Как определить на сколько вольт светодиод
Существует несколько методов как определить на сколько вольт светодиод. Один из них – довольно простой и не всегда срабатывает. Другой же – требует дополнительно аппаратуры и небольших познаний в электронике. В любом случае, они пользуются популярностью среди обладателей светодиодных лент, фонариков и других приспособлений.
Какими бывают светодиоды
Светодиод имеет массу обозначений (СД, СИД и LED). В основе такого устройства лежит небольшой полупроводниковый кристалл. Когда через него проходит электроток – происходит выброс фотонов, что приводит к свечению. Номинальное напряжение внутри такой конструкции позволяет определить, какой напряжение способен выдержать диод и какое необходимо для его нормальной работы. Используя эти значения, можно узнать на сколько вольт светодиоды в фонарике и в лампе.
Из неорганических полупроводниковых веществ создаются красные и желтые, зеленые и синие – на основе индия-галлия и нитрада. Различаются по сфере применения: для индикации и освещения. Вторые мощные и считаются отдельным осветительным прибором. Первые же используются в различных устройствах удаленного доступа: пульты, мобильные телефоны и другие.
Светодиоды обладают различными параметрами мощности и напряжения. От этого зависит качество освещение, использование дополнительных блоков питания. Если неверно подобрать источник энергии – это может привести к малому эксплуатационному сроку полупроводников и быстрой поломке. Несколько указанных способов помогут определить напряжение в светодоиодах.
Первый метод: узнать теоретическим способом на сколько вольт рассчитан светодиод
Внешние признаки – отличная возможность, как узнать на сколько вольт бывают светодиоды.
В этом случае Вам поможет цвет свечения, форма и размеры полупроводникового прибора. Примеси различных химических элементов дают определенное свечение: начиная от красного и заканчивая желтым. Также существуют прозрачные модели, в которых определить параметры вольтажа можно только с мультиметром. Для того, чтобы узнать нужный параметр, нужно выполнить такие действия:– Тестер нужно выставить на «Проверка обрыва»;
– Используйте щупы, чтобы прикоснуться к выходу светодиода;
– Несильное свечение кристалла поможет понять напряжение, которое есть в диоде
Окрашены они в разный цвет не случайно – при помощи внешних значений, можно определить примерное значение тока. Утверждать, что эти значения абсолютно верны – не стоит. Цвета стандартизированы и используются в условиях производства, вне зависимости от марки и производителя. Например, красный обладает напряжение до 2 В, а зеленый до четырех. Благодаря подобным обозначениям, можно не только узнать сколько вольт он потребляет, но и сколько вольт выдержит светодиод.
На некоторых моделях Вы сможете рассмотреть количество кристаллов, влияющих на тип самого полупроводникового устройства. В корпусе СМД расположено несколько полупрозрачных кристаллов, соединяясь – они выдают определенный свет. Часто используются в лампах на 220 В.
Последним, теоретическим способом сколько вольт потребляет светодиод, является программное обеспечение. Вы можете воспользоваться программами, которые содержат в себе целую базу данных. Введя уже известные параметры и цвет, Вы получите приблизительные данные. Далеко не всегда они верны, поэтому от теории переходим к практике.
Второй метод: практический
Это самый точный, но трудоемкий способ, как узнать на сколько вольт бывают светодиоды. Проведя тестирование, Вы сможете узнать параметры падения напряжения и значение силы тока. Воспользовавшись полученными данными, можно долгое время использовать полупроводник и подобрать для него нужное напряжение.
– Вольтметр;
– Мультиметр;
– Двенадцати ватный блок питания;
– Резистор от 510 Ом
Принцип действия такой же, как и ранее – необходимо узнать номинальный ток. Соберите небольшую схему с резистором и вольтметром. Напряжение увеличивают до того момента, пока кристалл не загорится достаточно ярким светом. При достижении порогового значения – показания спадают и перестают расти. После этого необходимо снимать показания электрода.
В некоторых случаях свечения может не быть, например, до 2 В. Обнаружить инфракрасный диод можно: излучатель направляется на включенную камеру мобильного телефона. На экране может возникнуть белое пятно, которое и будет инфракрасным диодом.
Светодиоды и их применение
Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.
Достоинства:
1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность
Недостатки:
1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику
Внешний вид и основные параметры:
У светодиодов есть несколько основных параметров:
1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания
В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод – полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета.
Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.
Схема включения и расчет необходимых параметров:
Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод (“минус”), а другой – анод (“плюс”).
Светодиод будет “гореть”
При обратном включении светодиод “гореть” не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.
Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.
1. Имеется один светодиод, как его подключить правильно в самом простом случае?
Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.
Пример 1
Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.
Рассчитаем сопротивление токоограничивающего резистора
R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм
То есть, надо взять резистор сопротивлением 100 Ом
P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода
2. Как подключить несколько светодиодов?
Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.
Пример 1.
Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.
Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов
Расчет аналогичен предыдущему примеру
R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0. 02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм
Пример 2.
Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт
Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм
Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.
Пример 3.
Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление
Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА
Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый
рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм
аналогично
R2 = 26 Ом
R3 = 117 Ом
Аналогично можно расположить любое количество светодиодов
ВАЖНОЕ ЗАМЕЧАНИЕ!!!
При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.
3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?
Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).
4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.
Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).
RGB-светодиоды
Полноцветный светодиод или по другому RGB-светодиод – Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет.
Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении.
Самый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом).
При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт
Также следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета.
ВАЖНОЕ ЗАМЕЧАНИЕ!
Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.
Теги:
- Светодиод
Прямое напряжение и КВЛ | Все о светодиодах
Прямое напряжение и КВЛ
Сохранить Подписаться
Пожалуйста, войдите, чтобы подписаться на это руководство.
После входа в систему вы будете перенаправлены обратно к этому руководству и сможете подписаться на него.
Для правильного использования каждого светодиода нам необходимо знать прямое напряжение . Что это за прямое напряжение? Поясним это на фото:
В нашей схеме из трех частей у нас есть батарея (вырабатывающая напряжение) и резистор + светодиод (использующий напряжение). Теперь я расскажу вам очень важный «закон» электроники:
В любой «петле» цепи напряжения должны уравновешиваться: генерируемое количество = используемому количеству
Этот закон «петли напряжения» был открыт человеком по имени Кирхгоф (поэтому он называется законом напряжения Кирхгофа = КВЛ). И мы можем видеть петлю выше, где одна часть сделана из батареи +9В. Другая половина должна израсходовать +9В (сделав -9В так, чтобы обе половины контура были равны).
Какое отношение это имеет к Forward Voltage светодиода? Что ж, прямое напряжение — это «отрицательное напряжение», используемое светодиодом, когда он включен. Что-то вроде «отрицательной батареи»! Итак, давайте немного изменим нашу диаграмму.
Всякий раз, когда светодиод горит, напряжение, которое он использует, составляет где-то между 1,85 В и 2,5 В. Мы скажем 2,2 В в среднем — это хорошее предположение для большинства красных, желтых, оранжевых и светло-зеленых светодиодов. Если мы вычтем это из 9 В, мы получим около 6,8 В. Это напряжение, которое должен «поглощать» резистор.
Быстрая викторина!Допустим, у нас есть та же схема, что и выше, за исключением того, что на этот раз это батарея 5 В и светодиод с прямым напряжением 2,5 В, какое напряжение должен «поглощать» резистор?
Генерируемые напряжения = Используемые напряжения, поэтому 5 В = 2,5 В + ResistorVoltage. Напряжение на резисторе 2,5В.
Допустим, у нас есть та же схема, что и выше, за исключением того, что на этот раз это батарея 5 В и светодиод с прямым напряжением 3,4 В, какое напряжение должен «поглощать» резистор?
Генерируемые напряжения = Используемые напряжения, поэтому 5 В = 3,4 В + ResistorVoltage. Напряжение на резисторе 1,6В.
Закон Ома
Что интересно в только что изученном нами законе (КВЛ), так это то, что мы нигде не используем сопротивление резистора. Это никогда не появляется в уравнении. Тем не менее, из наших предыдущих экспериментов мы точно знаем, что изменение сопротивления влияет на яркость светодиода. Должно быть что-то еще происходит, давайте продолжим работать над пониманием деталей….
Далее мы добавим еще один важный закон. Это называется Закон Ома — и он описывает, как работают резисторы.
В напряжение на резисторе (вольты) = ток через резистор (амперы)* R сопротивление резистора (омы)
V = I * R
Или два других способа записи для определения тока или сопротивления:
I = V / R
R = V / I
V для напряжения, R для сопротивления и I , как ни странно, для тока. Да, это I немного раздражает, не так ли, ведь в текущем слове нет ни одного I ? К сожалению, 100 лет работают против нас, так что просто потерпите нас в этом.
Быстрый тест!
Если у меня есть резистор 3 Ом (R), через который проходит ток 0,5 Ампер (I). Чему равно напряжение (В) на резисторе?
Мы будем использовать V = I * R форму закона Ома. V = 0,5 А * 3 Ом = 1,5 Вольт.
Теперь у меня есть резистор 1000 Ом (R) и напряжение на нем 6,8 В (В). Какой ток (I) проходит через резистор?
Мы будем использовать I = V / R форму закона Ома. Ток = 6,8 В / 1000 = 6,8 мА.
Закон Ома очень важен, и его стоит немного изучить, чтобы с ним ознакомиться. Мы предлагаем придумать другие значения сопротивлений, токов и напряжений и использовать их для нахождения неизвестного значения. Если вы работаете с другом, проверяйте друг друга и проверяйте свои ответы ! Есть также «калькуляторы» в Интернете, с которыми вы можете проверить себя.
Решение для текущего
Теперь мы объединим оба KVL и Закон Ома с нашей диаграммой. Наш светодиод подключен к резистору 1000 Ом (вы должны убедиться в этом, проверив цветные полосы резистора!), и напряжение на этом резисторе должно быть 6,8В (закон КВЛ), поэтому ток через этот резистор должен быть быть 6,8 В / 1000 Ом = 6,8 мА (закон Ома).
Наша диаграмма становится немного плотной, но мы почти закончили. Ток резистора составляет 6,8 мА, и этот ток также проходит через светодиод, поэтому ток светодиода составляет 6,8 мА. “Большой крик”, вы можете сказать. «Какое мне дело до тока светодиода?» Причина, по которой вас это должно волновать, заключается в следующем:
Величина тока (I), проходящего через светодиод, прямо пропорциональна его яркости.
Ага! Наконец, последняя часть головоломки. Если мы увеличим ток, светодиод будет ярче . Аналогично, , если вы уменьшите ток, светодиод будет тусклее . Выбрав правильный резистор, вы полностью контролируете внешний вид светодиода.
Всякий раз, когда вы используете светодиод, убедитесь, что у вас всегда есть резистор! Резистор ограничивает ток, что предотвратит перегорание светодиода!
Большую часть времени вам понадобится действительно яркий светодиод, поэтому вы будете рассчитывать наименьший резистор, который вы можете использовать и не повредить светодиод. Но учтите, что чем больше ток потребляет светодиод, тем быстрее разрядится батарея. Таким образом, есть веские причины для контроля яркости, если, скажем, у вас маленькая батарея и вы хотите, чтобы свет работал долго.
Поскольку, как мы видели, слишком большой ток приведет к тому, что светодиод перегорит, какой ток лучше всего использовать? Для некоторых очень больших «мощных светодиодов» ток может достигать 1 или 2 ампер, но почти для каждого 3-мм, 5-мм или 10-мм светодиода величина тока, которую вы должны использовать, составляет 20 мА. Вы можете увидеть это в таблице данных, о которой мы говорили ранее. Видите самый правый столбец? IF – это F или выше Current (I) , и они используют 20 мА.
Для 99% светодиодов, с которыми вы столкнетесь, оптимальный ток составляет 20 миллиампер (0,02 А) , но не бойтесь увеличить его до 30 мА, если вам нужно немного больше яркости.
Информация о светодиодах Пересмотр резисторов
Это руководство было впервые опубликовано 11 февраля 2013 года. обновлено 11 февраля 2013 г.
Эта страница (Forward Voltage и KVL) последний раз обновлялась 11 февраля 2013 г.
Текстовый редактор на базе tinymce.
Прямые напряжения различных светодиодов
Светодиоды (светоизлучающие диоды) имеют массу преимуществ перед другими типами освещения. Они ударопрочные и довольно жесткие. Они очень эффективны по сравнению с другими технологиями освещения.
Прямое напряжение
Одной из характеристик, на которую следует обратить внимание при планировании использования светодиода, является прямое напряжение (V F ). V F — это напряжение, потребляемое светодиодом или падающее при протекании тока в соответствующем направлении вперед. Номинальное прямое напряжение должно быть соблюдено, чтобы зажечь светодиод, и это номинальное значение зависит от цвета светодиода. Причина этого в том, что для получения разных цветов в полупроводниковой части светодиода используются разные материалы.
Сверхяркий красный светодиод Kingbright (APT2012SRCPRV)Цвета и материалы светодиодов
Способность генерировать разные цвета — это характеристика, которую мы учитываем при использовании светодиода, поскольку ее можно использовать для индикации состояния цепи. Иногда мы используем зеленые светодиоды, чтобы указать, что цепь находится в хорошем состоянии, или красные светодиоды, чтобы указать на наличие проблемы. Светодиоды могут быть красными, оранжевыми, желтыми, зелеными, синими, белыми или фиолетовыми, и этот цвет определяется используемыми в них полупроводниковыми материалами. Если у вас есть светодиод RGB, в котором красный, зеленый и синий светодиоды расположены очень близко друг к другу, вы даже можете получить практически любой цвет в спектре.
Красный, зеленый и синий светодиодыСпособ определения цвета отдельных светодиодов определяется энергией, которую электрон теряет, когда электрон перемещается с одной стороны светодиода на другую. Количество энергии, которую электрон излучает в виде света, определяется материалами светодиода. Генерируемый фотон будет иметь характеристическую длину волны, и производители выбирают материалы для получения желаемых цветов. Ознакомьтесь с этой таблицей с диапазоном цветов и их длин волн, материалов и светодиода V 9.0178 F , это также находится в разделе ссылок здесь, на CircuitBread.com. Цвет светодиода
и прямое напряжение в зависимости от материала Быстрый способ проверить светодиоды, чтобы узнать V F и цвет (если это еще не очевидно), — это использовать цифровой мультиметр (DMM), который всегда должен быть под рукой. Большинство цифровых мультиметров могут управлять большинством светодиодов, однако есть некоторые цифровые мультиметры, которые не обеспечивают напряжение или ток, необходимые для освещения светодиода. Еще одна причина, по которой тест может не сработать, заключается в том, что для вашего светодиода требуется большой ток (по сравнению со стандартными светодиодами) или падение напряжения больше, чем может обеспечить цифровой мультиметр. Вы должны обнаружить, что красные, зеленые или желтые светодиоды имеют относительно низкое прямое напряжение в диапазоне 1,6–2,2 В. Однако синие и белые светодиоды могут начать проводить от 2,5 до 4 В.
Во многих проектах и продуктах используются светодиоды, и при их использовании важно знать напряжение и ток, необходимые для их использования. Ознакомьтесь с требованиями V F в техническом описании для ваших светодиодов, пока вы планируете их питание, и вы будете рады видеть, как светодиоды разных цветов могут улучшить ваш проект.
Источник изображений:
- http://www.kingbrightusa.com/images/catalog/SPEC/APT2012SRCPRV.pdf
- https://commons.wikimedia.org/wiki/File:RBG-LED.jpg , СС BY-SA 3.