Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Будущее: Наука и техника: Lenta.ru

Кадр: JacobsSchoolNews / YouTube

1

Международный коллектив ученых объявил о создании первого в мире комбинированного аккумулятора

В конце сентября международный коллектив ученых под руководством ученого Даррена Хана и с участием инженеров LG рассказал о создании первого комбинированного аккумулятора для автомобилей на электрической тяге. Подобная батарея является твердотельной и построена на базе анода из чистого кремния. По сравнению с аналогами новый аккумулятор является более энергоемким и безопасным и, кажется, превосходит все конкурентные образцы. «Лента.ру» объясняет, почему все автопроизводители не могут перейти на твердотельные батареи и какие перспективы есть у нового комбинированного аккумулятора.

2

Несовершенство литий-ионных батарей давно волновало инженеров

Используемые в современных электрокарах батареи неидеальны. Как правило, автопроизводители используют литий-ионные зарядные элементы.

Несмотря на то что аккумуляторы позволяют хранить энергию длительное время и обеспечивать машины запасом хода на полтысячи миль, проблем с ними слишком много. Во-первых, батареи быстро изнашиваются. Во-вторых, они очень капризны: требовательны к температуре эксплуатации и не переносят постоянных или сильных вибраций. Именно поэтому при ДТП электрокар может загореться, а на тушение и локализацию возгорания может уйти несколько часов.
Также почти все батареи — начиная от элементов в пультах к телевизорам и заканчивая фабричными аккумуляторами — состоят из кобальта. Зависимость индустрии от этого материала крайне высока, так как 60 процентов всего кобальта добывают в Демократической Республике Конго.
В теории твердотельные батареи как минимум практичнее и безопаснее. Их конструкция предполагает использование минимума материалов. По словам ученых, чем меньше в аккумуляторе деталей, тем реже он будет ломаться и выходить из строя.

Кадр: Tech Space / YouTube

3

Батареи с кремниевыми анодами тоже неидеальны

Использование кремниевого анода в батареях позитивно описывается Дарреном Ханом и его коллегами. Впервые данную наработку описали в 2002 году. Спустя почти 13 лет основатель Tesla Илон Маск заявил, что применение кремния в аккумуляторах его электрокаров увеличивает запас хода примерно на шесть процентов. Батареи на основе кремния обычно имеют гораздо большую удельную емкость, чем другие, — примерно 3600 миллиампер-часов на грамм материала.
Однако в заряженном состоянии данный тип анода в больших долях является крайне неустойчивым, а следовательно, опасным для применения. При длительном контакте с жидким электролитом кремний плохо держит энергию, что оборачивается значительной потерей мощности электрического двигателя. Поэтому современные аккумуляторы состоят из кремния лишь частично. В этой связи аноды коммерческих батарей могут содержать небольшое количество кремния, что весьма незначительно влияет на производительность. Например, на рынке существуют аккумуляторы, созданные на базе композитного электрода с кремниевой нанопроволокой. Информация о содержании этого материала в батареях производителей обычно не раскрывается, но можно считать, что доля кремния в них не превышает десяти процентов.

4

Преимущество кремния

Учитывая все недостатки батарей на базе классического электролита и кремния, ученые решили синтезировать материал с твердым электролитом на основе сульфида. Использование твердой структуры решило проблему насыщения анодов жидким электролитом во время работы. По словам Хана, отсутствие углерода в аноде значительно снижает межфазный контакт, что приводит к нежелательным побочным реакциям с твердым электролитом.

Сравнительные тесты показали, что кремниевые аноды имеют в десять раз большую плотность энергии, чем графитовые. Пока что новое изобретение удалось воссоздать лишь в лабораторных условиях, но характеристики новой батареи удовлетворяют специалистов. Аккумулятор-прототип сохранил 80 процентов емкости после 500 циклов зарядки, удельная емкость энергии на грамм кремния составила около 2890 миллиампер-часов. Батарея оказалась стабильна и безопасна, что в будущем наверняка позволит использовать ее несколько десятков лет. По словам ученых, аккумуляторы нового типа смогут пережить сам автомобиль.

Кадр: Torque News / YouTube

5

Чего ждать в будущем?

«Принцип твердотельного кремния преодолевает многие ограничения обычных батарей», — говорится в отчете изобретателей. Ученые считают, что созданные по комбинированному принципу аккумуляторы удовлетворят рыночный спрос на безопасные батареи с более высокой емкостью при более низких затратах. Ноу-хау можно использовать при создании как электрокаров, так и стационарных энергохранилищ.

Как было замечено, удачный прототип батареи пока был создан в лабораторных условиях и тестировался при комнатной температуре. Комфортная для аккумулятора работа происходит при температуре около 140 градусов по Фаренгейту (порядка 60 градусов по Цельсию). Даррен Хан признает, что от прототипа до первого коммерческого образца могут пройти годы, и соглашается со скептиками, что его коллегам предстоит много работы. Однако ученый уже зарегистрировал бренд Unigrid battery, под которым надеется выйти на рынок твердотельных аккумуляторов нового поколения.

О «кремниевой революции» все чаще говорят и крупные игроки на рынке электромобилей. Например, в 2020 году представители Tesla обнадежили потребителей и рынок, что планируют удвоить содержание кремния в батареях своих автомобилей.

Аккумуляторы нового поколения создаются в Европе

В новом гигантском НПО Battery Industrialization Centre в британском г. Ковентри. Jason Alden / Bloomberg

Аккумуляторные батареи используются повсюду − в наших телефонах, ноутбуках и автомобилях, но недорогими и высокопроизводительными источниками энергии будущего они до сих пор не стали. Целый ряд европейских и швейцарских научно-производственных инициатив пытается сейчас нащупать пути к инновационному прорыву в этой перспективной области.

Этот контент был опубликован 17 сентября 2021 года

Редактор русскоязычной версии Надежда Капоне.

«Благодаря применению аккумуляторов можно сократить на 30% углеродные выбросы в транспортном и энергетическом секторах, обеспечить электричеством дополнительно 600 млн человек, а также создать по всему миру 10 млн долговременных и экологически устойчивых рабочих мест», — сказано в недавно опубликованном ежегодном докладе Всемирного экономического форума в Давосе, штаб-квартира которого расположена в местечке Колоньи в пригороде Женевы. Пока доминирующую роль на рынке батарей и аккумуляторов играет Азия, причем более 90% их производства приходится на Китай, Ю. Корею и Японию. 

Но Европа намерена уже в скором времени сократить свое отставание. Европейский союз, уступая требования местных гигантов автомобилестроения, намерен скоро запустить массовое производство аккумуляторных батарей и ячеек (модульных элементов перезаряжаемых батарей), с тем чтобы положить конец технологической зависимости от зарубежных производителей. «В настоящее время мы просто пытаемся наверстать упущенное, но основная идея ЕС заключается в том, чтобы создать собственную производственно-инновационную базу для разработок в сфере производства аккумуляторов».

 

Об этом мы беседуем с Корсин Баттальей (Corsin BattagliaВнешняя ссылка), экспертом Швейцарских федеральных лабораторий материаловедения и технологий (Eidgenössische Materialprüfungs- und Forschungsanstalt EmpaВнешняя ссылка). Швейцария не входит в Евросоюз, но принимает активное участие в европейских научных проектах по разработке аккумуляторов нового поколения. Четыре года назад с целью наращивания производственных мощностей и развития научно-исследовательского потенциала в данной сфере по инициативе Еврокомиссии был создан Европейский аккумуляторный альянс (European Battery Alliance). 

Показать больше

По данным НКО Transport & Environment, в рамках этой инициативы по всей Европе запланировано построить почти 40 заводов по производству батарей, так называемых «гигафабрик». Если все они в самом деле заработают, то к 2025 году старый свет сможет обеспечить себе долю мирового рынка аккумуляторов в 20%, что в годовом выражении составит торгово-промышленный оборот на ровне в 250 млрд евро или 270 млрд швейцарских франков. Одним из первых полностью европейских предприятий по производству экологически чистых аккумуляторов станет гигафабрика Northvolt EttВнешняя ссылка на севере Швеции в городе Шеллефтео. 

Площадь огромного завода по производству литий-ионных батарей достигает 500 000 квадратных метров или 70 футбольных полей. Фабрика Northvolt заявляет, что сможет выпускать батареи в количестве, необходимом для производства одного миллиона электромобилей в год. В настоящее время создание гигафабрик в Швейцарии не планируется, но страна и ее огромный научный потенциал тесно связаны с европейскими усилиями по разработке модели аккумулятора будущего. 

Огромный завод по производству литий-ионных аккумуляторов Northvolt Ett на севере Швеции будет занимать площадь более 500 000 квадратных метров или 70 футбольных полей. William Steel (Northvolt)

«Идет ли речь о сырье и материалах, о сборке аккумуляторных ячеек в единую батарею, о системах менеджмента, о переработке, утилизации или о системах хранения энергии − в Швейцарии есть большое число компаний, активно работающих в области производства аккумуляторов, а некоторые даже являются мировыми лидерами этой отрасли», — говорит Корсин Батталья.

Самовосстанавливающиеся батареи

На протяжении последних десятков лет доминирующей технологией хранения электроэнергии были литий-ионные батареи, и ожидается, что спрос на них вырастет в течение следующего десятилетия в десять раз. За последние 30 лет стоимость литиевых батарей упала почти на 100%, но наука в направлении совершенствования таких батарей практически никак не продвинулась. Для удовлетворения будущего спроса на такие аккумуляторы нам потребуются альтернативные технологии, обеспечивающие повышенные сроки службы их элементов и повышение общей емкости данных батарей. 

Именно этим и занимается European Battery 2030+, европейская инициатива в области исследований и разработок аккумуляторных батарей с общим бюджетом в 40 млн евро. Инициатива был запущена в прошлом 2020 году, в нее входят семь крупных исследовательских проектов, реализуемых при поддержке девяти европейских стран, включая Швейцарию. Один из проектов называется HIDDEN, и он ставит перед собой задачу увеличить средний срок службы литий-ионных аккумуляторов и их удельную энергоемкость по меньшей мере на 50%.

Корсин Батталья (справа) и исследователь Мари-Клод Бэй из Швейцарской федеральной лаборатории материаловедения и технологий (Empa), активно участвующей в европейских исследованиях параметров аккумуляторных батарей. Empa

«Реальную проблему для долговечности литий-металлических батарей представляет постепенный рост внутри них так называемых дендритов, крошечных жестких древовидных структур. Их игольчатые выступы называются усы, — объясняет Аксель Фюрст (Axel FuerstВнешняя ссылка), руководитель проекта HIDDEN при Бернской высшей школе прикладных наук (Berner FachhochschuleВнешняя ссылка). — Металлический литий имеет очень высокую энергетическую плотность и поэтому его можно использовать для производства все более легких и энергоемких батарей. Но дендриты растут очень быстро, из-за чего срок жизни таких аккумуляторов в среднем невелик», — говорит он.

Чтобы решить эту проблему, его группа занимается изучением процесса самовосстановления батареи. Они надеются, что специально разработанные термотропные (то есть образующиеся в результате нагревания твёрдого вещества и существующие в определённом интервале температур и давлений) жидкокристаллические ионные электролиты вместе с добавками и пьезоэлектрическим сепаратором, создающим электрическое поле, смогут остановить процесс роста коварных дендритов. Первую концептуальную модель такого аккумулятора тут надеются представить к 2023 году в надежде, что потом она получит широкое распространение и будет востребована на рынке.

Меньше редких металлов

Тем временем Корсин Батталья и его коллеги из Empa координируют европейский исследовательский проект SENSE, целью которого является создание так называемого литий-ионного аккумулятора «поколения 3b» с композитным анодом из кремния и графита и монокристаллическим катодом NMC, содержащим соединения никеля, марганца и кобальта. Целью исследования является повышение удельной энергоемкости батареи, что позволит увеличить дальность пробега транспортных средств, усовершенствовать технологии быстрой зарядки аккумуляторов и сократить объемы использования редких металлов.  

«Мы хотим сократить содержание кобальта и повысить содержание никеля», — говорит исследователь из Empa. Кобальт — один из самых дорогих материалов в батарее. Производители стараются сократить его использование, так как его поставки могут в будущем быть связанными со значительными политическими и социальными издержками и рисками. Напомним, что около 70% мировых объемов кобальта поступает на рынок из ДР Конго, а там работа шахтеров сопряжена с опасностью и вредными условиями труда. Основные же мощности по обогащению кобальтовой руды расположены в Китае. «Создание идеальной батареи — задача не из легких, зачастую требующая компромиссного подхода, от чего-то приходится отказываться, чтобы получить на выходе желаемый инженерный результат», — объясняет Корсин Батталья. 

Дело в том, что никель, обычно добавляемый в состав батареи, увеличивает мощность аккумулятора и он относительно дешев, но при этом никель приводит к быстрому износу батареи. Ученые в Швейцарии поэтому проводят сейчас эксперименты, добавляя в графитовый анод кремний. Этот материал представляет собой особый интерес для исследователей, поскольку он способен сохранять примерно в 10 раз больше энергии, чем графит. Но во время циклов заряда и разряда кремний подвержен расширению, что ведет к разрушению структуры анода и быстрой потере производительности. Эксперты Empa также занимаются сейчас разработкой новых датчиков быстрой зарядки для установки их на литий-ионные батареи, с тем чтобы аккумуляторы можно было заряжать быстрее и эффективнее. «Чтобы ускорить процесс зарядки нам нужно получить данные о локальной температуре и ресурсе аккумуляторной батареи, а также быстрее делать замеры внутри её ячеистых элементов», — говорит К. Батталья.

Твердотельные аккумуляторы

Еще одним претендентом на звание аккумулятора будущего является твердотельный аккумулятор с твердым электролитом, которым уже сейчас можно заменять вместо легковоспламеняющихся жидкие электролиты, используемые в обычных литий-ионных аккумуляторах. Такие батареи считаются более экономичными, безопасными, они требуют меньше сырья для их производства. Новейшие прототипы позволяют предположить, что твердотельные батареи смогут в будущем хранить на 80% больше энергии, чем нынешние литий-ионные аккумуляторы того же веса и объема.

Монтаж аккумулятрной батареи на фабрике Leclanche в городе Ивердон-ле-Бен на западе Швейцарии, май 2020 года. Компания Leclanche SA является ведущим мировым поставщиком высококачественных накопителей энергии на основе литий-ионных технологий. Keystone / Laurent Gillieron

Корсин Батталья говорит, что такие прорывные технологии сулят нам множество преимуществ, но воспользоваться ими в полном объеме пока не получается, соответствующие разработки пока не готовы покинуть пределы исследовательских лабораторий. По его словам, разработать твердотельную батарею с большой емкостью и длительным сроком службы оказалось не так-то просто. «Сделать такой аккумулятор с удвоенной энергоемкостью не проблема, но, скорее всего, после 20 циклов перезарядки такая батарея выйдет из строя», — объясняет он. Остается обычная батарея. Ее энергоемкость можно удвоить, заменив графит металлическим литием, но слишком быстрая зарядка батареи с большим содержанием лития приводит опять же к образованию дендритов, которые срок службы батареи резко сокращают.

Хотя батареи можно увеличить вдвое, заменив графит (материал анода литий-ионной батареи) на металлический литий, но слишком быстрая зарядка литий-металлической батареи вызовет образование дендритов, сокращающих срок ее службы. А ведь сумей твердотельные литиевые батареи решить все свои проблемы, с их помощью технологии, лежащие в основе мобильных источников энергии, смогли бы сделать огромный шаг вперед в плане и энергоемкости, и долговечности. В рамках проекта SOLIDIFY, направленного на разработку производственных процессов для так называемых аккумуляторов «поколения 4b», твердотельных аккумуляторов, которые могут быть готовы к выходу на рынок через десять лет, швейцарская структура Empa уже плотно сотрудничает с десятком своих европейских партнеров.

Эффективные системы хранения энергии

В ближайшие десятилетия значительный рост степени востребованности также ожидает стационарные системы хранения энергии. Литий-ионные аккумуляторы и батареи с монокристаллическим катодом NMC, содержащим соединения никеля, марганца и кобальта, уже используются для хранения солнечной и ветровой энергии, получаемой в условиях домашних хозяйств. Ученые сейчас занимаются поиском альтернатив таким литий-ионным батареям, пытаясь усовершенствовать, например цинковые, натрий-ионные и ванадиевые аккумуляторы, которые, как оказалось, хорошо подходят для стационарного хранения энергии. 

Однако для того, чтобы удовлетворить растущий спрос на такие хранилища и обеспечить их ценовую конкурентоспособность, необходимо еще приложить значительные усилия. Швейцарское ведомство Empa является одним из двенадцати партнеров, которые как раз и занимаются активизацией таких усилий в рамках европейского аккумуляторного проекта SOLSTICE, в котором также участвуют швейцарские фирмы FZSONICK и Quantis. Их цель заключается в разработке никель-солевых термальных аккумуляторных батарей на основе жидких натрия и цинка, которые работают только при высоких температурах и которые можно использовать для стационарного хранения энергии.

По словам К. Баттальи, по мере быстрого увеличения в ближайшие десятилетия спроса на стационарные накопительные системы и в связи с ростом числа электромобилей на дорогах спрос на инновационные аккумуляторы также будет возрастать, а это значит, что многие швейцарские фирмы, помимо уже имеющихся игроков, также смогут получить свою долю прибыли. «Ко мне часто обращаются швейцарские компании, которые не связаны напрямую с аккумуляторной отраслью, но, имея за плечами знания и опыт в сфере производства и интеграции (разных производственных процессов в единую систему), они все чаще рассматривают эту отрасль в качестве направления на рынке, перспективного и для них тоже».

Сотрудничество компаний Lonza и Natron Energy

Еще один крупный проект в области технологий хранения энергии реализуется сейчас в Швейцарии в рамках сотрудничества между биохимической компанией Lonza, расположенной в кантоне Вале, и американской компанией Natron Energy. В апреле 2021 года они объявили о достижении стратегического соглашения с целью поставки порошка берлинской лазури (синий пигмент/железисто-синеродистая соль окиси железа), необходимого для производства натриево-ионных аккумуляторов.

Один из бизнесов компании Lonza, компания Lonza Specialty Ingredients, будет производить порошок берлинской лазури для Natron Energy на своем предприятии в городе Фисп (Visp, кантон Вале). С конца следующего 2022 года этот пигмент будут использовать на производстве аккумуляторных электродов на новом предприятии этой компании, рассчитанном на примерно 100 сотрудников и расположенном недалеко от г. Сьон. Оттуда электроды швейцарского производства будут экспортироваться в США для использования в накопителях энергии от компании Natron.

В соответствии со стандартами JTI

Показать больше: Сертификат по нормам JTI для портала SWI swissinfo.ch

Показать больше

Что будет дальше с аккумуляторами в 2023 году

Что будет дальше в технологиях

Ожидайте новые химические составы аккумуляторов для электромобилей и рост производства благодаря государственному финансированию в этом году.

By

  • Кейси Краунхарт Страница архива

4 января 2023 г.

BMW планирует инвестировать 1,7 миллиарда долларов в свой новый завод в Южной Каролине для производства электромобилей и их аккумуляторов. подробнее о батареях. Электромобили превысили 10% мировых продаж автомобилей в 2022 году, и к концу этого десятилетия они должны достичь 30%.

Политика во всем мире только ускорит этот рост: недавнее законодательство по климату в США вливает миллиарды в производство аккумуляторов и стимулирует покупки электромобилей. Европейский союз и несколько штатов США ввели запрет на транспортные средства, работающие на газе, начиная с 2035 года. 

Для перехода потребуется много аккумуляторов — более качественных и дешевых.

Большинство современных электромобилей питаются от литий-ионных аккумуляторов — технологии с многолетней историей, которая также используется в ноутбуках и сотовых телефонах. Все эти годы разработки помогли снизить цены и повысить производительность, поэтому сегодняшние электромобили приближаются к цене автомобилей с бензиновым двигателем и могут проезжать сотни миль без подзарядки. Литий-ионные батареи также находят новые применения, включая хранение электроэнергии в сети, что может помочь сбалансировать прерывистые возобновляемые источники энергии, такие как ветер и солнечная энергия.

Но многое еще можно улучшить. Академические лаборатории и компании ищут способы улучшить технологию — повысить емкость, сократить время зарядки и сократить расходы. Цель состоит в еще более дешевых батареях, которые обеспечат дешевое хранение в сети и позволят электромобилям преодолевать гораздо большие расстояния без подзарядки.

В то же время опасения по поводу поставок основных материалов для аккумуляторов, таких как кобальт и литий, подталкивают к поиску альтернатив стандартным литий-ионным химическим веществам.

На фоне растущего спроса на электромобили и возобновляемые источники энергии, а также бурного развития аккумуляторных батарей одно можно сказать наверняка: батареи будут играть ключевую роль в переходе на возобновляемые источники энергии. Вот чего ожидать в 2023 году.

Радикальное переосмысление

В 2023 году могут быть достигнуты некоторые совершенно иные подходы к батареям для электромобилей, хотя, вероятно, потребуется больше времени, чтобы они оказали коммерческое влияние.

В этом году следует обратить внимание на так называемые твердотельные батареи. В литий-ионных батареях и связанных с ними химических веществах используется жидкий электролит, который перемещает заряд; твердотельные батареи заменяют эту жидкость керамикой или другими твердыми материалами.

Этот обмен открывает возможности, позволяющие накапливать больше энергии в меньшем пространстве, потенциально увеличивая запас хода электромобилей. Твердотельные батареи также могут перемещать заряд быстрее, что означает более короткое время зарядки. А поскольку некоторые растворители, используемые в электролитах, могут быть легковоспламеняющимися, сторонники твердотельных батарей говорят, что они повышают безопасность, снижая риск возгорания.

В твердотельных батареях может использоваться широкий спектр химических элементов, но в основном кандидате на коммерциализацию используется металлический литий. Quantumscape, например, сосредоточена на этой технологии и привлекла сотни миллионов инвестиций, прежде чем стать публичной компанией в 2020 году. У компании есть соглашение с Volkswagen, согласно которому к 2025 году ее аккумуляторы могут быть установлены в автомобилях.  

Но полностью заново изобрести аккумуляторы оказалось непросто, и литий-металлические аккумуляторы столкнулись с опасениями по поводу износа с течением времени, а также с производственными проблемами. В конце декабря Quantumscape объявила, что доставила образцы автомобильным партнерам для тестирования, что стало важной вехой на пути к использованию твердотельных аккумуляторов в автомобилях. Другие производители твердотельных аккумуляторов, такие как Solid Power, также работают над созданием и тестированием своих аккумуляторов. Но хотя в этом году они могут достичь значительных успехов, в 2023 году их аккумуляторы не будут использоваться в транспортных средствах.  

Твердотельные батареи — не единственная новая технология, на которую стоит обратить внимание. Натрий-ионные батареи также резко отличаются от распространенных сегодня литий-ионных химических элементов. Эти батареи имеют конструкцию, аналогичную литий-ионным батареям, включая жидкий электролит, но вместо лития в них используется натрий в качестве основного химического ингредиента. Китайский гигант по производству аккумуляторов CATL, как сообщается, планирует начать их массовое производство в 2023 году.

Натрий-ионные батареи могут не улучшить производительность, но они могут сократить расходы, поскольку они основаны на более дешевых и более доступных материалах, чем литий-ионные химические вещества. Но неясно, смогут ли эти батареи удовлетворить потребности в запасе хода и времени зарядки электромобилей, поэтому несколько компаний, занимающихся этой технологией, таких как американская Natron, нацелены на запуск менее требовательных приложений, таких как стационарные устройства хранения или микромобильные устройства. например, электровелосипеды и скутеры.

Сегодня рынок аккумуляторов, предназначенных для стационарного энергоснабжения, невелик — примерно одна десятая рынка аккумуляторов для электромобилей, по словам Яёи Секине, руководителя отдела накопления энергии исследовательской компании BloombergNEF. Но потребность в хранении электроэнергии растет по мере того, как устанавливается все больше возобновляемых источников энергии, поскольку основные возобновляемые источники энергии, такие как ветер и солнечная энергия, являются переменными, а батареи могут помочь хранить энергию, когда она понадобится.

Литий-ионные аккумуляторы не идеальны для стационарного хранения, хотя сегодня они широко используются для этого. В то время как батареи для электромобилей становятся меньше, легче и быстрее, основная цель стационарного хранения — сократить расходы. Размер и вес не имеют большого значения для сетевого хранилища, а это означает, что различные химические процессы, скорее всего, одержат победу.

Одной из восходящих звезд стационарного хранилища является железо, и два игрока могут добиться прогресса в следующем году. Form Energy разрабатывает железо-воздушную батарею, в которой используется электролит на водной основе и которая в основном накапливает энергию за счет обратимого ржавления. Недавно компания объявила о строительстве производственного предприятия стоимостью 760 миллионов долларов в Вейртоне, Западная Вирджиния, строительство которого планируется начать в 2023 году. Другая компания, ESS, строит железную батарею другого типа, в которой используется аналогичная химия; он начал производство в своей штаб-квартире в Уилсонвилле, штат Орегон.

Изменения в рамках стандарта

Литий-ионные аккумуляторы становятся все лучше и дешевле, но исследователи продолжают совершенствовать технологию, чтобы добиться большей производительности и снизить затраты.

Частично мотивация связана с волатильностью цен на материалы для аккумуляторов, что может подтолкнуть компании к изменению химического состава. «Это игра с издержками, — говорит Секине.

Катоды, как правило, являются одной из самых дорогих частей батареи, а тип катода, называемый NMC (никель-марганцево-кобальтовый), сегодня является доминирующей разновидностью аккумуляторов для электромобилей. Но эти три элемента, в дополнение к литию, дороги, поэтому сокращение некоторых или всех из них может помочь снизить затраты.

Этот год может стать годом прорыва для одной альтернативы: литий-железо-фосфат (LFP), недорогой катодный материал, иногда используемый для литий-ионных аккумуляторов.

Недавние улучшения в химии и производстве LFP помогли повысить производительность этих батарей, и компании переходят к внедрению этой технологии: доля рынка LFP быстро растет: с примерно 10% мирового рынка электромобилей в 2018 году до примерно 40% в 2018 году. 2022. Tesla уже использует аккумуляторы LFP в некоторых автомобилях, а автопроизводители, такие как Ford и Volkswagen, объявили, что планируют начать предлагать некоторые модели электромобилей с химией.

Хотя исследования аккумуляторов, как правило, сосредоточены на химическом составе катодов, аноды также находятся в очереди на усовершенствование.

Сегодня в большинстве анодов литий-ионных аккумуляторов, независимо от состава катода, для удержания ионов лития используется графит. Но такие альтернативы, как кремний, могут помочь увеличить плотность энергии и ускорить зарядку.

Кремниевые аноды были предметом исследований в течение многих лет, но исторически они не имели достаточно длительного срока службы, чтобы служить в продуктах. Однако теперь компании начинают расширять производство материалов.

В 2021 году стартап Sila начал производить кремниевые аноды для батарей в носимых фитнес-устройствах. Недавно компания получила от Министерства энергетики грант в размере 100 миллионов долларов на строительство производственного предприятия в Мозес-Лейк, штат Вашингтон. Завод будет служить партнерству Sila с Mercedes-Benz и, как ожидается, будет производить материалы для аккумуляторов электромобилей, начиная с 2025 года.

Другие стартапы работают над смешиванием кремния и графита для изготовления анодов. OneD Battery Sciences, которая сотрудничает с GM и Sionic Energy, может предпринять дополнительные шаги по коммерциализации в этом году.

Продукты, формирующие политику

Закон о снижении инфляции, принятый в конце 2022 года, выделяет почти 370 миллиардов долларов на финансирование климата и экологически чистой энергии, включая миллиарды на производство электромобилей и аккумуляторов. «Все думают об IRA», — говорит Йет-Минг Чанг, исследователь материалов в Массачусетском технологическом институте и основатель нескольких компаний по производству аккумуляторов.

IRA будет предоставлять ссуды и гранты производителям аккумуляторов в США, повышая мощность. Кроме того, предусмотренные законом налоговые льготы для электромобилей стимулируют автопроизводителей приобретать материалы для аккумуляторов в США или у своих партнеров по свободной торговле и производить аккумуляторы в Северной Америке. Из-за финансирования IRA и ограничений налогового кредита на электромобили автопроизводители будут продолжать объявлять о новых производственных мощностях в США и искать новые способы получения материалов.

Все это означает, что спрос на основные ингредиенты литий-ионных аккумуляторов, включая литий, кобальт и никель, будет возрастать. Одним из возможных результатов стимулов IRA является рост уже растущего интереса к переработке аккумуляторов. Хотя в ближайшее время не будет достаточно электромобилей, чтобы удовлетворить спрос на некоторые важные материалы, рециркуляция начинает накаляться.

CATL и другие китайские компании лидируют в переработке аккумуляторов, но в этом году отрасль может увидеть значительный рост на других крупных рынках электромобилей, таких как Северная Америка и Европа. Компании Redwood Materials и Li-Cycle из Невады со штаб-квартирой в Торонто строят предприятия и работают над разделением и очисткой ключевых металлов, таких как литий и никель, для повторного использования в батареях.

Компания Li-Cycle должна начать ввод в эксплуатацию своего основного предприятия по переработке в 2023 году. Redwood Materials начала производить свой первый продукт, медную фольгу, на своем предприятии за пределами Рино, штат Невада, и недавно объявила о планах строительства второго предприятия, начиная с этого года. в Чарльстоне, Южная Каролина.

С потоком денег от IRA и других политиков во всем мире, подпитывающим спрос на электромобили и их аккумуляторы, 2023 год будет годом, за которым стоит наблюдать.

Эта статья является частью серии статей MIT Technology Review “Что дальше”, в которой мы рассматриваем отрасли, тенденции и технологии, чтобы дать вам первое представление о будущем.

Кейси Краунхарт

Продолжайте читать

Самый популярный

Научиться кодировать недостаточно , но новые усилия направлены на быть инклюзивным.

Оставайтесь на связи

Иллюстрация Роуз Вонг

Узнайте о специальных предложениях, главных новостях, предстоящие события и многое другое.

Введите адрес электронной почты

Политика конфиденциальности

Спасибо, что отправили письмо!

Ознакомьтесь с другими информационными бюллетенями

Похоже, что-то пошло не так.

У нас возникли проблемы с сохранением ваших настроек. Попробуйте обновить эту страницу и обновить их один раз больше времени. Если вы продолжаете получать это сообщение, свяжитесь с нами по адресу [email protected] со списком информационных бюллетеней, которые вы хотели бы получать.

Встречайте новые аккумуляторы, открывающие доступ к более дешевым электромобилям

Изменение климата

Планируемый завод знаменует собой важную веху в США для новых аккумуляторов, которые позволяют создавать более дешевые и долговечные электромобили.

Автор:

  • Кейси Краунхарт Страница архива

17 февраля 2023 г.

Ford Motor Company

В Америку поступают новые аккумуляторы.

На этой неделе Ford объявил о планах строительства нового завода в Мичигане, который будет производить литий-железо-фосфатные батареи для своих электромобилей. Завод, который, как ожидается, будет стоить 3,5 миллиарда долларов и начнет производство в 2026 году, станет первым заводом, производящим эти батареи в США.

«Это большое дело», — сказала губернатор Мичигана Гретхен Уитмер на пресс-конференции, посвященной планам завода. Расширение вариантов аккумуляторов позволит Ford «создавать больше электромобилей быстрее и, в конечном итоге, сделать их более доступными», — сказал Билл Форд, исполнительный председатель Ford.

Также известные как литий-железо-фосфатные (LFP) батареи, которые будут производиться на новом заводе, они представляют собой более дешевую альтернативу никель- и кобальтсодержащим батареям, которые сегодня используются в большинстве электромобилей в США и Европе. В то время как популярность этой технологии в Китае росла, завод Ford, разработанный в сотрудничестве с китайским аккумуляторным гигантом CATL, знаменует собой веху на Западе. Сокращая расходы, а также повышая скорость зарядки и продлевая срок службы, аккумуляторы LFP могут помочь водителям расширить возможности электромобилей.

Все литий-ионные батареи содержат литий, который помогает накапливать заряд в части батареи, называемой катодом. Но литий не выполняет эту работу в одиночку: в катоде к нему присоединяется вспомогательная масса из других материалов.

Самый распространенный тип катода, который сегодня используется в автомобилях, помимо лития содержит никель, марганец и кобальт. Некоторые автопроизводители, такие как Tesla, используют другую катодную химию, состоящую из никеля, кобальта и алюминия. Оба этих типа катодов получили известность отчасти потому, что они имеют высокую плотность энергии, а это означает, что батареи будут меньше и легче, чем другие, которые могут хранить такое же количество энергии.

В то время как эти два вещества использовались по умолчанию для катодов в батареях электромобилей, литий-железо-фосфат, более старая химия, в последние несколько лет снова стал популярным, в основном благодаря огромному росту в Китае.

Эти железосодержащие батареи, как правило, примерно на 20% дешевле, чем другие литий-ионные батареи той же емкости. Отчасти это связано с тем, что LFP не содержит кобальта или никеля, дорогих металлов, цены на которые в последние годы сильно колебались. Производители аккумуляторов также работают над снижением содержания кобальта, поскольку добыча этого металла связана с особо вредными условиями труда.

Производство катодов без кобальта и никеля может помочь автопроизводителям сократить расходы, и некоторые из них уже начали менять химический состав аккумуляторов, используемых в автомобилях, продаваемых в США. Сегодня Tesla импортирует элементы LFP из Китая для некоторых моделей, в том числе для Model 3. Ранее Ford объявил, что начнет использовать эту технологию в своем Mach-E в 2023 году и в F-150 Lightning в 2024 году. , Ford станет первым автопроизводителем, который будет производить аккумуляторы LFP в США. Новое предприятие, в котором будут использоваться технологии CATL, может помочь запустить производство LFP в США в более широком смысле. «Это ключевой момент для производственного ландшафта Северной Америки», — говорит Эвелина Стойкоу, аналитик аккумуляторных технологий в BloombergNEF, исследовательской компании, специализирующейся на энергетике.

Примерно в то же время, что и завод Форда, могут начать работу несколько небольших производственных предприятий LFP.

В октябре 2022 года федеральное правительство США объявило об инвестициях почти в 200 миллионов долларов, чтобы помочь компании ICL-IP America построить завод в Миссури. Завод будет производить материал для катодов LFP, которые затем будут использоваться для изготовления аккумуляторов. Его производство должно начаться в 2025 году. 

Тем временем компания American Battery Factory из Юты планирует создать производственный объект для LFP-батарей в Тусоне, штат Аризона. Ожидается, что этот объект будет стоить около 1,2 миллиарда долларов и должен быть введен в эксплуатацию в 2026 году. 

Хотя растущая доступность альтернативных химических элементов аккумуляторов может значительно расширить возможности для автопроизводителей и водителей, LFP, вероятно, не сможет полностью заменить другие технологии. «Это не святой Грааль для аккумуляторов, — говорит Стойкоу. Батареи

LFP дешевле других химических элементов и могут иметь более длительный срок службы, но они также имеют тенденцию быть более тяжелыми и громоздкими. Это может быть проблемой для транспортных средств, потому что, если батарея тяжелее, потребуется больше энергии для перемещения, что ограничивает дальность действия. А большие батареи могут занимать место для сидения или груза.

Водители в США и Европе, как правило, предпочитают большие автомобили с большим запасом хода. Это заставляет вкладывать больше энергии в ограниченное пространство, поэтому LFP может никогда не доминировать на Западе, как в Китае, говорит Стойкоу.

Рост LFP, вероятно, стабилизируется после этого года, стабилизировавшись на уровне около 40% мирового рынка аккумуляторов для электромобилей, говорит Стойкоу. И, забегая вперед, мы, вероятно, скоро увидим другие, более новые химические вещества, проникающие в автомобили.

Добавление марганца в железосодержащие батареи может повысить эффективность при сохранении низких затрат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *