Эти границы между группами в определенной степени условны.

 

Электродвигатели

– зависимость мощности на валу от напряжения и тока

Мощность обычно составляет ватт (Вт) или лошадиных сил (л.с.) . Старая британская единица измерения лошадиных сил равна 746 Вт (0,745 кВт), или 33000 фунт-футов в минуту (или 550 фунтов-футов в секунду ).

Единица электрической мощности – 1 ватт – равна мощности, произведенной электрическим током 1 ампер при разности потенциалов 1 вольт .

  • 1 Вт = 1/746 л. С.
  • 1 л. ) электродвигатель:

    P вал_кВт = η м UI /1000 (1)

    где

    P вал_кВт = мощность на валу (кВт)

    η м = КПД двигателя

    U = напряжение (В)

    I = ток (А, амперы)

    Переменный ток – перем.
    электродвигатель переменного тока :

    Однофазный

    P вал_кВт = η м UI 9001 1 PF / 1000 (1b)

    где

    PF = коэффициент мощности

    Двухфазный четырехпроводной

    P вал_кВт = η м 2 UI PF / 1000 (1c)

    Трехфазный

    P вал_кВт = η м 1.73 UI PF / 1000 (1d)

    Мощность на валу, л.с.

    Мощность на валу, выраженная в лошадиных силах:

    P вал_л.с. = P )

    или для двигателя постоянного тока

    P вал_ л.с. = (η м UI / 1000) / 0,746

    = η м UI / 746 ( 2b)

    где

    P вал_ л.с. = мощность на валу (л. с.)

    Пример – Мощность на валу электродвигателя

    Мощность на валу, создаваемая электродвигателем постоянного тока с 36 В, 85% КПД и 5 ампер – можно рассчитать в Вт как

    P вал_кВт = 0.85 (36 В) (5 ампер) / 1000

    = 0,153 кВт

    = 153 Вт

    Мощность на валу как л. кВт) / 0,746

    = 0,21 л.5, 2, 3, 5, 7,5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 3000, 3500, 4000

Номинальное напряжение не более 600 В переменного тока и номинальная частота 50 или 60 Гц .

Бесполезность номинальной мощности двигателя

Последнее изменение страницы: 28 октября 2021 г.

Почему бы вам не указать номинальную мощность каждого двигателя?

Простой ответ

Причина, по которой у нас нет простого уровня мощности для каждого двигателя или комплекта, заключается в том, что не существует стандартного или даже последовательного способа определения числовой «номинальной мощности» для моторной системы. Вы можете увидеть один и тот же двигатель, указанный разными поставщиками как 250 Вт, 500 Вт и 1000 Вт, и есть веское обоснование для всего этого количества. Это делает оценку ватт поставщика или производителя в отдельности довольно бессмысленным показателем для выбора или сравнения настроек, и мы не стремимся участвовать в такого рода играх с произвольными числами.

Вместо этого мы даем приблизительный диапазон (например, 250-500 Вт, 600-1200 Вт и т. Д.), В котором обычно используется двигатель, и предоставили полезный и точный инструмент моделирования двигателя, который покажет вам точную выходную мощность для любой комбинации мотора, контроллера и аккумуляторной батареи; не просто как произвольное единичное число, а во всем диапазоне скоростей автомобиля.Это гораздо более ценно для понимания характеристик набора. Вы можете видеть такие вещи, как пиковая выходная мощность, выходная мощность при прогнозируемой крейсерской скорости на любом холме или типе транспортного средства, а также может ли двигатель быть подвержен перегреву при данной нагрузке. Проверьте это:
www.ebikes.ca/simulator

Полный набор Джастина

Хорошо, для тех, кто не удовлетворен приведенными выше пунктами и интересуется полной технической информацией, продолжайте читать. Нам все время задают этот вопрос «какова номинальная мощность этого двигателя?», И это одновременно и проницательный, и раздражающий вопрос.

Это проницательно, потому что больше всего на свете удельная выходная мощность электродвигателя электрического велосипеда (в ваттах) определяет, как именно электровелосипед будет работать и справляться с данной ситуацией. 600 Вт механической мощности заставят велосипед вести себя одинаково, независимо от того, исходит ли он от небольшого мотор-редуктора с редуктором, массивного мотор-редуктора с прямым приводом, среднего двигателя или гигантского порыва попутного ветра. Если вам нужно 600 Вт мощности, чтобы подняться на определенный холм с определенной скоростью, но ваш мотор способен производить только 300 Вт, то вам придется либо восполнять нехватку ног, либо ваш велосипед будет замедляться до тех пор, пока нужно всего 300 Вт. Фактический ватт – это ватт мощности, независимо от того, откуда он.

Заманчиво думать, что если для вашего случая использования требуется 600 Вт механической мощности, то вам следует приобрести двигатель мощностью не менее 600 Вт, просто правильно, ватт есть ватт? И если одна компания продает комплект мощностью 750 Вт, он будет более мощным, чем другой комплект мощностью 500 Вт, верно? Но есть проблема, и именно здесь наши усилия по объяснению вещей людям приходят в бешенство.

В то время как фактический ватт – это фактический ватт, – это НЕТ ТАКОЙ ВЕЩИ как «номинальный ватт» или любой стандартный метод оценки мощности двигателя электровелосипеда.Это правда, независимо от того, что подразумевают другие компании. Для большинства электрических устройств термин номинальная мощность имеет очень четкое значение. Как будто 60-ваттная лампочка может потреблять 60 ватт энергии, когда она включена. Обогреватель мощностью 1500 Вт будет производить 1500 Вт тепла независимо от того, какую марку или модель вы используете.

Электродвигатели не вырабатывают фиксированной мощности при включении. Если вы запустите двигатель, не поднимая колеса с земли, он будет вращаться на полной скорости и не будет выдавать мощность.Когда вы затем нагружаете двигатель сопротивлением, он немного замедляется и создает крутящий момент, и чем больше вы его нагружаете, тем больше он замедляется и тем выше крутящий момент и мощность, которые он выдает. В какой-то момент, когда вы продолжите загружать и замедлять двигатель, выходная мощность начнет уменьшаться. Несмотря на то, что крутящий момент все еще увеличивается, более низкие обороты означают, что вырабатываемая механическая мощность снижается. Если вы полностью остановите двигатель, он может создать тонну крутящего момента, но при этом будет производить нулевую выходную мощность.

Фактическая выходная мощность двигателя полностью зависит от того, насколько сильно он нагружен в данной ситуации и максимальной электрической мощности, которую контроллер пропускает в двигатель, это практически не имеет никакого отношения к номинальным характеристикам. показать кривые мощности того же двигателя, в одном случае, работающего с батареей 36 В и контроллером 20 А при полном открытии дроссельной заслонки с максимальной мощностью 600 Вт, в другом случае с аккумулятором 48 В и контроллером 35 А при полном открытии дроссельной заслонки, дающим пик 1100 Вт. Вт..

Итак, что же ограничивает мощность двигателя?

Когда двигатель нагружается таким образом для выработки энергии, он также пропускает больше электрического тока через обмотки двигателя. Этот ток отвечает за большую часть тепла, выделяемого внутри двигателя, поскольку медные обмотки имеют электрическое сопротивление. Если вы удвоите ток через обмотки, чтобы удвоить крутящий момент и мощность двигателя, вы увеличите количество тепла, выделяемого медью, в ЧЕТЫРЕ раза (соотношение I 2 R).

Это тепло, конечно, вызывает нагрев двигателя. Двигатели представляют собой большие тяжелые куски металла, поэтому на них может воздействовать небольшое количество тепла, и они не повышаются слишком сильно. Но если тепло продолжает накапливаться внутри обмоток двигателя быстрее, чем может быть отведено в воздух снаружи, то вы рискуете, что двигатель станет настолько горячим, что изоляция сгорит от медной эмали, нейлоновые шестерни размягчатся и начнут сниматься, или магниты начнут размагничиваться. В этот момент вы «сгорели» или «сварили» свой мотор.Произойдет ли это, зависит не только от силы тока, протекающей через двигатель, но и от времени, в течение которого поддерживаются эти высокие токи двигателя.

Разница между мощностью и крутящим моментом

Здесь важно понимать, что не выходная мощность, а выходной крутящий момент двигателя вызывают его нагрев и, в конечном итоге, выход из строя. Если вы не помните уроки физики в средней школе, крутящий момент – это вращательное измерение силы, т.е. как сильно что-то крутят.Он измеряется как произведение силы на длину плеча рычага.

<диаграмма уравнений и графиков крутящего момента, фут-фунт, Ньютон-метр>

Мощность, напротив, показывает, насколько быстро выполняется работа. Чтобы скручивающая сила выполняла работу, она должна что-то вращать, и чем быстрее она вращается при заданном крутящем моменте, тем больше работы она будет делать. Мощность – это произведение крутящего момента на скорость вращения, и в единицах СИ, где вы измеряете крутящий момент в Ньютон-метрах и скорость вращения в рад / сек, все просто:

Мощность в ваттах = крутящий момент * рад / сек

Если вы измеряете скорость в об / мин, то выходная мощность составляет

Мощность в ваттах = крутящий момент * об / мин * 2Pi / 60 ~ крутящий момент * об / мин * 0.104

Двигатель, развивающий крутящий момент 20 Нм и вращающийся со скоростью 100 об / мин, вырабатывает 209 Вт. Тот же самый двигатель, развивающий крутящий момент 20 Нм при 300 об / мин, выдает 628 Вт. Предположим, что 20 Нм – это максимальный крутящий момент, который этот двигатель может создать без риска перегрева, теперь вы называете его двигателем мощностью 200 Вт? или мотор 600 ватт?

Это одна из причин, по которой номинальная мощность двигателя может быть любой. В конечном итоге именно крутящий момент, а не мощность вызывает перегрев двигателя.Чтобы преобразовать максимальный крутящий момент в номинальную мощность, вам также необходимо указать число оборотов в минуту, при котором вы выбрали этот рейтинг. Однако изолированные электродвигатели с постоянными магнитами по своей сути не имеют оборотов в минуту, при которых они вращаются, у них будет постоянная обмотки оборотов / оборотов. Комбинация постоянной обмотки и напряжения аккумулятора определяет, насколько быстро двигатель сможет вращаться в данной установке.

Итак, если вы укажете и двигатель, и напряжение, вы можете заявить о номинальных оборотах.Но если вы просто говорите о двигателе, он не имеет собственных оборотов в минуту, один и тот же двигатель может работать быстро или медленно, изменяя приложенное напряжение, и без каких-либо подразумеваемых оборотов, на которых вы запускаете двигатель, невозможно говорить о том, сколько энергии он может произвести.

А как насчет пиковой мощности?

Пиковая выходная мощность данной системы электровелосипеда очень хорошо определена и не имеет двусмысленности, как «номинальная мощность», но она не всегда так полезна, как вы могли бы ожидать. Как правило, пиковая выходная мощность двигателя возникает прямо в точке, где контроллер двигателя достигает предельного значения тока батареи.Наш онлайн-симулятор ступичного двигателя позволяет вам легко это увидеть. На приведенном ниже графике у нас есть типичная установка для электровелосипеда, состоящая из ступичного двигателя Crystalyte h4540, аккумуляторной батареи 36 и контроллера двигателя 20А.

При полностью открытой дроссельной заслонке максимальная выходная мощность двигателя (красный график) составляет 600 Вт при 40 км / ч. Выше этой скорости мощность и крутящий момент двигателя уменьшаются до 0 на скорости около 48 км / ч. Ниже этой максимальной скорости мощности контроллер двигателя ограничен по току и, таким образом, ограничивает электрическую мощность, подаваемую на двигатель-ступицу.Входная мощность (В * А), как видно на Cycle Analyst, остается постоянной на уровне 744 Вт, в то время как механическая выходная мощность двигателя уменьшается. Это потому, что двигатель становится все менее и менее эффективным, поскольку он замедляется в этом сценарии постоянной входной мощности, что вы можете видеть на зеленой кривой эффективности.

Теперь давайте оставим тот же двигатель и аккумулятор, но будем использовать более мощный контроллер двигателя 40 А, чтобы пиковая входная мощность (вольт * ампер) составляла номинально 1440 Вт. График идентичен контроллеру 20A при скорости выше 40 км / ч, но ниже этой скорости установка контроллера 40A продолжает обеспечивать большую выходную мощность, пока сама не достигнет пика выходной мощности 1058 Вт на скорости 33 км / ч.

Как сравнить эти системы? Что ж, пиковая мощность второй установки на 80% выше первой (1058 Вт против 600 Вт). Если вы поедете на байке, вы обнаружите, что он быстрее разгоняется от линии и имеет больше начального удара, но как только вы разгонитесь до 40 км / ч, ощущение езды будет идентичным, и в типичных крейсерских ситуациях вы сможете оценить только разницу между установки на более крутые подъемы холма. Это ни в коем случае не будет ощущаться как установка на 80% более мощная, и если вы посмотрите на свою среднюю потребляемую мощность в большинстве поездок (Вт / км), она не будет сильно отклоняться, потому что вы обычно путешествуете со скоростью 40 км / ч или выше. и ваши уровни мощности будут такими же.

Теперь оставим оригинальный контроллер на 20 А, но увеличим батарею с 36 В до 52 В. При такой настройке пиковая выходная мощность теперь составляет 840 Вт. Это меньше, чем пиковая мощность схемы 36V 40A, но если вы запрыгнете на этот байк и поедете на нем, он, вероятно, почувствует себя более мощным. Ускорение от линии будет немного медленнее, но затем он продолжит ускоряться вплоть до 55+ км / ч. Вы будете путешествовать быстрее, подниматься по большинству холмов быстрее, и ваше среднее энергопотребление будет намного выше, даже если пиковая мощность системы будет меньше.

Итак, теперь вы понимаете, почему одно только сравнение пиковой выходной мощности двигателя не дает полной картины того, насколько мощной будет ощущаться система. И вы также можете видеть, что эта пиковая мощность не является свойством двигателя, поскольку на всех приведенных выше графиках используется один и тот же двигатель, на самом деле это в основном функция контроллера двигателя и аккумуляторной батареи. Я мог поменять местами гораздо меньшие или большие двигатели с одним и тем же контроллером и батареей, и уровни выходной мощности не сильно изменились бы.

Рейтинг по пиковой ВХОДНОЙ мощности

Один из распространенных подходов, которые производители электровелосипедов используют при указании номинальной мощности для своих комплектов, – это использовать не выходную мощность двигателя (пиковую или другую), а максимальную входную мощность, как показано на Cycle Analyst.Чаще всего мы будем видеть людей, продающих комплект, скажем, с аккумулятором на 72 В и контроллером мотора на 50 А, и они будут рекламировать его как «3600 Вт», даже если конкретная рассматриваемая установка может достигать выходной мощности только 2000 Вт. из-за низкого КПД двигателя и смог выдержать только половину этого количества без перегрева за очень короткое время.

Это неудачная практика, поскольку она вводит в заблуждение, но понятно, почему это произошло. Он предоставляет наибольшее число, которое вы можете использовать для маркетинга, а также число в ваттах, которое будет отображать любой счетчик электроэнергии.Большинство продавцов электровелосипедов, которые продают и могут похвастаться мощными установками электровелосипедов, используют этот подход, при котором заявленные ватты превышают не только фактическую пиковую выходную мощность двигателя (обычно как минимум на ~ 30%), но часто значительно превышают в 2 или 3 раза указанную мощность. механическая мощность, которую система может выдавать на любой устойчивой основе без перегрева.

А как насчет постоянной мощности?

В принципе, это может показаться наиболее справедливым способом сравнить относительную мощность различных установок. Вместо того, чтобы говорить о максимальной мощности, вы вместо этого сравниваете непрерывную мощность, которую двигатель может выдавать бесконечно без перегрева.Тогда люди не могли просто установить на любой двигатель силовой контроллер двигателя и высоковольтную батарею и назвать это комплектом на 3 кВт.

Но у этого есть 5 сложностей.

  1. Опять же, это не мощность двигателя, которая вызывает перегрев двигателя, а крутящий момент двигателя, поэтому для равного сравнения систем вам все равно необходимо указать число оборотов двигателя. Один из вариантов – сравнить все мотор-редукторы на скорости 26-дюймового велосипеда с допустимым дорожным пределом в 32 км / ч (20 миль / ч), что составляет около 250 об / мин.Затем вы можете масштабировать этот рейтинг до фактической скорости вашего транспортного средства. Если двигатель рассчитан на непрерывную выработку 500 Вт при 20 миль в час, то, если вы используете его на скорости 30 миль в час, вы знаете, что он сможет непрерывно выдавать не менее 750 Вт, а на медленном велосипеде со скоростью 10 миль в час вы можете предположить, что это непрерывная мощность 250 Вт. мотор. Если вы шнуруете колесо меньшего диаметра 20 дюймов, то даже на скорости 20 миль в час это будет 650 Вт, а не 500 Вт из-за более высоких оборотов колеса.
  2. Для достижения ступичного двигателя ступичного двигателя требуется НАМНОГО больше времени, чем может показаться большинству людей, более 1-2 часов, в то время как обычно самые длинные крутые подъемы на холмы, с которыми вы действительно сталкиваетесь на дороге, заканчиваются менее чем за 5 часов. 10 минут.Конечным результатом является то, что двигатели будут иметь гораздо более низкую номинальную мощность, чем та, которой люди обычно подвергают их, и это было бы обманчиво низким числом. Например, статорные двигатели MXUS шириной 45 мм часто продаются как ступичные двигатели мощностью 5000 Вт. При 250 об / мин ядро ​​в конечном итоге достигнет 100 ° C при выходной мощности всего 800 Вт.
  3. Есть много места для маневра в том, что определяется как температура перегрева двигателя. На практике самые качественные двигатели имеют высокотемпературную эмаль на медных обмотках и могут выдерживать скачки в диапазоне температур 150–180 ° C без повреждений.Но мало кто посоветует, чтобы номинальная постоянная температура ядра была такой высокой. Итак, что вы выберете, 100oC? 120 oC? Выбор максимальной температуры будет иметь большое влияние на значение номинальной продолжительной мощности.
  4. Температура окружающей среды тоже имеет большое значение. Зимой вы сможете бегать на велосипеде на более высоком уровне мощности в мороз, по сравнению с изнуряющей летней жарой 40oC. Разница температур снаружи в 40oC означает, что зимой вы можете поддерживать более высокие уровни крутящего момента и тока, чем летом.Для номинальной продолжительной мощности также потребуется фактор снижения номинальных характеристик при температуре окружающей среды.
  5. Мод. Охлаждения. Добавление статорадов, вентиляционных отверстий в двигателе и других методов активного охлаждения может значительно увеличить постоянный выходной крутящий момент двигателя, сохраняя при этом сердечник двигателя от перегрева. Однако эти модификации никоим образом не изменяют производительность двигателя с точки зрения пиковых уровней мощности и эффективности для данного контроллера и напряжения батареи. Таким образом, даже несмотря на то, что у них будет более высокая продолжительная мощность, они, похоже, не будут работать лучше, как большинство людей определяет производительность.Добавление статорада увеличит постоянную мощность двигателя на ~ 40%, но это не что иное, как увеличение мощности на 40% за счет использования сердечника двигателя на 40% шире и магнитов на 40% длиннее, и при этом оба будут иметь одинаковую «непрерывную» номинальную мощность. .

Заключение

Не зацикливайтесь на ваттных характеристиках, относитесь к ним с большой долей скепсиса. В первую очередь, ступичные двигатели следует оценивать по тому крутящему моменту, который они могут создать, а не по тому, сколько ватт они могут производить, но даже эта цифра может сильно отличаться, и ее будет трудно сравнивать между производителями и поставщиками.

  • Двигатели не имеют фиксированной номинальной мощности. Устойчивая выходная мощность данного двигателя во многом зависит от числа оборотов, на котором он вращается. При более высоких оборотах данный двигатель может производить больше мощности.
  • Двигатели
  • могут выдерживать значительно большую мощность в течение короткого времени, чем они могут поддерживать непрерывно, и эта кратковременная мощность обычно является всем, что вам нужно для того, чтобы добраться до вершины крутого холма.
  • Когда компании, производящие электровелосипеды, говорят о мощности двигателя, нет вообще никакого стандарта для того, является ли это номинальной мощностью в непрерывном режиме, номинальной выходной мощностью или максимальной входной мощностью, или что-то, указанное на продукте для соответствия законодательству.Когда Грин говорит о номинальной мощности двигателя, мы относимся к этому как к некоей грубой вещи порядка.

Конечно, есть более мощные и менее мощные двигатели, но не полагайтесь на одно число, чтобы зафиксировать это стандартизированным способом. Лучше всего, если бы производители двигателей предоставили полные данные о тепловом нагреве своих двигателей в различных ситуациях нагрузки и предложили непрерывный и пиковый выходной крутящий момент, но, учитывая, насколько редко можно найти даже базовые характеристики, такие как сопротивление обмотки KV, это принятие желаемого за действительное. .

Имитация мелкого песка

Мы создали еще один невероятно полезный веб-инструмент, который позволяет вам увидеть долгосрочные эффекты нагрева от различных настроек с помощью нашего приложения для симулятора поездки на электромобиле после многих лет эмпирических испытаний на многочисленных моделях двигателей. Он все еще находится на стадии «бета», в основном потому, что все всплывающие подсказки и документация все еще находятся в стадии проверки, но бэкэнд и модель довольно надежны. Это показывает изменение температуры сердечника двигателя во времени при любом типе использования и условиях, о которых вы только можете мечтать, а затем может дать вам знать, подходит ли данная двигательная система для этой задачи или нет.

Как работают моторы и как выбрать мотор для любого проекта

Как работают двигатели и как выбрать правильный двигатель

Моторы можно найти практически везде. Это руководство поможет вам изучить основы электродвигателей, доступные типы и способы выбора правильного электродвигателя. Основные вопросы, на которые нужно ответить при принятии решения о том, какой двигатель наиболее подходит для применения, – это тип, который мне следует выбрать и какие характеристики имеют значение.

Как работают моторы?

Электродвигатели работают, преобразуя электрическую энергию в механическую энергию для создания движения.Сила создается внутри двигателя за счет взаимодействия между магнитным полем и переменным (AC) или постоянным (DC) током обмотки. С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I * R); напряжение должно увеличиваться, чтобы поддерживать тот же ток при увеличении сопротивления.

Электродвигатели имеют множество применений. Обычные промышленные применения включают воздуходувки, станки и электроинструменты, вентиляторы и насосы.Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.

Типы двигателей:

Существует много типов двигателей постоянного тока , но наиболее распространены щеточные или бесщеточные. Также существуют вибрационные двигатели, шаговые двигатели и серводвигатели.

Щеточные двигатели постоянного тока – одни из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые подключаются к коммутатору для изменения направления тока.Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об / мин). Некоторые недостатки заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут создавать электромагнитный шум из-за искрения щеток.


Щеточный двигатель постоянного тока

Бесщеточные двигатели постоянного тока используют постоянные магниты в роторном узле. Они популярны на рынке хобби для применения в самолетах и ​​наземных транспортных средствах.Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем щеточные двигатели постоянного тока. Они также могут производиться серийно и напоминать двигатель переменного тока с постоянной частотой вращения, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими сложно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специализированных редукторов в приводных приложениях, что приводит к их более высоким капитальным затратам, сложности и экологическим ограничениям.


Бесщеточный двигатель постоянного тока

Вибрационные двигатели используются в приложениях, требующих вибрации, например, в мобильных телефонах или игровых контроллерах. Они генерируются электродвигателем и имеют несбалансированную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для звуковой сигнализации или для сигналов тревоги или дверных звонков.


Вибрационный двигатель

Когда требуется точное позиционирование, шаговые двигатели – ваш друг.Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение посредством сигнальных импульсов, отправляемых драйверу, который интерпретирует их и передает пропорциональное напряжение на двигатель. Их относительно просто изготовить и контролировать, но они постоянно потребляют максимальный ток. Расстояние небольшого шага ограничивает максимальную скорость, и шаги можно пропустить при высоких нагрузках.


Шаговый двигатель

Серводвигатели – еще один популярный двигатель на рынке хобби, который используется для неточного управления положением. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ), посредством отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут справляться с более высокими скачками тока и используются в промышленном оборудовании, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений.Чтобы узнать больше о сервоприводах, ознакомьтесь с нашей статьей How Servo Motors Work .

Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или не медленнее, чем указанная частота. Скольжение , разница между фактической и синхронной скоростью, необходима для создания крутящего момента , крутящего момента, вызывающего вращение, в асинхронных двигателях.Магнитное поле, окружающее ротор этих двигателей, создается индуцированным током.

Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем с высокой мощностью, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других приложениях, таких как часы, вентиляторы и дисководы.

Что учитывать при покупке мотора:

При выборе двигателя необходимо обратить внимание на несколько характеристик, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об / мин).

Ток – это то, что питает двигатель, и слишком большой ток приведет к его повреждению. Для двигателей постоянного тока важны рабочий ток и ток останова. Рабочий ток – это средняя величина тока, которую двигатель может потреблять при типичном крутящем моменте. Ток останова обеспечивает достаточный крутящий момент для двигателя, чтобы работать со скоростью останова, или 0 об / мин. Это максимальный ток, который двигатель может потреблять, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает с напряжением выше номинального, чтобы катушки не плавились.

Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает на наиболее эффективное напряжение во время работы. Обязательно подайте рекомендованное напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком большое напряжение может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.

Рабочие значения и значения остановки также необходимо учитывать с крутящим моментом.Рабочий крутящий момент – это величина крутящего момента, которую двигатель был разработан, а крутящий момент при остановке – это величина крутящего момента, создаваемого при подаче мощности от скорости остановки. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых случаях вам потребуется знать, насколько далеко вы можете толкнуть двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент сваливания достаточно высок, чтобы поднять вес робота. В этом случае крутящий момент важнее скорости.

Скорость или скорость (об / мин) может быть сложной для двигателей. Общее правило состоит в том, что двигатели наиболее эффективно работают на самых высоких скоростях, но это не всегда возможно, если требуется передача. Добавление шестерен снизит эффективность двигателя, поэтому примите во внимание снижение скорости и крутящего момента.

Это основные принципы, которые следует учитывать при выборе двигателя. Подумайте о назначении приложения и о том, какой ток он использует, чтобы выбрать подходящий тип двигателя. Технические характеристики приложения, такие как напряжение, ток, крутящий момент и скорость, будут определять, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.

У вас есть дополнительные советы по выбору двигателей? Дайте нам знать по телефону [адрес электронной почты защищен] .

КПД двигателя – обзор

Показатели КПД

В идеале управление энергопотреблением – это наиболее экономичное эффективное использование энергии. Таким образом, эффективность – важное понятие для энергоменеджера. Эффективность можно рассматривать с точки зрения первого или второго законов термодинамики. Первый закон эффективности относится к преобразованию энергии из одной формы в другую и сохранению общего количества энергии без прямого учета качества энергии.При оценке общего использования топлива или форм энергии применяются соображения второго закона , поскольку они учитывают качество энергии и помогают определить верхние границы эффективности. Эффективность второго закона выражается в количестве, известном как доступной работы .

В своей основной форме эффективность первого закона конкретной задачи можно представить как отношение полезной энергии, переданной задаче, к требуемой затраченной энергии. Однако есть много задач, для которых это базовое определение неадекватно или не подходит.Таким образом, возникли по крайней мере две другие широкие категории энергоэффективности. Здесь они называются «коэффициентами производительности» (COP) или коэффициентами эффективности использования энергии (EUPF).

Пример : КПД электродвигателя. Каков КПД по первому закону однофазного электродвигателя мощностью 1 л.с., номинального напряжения 240 В, тока полной нагрузки 4,88 А и коэффициента мощности 80%? См. Ответ в уравнении 7.1. Обратите внимание, что мы используем энергию в единицу времени в этом уравнении и в уравнениях 7.С 2 по 7.4 ниже.

[7,1] η = поставленная потребляемая энергия (в данном случае «работа») Потребляемая энергия = л.с. × LF (# фазы) (В) (A) (pf) η = (1 л.с.) (0,746 кВт / л.с.) (1,0) (1) (240 В) (4,88 А) (0,8) (10−3 кВт / Вт) η = 0,796 = 80%

, где

η = КПД, безразмерный (или%)

л.с. = двигатель мощность, л. ток полной нагрузки, A

pf = коэффициент мощности, безразмерный

Этот расчет показывает рабочий КПД 80%.Это верно для заявленных условий (т.е. при полной нагрузке и при коэффициенте мощности 80%). При работе с другими коэффициентами мощности или при нагрузке ниже полной КПД ниже. Коэффициент мощности остается довольно постоянным при номинальном значении полной нагрузки до тех пор, пока нагрузка не упадет ниже примерно 50–60%. Когда нагрузка падает примерно до одной трети полной нагрузки, коэффициент мощности может упасть до 20–30%.

В таблицах 7.1a и 7.1b показаны типичные значения КПД электродвигателя при полной нагрузке для двигателей премиум-класса. Обратите внимание, что стандарты NEMA и стандарты ЕС во многих случаях идентичны.Когда эти данные сравниваются с КПД двигателя в первом издании этой книги, КПД увеличился с 76–85,5% (1,0 л.с.) и с 91–95,4% (100 л.с.).

Таблица 7.1A. Номинальная эффективность при полной нагрузке: высокоэффективные электродвигатели NEMA premium

ОТКРЫТАЯ РАМА ЗАКРЫТАЯ РАМА
л.с. 6 ПОЛЮСОВ
1 77.0 85,5 82,5 77,0 85,5 82,5
3 85,5 89,5 88,5 86,5 89,5 89,5 89,5 88,5 89,5 89,5
10 89,5 91,7 91,7 90,2 91,7 91.0
30 91,7 94,1 93,6 91,7 93,6 93,0
50 93,0 94,5 94,1 94,1 100 93,6 95,4 95,0 94,1 95,4 95,0
300 95,4 95,8 95,4.8 96,2 95,8

Источник: NEMA MG-1 (2006) Таблица 12–12.

Таблица 7.1B. Высокоэффективные двигатели класса IE3 в Европейском Союзе (трехфазные асинхронные двигатели)

кВт 2 полюса 50 Гц / 60 Гц 4 полюса 50 Гц / 60 Гц 6 полюсов 50 Гц / 60 Гц
0,75 80,7 / 77,0 82,5 / 85,5 78,9 / 82,5
2,2 85.9 / 86,5 86,7 / 89,5 84,3 / 89,5
7,5 90,1 / 90,2 90,4 / 91,7 89,1 / 91,0
22 92,7 / 91,7 22 92,7 / 91,7 92,2 / 93,0
37 93,7 / 93,0 93,9 / 94,5 93,3 / 94,1
75 94,7 / 94,1 95,0 / 95,4 95,8 / 95.8 96,0 / 96,2 95,8 / 95,8

Источник: IEC 60034-30 (2009).

Как упоминалось выше, наилучший КПД достигается при полной нагрузке или близкой к ней. Когда нагрузка на двигатель падает с полной нагрузки до менее чем 50%, КПД двигателя начинает падать, снижаясь до 40–80%, когда нагрузка составляет всего 10–15%. Падение больше для небольших двигателей.

Это первое, что мы хотим подчеркнуть в этой главе: Эффективность обычно зависит от нагрузки .«Нагрузка», как здесь используется, может означать множество вещей: температуру, давление, силу, работу и т. Д.

Пример: Электрический резистивный нагреватель. Нагреватель рассчитан на 240 В и 4,167 А и подает 3412 БТЕ в час. В чем его эффективность? Предположим, что коэффициент нагрузки равен 100%, а коэффициент мощности – 100%.

[7.2] η = полученная потребляемая энергия (в данном случае «тепло») потребляемая энергия = Q˙ × LF (V) (A) (pf) η = (3412Btu / h) (0,29307wh / Btu) (1.0) (240V) ( 4,167A) (1,0) η = 1,0 = 100%

, где

Q˙ = Тепло, выделяемое за единицу времени, БТЕ / ч (или Вт)

Этот расчет подразумевает, что вся потребляемая энергия – это То есть, электричество – доставляется к нагрузке в виде тепла.Очевидно, мы пренебрегли потерями, возникающими в процессе преобразования топлива в электричество, и любыми потерями, связанными с доставкой тепла к нагрузке (например, радиационными потерями, потерями в вентиляционных или дымовых трубах и т. Д.).

Это приводит ко второму пункту: Эффективность определяется только в определенных определенных границах системы .

Пример: Электрическая лампа накаливания. Лампа рассчитана на 100 Вт и 120 В. Это означает, что входная мощность составляет 100 Вт при полной нагрузке, то есть без затемнения.Световой поток 1500 лм. Коэффициент преобразования люменов в ватт составляет 1,496 × 10 -3 Вт / люмен. Это дает следующую эффективность лампы накаливания:

[7.3] η = потребляемая энергия (в данном случае «свет») Входная энергия = лм × LFE˙inη = (1500 лм) (1,496 × 10−3 Вт / лм) (1,0) (100 Вт) η = 0,0224 = 2,24%

, где

лм = люмен, лм

E˙in = входная энергия, в данном случае мощность лампы, Вт

Это не очень полезно в качестве мера эффективности, так как отношение входной энергии к доставляемому свету неясно.Обычно используемым показателем является отношение светового потока в люменах к входной мощности в ваттах, которое называется эффективностью :

[7,4] Эффективность = 1,500 лм 100 Вт = 15 лм / Вт

Эффективность является примером эффективности использования энергии. фактор; то есть фактор, который измеряет, как энергия используется для достижения конкретной цели производительности.

Пример: Оконный кондиционер. Это устройство использует входную мощность 1000 Вт для обеспечения охлаждения 10 200 БТЕ / ч. Кондиционеры используют входящую энергию (работу) для передачи тепла из области с более низкой температурой (внутреннее пространство) в область с более высокой температурой (снаружи), тем самым охлаждая внутреннее пространство.Тепловые насосы в режиме охлаждения работают так же, как кондиционеры, но в режиме обогрева они работают в обратном направлении. При обогреве тепловые насосы используют работу для передачи тепла от более низкой температуры наружного воздуха к более высокотемпературному внутреннему пространству.

Вместо использования символа η , который обычно зарезервирован для значений КПД от 0 до 1,0, один подход, используемый для представления КПД кондиционеров и тепловых насосов, заключается в определении коэффициента производительности (COP), который определяется как:

[7.5] COP = Достигнутая производительность (т. Е. Количество произведенного нагрева или охлаждения) Потребляемая энергия (электричество) = Q˙E˙inCOP = (10 200 БТЕ / ч) (0,29307 Вт-ч / БТЕ) (1000 Вт) COP = 2,99

Коэффициенты производительности всегда больше единицы для тепловых насосов и может быть больше или меньше единицы для кондиционеров.

Другой подход к измерению производительности кондиционирования (или производительности тепловых насосов в режиме охлаждения) – это коэффициент энергоэффективности (EER), который аналогичен COP, но не безразмерен:

[7.6] EER = количество поставляемой охлаждающей жидкости (электричество в) EER = (10 200 БТЕ / ч) (1000 Вт) EER = 10,2 БТЕ / Втч = (COP) (3,412 БТЕ / Втч)

Еще одним показателем охлаждающей способности кондиционеров или тепловых насосов является сезонный коэффициент энергоэффективности (SEER), который представляет собой отношение общего количества тепла, отведенного в течение сезона охлаждения (Btu), к общему количеству электроэнергии, потребляемой в течение сезона охлаждения (Wh).

Кроме того, сезонный коэффициент полезного действия отопления (HSPF) является мерой производительности теплового насоса в режиме отопления.Это отношение общего объема отопления помещения, необходимого в течение отопительного сезона (БТЕ), к общему количеству электроэнергии, потребляемой в течение отопительного сезона (Втч).

Вот и все, что касается эффективности первого закона. Как видно из приведенных выше примеров, эффективность (как обычно используется) относится только к соотношению работы или тепловой мощности по сравнению с затраченной энергией. Этот показатель отражает количеств задействованной энергии, но ничего не говорит о качестве .

Качество формы энергии – это мера ее способности выполнять полезную работу.Например, галлон масла имеет теплотворную способность приблизительно 148 МДж (140 000 британских тепловых единиц). Это примерно такое же энергосодержание, как 1000 галлонов теплой воды, нагретой на 9 ° C (17 ° F) выше температуры окружающей среды. Хотя количество энергии одинаково в обоих случаях, способность масла выполнять полезную работу намного больше, чем способность теплой воды. Качество масла намного лучше.

Доступность (также называемая доступная работа или exergy ) – это показатель, используемый для количественной оценки качества энергии.Он представляет собой максимальный объем доступной работы системы относительно эталонного состояния. Он также определяется как минимальная работа, необходимая для приведения системы из эталонного состояния в повышенное состояние. Для системы контрольной массы (например, поршня и цилиндра) доступность обозначается как непроточная доступность и может быть выражена следующим образом:

[7,7] Bcm = (U − U0) + P0 (V − V0) ) −T0 (S − S0) + mv22 + mgz

где:

B см = отсутствие потока, Дж

U = внутренняя энергия, Дж

P = давление, Па

V = объем, м 3

T = температура, К

S = энтропия, Дж / К

35 mv22 = кинетическая энергия, где м – масса (кг) и v – скорость (м / с), Дж

mgz = потенциальная энергия, где g – ускорение (м / с 2 ) силы тяжести и z – высота (м), J

и нижний индекс 0 относится к эталонному состоянию

Для системы контрольного объема (например,g., турбина), доступность называется , доступность потока и может быть выражена следующим образом:

[7,8] Bcv = (H − H0) −T0 (S − S0) + mv22 + mgz

где:

B cv = доступность потока, J

H = энтальпия, J

Доступность потока имеет отношение ко многим термодинамическим циклам.

Для данной энергии, объема и состава системы B уменьшается по мере увеличения энтропии системы; B также уменьшается по мере приближения внутренней энергии или энтальпии системы к эталонному состоянию.(Обратите внимание, что во многих энергетических системах терминами кинетической и потенциальной энергии можно пренебречь.)

Если применить к углеводородному топливу, B – это минимальная полезная работа, необходимая для образования топлива в данном состоянии из воды и углекислого газа. в атмосфере. Поскольку минимум – это также полезная работа обратимого процесса, B также представляет собой максимальную полезную работу, которая может быть получена путем окисления топлива и возврата продуктов в атмосферу.

В относительном смысле качество (доступность) электроэнергии и топлива, такого как нефть, уголь и газ, довольно высокое.Точно так же пар под высоким давлением и высокой температурой имеет высокую доступность. И наоборот, горячая вода, низкотемпературное технологическое тепло или пар низкого давления имеют относительно низкую доступность.

Мера термодинамической эффективности (или эффективности второго закона) использования энергии для процесса может быть определена как отношение увеличения доступной работы, достигаемой продуктами в процессе, к максимально доступной полезной работе израсходованного топлива . Другой способ определить это как отношение теоретического минимума доступной работы для выполнения задачи к фактической полезной работе, необходимой для выполнения задачи.Мы можем думать об этом как о доступности восстановленных , разделенных на доступность , предоставленных . Разница между тем, что было поставлено, и тем, что было восстановлено, потеряно или уничтожено доступно. Таким образом, концепция доступности обеспечивает полезную меру эффективности, выходящую за рамки ограничений эффективности первого закона. Кроме того, анализ доступности помогает точно определить этапы процесса или области, в которых возможно повышение эффективности.

Пример: Паровой котел.Разница между популярными представлениями об эффективности и концепцией эффективности иллюстрируется работой парового котла. Приемлемый котел – это котел, КПД которого составляет около 90%. То есть только 10% подводимой энергии рассеивается в дымовых газах или за счет потерь тепла. С точки зрения первого закона, мы можем быть удовлетворены эффективностью 90% и считаем, что делаем все возможное в соответствии с нынешними технологическими стандартами. Тем не менее, при этом не учитывается вопрос о том, максимально ли мы использовали топливо.На основе термодинамической доступности этот «эффективный» работающий котел имеет КПД всего 40–45%, что указывает на то, что некоторая работа без надобности теряется при производстве пара. Для более полного обсуждения потерь в котле см. Главу 11 «Управление технологической энергией».

Теперь мы повторим анализ, выполненный в уравнениях 7.1, 7.2 и 7.5, на этот раз вычисляя эффективность, а не эффективность. В таблице 7.2 приведены результаты первого и второго закона эффективности для обычных процессов, использующих энергию.Читателю следует обратиться к литературе для более подробного обсуждения имеющихся работ.

Таблица 7.2. Эффективность первого и второго закона для устройств с одним источником и одним выходом

например, электродвигатель)
Источник
Работа E in Топливо: Теплота сгорания | Δ H | доступная работа B Heat E 1 из горячего резервуара при T 1
Конечное использование
1. 2. 3.
Работа η = Eout / Ein η = Eout / | ΔH | η = Eout / E1
E out ∈ = η ∈ = EoutB (≃η) ∈ = η1− (t0 / T1) (например, электростанция) (например, геотермальная установка)
Heat E 2 добавлен в теплый резервуар при T 2 4. 5. 6.
η (COP) = E2 / Ein∈ = η (1 − T0T2) η (COP) = E2 / | ΔH | ∈ = E2B (1 − T0T2) η (COP) = E2 / E1∈ = η1− (T0 / T2) 1− (T0 / T1)
(например, тепловой насос с электрическим приводом) (например, тепловой насос с приводом от двигателя) (например, , печь)
Тепло E 3 извлечено из холодного резервуара при T 3 7. 8. 9.
η (COP) = E3 / Ein∈ = η (T0T3−1) η (COP) = E3 / | ΔH | ∈ = E3B (T0T3−1) η (COP) = E3 / E1∈ = η (T0 / T3) −11− (T0 / T1)
(напр.г., электрический холодильник) (например, газовый кондиционер) (например, абсорбционный холодильник)

Для электродвигателя. Мы исходим из предположения, что эффективность определяется у источника электроэнергии и не включает производство и доставку электроэнергии. В данном случае

[7.9] ϵ = Эффективность = WorkdeliveredEnergyin, Ein = η = 80%

Это тот же результат, что и раньше. Если бы мы вместо этого определили знаменатель как максимальную доступную энергию в первичном топливе, используемом для производства электроэнергии, эффективность была бы ниже из-за потерь при генерации, передаче и распределении.

Для резистивного нагревателя. Предположим, обогреватель подает теплый воздух с температурой 43 ° C (316 K) в дом с температурой наружного воздуха 0 ° C (273 K). Доступная полезная переданная работа определяется как:

[7.10] W˙rev = Q˙ (1 – T0T2)

где:

W˙rev = теоретическая максимальная доступная работа теплового двигателя, работающего между двумя нагревами. перекачивающие резервуары в реверсивном цикле, Вт

Q˙ = тепловая мощность нагревателя, 3412 БТЕ / ч или 1000 Вт

T 0 = температура радиатора, 0 ° C или 273 K

T 2 = температура теплого резервуара, 43 ° C или 316 K

Максимально возможная работа, которую можно с пользой переносить для той же функции с тем же входом энергии, составляет 240 В × 4.167 A = 1000 Вт, опять же при условии, что эффективность определяется у источника электроэнергии и не включает производство электроэнергии. Таким образом, эффективность составляет:

[7.11] ϵ = W˙revE˙in = Q˙ (1 – T0T2) E˙in = η (1 − T0T2) ϵ = 100% (1−273K316K) = 13,6%

Это показывает что потеря доступной работы является результатом использования высококачественной высокотемпературной формы энергии (электричества) для производства низкотемпературного тепла. Эффективность была бы намного выше (около ϵ = 68%), если бы T 2 было ближе к 600 ° C.Эффективность также была бы выше, если бы это был тепловой насос, а не резистивный нагреватель. В этом случае ϵ будет равно (1– T 0 / T 2 ), умноженному на COP, который обычно составляет порядка 3,0.

Для кондиционера. Фактический КПД кондиционера составляет 2,99. В типичных погодных условиях жаркого летнего дня его эффективность определяется выражением:

[7.12] ϵ = W˙revE˙in = Q˙ | 1 − T0T3 | E˙in = COP (T0T3−1) ϵ = 2,99 (313K293K− 1) = 20.4%

где:

T 0 = температура радиатора, 40 ° C или 313 K

T 3 = температура охлаждающего резервуара, 20 ° C или 293 K

Это указывает на то, что эффективность второго закона или эффективность кондиционера низка, когда температура наружного воздуха близка к температуре кондиционируемого помещения. Еще раз, поскольку электричество с высокой доступностью используется для охлаждения помещения с небольшим перепадом температур по сравнению с окружающей средой (и, следовательно, с низкой доступностью для работы), имеется значительная потеря доступной работы (текстовое поле 7.1).

Текстовое поле 7.1

Предупреждение уместно в отношении интерпретации концепции теоретической минимальной требуемой энергии. Теоретически автомобиль, движущийся из Денвера в Лос-Анджелес, не должен использовать топливо и, по сути, должен давать полезную энергию (из-за разницы в высоте). Таким образом, хотя теоретический минимум является полезным понятием для оценки потенциала экономии топлива, нет никаких указаний на то, что достижение такой цели практически или даже возможно.

Электродвигатели

: как читать паспортную табличку

Когда дело доходит до покупки электродвигателя, очень важно понимать спецификации, указанные на паспортной табличке двигателя. Информация на паспортной табличке сообщает о возможностях двигателя и предоставляет информацию, необходимую для выбора правильного электродвигателя для вашего применения. Наличие правильного двигателя обеспечивает эффективность и долговечность продукта, а также может привести к значительной экономии затрат для вашего бизнеса.

Мы собрали несколько основных терминов и определений, которые помогут вам начать работу.Понимание этих концепций позволит вам задать правильные вопросы и выбрать правильный двигатель для вашего приложения и отрасли.

Паспортная табличка электродвигателя содержит необходимую информацию, которая поможет вам выбрать правильный электродвигатель переменного тока для вашего конкретного применения. В качестве примера мы будем использовать следующую иллюстрацию паспортной таблички двигателя переменного тока мощностью 150 лошадиных сил. На паспортной табличке указаны характеристики напряжения и силы тока, скорости в оборотах в минуту, эксплуатационного фактора, класса изоляции на основе стандартов NEMA, конструкции двигателя и эффективности.

Напряжение и ток

По конструкции электродвигатели имеют стандартные значения напряжения и частоты, на которых они работают. На паспортной табличке вы можете увидеть, что этот образец двигателя предназначен для использования в системах на 460 В переменного тока. 169,5 ампер – это ток полной нагрузки для этого двигателя.

Оборотов в минуту (об / мин)

На паспортной табличке указана базовая скорость, указанная в об / мин. Базовая скорость – это когда двигатель развивает номинальную мощность при номинальном напряжении и частоте. Базовая скорость показывает, насколько быстро полностью нагруженный выходной вал будет вращать подключенное оборудование при подаче надлежащего напряжения и частоты.

Базовая скорость двигателя образца составляет 1185 об / мин при 60 Гц. Синхронная скорость 6-полюсного двигателя составляет 1200 об / мин. При полной загрузке проскальзывание составит 1,25%. Если подключенное оборудование работает с нагрузкой ниже полной, выходная скорость (об / мин) будет немного выше, чем указано на паспортной табличке.

Коэффициент обслуживания

Когда электродвигатель предназначен для работы с номинальной мощностью, указанной на паспортной табличке, он имеет коэффициент обслуживания 1,0, что означает, что он может работать на 100% от номинальной мощности.В зависимости от вашего приложения вам может потребоваться мощность двигателя, превышающая его номинальную мощность. В этом случае вы можете сказать, что вам нужен двигатель с коэффициентом обслуживания 1,15. Коэффициент обслуживания можно умножить на номинальную мощность, поэтому двигатель с коэффициентом обслуживания 1,15 может работать на 15% выше, чем мощность двигателя, указанная на паспортной табличке. Например, двигатель мощностью 150 л.с. с эксплуатационным коэффициентом 1,15 может работать при 172,5 л.с. Имейте в виду, что любой двигатель, который непрерывно работает с коэффициентом использования больше 1, будет иметь меньший ожидаемый срок службы по сравнению с работой с номинальной мощностью в лошадиных силах.Работа с коэффициентом обслуживания больше единицы также влияет на работу двигателя, например, на скорость и ток при полной нагрузке.

Класс изоляции

Различные рабочие среды предъявляют различные требования к температуре двигателя. Чтобы соответствовать этим требованиям, Национальная ассоциация производителей электрооборудования (NEMA) установила четыре класса изоляции: A, B, F и H. Класс F является наиболее распространенным, а класс A практически никогда не используется. Перед запуском двигателя его обмотки находятся при температуре окружающей среды – температуре окружающего воздуха.Стандартная температура окружающей среды в соответствии с NEMA не должна превышать 40 ° C (104 ° F) в пределах определенного диапазона высот для всех классов двигателей.

Классы изоляции NEMA

После запуска двигателя внутренняя температура повышается. Каждый класс изоляции допускает определенный рост температуры. Если объединить температуру окружающей среды и допустимое повышение температуры, они равны максимальной температуре обмотки двигателя. Например, когда двигатель с изоляцией класса F работает с коэффициентом эксплуатации 1,0, максимальное повышение температуры составляет 105 ° C.Максимальная температура обмотки составляет 40 ° окружающей среды плюс 105 ° подъема, то есть 145 ° C. Точка в центре обмотки двигателя, где температура выше, называется горячей точкой двигателя.

Эксплуатация двигателя при правильной температуре обеспечивает эффективную работу и долгий срок службы. Если вы эксплуатируете двигатель, превышающий пределы класса изоляции (155 ° C для изоляции класса F), вы сокращаете ожидаемый срок службы двигателя. Если рабочая температура увеличивается на 10 ° C в течение значительного времени, ожидаемый срок службы изоляции двигателя может снизиться на 50%.

Конструкция электродвигателя

NEMA установила стандарты для конструкции и производительности электродвигателей. Двигатели NEMA конструкции B являются наиболее распространенными.

КПД

КПД электродвигателя выражается в процентах. Он показывает, сколько входящей электрической энергии преобразуется в выходную механическую энергию. Как видите, номинальный КПД этого двигателя составляет 95,8%. Чем выше процент, тем эффективнее двигатель преобразует поступающую электрическую мощность в механическую мощность.Двигатель мощностью 150 л.с. с КПД 96,0% потребляет меньше энергии, чем двигатель мощностью 150 л.с. с номиналом 86%. Повышенная эффективность помогает значительно сэкономить на расходах на электроэнергию. Двигатели с высоким КПД обеспечивают более низкую рабочую температуру, более длительный срок службы и более низкий уровень шума.

Конструкции стандартных электродвигателей

Чтобы соответствовать требованиям по скорости-крутящему моменту для различных нагрузок, двигатели спроектированы с определенными характеристиками скорости-крутящего момента. NEMA имеет четыре стандартных исполнения двигателей: NEMA A, NEMA B, NEMA C и NEMA D.NEMA A обычно не используется. NEMA B является наиболее распространенным. В специализированных приложениях используются NEMA C и NEMA D. Двигатель должен обладать способностью развивать достаточный крутящий момент для запуска, ускорения и работы нагрузки с номинальной скоростью. Используя рассмотренный ранее образец двигателя мощностью 150 л.с. и 1185 об / мин, вы можете рассчитать крутящий момент, транспонировав формулу для лошадиных сил.

Конструкция NEMA чаще всего используется для оценки заблокированного ротора или пускового момента. Двигатель NEMA конструкции C обычно будет иметь больший крутящий момент заблокированного ротора, чем двигатель NEMA конструкции B.

Кривая скорость-крутящий момент для двигателя NEMA B

На приведенном ниже графике показано соотношение между скоростью и крутящим моментом, создаваемым двигателем NEMA B, с момента его запуска до момента достижения момента полной нагрузки при номинальной скорости.

Пусковой момент

Пусковой момент, также называемый крутящим моментом заторможенного ротора, отмечен на графике. Крутящий момент создается, когда ротор находится в состоянии покоя при номинальном напряжении и частоте. Это происходит каждый раз при запуске двигателя. Когда на статор подаются номинальное напряжение и частота, до вращения ротора остается короткое время.В этот краткий момент двигатель NEMA конструкции B работает примерно на 150% от своего крутящего момента при полной нагрузке.

Это базовое введение в паспортную табличку электродвигателя с терминами и определениями. Если у вас есть какие-либо вопросы или вы хотите узнать больше, не стесняйтесь обращаться к нам, и мы будем рады обсудить осуществимость, потенциальную коммерческую отдачу от вашего электродвигателя, а также то, подходит ли WorldWide Electric для вашей компании.

Силовые и электрические двигатели | WIRED

У меня проблема.Каким-то образом я получил это устройство Watts Up Pro. По сути, он рассчитывает потребление энергии (в ваттах) для всего, что к нему подключено. Очень круто, но кто-то должен меня остановить. Я все время хочу измерять разные вещи.

Самое интересное то, что вы можете подключить его к компьютеру через USB и записывать данные с помощью Vernier’s Logger Pro. Единственный недостаток использования Logger Pro – это то, что у меня на холодильнике лежал ноутбук в течение 24 часов. Моя жена не жаловалась примерно через 18 часов.Однако данные того стоили.

Итак, какова мощность, потребляемая моим холодильником за день? Вот:

Я был удивлен, обнаружив, что за это время средняя мощность составила всего 91 Вт. Но посмотрите на эти пики – примерно до 1000 Вт на короткие периоды. Вот увеличенная версия для одного цикла.

Почему большой шип?

Короткий ответ: это то, что делают электродвигатели. Любое устройство, которое зависит от электродвигателя, при включении будет иметь большой скачок тока.Во-первых, позвольте мне взглянуть на власть. Для любого элемента схемы (о, и я говорю о цепях постоянного тока здесь, даже если холодильник работает от переменного тока) мощность, потребляемая этим устройством, будет:

Для ясности, I – это электрический ток, проходящий через этот элемент, а Δ V – это изменение электрического потенциала на том же элементе. Поскольку мощность – это просто произведение тока и напряжения, позвольте мне взглянуть на простую установку, где я могу измерить эти два.

Это простой двигатель постоянного тока, подключенный к батарее типа D. Я решил сделать все в стиле ретро и использовать хороший аналоговый вольтметр и аналоговый амперметр. Вот изображение амперметра как для вращающегося, так и для остановленного двигателя.

Для вращающегося двигателя ток составляет около 40 мА по сравнению с почти 105 мА, когда мои пальцы останавливали вращающийся вал. О, может быть, вы хотели бы посмотреть это как видео. Ну вот.

http://www.youtube.com/watch?v=glpjtoFeSfU Итак, что здесь происходит? Во-первых, что такое мотор? По сути, это катушка из проволоки с какими-то магнитами.Ток, протекающий по проволоке, взаимодействует с постоянными магнитами, заставляя катушку с проволокой вращаться. Затем должны быть какие-то средства для изменения направления тока в катушке с проволокой, чтобы катушка продолжала вращаться. Изменение тока обычно осуществляется щетками, которые переключают точки контакта с катушкой во время ее вращения. Да, я упустил некоторые важные детали – но на самом деле они не такие уж и сложные. Вот суперпростая версия двигателя постоянного тока:

А что произойдет, если вы не позволите катушке с проволокой вращаться? В этом случае у вас просто есть катушка провода, подключенная к батарее.Довольно скучно, но на принципиальной схеме это будет выглядеть так:

Электродвигатели (от 1 до 200 л.с. / от 0,746 до 150 кВт)

Нормы энергоэффективности

Технические требования к двигателям, изготовленным до 1 января 2011 г.

Нормативные определения
Описанный двигатель:
a) открытый или закрытый асинхронный электродвигатель с непрерывным режимом работы, многофазный, с короткозамкнутым ротором, тип A или B Национальной ассоциации производителей электрооборудования ( NEMA ), который предназначен для работы на одной скорости и имеет:

  • два, четыре или шесть полюсов,
  • на номинальное напряжение не более 600 вольт,
  • номинальная частота 50/60 Гц или 60 Гц,
  • номинальной мощностью не менее 1 л.с. и не более 200 л.с.,
  • Т-образная рама,
  • стандартный вал, вал R или вал S,
  • крепление на лапах, торцевое крепление типа C или фланцевое крепление типа D и
  • IP-код от 00 до 66; или

b) с максимальным продолжительным режимом работы, открытый или закрытый, трехфазный асинхронный электродвигатель с кожухом, исполнение Международной электротехнической комиссии ( IEC ), тип N и режим SI, который предназначен для работы в одинарная скорость, которая устанавливается на фланце или на лапах и имеет:

  • два, четыре или шесть полюсов,
  • на номинальное напряжение не более 600 вольт,
  • номинальная частота 50/60 Гц или 60 Гц,
  • номинальной мощностью не менее 0.746 киловатт и не более 150 киловатт,
  • номер кадра 90 или выше и
  • IP-код от 00 до 66;

, а также включает в себя любой двигатель, который встроен в любой другой продукт, независимо от того, является ли этот другой продукт потребляющим энергию продуктом.

Стандарт испытаний
CAN / CSA C390-98 под названием Методы испытаний энергоэффективности для трехфазных асинхронных двигателей . Пересмотренная версия метода испытаний CSA C390-09 будет доступна для покупки.

Дата соответствия
Текущие минимальные стандарты энергоэффективности и требования для электродвигателей применяются к электродвигателям, изготовленным после 27 ноября 1997 г. и до 1 января 2011 г., и с двухлетней задержкой для подгруппы электродвигателей, называемых взрывозащищенными электродвигателями, и электродвигателями, содержащимися внутри интегрального редуктора. Электродвигатели регулируются с 3 февраля 1995 года.

Наклейка EnerGuide : не требуется

Каталог моделей : Список совместимых моделей будет опубликован в ближайшее время.

Требования к отчету об энергоэффективности

  • наименование изделия (двигателя)
  • фирменное наименование
  • номер модели (рекомендуется) и / или уникальный идентификатор двигателя (см. Определение ниже)
  • производитель
  • наименование органа или провинции, чей поверочный знак будет нанесен на продукт
  • номинальное значение КПД

Уникальный идентификатор двигателя (UMI)
UMI содержит следующую информацию:

  • сокращенное наименование производителя
  • Мощность двигателя (л.с. для двигателей NEMA или кВт для двигателей IEC)
  • количество полюсов и
  • , открытый или закрытый двигатель

Стандарт энергоэффективности

  • Стандарты энергоэффективности для двигателей NEMA
    Мощность
    ( л.с. )
    Минимальный номинальный КПД (%)
    Открыть закрытый
    2-
    Полюс
    4-
    Полюс
    6-
    Полюс
    2-
    Полюс
    4-
    Полюс
    6-
    Полюс
    1 75.5 82,5 80,0 75,5 82,5 80,0
    1,5 82,5 84,0 84,0 82,5 84,0 85,5
    2 84,0 84,0 85,5 84.0 84,0 86,5
    3 84,0 86,5 86,5 85,5 87,5 87,5
    5 85,5 87,5 87,5 87,5 87,5 87,5
    7.5 87,5 88,5 88,5 88,5 89,5 89,5
    10 88,5 89,5 90,2 89,5 89,5 89,5
    15 89,5 91,0 90.2 90,2 91,0 90,2
    20 90,2 91,0 91,0 90,2 91,0 90,2
    25 91,0 91,7 91,7 91,0 92,4 91.7
    30 91,0 92,4 92,4 91,0 92,4 91,7
    40 91,7 93,0 93,0 91,7 93,0 93,0
    50 92,4 93.0 93,0 92,4 93,0 93,0
    60 93,0 93,6 93,6 93,0 93,6 93,6
    75 93,0 94,1 93,6 93,0 94.1 93,6
    100 93,0 94,1 94,1 93,6 94,5 94,1
    125 93,6 94,5 94,1 94,5 94,5 94,1
    150 93.6 95,0 94,5 94,5 95,0 95,0
    175 94,5 95,0 94,5 95,0 95,0 95,0
    200 94,5 95,0 94,5 95.0 95,0 95,0

  • Стандарты энергоэффективности для IEC
    Мощность
    ( кВт )
    Минимальный номинальный КПД (%)
    Открыть закрытый
    2-
    Полюс
    4-
    Полюс
    6-
    Полюс
    2-
    Полюс
    4-
    Полюс
    6-
    Полюс
    0.75 75,5 82,5 80,0 75,5 82,5 80,0
    1,1 82,5 84,0 84,0 82,5 84,0 85,5
    1,5 84,0 84,0 85.5 84,0 84,0 85,5
    2,2 84,0 84,0 86,5 85,5 84,0 87,5
    3 84,0 84,0 86,5 85,5 84,0 87.5
    3,7 85,5 87,5 87,5 87,5 87,5 87,5
    4 85,5 87,5 87,5 87,5 87,5 87,5
    5,5 87,5 88.5 88,5 88,5 89,5 89,5
    7,5 88,5 89,5 90,2 89,5 89,5 89,5
    11 89,5 91,0 90,2 90,2 91.0 90,2
    15 90,2 91,0 91,0 90,2 91,0 90,2
    18,5 91,0 91,7 91,7 91,0 92,4 91,7
    22 91.0 92,4 92,4 91,0 92,4 91,7
    30 91,7 93,0 93,0 91,7 93,0 93,0
    37 92,4 93,0 93,0 92.4 93,0 93,0
    45 93,0 93,6 93,6 93,0 93,6 93,6
    55 93,0 94,1 93,6 93,0 94,1 93,6
    75 93.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *