Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Читать онлайн «Просто электричество», Олег Фейгин – Литрес

© Фейгин О. О., 2017, текст

© ООО «Страта», 2017

* * *

Предисловие

Пожалуй, разгадка тайн электромагнетизма дала нам столько, сколько мы не получали от покорения всего, что было накоплено людьми за всю их историю. Подумайте: миллионы лет и век – каких-то сто лет, в течение которых выросла и окрепла вся электротехническая промышленность Земли! Время, в течение которого люди создали себе «электрический мир». Невозможно думать об этом без восхищения. И вместе с тем еще далеко не всё мы в этой отрасли знаем…

А. Томилин. Заклятие Фавна

Человек за многие тысячелетия своей истории проделал гигантский путь познания природы, и не последнее место в окружающих его чудесах играла «янтарная субстанция» – электричество, названное так в честь янтаря – электрона по-древнегречески. Эта окаменевшая смола, привозимая из Прибалтики по Янтарному пути, по Днепру и Бугу, поражала эллинов своей способностью притягивать мелкие частички, будучи потерта тканью или шерстью.

Но должны были пройти тысячелетия, прежде чем выяснилось, что мельчайшие, еле заметные искорки от натертого янтаря ничем не отличаются по своей природе от колоссальных молниевых разрядов.

Сегодня даже малообразованного суеверного человека не пугают грозовые явления – электризация воздуха, молнии, раскаты грома, – ведь ему хотя бы понаслышке известна их природная причина. Однако и сейчас в природе электрических явлений встречаются загадочные, досконально не изученные процессы, такие как шаровая молния, молния красный призрак, молния голубая струя, призрачные спрайты, суть которых мы еще не знаем и для которых только строятся полные научные модели.

Удивительна история использования солнечного вещества на Земле, а именно так можно понимать электрическую сварку и разрезание дугой из высокотемпературной плазмы электрического разряда, открытой еще в XVIII веке русским академиком Петровым. Поражает воображение спектр применения электросварочных технологий, их влияние на развитие современной науки и техники – здесь и открытие академика Корнеева, и космические технологии, и строительство подводных городов.

Столетие назад было открыто явление сверхпроводимости, указывающее прямой путь избегания потерь при передаче электроэнергии. Путь этот непрост, ведь чтобы проводник полностью потерял свое электрическое сопротивление, его необходимо охладить до очень низких температур, а это само по себе является серьезной технической задачей. Тем не менее уже десятки лет сверхпроводники удачно используют в научных приборах и медицине.

До недавнего времени высокая стоимость сверхпроводящих материалов и необходимость сверхглубокого охлаждения сильно препятствовали их массовому применению. Ситуация существенно изменилась после открытия в 1986 году высокотемпературных сверхпроводников (ВТСП). Это позволило приступить к созданию сверхпроводящих линий электропередач на основе сверхпроводников, погруженных в сравнительно дешевый жидкий азот. Уже созданы многокилометровые опытные линии, а через десятилетие прогнозируется широкое промышленное применение ВТСП-кабелей на тысячи километров линий электропередачи и сотни гигаватт передаваемой мощности.

Автор выражает глубокую признательность своим учителям и коллегам – Льву Самойловичу Палатнику, Игорю Ивановичу Фалько и Дмитрию Ивановичу Корнееву

Глава 1. Стрелы небесных громовержцев

Атмосферное электричество – грозы и земной магнетизм – едва ли не первые неразрешимые загадки природы, о которые споткнулся разум. Они долго не поддавались разгадке. Каждое время, каждая эпоха толковали наблюдаемые феномены в соответствии с накопленными знаниями. Сначала на уровне мифов, пока знаний было совсем мало. Позже, когда фактов накопилось побольше, самовластие богов перестало удовлетворять мыслителей. Они стали пытаться объяснять природу исходя из нее самой, без помощи сверхъестественных сил. Возникли первые натурфилософские догадки. Сначала наивные, чисто спекулятивного характера. Но уже и они высоко поднимали разум человека, ставили его обладателя на одну ступень с богом.

А. Томилин. Заклятие Фавна

Наводнения, землетрясения, извержения вулканов, пожары – эти стихийные бедствия сравнительно редки по сравнению с постоянными грозами. Именно поэтому с грозами связано больше всего мифов, легенд и поверий. В самом начале изустной истории человечества гроза воспринималась как ярость некоего фантастического существа, например, гигантской птицы, хлопающей громом крыльев и сверкающей молниями глаз. Затем пришла пора человекоподобных богов, и на небесах засверкали молниями Митра, Тор, Зевс, Юпитер с множеством других сверхъестественных существ. Так, у славян богом грома и молнии был Перун, как оплодотворяющее и карающее божество, приносящее весенние тепло, дождь и грозы, а после Крещения Руси роль небесного громовержца перешла к Илье-пророку.

Развитие науки привело к первым представлениям о сущности грозы. Греческие ученые Анаксимен и Анаксагор рассматривали явление грозы как результат сгущения воздуха в облаках. Сократ видел основную причину возникновения гроз в столкновении облаков, Демокрит – в их соединении. Эти представления были обобщены и развиты Аристотелем, считавшим, что молния и гром образуются благодаря воспламенению в облаках разнообразных горючих испарений и завихриванию их между облаками. В эпоху Средневековья представления о природе грозовых процессов не получили существенного развития.

Сегодня мы называем грозой процесс развития в атмосфере мощных электрических разрядов – молний, обычно сопровождаемых громом и связанных в большинстве случаев с укрупнением облаков и ливнеобразным выпадением осадков. Прохождение грозы над местностью, как правило, сопровождается довольно значительными изменениями метеорологических параметров приземного слоя воздуха. Это хорошо знакомые всем нам явления: падение температуры, повышение влажности воздуха, резкое изменение атмосферного давления, а также силы и направления ветра.

Ученые-метеорологи доказали, что грозовые процессы невозможны без разделения зарядов в облаке путем их переноса воздушными потоками – конвекции. Поле конвекции в облаках распадается на несколько своеобразных ячеек.

Каждая конвективная ячейка проходит стадию зарождения, зрелости и затухания. В стадии зарождения во всей конвективной ячейке преобладают восходящие течения.

Зрелая конвективная ячейка характеризуется развитием восходящих и нисходящих потоков, электрической активностью, выраженной разрядами молний и выпадением осадков.

В последнее время исследования с помощью метеоспутников и прочих орбитальных космических аппаратов показали, что в облачной оболочке тропосферы действует своеобразный ледяной генератор. При этом подтвердилась гипотеза еще позапрошлого века о том, что электрические заряды накапливаются при соударениях кристаллов льда в виде снежинок или градин с более крупными образованиями льда в грозовых облаках. При этом мельчайшие кристаллы льда устремляются с восходящими потоками воздуха в верхнюю часть облака и многократно соударяются с другими кристаллами. При этих столкновениях мелкие кристаллы льда теряют электроны и приобретают положительный заряд. В то же время более тяжелые частицы льда обретают отрицательный заряд и опускаются в нижнюю часть облака. Таким образом создается разделение зарядов с разностью потенциалов в миллионы вольт, которая и является причиной молний.

При этом каждые десять тысяч тонн облачного льда приводят к молниеносному разряду атмосферного электричества.

Большинство молний приносит к Земле отрицательный заряд, но иногда встречаются разряды и противоположной полярности. В первом случае грозы значительно богаче молниями, чем во втором. При прохождении гроз через выступы скал и остроконечные детали сооружений на земной поверхности в воздух стекает преимущественно положительный заряд. Потеря земной поверхностью положительного заряда превышает потерю отрицательного в несколько раз. В высокогорных условиях вследствие разреженности воздуха разряд с острых оконечностей значительно интенсивнее, чем в равнинной местности.

Чаще всего молния представляет собой многократный разряд. Это обычное явление, молний может насчитываться до нескольких десятков. Паузы между отдельными «залпами» составляют несколько секунд. Средняя длительность полного разряда молнии измеряется десятыми долями секунды, отклонения от среднего значения в обе стороны возможны на порядок величины.

Обычно разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, он ступенчато продвигается от облака к земле.

В зонах умеренного климата разряды молний направляются по преимуществу к земле, в тропиках же большинство разрядов происходит между облаками или внутри одного облака.

Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу создает кратковременные токи от 3 до 200 кА. Для объяснения электризации грозовых облаков был разработан ряд теорий, например модель дробления дождевых капель потоками воздуха.

В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие – отрицательно.

 

Существует также конкурирующая индукционная теория. Она строится на предположении о том, что электрические заряды разделяются электрическим полем Земли, имеющим отрицательный знак. В основе этого механизма лежит явление электростатической индукции, заключающееся в появлении противоположного заряда вблизи заряженной поверхности. Воздушные массы, насыщенные атмосферным электричеством, в целом электронейтральны, но нижняя кромка тучи получает положительный заряд, а верхняя – отрицательный. Горизонтальные молнии происходят между противоположными зарядами самого облака, а вертикальные – между его нижней частью и земной поверхностью.

В теории свободной ионизации предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.

При разряде молнии на всем протяжении ее извилистого пути происходит очень быстрое нагревание столба воздуха до нескольких десятков тысяч градусов. И основной канал молнии, и все его многочисленные разветвления становятся источниками ударных волн. Резкий фронт ударной волны по мере удаления от места разряда все более сглаживается, и на некотором расстоянии от источника ударная волна превращается в акустическую (звуковую) волну небольшой амплитуды. В ходе этого превращения происходит постепенное уменьшение скорости распространения ударной волны вплоть до скорости звука в конечном итоге. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.

Средняя длина молнии обычно составляет несколько километров, но изредка между облаками могут проскакивать молнии в десятки раз длиннее. При этом разность потенциалов между грозовым облаком и Землей в верхнем пределе иногда достигает миллиарда вольт. Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земли его движение определяется коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в туже самую точку, если только объект не разрушен предыдущим ударом.

Звуки, следующие после главного удара грома, создают впечатление удаляющегося от места наблюдения и постепенно затухающего рокочущего шума, это – раскаты грома. Они наблюдаются в местности с любым рельефом и образуются ветвящимся и удаляющимся от места наблюдения разрядом молнии. Длительность раскатов грома определяется особенностями развития молнии. В среднем раскаты длятся половину минуты, а крайние отклонения от среднего значения составляют около 50 %. Характер звучания грома является существенной особенностью уже начавшейся грозы. Народные приметы говорят, что длительные раскаты грома являются признаком приближения протяженного массива грозовых облаков. Глухой, продолжительный и умножающийся со временем гром с медленными раскатами характерен для длительной грозы, в то время как короткие и резкие удары с возрастающими по времени промежутками между ними характеризуют кратковременную.

В грозу нельзя прятаться под деревом. Следует отойти на расстояние, в два раза превышающее его высоту. Попадая в землю, молния «растекается», и ее импульсный ток создает разность потенциалов на поверхности, так называемое шаговое напряжение. Напряжение тем меньше, чем дальше от места удара. А воздействие на человека тем меньше, чем у́же стоят его ноги.

Средняя дальность слышимости грома для летних гроз на континенте составляет полтора десятка километров. Разница во времени между вспышками молнии и восприятием грома может достигать полутора минут. Гром от близкого разряда производит такое же действие на слух, как выстрел зенитного орудия в нескольких метрах от наблюдателя.

Площадь земной поверхности, на которой проявляются связанные с отдельной грозой электрические явления, простирается на десятки квадратных километров. Благодаря проводимости воздуха к земной поверхности на этой площади от облака поступает ток силой около ампера.

Учитывая, что на Земле ежесекундно наблюдается в среднем около 100 разрядов линейной молнии, можно подсчитать среднюю мощность, которая затрачивается в масштабе всей Земли на образование гроз; она равняется 1018 эрг/с. В связи с этим следует отметить, что энергия конденсации, выделяющаяся в грозовом облаке средних размеров с площадью основания около 30 км2 при дожде средней интенсивности, составляет около 1021 эрг. Таким образом, энергия, выделяющаяся при выпадении осадков из грозового облака, значительно превышает его электрическую энергию.

С давних времен в процессе познания грозы человек стремился подчинить ее своей власти. Об этом говорит, например, легенда о Прометее. Овладение грозами было предметом мечтаний ученых и философов Средневековья. В последние годы были сделаны попытки засева грозовых облаков кристаллами йодистого серебра, йодистого свинца и твердой углекислоты. Предполагается, что каждое из этих веществ может способствовать затуханию и даже полному прекращению грозового процесса за счет резкого усиления конденсации водяного пара. Опыты в этом направлении уже позволили накопить обширный экспериментальный материал, позволяющий сделать ряд практических выводов. На их основе были разработаны методики, позволяющие эффективно бороться с локальными очагами непогоды при главных праздничных, спортивных, музыкальных и политических мероприятиях на открытом воздухе.


Солнечные панели космической станции содержат в общей сложности 262 400 солнечных батарей и занимают площадь около 2 500 м2 – более половины площади футбольного поля.

Другой вариант основан на вычислении точной структуры и силы подогрева атмосферы, необходимого для снижения интенсивности урагана и изменения его курса. Несомненно, практическая реализация такого проекта потребует огромного количества энергии, но ее можно получить с помощью орбитальных солнечных электростанций.

Вырабатывающие энергию спутники следует оснастить гигантскими зеркалами, фокусирующими солнечное излучение на элементах солнечной батареи. Собранную энергию затем можно будет переправить на земные микроволновые приемники. Современные конструкции космических солнечных станций способны распространять микроволны, не нагревающие атмосферу и поэтому не теряющие энергию. Для управления погодой важно направить из космоса микроволны тех частот, при которых они лучше поглощаются водяным паром. Различные слои атмосферы можно нагреть согласно заранее продуманному плану, а области внутри урагана и ниже дождевых облаков будут защищены от нагрева, так как дождевые капли хорошо поглощают СВЧ-излучение.

Есть замечательный роман Даниила Гранина «Иду на грозу». В нем рассказывается о самоотверженных исследованиях молодых ученых, проводящих опасную авиаразведку бушующих гроз с борта плохо приспособленного транспортного самолета с целью найти критические параметры для управления погодой. В романе подобные попытки заканчиваются трагически, но сама идея воздействия на грозовые процессы непосредственно с борта летательного аппарата, находящегося в центре (глазе урагана), была очень популярна во второй половине прошлого века. К сожалению, практического воплощения «генератор» погодных условий не получил и до сих пор еще не построен.

Кроме проблемы управления погодными условиями существует не менее увлекательная задача получения энергии грозового электричества. В тридцатых годах прошлого века на одной из горных вершин Швейцарских Альп была установлена металлическая решетка. Во время гроз эта решетка собирала достаточный заряд для возникновения многометровых электрических разрядов, что соответствовало силе тока в несколько десятков тысяч ампер и миллионновольтной разности потенциалов.

Вначале предполагалось получаемое на этой установке напряжение использовать для ускорения заряженных частиц в ускорителях. Однако от этой мысли пришлось отказаться ввиду сильной изменчивости электрического состояния грозовых облаков и невозможности его достаточной стабилизации. Попытки использовать протекающий во время гроз в поднятых высоко над земной поверхностью антеннах электрический ток для питания ламп накаливания также пока не дали экономически выгодного эффекта.

Каждую минуту на Земле происходит около 6000 ударов молний между облаками и земной поверхностью, естественно, что это совершенно фантастическое количество электроэнергии, расходуемое «впустую» планетными грозами, давно не дает покоя поколениям изобретателей. В научно-популярных изданиях можно найти самые разнообразные проекты различных вертикальных электролиний – громоотводов, прикрепленных к аккумуляторам и поддерживаемых дирижаблями, гелиостатами (воздушными шарами, нагреваемыми солнцем) и даже геостационарными (висящими над определенной точкой земной поверхности) спутниками. Вполне вероятно, что приближающийся глобальный топливно-энергетический кризис заставит научный мир пересмотреть отношение к подобным идеям, перейдя к детальному анализу наиболее перспективных из них.

Между прочим, один из удивительных феноменов проявления атмосферного электричества уже многие столетия служит мореходству, получив название Маяк Маракайбо.

Глава 2. Молниевый шторм в Кататумбо

С незапамятных времен грозные и таинственные явления природы волновали людей, интересовали их и требовали объяснения. Почему, к примеру, время от времени небо затягивают черные тучи, блещут молнии и гремит гром? Почему огненные стрелы поражают некоторых людей, даже если они спрятались под высокими деревьями, и не трогают других в чистом поле? Нет ли в этом какого-нибудь тайного смысла, не участвуют ли в этом выборе неведомые силы?

А. Томилин. Заклятие Фавна

Как-то раз знаменитый британский пират «на службе короны», то есть имевший патент на официальный грабеж испанских колоний, Френсис Дрейк, задумал взять штурмом город Кататумбо. Этот некогда богатый испанский форпост расположен на северо-западе Венесуэлы, там, где река Кататумбо впадает в озеро Маракайбо. Весной 1595 года под покровом темноты отряды Дрейка подошли к стенам Кататумбо, и тут череда мощных беззвучных молний озарила все окрестности. Испанцы тут же подняли тревогу, и их пушки быстро обратили пиратов в бегство.

Это знаковое событие, предвосхитившее закат карибской пиратской вольницы, нашло свое отражение в эпической поэме Лопе де Вега «Песнь о драконе», написанной в 1597 году. В ней великий испанский драматург, поэт и писатель красочно изобразил гибель ненавистного адмирала-флибустьера.

Так весь мир узнал о прекрасном в своей загадочности природном явлении, которое получило название «молнии Кататумбо».

Феномен Кататумбо исследовал знаменитый прусский естествоиспытатель Александр фон Гумбольдт, пришедший к выводу, что молниевые штормы в небесах вызывают своеобразные «электрические взрывы». Наблюдения Гумбольдта дополнил известный итальянский географ Агустин Кодацци, много писавший об «удивительной череде молний высоко в небесах, которые возникают без грозовой канонады над болотами Зулиа» (Зулиа – это штат Венесуэлы, где располагается озеро Маракайбо и река Кататумбо).

Сегодня мы знаем, что непрекращающийся шторм Кататумбо выражается в возникновении множества последовательных молниевых вспышек. Порывы этого небесного шторма возникают в основном ночью и сильно зависят от времени года, достигая пика интенсивности в мае и октябре. Интенсивность ударов молний здесь одна из самых высоких на Земном шаре и достигает 250 разрядов на квадратный километр в год. При этом количество грозовых дней в году меняется от семидесяти до двухсот. В суточном пике активности, который приходится на время от семи часов вечера до четырех утра, можно увидеть до трех десятков вспышек в минуту. В час молнии вспыхивают до трех сотен раз.


Молнии видны с расстояния до 400 км, не только в дни штормов, но и в обычные. Из-за такой постоянной грозовой активности молниевый шторм называют Маяком Маракайбо, ведь на протяжении столетий яркие сполохи помогали судам ориентироваться в болотистой дельте Кататумбо.

Грозовые тучи над Кататумбо порождают более миллиона молний в год, мощность каждой из которых составляет порядка 400000 А. Непрерывно сменяя друг друга, небо рассекают колоссальные электрические разряды до десяти и более километров длиной. Самое интересное, что при такой интенсивности молний практически не слышно грозовых раскатов.

 

Считается, что молнии Кататумбо являются крупнейшим одиночным генератором озона на Земле. Впадающая в озеро Маракайбо река Кататумбо проходит через очень большие болота, вымывая органические материалы, которые, разлагаясь, выделяют огромные облака ионизированного метана. Потом они поднимаются на большие высоты, где разносятся сильными ветрами, прибывающими из Анд. Метан, ослабляя изоляционные свойства воздуха в облаке, вызывает частое появление молний.

Существуют и другие версии возникновения молниевого шторма над Маракайбо, но в январе 2010 года метановая гипотеза получила существенное подтверждение. После многомесячной засухи многие болота пересохли, и выбросы метана резко снизились. Вскоре Маяк Маракайбо погас. Небесные сполохи исчезли на долгие три месяца, так что экологи, метеорологи и туристы забили тревогу задаваясь вопросом, почему прекратился удивительный феномен. К счастью, после обильного сезона дождей, восстановившего водный баланс болот, генератор молний заработал вновь и с небольшими перерывами продолжает сверкать до сих пор.

Обычно молнии «включаются» примерно через час после заката. К этому моменту небольшие кораблики с туристами уже качаются на волнах озера. Берег чуть виден, и его огни не мешают наслаждаться удивительной и завораживающей картиной бесконечной пляски желто-оранжевых всполохов. При этом старожилы не рекомендуют искать встречи с молниями в период с января по март.

Недавно НАСА представило серию снимков молниевых штормов, сделанных с высоты нескольких сотен километров метеоспутником GOES-16. Этот геостационарный спутник наблюдения за окружающей средой был запущен на орбиту высотой в 35,8 тысячи км и с тех пор висит над Западным полушарием, анализируя погоду и передавая данные на Землю.

Этому новейшему американскому погодному спутнику и удалось запечатлеть поразительный мощный электрический шторм, который разразился над северо-западом Венесуэлы. Кроме всего прочего, GOES-16 зафиксировал редкую особенность молниевого шторма, когда разряды бьют исключительно из тучи в тучу параллельно земной поверхности.

На гербе и флаге штата Зулиа в честь феномена Кататумбо изображен стилизованный Маяк Маракайбо. При этом власти штата при поддержке центрального правительства на протяжении многих лет ставят вопрос о включении этого удивительного природного явления в перечень памятников всемирного наследия ЮНЕСКО. Если молнии Кататумбо когда-нибудь попадут в этот список, это, несомненно, будет беспрецедентным решением мирового сообщества.

«Что такое электричество ««очень простыми словами»?» — Яндекс Кью

Популярное

Сообщества

ТехнологииФизика+2

Алиса Шапошникова

  ·

43,1 K

ОтветитьУточнить

Виктор

Физика

808

Научный журналист  · 18 июл 2021

Мировоззренческое замечание. О мире лучше узнавать не через “очень простые слова”.

Под электричеством могут пониматься разные вещи. Я предерживаюсь того определения, что электричество — это некоторый круг физических явлений (явлений природы), который отделён от всех остальных явлений тем, что в них [явлениях] обязательно должны участвовать электрические заряды. Поэтому синонимом к слову “электричество” может выступить словосочетание “электрические явления” или “электромагнитные взаимодействия”. 

Одним из самых известных явлений такого рода является явление электрического тока — движение электрических зарядов под действием внешнего электрического поля. Ещё есть взаимодействие электрических зарядов через электростатическое поле.

1 эксперт согласен

Комментировать ответ…Комментировать…

Владимир Козлов

Технологии

2,4 K

Разработчик встроенных систем, немного радиолюбитель.   · 15 сент 2021  · vladimir-coslow.narod.ru/index.html

Электричество «очень простыми словами» – это процессы взаимодействия электрических зарядов между собой. Неподвижных (электростатика) и подвижных (электродинамика).

)

Чтобы ни дня в жизни не работать, на практике совмещаю работу с хобби.

Перейти на vladimir-coslow. narod.ru/index.html

Владимир Яшагин

17 июня 2022

Слова настолько просты, что ничего и не объясняют… что , где , когда ?

Комментировать ответ…Комментировать…

Тимур Кошкаров

Физика

232

Электрик с высшим образованием. Минск.  · 14 сент 2022

Зависит от того, с какой целью интересуетесь. Если хотите понять Закон Ома, то сотрите иллюстрацию.  Если хотите понять квантовую физику, то простыми словами не отделаешься. Читать далее

Комментировать ответ…Комментировать…

Юрий Романов

Технологии

198

Интересно всё обо всём. Не самая плохая эрудиция. Образование среднее техническое…  · 19 авг 2021

Набор физических явлений, описывающих поведение заряженных частиц(электронов и ионов) под действием внешних сил. Это в общем. В бытовом понимании – один из видов энергии, широко применяемой в быту.

Комментировать ответ…Комментировать…

Иван Сизов

2,5 K

Простите за пунктуацию  · 18 нояб 2016

Процесс взаимодействия (путем передачи определенных состояний друг другу) совсем маленьких частичек, внутри чуть менее маленьких частичек, из которых все вокруг состоит.

Комментировать ответ…Комментировать…

Павел Чернов

58

кандидат технических наук  · 18 нояб 2016

Термин электричество взаимосвязан с понятием электрического заряда. Все что обладает электрическим зарядом при направленном движении и составляет электричество. Это могут быть электроны в проводе, или ионы в жидкости аккумуляторной батарее. Движущиеся протоны тоже есть электричество. Электричество – это направленное движение электрически заряженных частиц.   Кстати… Читать далее

юрий тарасов

5 сентября 2020

Что такое заряд, его физический смысл?

Комментировать ответ…Комментировать…

Олег Чернов

430

болельщик  · 18 нояб 2016

Направленная энергия! Как-будто силой создаются миллионы шаров(ядер), в которые одновременно запускаются миллиарды стрел (электронов), но они не попадают , т.к. постоянно рыщут, создавая энергию, которая,живя в проводах, может быть направлена,  на разные полезные цели. Например зажечь лампочку.

Комментировать ответ…Комментировать…

IamJiva(Додлов Эдуард Игоревич)

36

Радиоинженер – разработчик РЭА Нейрохимик (органический синтез БАВ) Аснавирам  · 19 авг 2021

манипуляция потоками электронного газа и обьёмами сжатого электронного газа, существующего обычно неразрывно с металлом частью которого электрон как ребенок семьи является, хоть во дворе “все дети свои”, пока один не исчез по головам пересчитав

Комментировать ответ…Комментировать…

leonidovantone

674

zen. yandex.ru/sciencecafe  · 13 авг 2017

Чтобы разобраться быстро,-рекомендую тебе вот эту статью Жестокая разборка за электричество , условно в ней 3 части-вступление, объяснение природы тока, и объяснение физики и понятий на Простом Человеческом языке.

Алексей М.

13 марта 2020

Нобилевку нужно дать людям которые знают что такое электричество))

Комментировать ответ…Комментировать…

Вы знаете ответ на этот вопрос?

Поделитесь своим опытом и знаниями

Войти и ответить на вопрос

Объяснение электроэнергии — данные и статистика

Данные по США за 2021 год (если не указано иное).

Note: MW = megawatts, MWh = megawatthours, KW = kilowatts, and kWh = kilowatthours

Electricity generation from utility-scale power plants (net generation) 1
Общая чистая выработка 4 108 303 тыс. МВтч или около 4,11 трлн кВтч
Доля в общей чистой выработке по источникам энергии  
Природный газ 38,4%
Уголь 21,9%
Атомная 18,9%
Возобновляемые источники энергии, не связанные с гидроэнергетикой, всего 13,7%
Ветер 9,2%
Солнечная энергия (всего) 2,8%
Биомасса (всего) 1,3%
Геотермальная 0,4%
Гидроэлектростанции (традиционные) 6,1%
Нефть и другие источники 2 0,9%
Количество электрогенераторов 24 645
Крупнейшая электростанция по чистой выработке Пало-Верде (атомная энергетика) — 31 629 862 МВтч или около 31,6 млрд кВтч
Электрогенерирующая мощность коммунальных электростанций (нетто-летняя мощность) 1
Общая полезная мощность
1 145 856 МВт или около 1,15 млрд кВт
Доля мощности по источникам энергии  
Природный газ 42,9%
Уголь 18,3%
Возобновляемые источники энергии, не связанные с гидроэнергетикой, всего 18,3%
Ветер 11,6%
Солнечная энергия (всего) 5,4%
Биомасса (всего) 1,1%
Геотермальная 0,2%
Гидроэнергетика (всего) 9,0%
Обычные гидро 7,0%
Аккумулирующие гидроаккумуляторы 2,0%
Атомная 8,3%
Нефть (всего) 2,5%
Прочее 0,7%
  Итого может не равняться 100% из-за независимого округления.
Крупнейшая электростанция по мощности Плотина Гранд-Кули (гидроэлектростанция) — 7079 МВт
Потребление электроэнергии (конечное использование) и цена
Общее конечное использование 3 944 789 321 МВтч или около 3,94 трлн кВтч
Доля конечного использования по типу  
Розничная продажа электроэнергии (всего) 96,5%
Прямое использование электричества 3,5%
Розничные продажи электроэнергии и доли по секторам 3 805 874 253 МВтч или около 3,81 трлн кВтч
Жилой сектор 38,6%
Коммерческий сектор 34,9%
Промышленный сектор 26,3%
Транспортный сектор 0,2%
Крупнейшая электроэнергетическая компания по розничным продажам (в штате) Florida Power & Light Company — 112 395 915 МВтч или около 112 миллиардов кВтч
Розничные цены по секторам (среднегодовые)  
Жилой 13,66 цента за кВтч
Коммерческий 11,22 цента за кВтч
Промышленный   7,18 цента за кВтч
Транспорт 10,20 цента за кВтч
Среднее (все сектора) 11,10 цента за кВтч
Государственный рейтинг розничных цен (среднегодовая цена по всем секторам) Самый высокий — Гавайи, 30,31 цента за кВтч
Самый низкий — Айдахо, 8,17 цента за кВтч
Среднее месячное потребление 886 кВтч
Среднее ежемесячный счет за проживание 121,01 $
Крупнейшая электроэнергетическая компания по выручке от розничных продаж (в штате) Флорида Power and Light — 11,38 миллиарда долларов
Выбросы
Выбросы от электростанций  
Углекислый газ (CO 2 ) 1 651 911 тысяч метрических тонн (около 1,65 миллиарда метрических тонн или около 1,82 миллиарда коротких тонн)
Диоксид серы (SO 2 ) 1 168 тысяч метрических тонн (около 1,17 миллиона метрических тонн или около 1,29 миллиона коротких тонн)
Оксиды азота (NO x ) 1 253 тысячи метрических тонн (около 1,25 миллиона метрических тонн или около 1,38 миллиона коротких тонн

1 Коммунальные электростанции имеют электрическую мощность не менее 1 МВт.
2 Включает нефтяной кокс, жидкие углеводороды, прочие газы, другие разные источники, не включенные выше, и гидроаккумулирующие электростанции.

Последнее обновление: 17 ноября 2022 г., самые последние данные доступны на момент обновления.

Простая английская Википедия, бесплатная энциклопедия

Электричество — наличие и протекание электрического тока. Используя электричество, мы можем передавать энергию способами, которые позволяют нам выполнять простые домашние дела. [1] Его наиболее известная форма — поток электронов через проводники, такие как медные провода.

Слово «электричество» иногда используется для обозначения «электрической энергии». Это не одно и то же: электричество — это средство передачи электрической энергии, как морская вода — средство передачи энергии волн. Предмет, который позволяет электричеству проходить через него, называется проводником. Медные провода и другие металлические предметы являются хорошими проводниками, позволяя электричеству проходить по ним и передавать электрическую энергию. Пластмассы являются плохим проводником (они являются изоляторами) и не пропускают через себя много электричества. Они останавливают передачу электрической энергии.

Электрическая энергия может быть получена естественным путем (например, молнией) или людьми (например, в генераторе). Его можно использовать для питания машин и электрических устройств. Когда электрические заряды не движутся, электричество называют статическим электричеством. Когда заряды движутся, они представляют собой электрический ток, который иногда называют «динамическим электричеством». Молния является наиболее известным и опасным видом электрического тока в природе, но иногда статическое электричество также вызывает слипание вещей в природе.

Электричество может быть опасным, особенно вблизи воды, потому что вода является хорошим проводником, так как в ней есть такие примеси, как соль. Соль может помочь потоку электричества. С девятнадцатого века электричество используется во всех сферах нашей жизни. До тех пор это было просто диковинкой, увиденной в молнии грозы.

Электрическая энергия может быть получена, если магнит проходит близко к металлической проволоке. Это метод, используемый генератором. Самые большие генераторы находятся на электростанциях. Электрическая энергия также может быть высвобождена путем объединения химических веществ в банке с двумя металлическими стержнями разных видов. Этот метод используется в аккумуляторе. Статическое электричество может создаваться трением между двумя материалами, например, шерстяной шапкой и пластиковой линейкой. Это может вызвать искру. Электрическая энергия также может быть получена с использованием энергии солнца, например, в фотогальванических элементах.

Электроэнергия поступает в дома по проводам от мест, где она производится. Он используется электрическими лампами, электрическими обогревателями и т. д. Многие приборы, такие как стиральные машины и электрические плиты, используют электричество. На заводах электрическая энергия приводит в действие машины. Людей, которые работают с электричеством и электрическими устройствами в домах и на фабриках, называют «электриками».

Идея электричества, или тот факт, что янтарь приобретает способность притягивать легкие предметы при трении, возможно, была известна греческому философу Фалесу Милетскому, жившему около 600 г. до н.э.

Другой греческий философ, Теофраст, утверждал в трактате, что этой силой обладают другие субстанции.

Первое научное исследование электрических и магнитных процессов, однако, появилось только в 1600 году нашей эры благодаря исследованиям, проведенным английским врачом Уильямом Гилбертом. Гилберт был первым, кто применил термин электрический (греч. elektron , «янтарь») к силе, которую вещества проявляют после трения. Он также различал магнитное и электрическое действие.

Бен Франклин посвятил много времени исследованиям в области электричества. Его знаменитый эксперимент с воздушным змеем доказал, что атмосферное электричество (вызывающее явления молнии и грома) идентично электростатическому заряду лейденской банки. Франклин разработал свою теорию о том, что электричество — это единственная «жидкость», существующая во всей материи, и что его действие можно объяснить избытком и недостатком этой жидкости.

Существует два типа электрических зарядов, которые толкают и притягивают друг друга: положительные заряды и отрицательные заряды. Электрические заряды толкают или притягивают друг друга, если они не соприкасаются. Это возможно, потому что каждый заряд составляет электрическое поле вокруг себя. Электрическое поле – это область, окружающая заряд. В каждой точке вблизи заряда электрическое поле направлено в определенном направлении. Если в эту точку поместить положительный заряд, он будет толкаться в этом направлении. Если в эту точку поместить отрицательный заряд, он будет толкаться в прямо противоположном направлении.

Работает как магниты, и на самом деле электричество создает магнитное поле, в котором одноименные заряды отталкиваются друг от друга, а противоположные притягиваются. Это означает, что если вы поместите два негатива близко друг к другу и отпустите их, они разойдутся. То же верно и для двух положительных зарядов. Но если вы поместите положительный и отрицательный заряды близко друг к другу, они будут притягиваться друг к другу. Короткий способ запомнить это фраза противоположности притягиваются, подобное отталкивается.

Вся материя во Вселенной состоит из мельчайших частиц с положительным, отрицательным или нейтральным зарядом. Положительные заряды называются протонами, а отрицательные — электронами. Протоны намного тяжелее электронов, но оба имеют одинаковый электрический заряд, за исключением того, что протоны положительны, а электроны отрицательны. Поскольку «противоположности притягиваются», протоны и электроны слипаются. Несколько протонов и электронов могут образовывать более крупные частицы, называемые атомами и молекулами. Атомы и молекулы все еще очень малы. Они слишком малы, чтобы их увидеть. В любом крупном объекте, например, в вашем пальце, атомов и молекул больше, чем кто-либо может сосчитать. Мы можем только оценить их количество.

Поскольку отрицательные электроны и положительные протоны слипаются, образуя большие объекты, все большие объекты, которые мы можем видеть и чувствовать, электрически нейтральны. Электрически — это слово, означающее «описание электричества», а нейтральный — это слово, означающее «сбалансированный». Вот почему мы не чувствуем, как объекты толкают и тянут нас на расстоянии, как если бы все было электрически заряжено. Все большие объекты электрически нейтральны, потому что в мире одинаковое количество положительных и отрицательных зарядов. Можно сказать, что мир точно сбалансирован или нейтрален. Ученые до сих пор не знают, почему это так.

Рисунок электрической цепи: ток (I) течет от + по цепи обратно к –

Электричество передается по проводам.

Электроны могут перемещаться по всему материалу. Протоны никогда не движутся вокруг твердого объекта, потому что они очень тяжелые, по крайней мере, по сравнению с электронами. Материал, который позволяет электронам двигаться, называется проводником . Материал, который плотно удерживает каждый электрон на месте, называется изолятором . Примерами проводников являются медь, алюминий, серебро и золото. Примерами изоляторов являются резина, пластик и дерево. Медь очень часто используется в качестве проводника, потому что это очень хороший проводник, и ее так много в мире. Медь содержится в электрических проводах. Но иногда используются и другие материалы.

Внутри проводника электроны подпрыгивают, но они не могут долго двигаться в одном направлении. Если внутри проводника создается электрическое поле, все электроны начнут двигаться в направлении, противоположном направлению, на которое указывает поле (поскольку электроны заряжены отрицательно). Батарея может создавать электрическое поле внутри проводника. Если оба конца куска провода подсоединены к двум концам батареи (называемым электродами ), образовавшаяся петля называется электрическая цепь. Электроны будут течь по цепи до тех пор, пока батарея создает электрическое поле внутри провода. Этот поток электронов по цепи называется электрическим током .

Токопроводящий провод, используемый для передачи электрического тока, часто оборачивается изолятором, например резиной. Это связано с тем, что провода, по которым течет ток, очень опасны. Если человек или животное коснется оголенного провода, по которому течет ток, он может получить травму или даже умереть в зависимости от силы тока и количества передаваемой им электрической энергии. Будьте осторожны рядом с электрическими розетками и оголенными проводами, по которым может проходить ток.

Можно подключить электрическое устройство к цепи, чтобы электрический ток протекал через устройство. Этот ток будет передавать электрическую энергию, чтобы заставить устройство делать то, что мы хотим. Электрические устройства могут быть очень простыми. Например, в лампочке ток переносит энергию через специальный провод, называемый нитью накала, что заставляет ее светиться. Электрические устройства также могут быть очень сложными. Электрическая энергия может использоваться для привода электродвигателя внутри инструмента, такого как дрель или точилка для карандашей. Электроэнергия также используется для питания современных электронных устройств, включая телефоны, компьютеры и телевизоры.

Некоторые термины, связанные с электричеством[изменить | изменить источник]

Вот несколько терминов, с которыми может столкнуться человек, изучая, как работает электричество. Изучение электричества и того, как оно делает возможными электрические цепи, называется электроникой. Есть область инженерии, называемая электротехникой, где люди придумывают новые вещи, используя электричество. Им важно знать все эти термины.

  • Ток — это количество протекающего электрического заряда. Когда 1 кулон электричества проходит где-то за 1 секунду, сила тока равна 1 ампер. Для измерения тока в одной точке воспользуемся амперметром.
  • Напряжение, также называемое «разницей потенциалов», представляет собой «толчок» позади тока. Это количество работы на электрический заряд, которую может совершить источник электричества. Когда 1 кулон электричества имеет 1 джоуль энергии, он будет иметь 1 вольт электрического потенциала. Чтобы измерить напряжение между двумя точками, мы используем вольтметр.
  • Сопротивление — это способность вещества «замедлять» протекание тока, то есть уменьшать скорость, с которой заряд протекает через вещество. Если электрическое напряжение в 1 вольт поддерживает ток в 1 ампер через провод, сопротивление провода равно 1 Ом – это называется законом Ома. Когда поток тока противоположен, энергия «расходуется», что означает, что она преобразуется в другие формы (например, свет, тепло, звук или движение)
  • Электрическая энергия – это способность выполнять работу с помощью электрических устройств. Электрическая энергия является «сохраняемым» свойством, означающим, что она ведет себя как вещество и может перемещаться с места на место (например, по передающей среде или в батарее). Электрическая энергия измеряется в джоулях или киловатт-часах (кВтч).
  • Электроэнергия — это скорость, с которой электроэнергия используется, хранится или передается. Потоки электрической энергии по линиям электропередач измеряются в ваттах. Если электрическая энергия преобразуется в другую форму энергии, она измеряется в ваттах. Если какая-то его часть преобразуется, а какая-то сохраняется, она измеряется в вольт-амперах, а если накапливается (как в электрических или магнитных полях), то измеряется в реактивных вольт-амперах.

Паровой двигатель в центре приводит в движение два генератора по бокам, конец 19 века

Электроэнергия в основном вырабатывается в местах, называемых электростанциями. Большинство электростанций используют тепло для кипячения воды в пар, который вращает паровой двигатель. Турбина парового двигателя вращает машину, называемую «генератором». Спиральные провода внутри генератора вращаются в магнитном поле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *