Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Почему две фазы в розетке причины и решение

При выходе из строя электропроводки иногда случается, что индикатор показывает в розетке две фазы, а электроприборы при этом не работают. Такая неисправность является достаточно распространенной, но начинающий или неопытный электрик может долго над этим ломать голову.

Понятие в розетке две фазы может быть понято двояко. Либо на самом деле в розетке имеется две разные фазы, которые в сумме дают примерно 380 В, либо на каждой клемме розетки присутствует одна и та же фаза.

Последствия от этого сильно разнятся, в первом случае электроприборы начинают выходить из строя, попросту сгорая. Во втором случае ничего не горит, но и не работает.

Что предшествует таким неполадкам, как их устранить и предотвратить нежелательные последствия? Начнем с простого, когда в розетке появляется дубликат фазы.

Основные причины почему в розетке две фазы

В квартиру через счетчик и автоматы заходит только одна фаза. В розетке должна быть одна фаза и ноль, а в приведенной выше ситуации индикатор свидетельствует о наличии в обоих гнездах розетки одной и той же фазы.

Наиболее вероятной причиной возникновения неисправности в данном случае является повреждение (обрыв) нулевого провода, идущего к розетке.

Наличие фазы там, где должен быть ноль обусловлено тем, что она проходит через нагрузку – постоянно включенную лампочку или какой-нибудь другой электроприбор.

Как правило, все нулевые провода в доме или квартире замыкаются на нулевую шину электрического щита, фаза будет появляться в розетке. Проверить это очень легко – нужно просто выключить все электроприборы, которые имеются в квартире.

Чтобы лучше понять, почему в розетке две фазы, следует понимать принцип действия электрического тока. Рассмотрим однофазную схему. Электрический ток – это движение заряженных частиц по замкнутой цепи. Для произведения работы в эту цепь включают потребители электрической энергии.

В домах производится параллельное подключение нагрузки, другими словами, каждый потребитель включается в фазу и ноль. После того как электрический ток проделал работу, например, отдав тепло утюгу, он попадает в нулевой провод и уходит к трансформатору на подстанции.

1. Обрыв ноля в распредкоробке или щите

Это классический случай, объясняющий, почему появляется в розетке две фазы. Поскольку отработанному току деваться некуда, он остается в нулевом проводнике, принимая такой же потенциал, что и фазный. Где может произойти такой обрыв?

Если это квартира в многоквартирном доме, то поиск расширяется от этажного щитка до самой розетки, которая в этот момент не работает. В этом случае в розетке фазы будут одноименными.

Проверить это можно мультиметром, поставив указатель напряжения на отметку не менее 400 В. Если фаза в розетке в двух отверстиях будет одной и той же, то мультиметр покажет 0. Если же прибор укажет напряжение около 380 В, то обрыв ноля произошел дальше этажного щитка.

В этом случае следует отключить входные автоматы и вызвать электриков. Если квартира питается от трехфазной сети и розетка показывает две фазы, примерно 380 В, то обрыв ноля мог произойти внутри квартиры или в промежутке до этажного щита.

В собственном доме, если появляются две фазы в розетке, причины те же самые, но вместо этажного щитка поиск ведут до гусака или вводного автомата. Рассмотрим еще одну причину, когда в розетке на двух контактах появляется одна и та же фаза.

2. Ноль оборван и замкнут на фазу

Итак, вы выключили из розеток все потребители электроэнергии, выключили все выключатели, а две фазы в розетке все равно присутствуют. Почему после отключения всех электроприборов от сети в розетке все равно наблюдается фаза в обоих отверстиях?

В розетке две фазы появятся и тогда, когда ноль не только оборван, но и замкнут с фазным проводом. Это чаще происходит на воздушных линиях электропередач, тогда в дом придет та фаза, на которую упал ноль.

Если повезет, то фазы будут одноименными, и тогда ничего не перегорит, просто ничто не будет работать. Но если фаза будет другая, перегорание электроприборов обеспечено.

Однако ноль может закоротить и в самой квартире. Например, это может произойти при высверливании отверстия в стене. Если сверло оборвет ноль и слегка заденет фазу, то произойдет короткое замыкание, и провода могут спаяться. Обычно такое повреждение сразу обнаруживается, и его устраняют.

В старых домах могут давно не менять провод, со временем изоляция его приходит в негодность, и также происходит замыкание фазы на ноль. Иногда могут постараться и грызуны, питаясь изоляцией. В любом случае на клеммах розетки будет одно и то же напряжение.

3. Вместо автоматов установлены пробки

В современных квартирных щитах устанавливают двойные вводные автоматы для однофазной цепи. Они срабатывают независимо от того, в какой цепи происходит неисправность. Отдельные автоматы могут иметь разбег по току срабатывания. Это же происходит и в старых домах, где все еще используются пробочные выключатели.

Независимо от того, применяются плавкие вставки или автоматический расцепитель, порог срабатывания может сильно отличаться друг от друга.

Если при возникновении неисправности или превышении мощности первой срабатывает пробка на нулевом проводе, то возникает ситуация, описанные выше – обрыв нуля.

Если сеть однофазная, то ничего страшного не будет, достаточно повторно включить или заменить плавкую вставку, и снова все будет работать. Но если в дом проведено три фазы, и работает трехфазный прибор, то в розетке две фазы появятся, и напряжение будет выше 220 В.

4. Ошибка электриков, в розетке действительно две фазы

Такие вещи происходят довольно редко, и связаны они с невнимательностью, торопливостью или другими факторами. Всегда следует помнить, что электричество не терпит пренебрежительного к себе отношения и наказывает порой очень сурово.

Также это всегда связано либо с ремонтом, либо со строительством. Поэтому после ремонта или при въезде в новый дом всегда лучше пройти с мультиметром и замерить напряжение во всех розетках.

Времени много это не займет, но бытовые приборы будут защищены от повышенного напряжения.

Но иногда перепутать фазы могут и сами электрики после аварии на линии и подключить вместо ноля другую фазу. Если свет отключили на длительное время, особенно после бури, то следует отключить все электроприборы, включенной можно оставить одну лампочку. Если произойдет ошибка, то пострадает только она одна. После этого обратиться в энергоснабжающую организацию.

5. Перекос фаз

Также по вине электриков может быть неправильно распределена нагрузка на каждую фазу. В идеале нагрузка на каждую фазу должна быть одинаковой.

В этом случае в нулевом проводе отсутствует какое-либо напряжение. Однако добиться таких условий практически невозможно. В каждой квартире в одно и то же время включаются потребители разной мощности.

Из-за этого общая нагрузка на одну фазу будет максимальной, на другую средней, а на третью минимальной. Чем больше нагрузка, тем большее напряжение попадает на нулевой провод.

В трехфазной сети фазы сдвинуты относительно друг друга на 120º, это приводит к тому, что потенциал на нулевом проводнике будет увеличивать напряжение на других нагрузках.

Причем чем меньше мощность этих нагрузок, а значит выше их сопротивление, тем большее напряжение будет действовать на них. При такой схеме самая нагруженная фаза будет иметь минимальное напряжение, а там, где нагрузки мало, напряжение повысится.

Причины пропадания нуля

Если говорить о неисправностях в квартире или доме, то можно выделить несколько причин:

  • разрушение электрического контакта;
  • отгорание;
  • отключение автомата;
  • механическое повреждение.

В домашней сети могут использоваться провода с алюминиевыми или медными жилами. Если их соединить напрямую, то между ними образуется окислительная пленка

, которая является изолятором.

Вследствие этого нарушается электрический контакт, и ток не может пройти через этот участок. Тем не менее такие провода можно соединять между собой, используя переходной материал, например, используя винтовой зажим с промежуточной шайбой.

Другой вариант – применение соединительных зажимов, предварительно надев и закрепив на многожильном проводе специальный наконечник.

Использование наконечников тоже можно считать как одним из вариантов.

Пропадание нуля может произойти из-за перегорания провода. Это часто бывает в местах крепления, где контакт зажима ослаблен. Неплотное прилегание металлов ведет к появлению искры или дуговому разряду. Провод нагревается, и плавится жила. Обнаружить такую неисправность можно по обуглившейся изоляции.

Если в сети используются одинарные автоматы, то автомат, поставленный на ноль, может отключиться при неисправности. Если номинал автомата выбран намного меньше требуемого, то он может выгореть. Редко, но бывают случаи ошибочного отключения ноля, или забывают включить его после устранения неисправности.

И конечно же, при механическом повреждении нулевого провода вся последующая сеть оказывается без нуля. Часто начинающие электрики делают роковую ошибку, при снятии изоляции с провода они делают круговой надрез, повреждая внешнюю поверхность проводника. Со временем он ломается, особенно часто такое происходит с алюминиевыми жилами.

В каком месте может отгореть ноль

Чаще всего оплавление и перегорание провода происходит в местах с плохим электрическим контактом. Для нахождения неисправности потребуется мультиметр.

Переключатель режимов устанавливают на переменное напряжение не менее 300 В. В первую очередь проверяют ближайший ко входу в домашнюю сеть зажим, до которого можно добраться.

Это переключатели, автоматы, стоящие после счетчика. Замеряют напряжение между фазным и нулевым проводом, которое должно быть около 220 В. Если оно соответствует указанным параметрам, неисправность ищут дальше, если оно другое, необходимо вызвать электриков.

Далее проверяют распределительные коробки. Обычно бывает достаточно снять крышку, чтобы увидеть обгоревший провод. Изоляция на таких проводах обуглившаяся.

Нередко провод отгорает на самой розетке. Если проводка спрятана под штукатуркой, необходимо снять панель розеток и визуально осмотреть провода, подходящие к ним.

Самым тяжелым случаем бывает обрыв ноля в самой магистрали. Обнаружить визуально его не получится. Рассмотрим три способа обнаружения такой неисправности.

Неисправность в одной розетке, причины

Такая неисправность возникает у розетки, расположенной в самом дальнем месте, или если к ней идет один провод.

Это говорит о том, что нет либо фазы, либо ноля, либо она вовсе обесточена. Если она располагается в середине помещения и в соседней розетке, если таковая имеется, присутствует напряжение, то неисправна сама розетка.

Если соседней розетки нет, тогда проверяют напряжение на подводящем проводе, предварительно сняв крышку. Сразу осматривают розетку, чтобы в ней не было посторонних предметов, и она не была повреждена.

При отсутствии напряжения проверяют индикаторной отверткой наличие фазы. Если фаза есть, значит оборван ноль, если фазы нет, значит обесточен весь провод или обрыв фазы.

Обесточивают сеть, отключают все электроприборы и вставляют в розетку коротыш, это может быть вилка с коротким проводом, жилы которого очищены от изоляции и скручены.

Открывают распределительную коробку и прозванивают провод, идущий к розетке. Сопротивление должно быть близко к нулю. При других значениях можно говорить о повреждении провода.

Неисправность в нескольких розетках

Если нерабочими оказываются несколько розеток, расположенных в разных местах, то нужно искать неисправность в магистральном проводе.

Для этого отключают вводные автоматы, открывают распределительную коробку, которая запитывает неисправную розетку, расположенную ближе всего к счетчику.

Отыскивают подводящий провод, он должен приходить со стороны предыдущей коробки. Разматывают или снимают изоляцию. Включают вводной автомат и измеряют напряжение на этом проводе. Его не нужно отсоединять от других проводов.

Если он располагается на клеммной колодке и на нем присутствует напряжение, причина может заключаться в плохом контакте. Снова отключают автомат, разбирают и осматривают соединения.

Если используются медные и алюминиевые провода, то между ними должна быть стальная шайба. Если же на подводящем проводе напряжение не наблюдается, то можно говорить о неисправности провода между этой и предыдущей коробкой, идущей к счетчику.

Неисправность во всех розетках

Если в квартире есть свет и не работают только розетки, то сеть разделена, и неисправность нужно искать в автомате, к которому подключен питающий кабель данной розеточной группы.

Проверить напряжение на его входе и выходе, хорошо ли затянуты контакты? Если нет напряжения на входе автомата, необходимо проверить цепь от вводного автомата до него.

Обрыв нуля в трехфазной сети

Почему обрыв нуля трехфазной системы самый опасный режим, и как от него защититься?

При таком повреждении нельзя предугадать поведение напряжения, в любом случае оно не будет соответствовать номинальному, а это негативно скажется на электроприборах. Защититься от такой проблемы можно, использовав реле напряжения.

Оно защитит домашнюю сеть от любого опасного напряжения. Недостатком является то, что оно может срабатывать при импульсном скачке напряжения.

Владельцы собственного дома могут сделать для себя резервное питание от генератора: бензинового, дизельного или ветряного. Но это уже другая тема и здесь рассматриваться не будет.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

В розетке две фазы – что делать и как устранить повреждение

Нештатная ситуация, при которой в обоих гнездах розетки индикатор напряжения показывает наличие фазы, на практике встречается довольно часто. При этом попытки измерить разность потенциалов между контактами штепсельного разъема не дадут результата, индикатор вольтметра покажет ноль. Соответственно, подключение электроприбора также будет бесполезным. Почему возникают две фазы в розетке и как устранить эту неисправность, Вы узнаете из материалов сегодняшней статьи.

Краткий экскурс в теорию

Сегодня мы не будем сильно углубляться в теоретические основы электротехники, а попытаемся кратко объяснить суть проблемы. Тем, кто желает более детально ознакомиться с данным вопросом, рекомендуем прочитать на нашем сайте серию статей по физике переменного электрического тока.

Штатная установка выключателя.

Приведем в качестве примера фрагмент бытовой электросети, где организовано подключение электролампы освещения и штепсельного разъема (розетки).

Фрагмент бытовой сети с подключением лампы и розетки

Обозначения:

Как известно, в однофазных цепях электрический ток (Ì) течет от фазы к нулю. В приведенном выше рисунке выключатель SW находится в разомкнутом положении, следовательно, лампа будет обесточена, в чем можно убедиться, измерив напряжение U2. При этом на штепсельном разъеме и части сети до выключателя (отмечено красным) будет оставаться рабочий потенциал U1, соответствующий фазному напряжению. Это штатный режим работы для данной схемы, где выключатель размыкает фазный провод.

Обратим внимание, если производить замеры индикатором напряжения, то он покажет наличие фазы на одном из контактов штепсельного разъема и ее отсутствие на обоих контактах патрона лампы.

Установка выключателя на ноль

Теперь посмотрим, что произойдет, если поменять фазу и ноль местами, или, что чаще встречается на практике, установить выключатель на ноль, а не фазный провод.

Выключатель установлен неправильно

Внешне такое изменение никак не проявит себя. Лампа будет так же, как и в предыдущем примере включаться и выключаться, а на контактах розетки присутствовать разность потенциалов. Но, возникают определенные нюансы, которые проявляются в виде наличия напряжения на контактах патрона и части нулевой линии между лампой и выключателем. В чем несложно убедиться, используя электрический пробник.

Такой вариант подключения несет в себе потенциальную угрозу поражения электротоком при попытке замены или ремонта светильника.

Характерно, что измерения вольтметром наличия напряжения между контактами патрона осветительного прибора не принесут результатов. Прибор покажет «0», поскольку на контактах будет один уровень потенциала фазы.

Резюмируя итоги главы можно констатировать, что неправильное подключение контактов выключателей в распределительной коробке не оказывает значимого влияния на работу электрических приборов, подключенных к розетке. Помимо этого мы выяснили о необходимости комбинированного применения измерительных приборов (вольтметра и пробника).

О наличии второй фазы в розетке

Индикация фазы на двух контактах штепсельной розетки в большинстве случаев не является показателем наличия двух фаз. Чтобы убедиться в этом, достаточно измерить напряжение между контактами мультиметром. Хотя нельзя полностью исключать возможность появления межфазного напряжения, это характерный признак обрыва магистрального нуля с последующим смещением фаз. Предлагаем рассмотреть все возможные варианты, для начала перечислим их:

  • Обрыв нуля на входе.
  • Нарушение электрического контакта одной из линий с нулевой шиной в распределительной коробке.
  • Обрыв нуля с последующим замыканием на фазу.
  • Повреждение магистральной нулевой жилы с последующим смещением фаз.

Характерно, что первых трех вариантах, если подключить прибор к проблемной розетке, то он просто не будет функционировать. Что касается последнего случая, то при смещении фаз велика вероятность выхода из строя всех подключенных к сети электроустройств. С чем это связано, будет рассказано далее.

Обрыв нуля на входе

Одна из характерных неисправностей старой электропроводки – отгорание нуля на нулевой шине (см. А на рис. 3) или пропадание электрического контакта на вводном автомате (В). В большинстве случаев причина кроется в применении алюминиевых проводов, пластичность которых вызывает ослабление контактных соединений. Нарушение качества электрического контакты приводит к повышению его переходного сопротивления, в результате происходит перегорание провода. Заметим, что проблемы могут возникнуть и с медным кабелем, если не обеспечить надежность соединения проводов.

Рисунок 3. Характерные проблемные места: нулевая шина (А) и вводный автомат (В)

При повреждении нулевого провода на вводном автоматическом выключателе в квартире не будет работать не один из бытовых потребителей. Но при этом, если к сети будет подключен хоть один электроприбор, на всех нулевых проводниках установится фазный потенциал (см. А на рис. 4).

Рисунок 4. Примеры обрывов нуля

Если в данной ситуации попробовать измерить напряжение пробником на контактах любой розетки, то покажет наличие фазы на каждом из них. Подключив вольтметр, вы убедитесь, что разность потенциалов между штепсельными разъемами равна нулю.

Чтобы убедиться, что имеет место описанная неисправность, следует отключить от бытовой электросети всех потребителей, включая осветительные и обогревательные приборы. Как только Вы это сделаете, в розетках будет индуцироваться только одна фаза.

Устранить неисправность можно восстановив электрический контакт на входе. Для этого проверьте зажимы АВ и надежность соединений с нулевой шиной.

Повреждение нуля на одной из линий

Пример такой неисправности продемонстрирован на рисунке 4 (В). Как видите, в данном случае наблюдается возникновение обрыва нуля на линии, соединяющей распределительные коробки. Это говорит о том, что на части розеток и других электроточек сохраняться фазные напряжения, а значит, подключенные к ним приборы будут нормально функционировать. Проблемы возникнут только в той линии, где нет контакта с нулевым проводом.

Поиск обрыва может вызвать немалые сложности. Мы рекомендуем для начала вскрыть распределительные коробки, между которыми произошел разрыв нуля и проверить качество электрического контакта соединения нулевых проводов. Проще всего это сделать, срезав старое соединение и организовав новое. Напоминаем, что соединение метод холодной скрутки недопустимо.

Если в результате этих манипуляций удалось восстановить соединение, считайте что Вам повезло, поскольку в противном случае потребуется вскрытие штробы или проложение новой трассы.

Ноль оборван и замкнут на фазу

Такая неисправность наиболее характерна для отдельно стоящей группы розеток, на практике такие случаи довольно редки, но, тем не менее, они встречаются. Речь идет о повреждении проводника нейтрали и последующем ее замыкании на фазу.

Обрыв и замыкание нуля с фазой

Чаще всего подобная неисправность проявляется после попытки просверлить стену или подготовить отверстие под «быстрый монтаж». Если при такой операции случайно попасть на трассу скрытой проводки, то велика вероятность ее повреждения. Чаще всего это заканчивается коротким замыканием, но может возникнуть и частичное КЗ, при котором происходит обрыв нейтрали с последующим электрическим контактом с фазой, так как это показано на рисунке 5.

В результате на контактах блока розеток лампочка индикатора начнет светиться, показывая наличие фазы. Попытки произвести замер напряжения между нулем и фазой ни к чему не приведут, поскольку на них будет одноименная фаза.

Чтобы восстановить работоспособность розетки, потребуется устранить неисправность проводки на данном участке.

Для предотвращения описанной ситуации следует отказать от сверления стен в местах, где проходят (или могут проходить) нулевые и фазные жилы проводов. Как правило трасса скрытой проводки направлена вертикально от того мест, где расположена розетка.

Смещение фаз

Данный случай самый тяжелый, поскольку в розетках будут присутствовать 2 фазы (вплоть до 380 вольт). Такая авария может быть вызвана проблемой с магистральным нулем на линии между объектом и трансформаторной подстанцией. Самостоятельно решить такую проблему не представляется возможным, необходимо сообщить об аварии поставщику электроэнергии.

Перенапряжение сети, вызванное перекосом фаз, может повредить бытовые приборы, поскольку они рассчитаны на питание от 220 вольт. Единственное решение для данного варианта – профилактическое, оно заключается в установке в щиток автоматов (перед электрическим счетчиком) специального устройства – реле напряжения.

Подведение итогов

При неисправностях проводки вызванных локальным исчезновением нуля в электрическом щите или на внутренних линиях проводки неисправность может быть устранена самостоятельно. Наличие напряжения на неисправной розетке следует проверять индикатором, если его лампочка горит на каждом контакте, то, скорее всего, пропал ноль. Чтобы убедиться в этом, достаточно измерить напряжение между нулем и фазой штепсельного разъема.

В старых системах TN-C, где для разводки используются только 2 провода, отсутствует заземление проводки, поэтому подобные аварии могут представлять серьезную угрозу для жизни.

Видео в развитие темы

Две фазы в розетке, причины и решение

При нормальном режиме работы розетки проверяя наличие напряжения картина должна выглядеть следующим образом. При прикосновении индикатора напряжения к фазному проводу, должно появляться световое оповещение, а при прикосновении к нулевому, лампочка индикатора светиться не должна.

Но если розетка не работает, а индикатор показывает на проводах в розетке две фазы, что делать и как такое может быть?

Такое явление встречается довольно часто, как правило в домах со старой или некачественно выполненной электропроводкой.  Откуда же берутся эти две фазы в розетке, давайте разберем возможные причины их появления:

Отгорел нулевой провод во внутренней системе электропроводки

Это наиболее распространенная причина. При отсутствии нулевого соединения фаза через нить накаливания лампочек в люстре, либо через электроприборы  включенные в другие розетки  наведенным током будет присутствовать и на нулевом проводе. При этом розетка, в которой находиться две фазы не работает. Правильно диагностировать данную причину можно выключив из всех розеток включенные в них электроприборы путем отсоединения вилок от розеток. Далее нужно перевести все выключатели в положение выключено. Если вы не знаете в каком положение выключатель включен, а в каком выключен, можно просто выкрутить из люстр и светильников лампочки эффект будет тот же. После того как вы произвели все действия указанные выше, нужно еще раз проверить напряжение в розетке. У вас должно получиться следующее, на фазном проводе должна быть фаза, соответственно индикатор делает световое оповещение, а при прикосновении к нулевому, лампочка индикатора  светиться не должна. В этом случае причину неисправности следует начать искать:

  •  в местах недавно повешенных на стену картинах, фотографиях. Как правило в  95% случаев такой тюнинг жилья заканчивается перебитым проводом. В этом случае нужно отключить электропитание квартиры (выключить пробки, автоматы, пакетные выключатели) убедиться в отсутствии напряжения. Далее снять слой штукатурки  и освободить провод, визуально диагностировать место повреждения и устранить неисправность путем соединения проводов и их изоляцией. После проведения всех работ, включаем подачу напряжения и проверяем работоспособность розетки. После этого место повреждения можно замазывать штукатурным либо гипсовым раствором.
  • если же никаких работ по обновлению дизайна жилья перед тем как в розетке появились две фазы не проводилось, то  возможная неисправность может быть в распределительной коробке. В этом случае поиски  начать следует с распределительных коробок, которые находиться в комнате где расположена розетка. Отключаем электроснабжение квартиры, снимаем крышку распределительной коробки, ищем обгоревшие, оплавленные либо отвалившееся провода. Если в этой распределительной коробке неисправности нет открываем ближайшее. После того как вы визуально диагностировали неисправность, приступаем к ее устранению. Делаем новое соединение, изолируем, закрываем крышку распределительной коробки, включаем электропитание и проверяем работоспособность розетки.
  •  в электро щитке. Если вы имеете доступ в силовой щит, вы можете открыть его и визуально просмотреть все контакты и соединения. При обнаружения оплавленных проводов, подгоревших контактов, отвалившихся от мест присоединения проводов нужно немедленно обратиться в обслуживающую данный электрощит организацию для устранения неполадок. Производить самостоятельный ремонт без снятия напряжения ОПАСНО ДЛЯ ЖИЗНИ.

Произошло перенапряжение

  • Перенапряжение – это повышение или понижение значений напряжения с нормальных (220-230 вольт) до высоких (360-380 вольт) или наоборот низких (40-80 вольт). Когда происходит перенапряжение, сначала может моргать свет, потом начинают очень ярко или очень тускло гореть лампочки.

Основную опасность представляют те случаи когда происходит повышение напряжения (360-380 вольт). Начинают сильно светиться лампочки, в некоторых случаях даже гудят, начинает дымиться  бытовая электроника. Моментально реагируют на повышенное напряжение: компьютеры, микроволновые печи, электронные часы, телевизоры, аудио и видео техника. Перегорают, либо начинают некорректно работать.

При низких значениях напряжения (40-80 вольт) такого значительного ущерба бытовой технике не наноситься, из-за низкого напряжения она просто не включается, а освещение при этом еле светиться, так, что можно разглядеть еле тлеющую нить накала в лампочке. Причина очень банальна, где то по линии электропроводки от подстанции до вашего счетчика повредился нулевой провод.

Что происходит во время перенапряжения? В современных электросетях используются четырех жильные кабельные линии. Три жилы используются для передачи трех независимых фаз, а четвертая для нуля. Когда повреждается нулевой провод, ток подобно воде мгновенно заполняет свободную нишу и устремляется туда где самая маленькая нагрузка, в итоге получается что по по фазному проводу и по нулевому приходят две фазы вместо положенных 220 вольт, так получается 380. Соответственно раз ток убежал в свободную нишу с маленькой нагрузкой, то там откуда он убежал остается маленькое напряжение  (40-80 вольт) или совсем ничего.

Что делать?

  • Нужно быстро отключить электроснабжение квартиры
  • выключить из розеток все бытовые приборы
  • перевести все выключатели в положение отключено.
  • Вызвать обслуживающий электро персонал.  Дождаться устранения бригадой электромонтеров причин перенапряжения, далее ими делаются контрольные замеры напряжения, составляется акт и только после этого можно вновь восстановить электропитание вашей квартиры.

Наведенный ток

Розетка работает в нормальном режиме, но при замере индикатором диагностируются две фазы. Такое явление часто встречается, если рядом с вашим домом проходит высоковольтная линия электропередач.

Это один из самых опасных случаев, так как наведенное напряжение будет диагностироваться индикатором даже при полностью отключенной подачей напряжения в квартиру, что может ввести в заблуждение даже профессионала в данном вопросе. В этом случае поможет вольтметр, либо мультиметр, он безошибочно покажет наличие или отсутствие напряжения.

Треугольник.

Для передачи электроэнергии между населенными пунктам напряжение электрической сети многократно повышается. Это делается для сокращения токовой нагрузки сети, проще говоря с ростом напряжения сила тока в линиях электропередачи понижается.

Например, если приходя в ВРУ жилых строений линейное напряжение сети (между фаз) составляет 380 Вольт, то на высоковольтных линиях электропередач напряжение может повышаться от 6 000 до 1150 000 Вольт.

Понижение до 380 Вольт, происходит внутри трансформаторных подстанций, где установлен понижающий трансформатор тока.

В электрике существуют две схемы соединения обмоток понижающих трансформаторов “звезда” и “треугольник”. В большинстве случаев в современных электрических сетях для бытовых нужд применяется схема “звезды”, здесь все стандартно, есть 3 фазы и ноль (глухозаземленная нейтраль). Линейное напряжение = 380 Вольт (напряжение между фаз), а  фазное = 220-240 Вольт (между фазой и нулем, землей).

На ВРУ, как  правило, приходит четырех жильный кабель, по которому подается напряжение 380 Вольт, далее происходит разделение на отдельные лини “ноль + фаза”, которые и приходят в квартиру. В итоге на розетке получаем напряжение сети 220-240 Вольт.

А вот в “треугольнике” нуля нет, есть только три фазы и все. На ВРУ приходит трехжильный кабель, по которому подается напряжение 380 Вольт.

Так как в схеме треугольника фазное напряжение = линейному,  далее он делится на отдельные линии “фаза + фаза” и именно в таком виде напряжение приходит в жилые квартиры. То есть в такой сети на обоих контактах розетки будет две фазы, при этом бытовые электроприборы в нормальном режиме работы будут исправно функционировать.  В розетке будет напряжение 380 Вольт.

Стоит отметить, что схема треугольника в современных сетях встречается все реже и реже, в большинстве случаев в районах городов и селений старого жилого фонда.

 

Две фазы в розетке – почему так происходит и что делать

Электрическая проводка делается по простым принципам, которые изучаются еще в школе, но некоторые неисправности зачастую выходят за рамки стандартных представлений про работу электросети. Две фазы в розетке это распространенный казус, регулярно ставящий в тупик пользователей с недостаточным опытом в ремонте электропроводки.

Где и почему может появиться вторая фаза

Здесь сразу надо оговориться, что так как в квартиру заходит только один фазный провод, то понятие «вторая фаза» подразумевает что индикатор напряжения показывает фазу в контактах на которых она должна быть изначально и на нуле. Второй фазы, в правильном понимании этих слов, в квартире быть не может.

Следующий момент, который надо знать для понимания сути проблемы – каждый электроприбор является проводником электричества. Простейший пример это лампочка – ее нить накаливания светится из-за того, что она является проводником электрического тока. По сути, лампочка светит потому что она замыкает между собой фазу и ноль, а короткого замыкания не происходит так как нить накаливания обладает определенным электрическим сопротивлением. Точно так же работают остальные приборы – они зачастую подключаются к сети через трансформаторы, обмотка которых сделана из медной проволоки. Замыкания опять же не происходит, так как из-за длины провода и его сечения он обладает электрическим сопротивлением, но по сути, когда в розетку вставляется штепсель любого прибора, то в ней замыкаются фаза и ноль.

Теперь должно быть понятно, почему в розетке две фазы – эта неисправность может появиться только в том случае, если отсутствует ноль. Фаза приходит к розетке, проходит через включенный в нее электроприбор и появляется на нулевом проводе, а от него и на тех розетках, что расположены после обрыва ноля. Соответственно, если выключить все выключатели и вынуть все штепсели из розеток, то индикатор будет показывать фазу только на одном контакте.

Как итог – фаза вместо ноля может появиться в одной отдельно взятой розетке (при условии, что она двойная или тройная и в один из штепселей вставлена вилка какого-либо электроприбора). Далее, 2 фазы могут быть в одной из комнат, в половине квартиры или вообще везде.

Также нельзя скидывать со счетов вероятность короткого замыкания, например, при сверлении стены или некачественной укладке проводов в распределительной коробке. При определенном везении можно так зацепить проводку, что нулевой провод отгорит от основной сети и прикипит к фазному. В таком случае две фазы в розетке индикатор покажет даже при отключенных от сети электроприборах.

В этом видео вы может посмотреть как эта неисправность воспроизводится на специально собранном стенде:

Две фазы в одной розетке

Такой случай практически не встречается – это редкое исключение, подтверждающее правило. Если все же такое случилось – все остальные розетки работают без нареканий, свет везде есть, а в одной единственной розетке индикатор показывает две фазы, то в первую очередь разбирается сама розетка. Поломка скорее всего будет в другом месте, но сперва на всякий случай надо убедиться что ее нет в месте к которому проще всего добраться.

Если повезет, то перебитый, отгоревший или выскочивший из крепления провод найдется в подрозетнике.

Когда розетка исправна и без следов перегрева проводов, то следующий шаг это определить как она подключена – напрямую к распределительной коробке или через другую розетку. Во втором случае есть вероятность того, что нулевой провод был некачественно прикручен в «родительской» розетке, а теперь выпал.

Далее проверяется распределительная коробка – это наиболее вероятное место, где может обнаружиться плохой контакт. Здесь надо принимать во внимание, что фазный провод не такой требовательный к качеству скрутки – при плохом соединении она греется, но какое-то время еще работает. Нулевой провод может окислиться и без видимых последствий – чтобы это увидеть придется разматывать скрутки, заново зачищать провода и собирать все обратно.

Если скрутка в порядке, то остается только прозвонить провод тестером – если он покажет обрыв внутри стены, то для ремонта придется разбивать штробу.

Когда розетка перестает работать в доме, где проводка сделана недавно и по всем правилам, то дополнительно стоит проверить не является ли она силовой розеткой, к которой подключается водонагреватель или подобное мощное устройство. В таком случае причины надо искать в главном распределительном щитке, откуда она может быть запитана, минуя распределительные коробки.

Две фазы в нескольких розетках

Ситуация аналогична предыдущей, но теперь две фазы определяются индикатором сразу в нескольких розетках, зачастую находящихся в одной комнате. При этом освещение может как работать, так и отсутствовать – в зависимости от способа его подключения.

 

Проверять розетки здесь смысла нет, за одним исключением – если все они подключены так называемым шлейфом. В этом случае от распределительной коробки провода приходят на одну из них, а остальные подключены последовательно. ПУЭ так делать настоятельно не рекомендует, но все может быть.

Порядок устранения неисправности зависит от желания лезть к распределительной коробке и от того, есть ли вероятность шлейфового подключения. Вероятнее всего обрыв провода обнаружится в распределительной коробке, но если там все подключения в норме, тогда надо поочередно разбирать все розетки в комнате.

Две фазы в половине комнат

Такое случается, если распределительные коробки подключены последовательно одна за другой. Что делать в таком случае – решение стандартное – надо последовательно перебирать все коробки в поисках плохого контакта.

Вся сложность в том, что зачастую схема подключения отсутствует, поэтому неизвестно из какой комнаты и в какую из них проложена проводка. Также следует учитывать тот вариант, что контакт может подгореть как в комнате в которой не работают розетки, так и в предыдущей по схеме, где индикатор показывает нормальное напряжение в розетках.

Есть решение, чтобы не разбирать клеммные коробки во всех комнатах – можно поменять фазу и ноль на входном щитке, а потом воспользоваться индикатором напряжения который может показывать фазу через стену. Перед этим надо убедиться, что в розетках нигде не присутствует зануление и на всякий случай отсоединить заземление, если таковое подключено.

Две фазы во всех розетках

Если во всем доме выключилось освещение, а индикатор напряжения показывает в розетках две фазы, проблема скорее всего на входном щитке.

В этом случае надо обязательно проверить также провода заземления на тот случай если они занулены. При этом, пока не будет уверенности что на них нет напряжения, нельзя касаться голыми руками заземляющих контактов и запретить детям трогать розетки и электроприборы.

В старых домах часто установлены пробки или автоматические выключатели не только на фазу, как это рекомендовано последними редакциями ПУЭ, но и на нулевом проводе. Перегорание такой пробки равноценно обрыву ноля, поэтому рекомендуется проверить их в первую очередь.

Также надо учитывать возможности отсутствие электрощитка как такового, когда от счетчика провод идет сразу в главную распределительную коробку – неисправный контакт может быть в ней.

Если в квартире все в порядке, то дальше проверяется нулевой провод на этажном распределительном щитке – вероятно, что для этого придется пригласить электрика из ЖЭКа.

почему индикатор показывает фазу на обоих проводах

На чтение 5 мин Просмотров 2.4к. Опубликовано Обновлено

Неисправность, при которой обнаруживается сразу две фазы в розетке – нередкое явление в бытовой практике. Найти его причину по силам только опытному специалисту, разбирающемуся в электрике. Однако при грамотном подходе возможно самостоятельное решение возникшей проблемы. Для этого потребуется ознакомиться с принципами формирования питающего напряжения, которое по электрическим сетям поступает к каждому потребителю.

Нормальное распределение потенциалов в розетках

Две фазы в розетке

Прежде чем разобраться в том, почему в розетках сразу две фазы, следует знать, что в квартиру по линии электропроводки подводится пара питающих жил, одна из которых называется фазной, а вторая – нулевой. Потенциал 220 Вольт действует только на одной из клемм розеток, а на второй он равен нулю. Убедиться в этом можно, если воспользоваться обычной индикаторной отверткой.

Наличие двух потенциалов (фазного и нулевого) – обязательное условие работы любой системы электроснабжения.

Если в розетке нет одной фазы или по какой-то причине пропал ноль – не удастся получить и разности их значений (220-0=220 Вольт), называемой напряжением. Поэтому если пропал ноль в розетках, и как его найти неизвестно – перед началом поисков следует ознакомиться с принципом формирования потенциалов. Намного сложнее ситуация, когда вместо нуля на второй клемме появляется еще одна фаза. Для устранения этой неисправности потребуется разобраться в причинах ее возникновения.

Причины появления двух фаз

Две фазы в розетке при разрыве нулевого провода

Появление фазы сразу на двух проводах может быть объяснено следующим стечением обстоятельств:

  • Обрыв нулевого провода во входном щитке дома или квартиры.
  • Его повреждение на вводе или внутри распределительной коробки.
  • Нарушение контакта в подсоединении «нуля» только в одной розетке.
  • Замыкание фазного провода на нулевую жилу из-за повреждения изоляции.

Чтобы разобраться, почему индикатор показывает фазу сразу на обоих проводах, причину, вызывавшую каждое из этих явлений, потребуется рассмотреть в отдельности.

Еслт нет нуля в розетке, прежде всего следует найти место его пропадания (обрыва). Возможный вариант – повреждение кабеля на вводе в дом или квартиру, в результате чего «ноль» пропадет во всех розетках, установленных внутри данного здания и в отдельных помещениях. Помимо этого, контакт может нарушиться в любом месте электрической цепи, в том числе – на вводе или внутри распределительной коробки, что приведет к неисправности лишь нескольких розеток.

Второй случай касается тех из них, что подключены в пределах комнаты именно к этому распределительному узлу (то есть примерно половины), а во всех остальных установочных изделиях нормально работающий «ноль» сохранится.

При наличии неисправности только на вводе в конкретную розетку исчезновение нуля и появление второй фазы будет наблюдаться лишь в ней. Чтобы рассматриваемая ситуация сформировалась окончательно – напряжение попало на оборванный нулевой контакт – потребуется, чтобы оголившийся фазный провод случайно замкнулся на него.

Разновидностью последнего случая является вариант, когда нулевая жила не оборвана, а фазный провод с поврежденной изоляцией замкнулся на земляной контакт. Это также приведет к появлению в данной розетке сразу двух высоких потенциалов.

Возможные последствия и опасность появления двух фаз

Две фазы в розетке дают нулевую разность потенциалов

Когда в той или иной розетке сразу 2 фазы, необходимо в первую очередь побеспокоиться о том, чем это грозит пользующимся ей людям. Такое положение недопустимо по следующим причинам:

  • Разность потенциалов между клеммами розетки будет равна 220-220=0 Вольт.
  • Пропадет напряжение, подключенные бытовые приборы не будут работать.
  • Появляется опасность, объясняемая пропаданием цепи защитного заземления, которое в старых домах действует через земляную жилу (из-за отсутствия местного контура).

В данном случае о какой-либо защите говорить вообще не приходится, последствия могут оказаться неприемлемыми для людей. Несведущий электрик, считая, что касается нулевого провода (в изоляции синего цвета) может оказаться под высоким напряжением. Поэтому в нормативной документации предписывается при разборке установочных изделий обязательно проверять посредством индикатора отсутствие фазы на обеих клеммах.

В рассматриваемой ситуации также перестанут работать все или только подключенные к данной распредкоробке выключатели света. Объясняется это тем, что на подводимом к люстре нулевом проводе, связанном с соответствующим контактом розетки, появится фазный потенциал, а разность напряжений станет равной нулю.

Рекомендации по устранению неисправности

Примеры обрывов нуля

Если на клеммах розеток старого образца действуют два высоких потенциала (2 фазы и заземленный ноль – для новых установочных изделий с тремя контактами) – такая ситуация требует срочного вмешательства. Поскольку она связана с обрывом нулевой жилы, сначала нужно отыскать точное место повреждения, используя методы визуального контроля плюс необходимый инструмент. Для этого потребуется предпринять действия, зависящие от характера повреждения.

Когда проблема касается всех розеток жилых помещений подъезда или определенной квартиры, следует вызвать электрика, который имеет доступ к распределительному шкафу и вводному автомату. Если неисправность наблюдается только в квартире (на одной/нескольких распределительных коробках или в отдельной розетке), возможен вариант самостоятельного ее устранения. Для этого потребуется проделать следующие операции:

  1. Отключить вводный автомат, расположенный в общем коридоре и подающий напряжение на всю квартиру.
  2. Обследовать распредкоробку, на входе которой или внутри предположительно скрывается неисправность.
  3. При обнаружении явного обрыва (плохого контакта) входящего или отводимого от коробки провода необходимо восстановить разорванную цепь, воспользовавшись простейшим инструментом – паяльником или отверткой.
  4. Если неисправность проявилась только на одной из розеток, следует снять ее крышку и внимательно обследовать все контакты.
  5. При обнаружении ослабленного крепления на нулевой клемме необходимо подтянуть его, воспользовавшись отверткой.

Чтобы из розеток исчезла вторая фаза и люстра снова начала гореть, потребуется также изолировать поврежденную фазную жилу от уже восстановленного «нуля».

Лишь при условии выполнения соответствующих инструкций можно устранить обнаруженную неисправность, наблюдаемую во всех, половине или только в одной розетке. Появление двух фаз, независимо от общего количества задействованных розеток, чаще всего возникает при нарушении правил пользования бытовыми электротехническими изделиями.

Две фазы в розетке | Причины и методы их устранения

Неисправность, связанная с одновременным действием двух фаз в розетках, встречается в определенных условиях. Но по своей важности она не уступает ни одной из известных неполадок, поскольку приводит к полному обесточиванию всех подключенных к домашней сети электрических приборов. Именно поэтому необходимо тщательно разобраться в причинах этого неприятного явления, способного привести к непредвиденным последствиям.

Теория о причине неисправности

Ситуации, при которой на втором контакте розетки или на цоколе лампочки освещения вместо привычного нуля появляется еще одно напряжение 220 вольт, имеет свое теоретическое обоснование. Несмотря на то что схемы подключения к розетке и лампочке отличаются между собой – причина их происхождения обычно одна и та же. Разобраться с тем, почему в розетках две фазы поможет рисунок, размещенный ниже по тексту.

Из него следует, что появление двух одинаковых напряжений на клеммах розетки, например, связано с обрывом нулевого провода и случайным попаданием фазы на этот контакт. По этой же причине через распределительную коробку она вместо ноля попадает на цоколь осветительных лампочек, которые после этого перестают нормально светиться.

Важно! Под действующим напряжением, которое наряду с током совершает работу в нагрузке, понимается разность потенциалов между двумя точками электрической цепочки.

В нормальном положении между клеммами розетки этот показатель будет иметь значение 220 – 0 = 220 Вольт, а после появление второй фазы он составит 220 – 220 = 0 вольт. По этому любой измерительный прибор, подключенный к контактам этого изделия, покажет на своем индикаторе «ноль». Включенные же в розетку бытовые устройства перестают нормально работать, а подсоединенные к сети лампочки – не горят.

Основные причины неполадки

Неполадка, связанная с появлением в розетке второй фазы, может возникнуть из-за следующего стечения обстоятельств:

  1. Во-первых, в питающей сети произошел случайный обрыв ноля.
  2. Во-вторых, на нулевой провод или контакт «попала» прокладываемая рядом с ним оголенная фазная жила.
  3. В-третьих, плохой контакт проводника на нулевой шине или вводном автомате.

Каждое из них следует рассмотреть отдельно.

Обрыв ноля

Сам по себе обрыв провода с «нулем» – это обычная неисправность, возникающая довольно часто. Причиной может быть пропадание контакта в любом звене электрической цепи (в щитке, распредкоробке или в контакте силовой розетки, например).

Обратите внимание: Самый неприятный случай – обрыв нулевой жилы в электропроводке, спрятанной глубоко в стене (то есть при скрытой ее прокладке).

Задачу поиска места обрыва в других местах решить также не очень просто. Для того чтобы справиться с ней, потребуется специальный измерительный прибор, называемый мультиметром.

Ноль оборван и замкнут на фазу

Для того чтобы после обрыва провода, подводящего к розетке ноль, на этом контакте появилась фаза – необходимо случайное ее попадание в данное место. Такое событие хоть и редко, но все же случается при длительной эксплуатации электропроводки. Поэтому такое повреждение нельзя исключать из рассмотрения, особенно если для защиты электросети применяются морально устаревшие пробки.

Возможна еще одна неисправность линейного силового кабеля, способная привести к проблеме того же типа и также ставящая пользователя перед вопросом: что делать? Это – обрыв или обгорания нуля, произошедшие из-за длительной эксплуатации провода, неправильно подобранного по сечению (или в ситуации, когда его случайно повредили).

Вместо автоматов – пробки

Вероятность возникновения ситуации с попаданием фазы на «ноль» наиболее велика, если вместо современных автоматов для защиты сети установлены пробки с «жучками», не рассчитанными на номинальные тока нагрузки. В этом случае при превышении током допустимой величины не рассчитанная на него изоляция может расплавиться. При этом нулевой провод при таких условиях сгорает, а фаза попадет на его поврежденный конец.

Две фазы, ошибочно подключенные в розетке

Еще один довольно редкий, но также возможный вариант неисправности – это ошибка монтажа электропроводки, при которой к обеим клеммам розетки подключены фазные ответвления от автомата. Отсутствие напряжения в этом случае будет наблюдаться в комнатах, подключенных к данному защитному устройству. Во всех остальных помещениях силовые розетки и лампочки будут работать нормально.

Смещение фаз

К таким распространенным и сложным неполадкам в трехфазной питающей сети относят смещение фаз в проводах силового кабеля, подведенного от подстанции до жилого строения или другого объекта. Для получения полноценного нуля в цепях, где трансформаторные обмотки и нагрузки соединены по схеме «звезда», потребители должны быть равномерно распределены между каждой из 3-х фазных линий.

При нарушении этого правила обеспечить полноценный нуль не получается, поскольку одна из фаз смещается в его сторону (можно сказать и наоборот). На приведенном ниже рисунке в векторном представлении показано, как происходит смещение нуля в сторону одной из трех фаз C (схема справа).

В результате на нулевой жиле появляется потенциал, тем больший, чем больше неравномерность распределения нагрузок по каждому из фазных направлений. В крайней ситуации он может достигнуть 220 Вольт и стать причиной наличия двух фаз в розетке.

Рекомендации по решению проблемы

Для выхода из возникшей ситуации и решения проблемы с наличием двух фаз, прежде всего, нужно определиться с причиной их появления. Если это произошло из-за обрыва нуля – сначала следует отыскать место повреждения с помощью прозвонки нулевой жилы посредством мультиметра.

Одновременно с этим необходимо надежно изолировать фазную жилу от уже проверенного и восстановленного «нуля». Для устранения неисправности, возникшей по вине старых пробок, потребуется срочно заменить их автоматическими выключателями, исключающими возможность выгорания проводов.

Убедиться в том, что на оба контакта розетки ошибочно подключены фазные провода, можно с помощью индикаторной отвертки. Если при прикосновении ее рабочим концом к обеим клеммам розетки индикатор показывает фазу (встроенная неоновая лампочка светится) – это значит, что при монтаже произошла ошибка. Для того чтобы устранить ее потребуется отсоединить один из проводов и подключить на его место нулевой проводник.

Самый сложный случай – описанное ранее смещение нуля в сторону одной фазы или обрыв (повреждение) нейтрального провода. Чтобы исправить это ненормальное положение можно сделать следующее:

  1. В частном доме необходимо будет замерить тем же мультиметром напряжения каждой фазы по отношению к нейтрали, которая ранее была проверена на целостность.
  2. При разнице в показаниях следует промерить токи в нагрузках.
  3. В случае отличия токовых величин необходимо попытаться выровнять их, правильно распределив нагрузки по фазам.
  4. При обнаружении повреждения нейтральной жилы потребуется заменить ее новым проводом большего сечения

В ситуации, когда индикатор показывает две фазы на розетке в городской квартире, а все рассмотренные варианты уже исключены – нужно обратиться в жилищное управление с просьбой пригласить бригаду электриков. Только специалисты смогут разобраться с возникшим перекосом фаз и при необходимости согласовать вопрос исправления ситуации с технической службой местной подстанции.

По данной проблеме в интернете представлено большое количество видеообзоров, в которых подробнейшим образом разъясняются вопросы появления двух фаз на розетках и контактах бытовых источников света. Представляем вашему вниманию некоторые из них:

В заключительной части обзора отметим, что после ознакомления с представленными материалами даже неспециалист сможет попытаться самостоятельно устранить простейшую неисправность. Все, что ему для этого потребуется – это научиться обращаться с индикаторной отверткой и измерительным прибором (мультиметром).

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Помогла8Не помогла

причины и способы их устранения

Электрическая проводка — довольно сложная система с важными особенностями и нюансами. Бывает, в ней случаются серьезные поломки. Две фазы в розетке — наглядный пример. Рассмотрим, что представляет собой неисправность, по каким причинам она возникает, как устраняется.

Общая информация

Появление двух фаз определяется с помощью специальных приспособлений — индикаторов напряжения и вольтметров.

В большинстве квартир/домов проводка скрытая. Как показала практика, она является более уязвимой, нежели установленная открытым способом. Последнюю не пробьют случайно, если необходимо повесить картину или ковер. Со скрытой проводкой сложнее. Определить ее местонахождение сложно, ведь строители обычно не оставляют схем, а прибор для подобных работ стоит дорого.

Повреждения бывают разными. Часто без электричества остаются квартира/дом или какое-то отдельное помещение. В случаях, когда установлены автоматические выключатели, быстро устраняющие короткие замыкания, это незаметно. При их отсутствии неисправность проявится появлением искр и дыма.

Если такие повреждения можно предупредить, от поломок в распределительной коробке защититься нельзя. Существует несколько причин их появления:

  1. Некачественно выполнены работы по соединению проводов.
  2. Место соединения окислилось и разрушилось.
  3. Произошло соединение алюминиевого и медного проводов. Под воздействием влаги провода окисляются, вследствие чего происходит обрыв.

Такие неисправности легко обнаруживаются по запаху сгоревшей изоляции.

Обрыв нулевого проводника

Если произошел обрыв нуля, электроприборы, подключенные к розетке, работать не будут. Возможно, напряжение пропадет и в остальных розетках.

Если поломка произошла по этой причине, то и решение довольно простое. Достаточно выключить технику из сети. Что делать дальше:

  1. Определить розетки без напряжения. На этом этапе пригодится вольтметр, контрольная нагрузка или индикаторная отвертка. Не стоит использовать однополюсный индикатор — он бесполезен. Запрещено в качестве индикатора использовать лампу накаливания. Если попадется напряжение в 380 В, она может взорваться и нанести увечья.
  2. Дальше нужно найти поврежденную часть проводки.

Если выполнить работы самостоятельно не получается, следует обратиться к электрику.

Обрыв нулевого проводника с замыканием на фазу

При обрыве нулевого провода с замыканием на фазу недостаточно лишь выключить электроприборы. Появление двух фаз это не устранит.

Чтобы исправить ситуацию, необходимо найти место, в котором произошло повреждение провода. Используя индикатор, необходимо прикоснуться к металлическим деталям в стенах. Искать неисправность следует в месте, где найдена фаза.

Обрыв фазного проводника

Если в розетке индикатор ничего не показывает, случился обрыв так называемой фазы. Определить его местоположение несложно. Необходимо проверить наличие фазы в соединительных коробках, расположенных между электрощитком и поврежденной розеткой.

Аппараты защиты

Несмотря на наличие защитных элементов (УЗО, автоматические выключатели), во многих домах стоят предохранители. Если вышел из строя предохранитель, находящийся на «нуле», к розеткам пойдет вторая фаза.

Исправить ситуацию легко, если найти место замыкания. Необходимо выключить свет, отключить от сети приборы и установить новый предохранитель. Если он сломался, поломка касается проводки. В противном случае, когда предохранитель в порядке, неисправность следует искать в технике.

Сейчас вместо предохранителей устанавливаются двухполюсные автоматические выключатели. С ними тоже могут появиться две фазы, но исключительно при неисправности прибора или неправильной установке.

Неисправности питающей сети

Еще одна причина появления двух фаз в розетке — поломки сети. Чаще это обрыв нулевого провода. Оборваться может где угодно, начиная подстанцией, заканчивая щитком в многоэтажном доме. При этом электричество в квартирах не пропадет. В особо сложных случаях напряжение вырастет до 380 В, что выведет из строя бытовую технику.

Две фазы в розетке возникают и по причине замыкания фазы/нуля на линии электропередач. Это опасная неисправность, ведь даже УЗО не всегда успевают отреагировать. В результате возникает пожар.

Искать и устранять неисправности питающей сети должны исключительно электрики.

Произошло перенапряжение

Две фазы появляются и вследствие скачков напряжения (повышение или понижение) в сети. Проявляется это в моргании света, слишком ярком или, наоборот, тусклом свечении лампочек. Особенно опасно повышение, ведь техника не может работать полноценно или перегорает.

Как нужно действовать:

  1. Отключить электропитание для квартиры/дома.
  2. Отключить технику.
  3. Выключить свет (выключатели установить в положение «выкл.»).
  4. Вызвать электриков.

Почему нельзя действовать самостоятельно? Во-первых, малейшая неточность в работе может привести к трагическим последствиям. Во-вторых, электричество подключается исключительно после составления акта о неисправности.

Сырые стены

Часто две фазы — следствие лишней влажности. Сырые стены могут привести к возникновению короткого замыкания. Нейтральный провод либо отпадет, либо приклеится к фазе.

Чтобы устранить поломку, необходимо найти место локализации замыкания. Потом придется менять провода от розетки до распределительного щитка. Важно также избавиться от сырости и предупредить ее дальнейшее появление.

Наведенный ток

Это явление, возникающее, когда поблизости проходит высоковольтная ЛЭП. Розетки работают нормально, но индикатор обнаруживает две фазы.

В такой ситуации может растеряться опытный специалист, ведь индикатор определит напряжение, даже если тока в розетках не будет. Настоящую картину покажет вольтметр или мультиметр.

Сколько фаз должно находиться в розетке? Одна, а если их больше, причины могут заключаться в неисправностях проводки (помещение и подстанция), повышенной влажности стен, наведенном токе. Независимо от причины, устранять неисправность должен специалист.

Почему нет трехфазных бытовых розеток или какого-либо интереса к трехфазным для бытового (сетевого) питания или чего-либо относительно маломощного?

Стоимость.

  • Трехфазная распределительная система потребует четыре провода к каждому дому – три фазы и нейтраль. Однофазный требует только два.
  • Требуется трехфазный предохранитель.
  • Для внутренней проводки потребуются четыре провода плюс земля.
  • Потребуются пятиполюсные соединители.

Рисунок 1. Трехфазные разъемы – европейские и североамериканские.

… и похоже, что единственные существующие трехфазные розетки предназначены для сверхмощного промышленного оборудования.

Обычно стоит больше пары кВт, если доступно трехфазное питание, как в большинстве промышленных и коммерческих зданий.

Основная причина, по которой я считаю, что трехфазное питание лучше, заключается в том, что его можно выпрямить в более чистый источник постоянного тока.Трехфазное напряжение постоянно обеспечивает питание, в то время как однофазное напряжение постоянно понижается до 0 вольт перед тем, как снова подняться.

Это правда.

3-фазный, естественно, будет производить меньше шума источника питания, поэтому мы можем получить более чистую мощность с меньшими конденсаторами.

Это может быть неправдой. В однофазном и трехфазном режиме диоды проводят вблизи пика формы волны напряжения только тогда, когда входящее напряжение превышает напряжение конденсатора. Это приводит к появлению импульсов тока на каждой фазе и возникновению нечетных гармоник на форме волны тока.

Рис. 2. Привод частотно-регулируемого привода с выпрямителями, фильтром для снижения шума, шестью переключающими транзисторами для ШИМ тока в 3-фазном двигателе. Источник: ECMWeb.

Преобразователи частоты

(VFD) используют этот принцип для выпрямления напряжения в сети и внутреннего генерирования высокого напряжения постоянного тока. Как вы заявили, емкость конденсатора может быть намного меньше при использовании трехфазного источника питания, чем при однофазном питании. ЧРП обычно доступны в диапазоне от 1 кВт до сотен кВт.

Это может быть безопаснее, так как напряжение переменного тока может быть ниже (в случае, если два провода закорочены вместе человеком), но при этом может быть более высокая выходная мощность постоянного тока с трехфазным выпрямителем и, возможно, другими вещами.

Звучит привлекательно, но преимущество более высокого напряжения состоит в том, что снижаются токи и снижаются падения напряжения и потери мощности в проводах. Кроме того, нам все еще нужны мощные нагрузки, такие как водонагреватели в погружных нагревателях, стиральные и посудомоечные машины.)

Так почему же домашние розетки нигде в мире не трёхфазные, и это даже не интересно?

Еще стоит.

Разница между однофазной и трехфазной электропроводкой

Разница между трехфазной и однофазной электропроводкой заключается, прежде всего, в напряжении, получаемом по каждому типу проводов. Двухфазного питания не существует, что для некоторых является неожиданностью. Однофазное питание обычно называют «расщепленной фазой».«У вас есть несколько способов определить, какой у вас трехфазный провод или однофазный.

Однофазный

Однофазный провод состоит из трех проводов, расположенных внутри изоляции. Два горячих провода и один нейтральный провод обеспечивают питание. Каждый Горячий провод обеспечивает электричество 120 В. Нейтраль отводится от трансформатора. Двухфазная цепь, вероятно, существует, потому что большинству водонагревателей, печей и сушилок для одежды требуется 240 В. Эти цепи питаются от обоих горячих проводов, но это это просто полнофазная цепь из однофазного провода.Все остальные устройства работают от 120 вольт электричества, для чего используется только один горячий провод и нейтраль. Тип схемы с использованием горячих и нейтральных проводов является причиной того, что ее обычно называют схемой с расщепленной фазой. Однофазный провод имеет два горячих провода, окруженных черной и красной изоляцией, нейтраль всегда белая и есть зеленый заземляющий провод.

Трехфазный

Трехфазное питание подается по четырем проводам. Три провода под напряжением, несущие электричество 120 вольт, и один нейтраль.Два провода под напряжением и нейтраль ведут к механизму, требующему 240 вольт питания. Трехфазное питание более эффективно, чем однофазное. Представьте себе человека, который толкает машину на холм; это пример однофазного питания. Трехфазное питание – это как если бы трое равных по силе мужчин толкали одну и ту же машину на один холм. Три провода под напряжением в трехфазной цепи окрашены в черный, синий и красный цвета; белый провод – нейтраль, а зеленый провод – заземление.

Использует

Еще одно различие между трехфазным и однофазным проводом касается того, где используется каждый тип провода.В большинстве, если не во всех жилых домах, проложен однофазный провод. Во всех коммерческих зданиях установлен трехфазный провод от энергокомпании. Трехфазные двигатели обеспечивают большую мощность, чем может обеспечить однофазный двигатель. Поскольку в большинстве коммерческих объектов используются машины и оборудование, работающие от трехфазных двигателей, для работы систем необходимо использовать трехфазный провод. Все в жилом доме работает только от однофазного источника питания, например, розетки, свет, холодильник и даже приборы, использующие электричество 240 вольт.

Определение типа

Определение типа используемого провода выполняется легко. Сначала посмотрите на провода и посмотрите, сколько проводов внутри внешней изоляции. Вы также можете проверить напряжение. Трехфазный провод обычно показывает 120 вольт между горячим и землей, а также 206 вольт между двумя горячими источниками. Однофазный провод обычно показывает 120 вольт между горячим и заземленным, но 240 вольт между двумя горячими проводами.

Разница между однофазным и трехфазным


Изображение большего размера


Напряжение на виток x число витков

Жилой трансформатор для однофазной сети
-Трансформаторы работают по принципу магнитной индукции при применении электричество к одной катушке с проволокой создает магнитный поток, который возбуждает другая катушка провода с электричеством.
-‘Трансформаторы не имеют движущихся частей, что обеспечивает долгую безотказную жизнь при нормальных условиях условия.’ Внутри трансформатора – катушки с проволокой. назвал первичным а также вторичный обмотки. Каждая катушка обернутый вокруг ламинированного железного сердечника или более эффективного аморфного металла основной. Металлический сердечник используется обеими катушками, но катушки с проволокой «изолированы» друг от друга. Они электрически разделены. Там нет общего провода между первичной и вторичной обмотками, общий только металлический сердечник.Как работают трансформаторы pdf

-Имеют разное количество повороты провода или изменяя соотношение витков на каждой катушке, уменьшит или повысит Напряжение. Различные напряжения могут быть достигнуты по всей сети с помощью варьируя количество витков на первичной и вторичной обмотках.

-The 7200 вольт Горячий провод и нейтраль подключены к первичной обмотке. змеевик через 2 отвода h2 и h3, расположенных сверху трансформатор.

-Подача заявления 7200 вольт на первичной катушке будет производить 240 вольт на вторичная сторона, потому что трансформатор выбранный для работы, имеет правильное соотношение оборотов для жилого Напряжение.Подключение горячего и нейтрального напряжения 7200 В через первичная обмотка трансформатора замыкает цепь, в результате чего электроны колебаться вперед и назад 60 раз в секунду. Этот поток электронов на первичная обмотка вызывает электроны на вторичной катушке колеблются с той же частотой.

– вторичная сторона имеет 3 отвода X1 X2 X3, расположенных на стороне трансформатора: 2 выходы X1 X2 для Горячие провода и 1 выход X3 в центре для нейтрального провода
-Жилые дома получают 3 провода, состоящие из 2 не совпадающих по фазе горячих проводов и 1 Нейтрально.Нейтральные провода на первичной и вторичной стороне из трансформатор соединены с заземляющий провод на опоре.
Все нейтральные во всем сетки соединены вместе и прикреплены к заземляющим проводам, которые подключаются к заземляющие стержни для создания массивный массив заземления, обеспечивающий безопасность и стабильность сетка.

– К Чтобы получить 240 вольт, вы вытягиваете горячий провод с каждого конца вторичной катушки. Эти два горячих провода не совпадают по фазе друг с другом, потому что электроны колеблющийся назад и вперед на вторичной катушке, и поскольку каждый горячий провод является подключенный к другому концу катушки, каждый горячий провод несет электроны, которые ускоряются в разных направлениях друг от друга в любой момент момент времени.
-По отключению нейтрали в центре катушки вы получите 1/2 напряжения или 120 вольт.
As а В результате, 120 вольт достигается при использовании 1 горячего и нейтрали. Пока 240 вольт достигается с помощью горячей проволоки с обоих концов вторичной обмотки.
-Как сноска, рисунок 2 горячих точки с одной стороны катушки не дает напряжение при подключении к прибору, так как оба Горячих в фазе друг с другом … каждый Hot должен приходить с противоположного конца вторичной обмотки.

Ресурс
Зачем нужен заземляющий провод

Подробнее:
Трансформатор строительство.
” сердечник обеспечивает путь с низким сопротивлением для магнитный поток. В железный сердечник обычно изготавливается из очень тонкой индивидуальной ламинаты, каждый покрыт утеплителем. Изоляция между отдельными слоями, потери от вихревых токов, наведенных на железо магнитным полем сердечник уменьшены ”. Другие потери включают гистерезисные потери или тепловые потери, от атомов железа в ядре сопротивляясь изменению полярности, когда атомы перенастройка с изменением полярности, вызванной колебаниями тока, плюс потери от сопротивления сама обмотка (провод).’Потеря эффективности – это соотношение мощности доставлен на первичной стороне – к питанию, подаваемому на вторичную сторону. Трансформатор потеря может составлять от 0,5 до 8% ”, что означает 92-98% зависит от эффективности от величины силы тока, протекающей через цепь, и погодных условий условия и т. д.
Номинальный ток воздушных проводов

‘Каждая фаза трансформатора состоит из двух отдельные обмотки катушки, намотанные на общий металлический сердечник. На некоторых трансформаторы, обмотка низкого напряжения размещается ближе всего к сердечнику; в обмотка высокого напряжения затем размещается вокруг обеих обмоток низкого напряжения. и ядро.У других трансформаторов есть отдельные катушки, которые расположены рядом. к друг с другом. Сила магнитного поля зависит от количества ток (амперы или количество электронов) и количество витков в обмотка. Когда ток уменьшается, магнитное поле сжимается ».

Первичный против вторичного.
” первичный всегда подключен к источнику питания, а вторичный всегда подключен к нагрузке ”. Итак, если в доме есть солнечная энергия, которая возвращается в сеть, тогда нижняя сторона напряжения может стать первичной, когда мощность течет от в дом к распределительным проводам.Другой пример, во время силового отключение, если домашний или рабочий генератор работает, и подключен к панель выключателя и главный выключатель не выключены, тогда электричество будет пройти через трансформатор и полностью запитать распределительные провода Напряжение. Это создает опасность поражения электрическим током для монтажников, работающих на восстановить электроэнергию или расчистить завалы среди обрушенных линий электропередач.

Передаточное число.
” Электрический поле вокруг линий электропередач в первую очередь зависит от напряжения ”. ‘Величина напряжения, наведенного на каждом витке вторичной обмотки. будет таким же, как напряжение на каждом витке первичной обмотка.Общая сумма индуцированного напряжения будет равна сумме напряжения, индуцируемого в каждом витке ». Это объясняет, почему первичный и вторичные катушки имеют разное количество витков, и где расчет происходит из.

Однофазный и 3-фазный ток или сила тока, потребляемая от линий электропередач.
ток обратно пропорционален как напряжению, так и количеству витков на трансформаторе. E вольт N витков I ампер (амперы – это ток или электроны).
Если первичное напряжение E1 составляет 7200 вольт, а вторичные вольт E2 для бытовая однофазная сеть 240 вольт.Предположим, главный выключатель составляет 250 ампер, то I2 равен 250 ампер.
С однофазным трансформатором для жилых помещений, передаточное отношение 30: 1. Это означает I1 можно рассчитать: 250 ампер разделить на 30 = 8 ампер. Это означает, что 7200 первичная линия вольт должна обеспечивать 8 ток первичной обмотки … … во время максимума использование.

Напряжение остается неизменным (если не происходит скачка напряжения): 7200 на первичная и 240 вольт на вторичный, сколько бы усилителей ни тянул домочадец. Напряжение падение не происходит в нормальных условиях, потому что все цепи подключены параллельно, а не последовательно.
Поскольку электричество динамическое и доставляется по запросу, 8 ампер будет потребляться только от основного, когда в доме используется максимальное усилители на всех цепях. Главный выключатель на 250 А в бытовой панели быть рядом с отключением.

Эффект умножается, когда распределительная линия обеспечивает питание сотнями или тысячами домов и предприятия.

Сравните то же потребление тока для 3-х фаз. Первичное напряжение E1 те же 7200 вольт. Предположим, что основным выключателем также является те же 250 ампер, что и E2 250.
Но давайте изменим вторичное напряжение Е2 до 480 вольт, обычно встречающихся в коммерческих трехфазных сетях. Повороты соотношение будет 15: 1.
Это означает первичный ток I1 можно рассчитать: 250 ампер разделить на 15 = 16 ампер. Это означает, что 7200 первичная линия вольт должна обеспечивать 16 амперы к первичной катушке.
За исключением каждая ветвь 3-фазной цепи потребляет 16 ампер от 3 отдельных проводов на раз в шахматном порядке при вращении генератора. В отличие от однофазных, которые тянет 8 ампер от 1 из 3 горячих проводов.В целом эффект таков, что 3-фазный обеспечивает большую мощность, больше кВА, или киловольт-ампер, или киловатт.

-37 многожильная проволока из алюминиевого сплава входит в число широко используемых линий. Проволока диаметром 7/8 дюйма может выдерживают 500-1000 ампер в зависимости от погодных условий. Кулер температура, облака и ветер помогают снизить сопротивление, поэтому напряжение может протолкнуть больше электронов (сила тока) через матрицу проводника с меньше потерь мощности. Фотография сделана во время монтажа ЛЭП. НИКОГДА не прикасайтесь к линия электропередачи без 100% уверенности в том, что по линии нет электричества.

Если все на распределительной линии потребляли максимальные амперы во время рекордной жары сила тока в линии электропередачи будет начинаем нагревать выключатель на подстанции. Если выключатель подстанции отключил линию, другая цепь может принять нагрузку, но иногда при пониженной мощности, что приводит к потере напряжения в месте падения напряжения. Или разгрузка, где участки сети отключены на время. Сетка улучшения для надежность свели к минимуму проблему на короткий срок, но как летом повышение температуры, практика снижения потребления лучше всего выбор.Солнечные панели на крыше также могут помочь.
Ресурсы:
Исходная страница 6
Перегрев устройств приближения к линии электропередачи 20034865 стр. 3
Как подключить переключатель генератора
Причина поражения электрическим током
Отключить кондиционер для сокращения времени работы
Сколько ампер на линии электропередачи

Как различать конфигурации распределения

Распределение электроэнергии в вашем здании: как различать конфигурации распределения

Брайан МакДивитт, PE

Распределение электроэнергии в зданиях основывается на том, какие электрические услуги предоставляет местная коммунальная компания.В США системы распределения электроэнергии в зданиях подразделяются на три основные конфигурации. Первое различие заключается в однофазном и трехфазном, при этом трехфазное соединение дополнительно различается как звезда (Y) или дельта (Δ).


Примечание редактора: Это вторая часть из трех частей, посвященных системам распределения электроэнергии. Прочтите , часть первая и , часть третья .


Счетчик электроэнергии отображает информацию о рабочем напряжении.

Как описано в разделе Часть 1 , напряжение измеряется как между фазой (V LL ) или между фазой и нейтралью (V LN ). Эти обозначения и будут использоваться здесь.

Однофазный

Большинство одноквартирных домов и некоторые небольшие коммерческие здания имеют однофазное питание 120/240 В. Эта услуга обеспечивает две горячие линии (L1, L2), разнесенные на 180 градусов, одну нейтраль (N) и одну землю, и называется трехпроводной системой. В этой конфигурации доступны два напряжения: V LN = 120 В, требующий только 1-полюсный прерыватель, и V LL = 240 В, для которого требуется 2-полюсный прерыватель.Большинство розеток в доме запитаны от цепей 120 В. Некоторым приборам, таким как духовка или сушилка для одежды, требуется цепь 240 В. Схема ниже иллюстрирует эту однофазную конфигурацию.

Для обычных сушилок для одежды требуется 240 В.

Трехфазный, звезда (Y)

Существует два типа трехфазных конфигураций: звезда (Y) и треугольник (Δ). Y-конфигурация обеспечивает три горячие линии и одну нейтраль, которая обычно связана с землей и называется 4-проводной системой.Три линии (L1, L2, L3) равномерно разнесены под углом 120 градусов. На следующей схеме показаны V LL и V LN для Y-конфигурации.

Типичные трехфазные Y-конфигурации, которые мы видим, – 480Y / 277V и 208Y / 120. В каждом из названий конфигураций большее напряжение обозначает V LL , а меньшее напряжение – V LN . Например, конфигурация 480Y / 277V имеет V LL = 480V и V LN = 277V.

Трехфазный, треугольник (Δ)

Для общего подхода к пониманию этого типа конфигурации, трехпроводной системы, рассмотрим типичную Δ-конфигурацию 208 В, как показано ниже. Во-первых, обратите внимание, что нейтраль отсутствует. В этой конфигурации V LL = 208V, но V LN не существует. Еще один важный аспект, на который следует обратить внимание, – это то, что дельта-конфигурация не заземлена. Часто одна ножка дельты привязана к земле. Заземленная ножка обеспечивает защиту системы от земли, и V LL остается 208V.

На многих заводах и в магазинах есть оборудование, такое как этот воздушный компрессор, для которого требуется трехфазное соединение по схеме «треугольник».

Некоторые коммерческие здания и фабрики используют конфигурацию треугольника, где V LL = 240 В. Хотя эта конфигурация обеспечивает трехфазное и однофазное напряжение 240 В для оборудования, в этих зданиях по-прежнему требуются стандартные розетки на 120 В. Чтобы получить V LN = 120 В, одна фаза треугольника отводится по центру с заземленной нейтралью.

Какая конфигурация лучше?

Общие конфигурации напряжения были объяснены здесь, но является ли одна конфигурация более выгодной, чем другие? В части 3 я объясню важные аспекты этих конфигураций, чтобы помочь вам понять плюсы и минусы.

Какую конфигурацию следует использовать? В третьей части этой серии статей будут изложены плюсы и минусы, которые помогут вам решить, что лучше всего подходит для вашего проекта.

Брайан МакДивитт, ЧП, – профессиональный инженер с опытом проектирования электрических систем распределения электроэнергии в зданиях, схем освещения и управления, систем пожарной сигнализации и телекоммуникационной инфраструктуры. Его проектный опыт включает в себя самые разные типы зданий, такие как офис, образование, библиотека, терминал аэропорта, кондоминиум, склад и историческая реставрация.Он работает в офисе Morrison-Maierle в Миссуле.

Страница информации о контуре заземления

3-х фазное распределение

Наиболее распространенный способ распределения высокой мощности по зданию – трехфазный. система. Эта трехфазная система имеет преимущества, заключающиеся в том, что она экономит медную проводку. и очень подходит для привода мощных электродвигателей. Проводка спроектирован таким образом, чтобы отбор мощности от каждой фазы быть примерно равным. Это делается путем подключения всех мощных нагрузок к все три фазы и распределяя все меньшие нагрузки в конечном итоге на эти три фазы.

Трехфазное питание имеет три «горячих» провода, выход на 120 градусов. фазы друг с другом. Обычно они используются для больших двигателей. потому что он более «эффективен», обеспечивает немного больший пусковой крутящий момент, и потому, что моторы проще и, следовательно, дешевле. Трехфазная проводка обычно используется в распределении электроэнергии, потому что мощность может быть с немного меньшим количеством меди, чем с однофазным распределение (особенно при хорошо сбалансированной нагрузке).

Питание идет от энергокомпании через 4 тока. несущие провода: 3 фазных провода и нулевой провод.Если ток точно согласован во всех фазах, в нулевом проводе нет тока. Нейтральный провод подключается к заземлению здания в центральной электросети. распределительная панель, где находится основная шина заземления здания.

От главного центрального распределительного щита идет 5 проводов. к субпанелям. 4 токоведущих провода – это 3 фазных провода и нейтраль. провода. Защитное заземление – это отдельный провод, который также идет к центральному шина заземления как нейтральный провод. Разница нейтрали и безопасности заземленные провода – это то, что нейтральный провод действительно проводит ток при нормальной работе (разница токов, взятых из каждой фазы), но защитное заземление не пропускать ток при нормальной работе.Это разделение гарантирует, что в при нормальной работе весь защитный заземляющий провод находится под потенциалом заземления здания. Эта 5-проводная система проводки в основном хороша и используется в большинстве здания и места, где могут возникнуть проблемы с контурами заземления.

Все распределения трехфазного напряжения внутри здания должен выполняться с использованием 5-проводной системы, чтобы избежать заземления. проблемы разницы. Распределение однофазной мощности следует выполнять по 3-х проводной системе. Провода защитного заземления должны быть связаны между собой звездным или древовидным образом.

Трехфазное распределение в Европе

Трехфазное распределение очень распространено в больших домах. (офисы, магазины, фабрики и т. д.), где потребляется много электроэнергии и большие моторы, вполне вероятно, присутствуют. В Финляндии и во многих других странах 3-фазное распределение (230 В между фазой и землей) и 400 В от фазы к фазе) очень часто встречается даже в дома меньшего размера (типичный дом в Финляндии имеет трехфазное основное питание 3x25A).

Трехфазное питание, которое чаще всего используется в постоянно подключенных электрических сетях. оборудование, такое как электрические печи и большие двигатели.В обычном жилом в домах обычно нет розеток для трехфазного питания. В местах, где требуется электрооборудование, потребляющее больше мощности, чем то, что доступно от одной сетевой розетки, обычно Доступны 3-фазные разъемы. Примеры таких мест: стройплощадки, фабрики, места где крупный электроинструмент используются и развлекательные заведения (для большой системы громкой связи и освещения). Наиболее распространенная трехфазная розетка, которую вы можете увидеть, – это трехфазная розетка на 16 ампер, 400 В (напряжение между фазами) розетка, в которой используется круглый красный разъем CEE 17.Другие популярные модели этот же круглый красный разъем подходит для 32A, 63A и 125A.

Трехфазное распределение в США

Скорее всего, вы столкнетесь с трехфазной цепью, которая показывает 110 вольт между любым током и землей и 208 вольт между любые две горячие. Эти 3-фазные распределения обычно используются в место, где есть большие двигатели или иным образом большой расход электричества. Примеры таких мест – фабрики, большие магазины, большие офисные дома и подобные здания.

Получение трехфазного питания в вашем доме в США может быть до смешного дорого или невозможно. Жилые дома обычно подключаются с использованием “нормальной проводки 220/110”, где есть два провода под напряжением 110 В (180 градусов по фазе друг с другом) и у них общий нейтральный провод. Обычные электрические розетки – это провода между одним проводом под напряжением 110 В и общим нулевым проводом. Некоторые сильноточные нагрузки (кондиционер и т. Д.) Подключены между двумя фазными проводами, чтобы они получали полное напряжение 220 В.

Розетки с заземлением

Хотя изначально вы можете предположить, что трехконтактные шнуры по своей сути лучше, из-за их способности вводить несколько заземлений в аудиосистему, на самом деле они служат для дальнейшего усложнения проблем с заземлением.Трехконтактные заземленные розетки лучше для электробезопасности. Розетки с заземлением они также хороши при распределении электроэнергии. и аудио проводка хорошо спроектирована и сконструирована.

Трехпроводная система, которую видит пользователь, на самом деле основана на трех фазовое распределение, в котором используется 5-проводная система. В 5-проводной системе есть 3 провода под напряжением, 1 нейтральный провод и 1 заземляющий провод. В В обычной 3-проводной розетке используется только один из 3-х проводов под напряжением.

Типичная офисная настенная розетка имеет три электрических соединения, которые «горячий», «нейтральный» и «заземляющий» провода.Вся оргтехника требует работают только горячий и нейтральный провода. Третий или заземляющий провод соединены с открытыми металлическими частями оборудования. В рамках здания заземлены все электрические розетки. подключены друг к другу и подключены к водопроводу. Этот гарантирует, что все электрическое оборудование с открытыми металлическими частями имеет эти части, электрически связанные друг с другом и с открытыми металлическими приспособлениями в здании, например, водопроводная арматура.

Горячий и нейтральный провода взаимозаменяемы, насколько это возможно. обеспокоенный.Оба являются силовыми проводами. Один из силовых провода заземлены в целях безопасности.

Заземленное оборудование

Заземленное оборудование, подключенное к сетевому напряжению, имеет три провода, идущие к оборудованию: фаза, нейтраль и земля. Провод под напряжением – это один из фазных проводов от 3-х фазной распределительной сети. системы. Нейтральный и заземляющий провода такие же, как в трехфазном распределении. системы. Нагрузка оборудования подключается между токоведущим и нулевым проводами. как на картинке ниже:

Здесь два верхних провода – это фаза и нейтраль.Нет большая разница, какой из них живой, а какой нейтральный потому что современное оборудование устроено так, что это не имеет значения. В некоторых странах разъем питания разработан таким образом, чтобы вы всегда знали какой провод имеет напряжение, а какой – нейтраль. В некоторых странах (например Финляндия) силовой разъем спроектирован так, что его можно поставить к разъему двумя способами.

Третий провод (самый нижний) – провод заземления. Провод заземления идет к металлическому корпусу оборудования и служит для обеспечения безопасности пользователя.Когда металлический корпус плотно соединен с землей через заземляющий провод, затем, если в оборудовании что-то не так (например, сломанный изолятор или утечка воды внутри оборудования) вы просто вместо того, чтобы подавать на корпус смертельное напряжение, взорвите предохранитель.

Система заземления тщательно разработана, чтобы обеспечить безопасность пользователю. Это включает в себя цветовую кодировку, обозначающую безопасность провод заземления никогда не смешивается с другим проводом (в настоящее время провод защитного заземления должен быть всегда желто-зеленого цвета в Европе).Электрические разъемы должны быть спроектированы так, чтобы защитное заземление подключается раньше других контактов и отключается последним. При подключении провод заземления к соединителям провод к нему должен быть немного длиннее, чем то, что идет на другие контакты, поэтому, если кабель ослабнет, он последний, который теряет связь,

Разъемы, используемые в заземленном оборудовании

Сетевой разъем для США
Шнур питания, используемый в большинстве современного электронного оборудования, имеет трехконтактный штекер (NEMA 5-15).Разъем имеет место для двух плоских контактов питания. для токоведущих и нулевых проводов, а третий круглый контакт заземлен. В настоящее время настенная розетка Typican в США представляет собой заземленную розетку на 15 А. Правильно установленная розетка всегда должна располагаться вертикально относительно заземляющего штыря. под двумя параллельными пазами для лезвий.

Существует также версия сетевого разъема на 20 А, который используется в Некоторое тяжелое оборудование, для которого недостаточно 15 А при напряжении 120 В.

Многие новостройки в США оборудованы «изолированной землей». сосуды.Обычно они узнаваемы, потому что они яркие оранжевый и на лице отмечен треугольник. В основном эти розетки имеют отдельный «зеленый провод» заземления оборудования, а провод идет обратно прямо к панели автоматического выключателя, не подвергаясь подключен к чему-либо еще. Изолированные розетки заземления устанавливаются в надежда на то, что в здании генерируется электрический шум или другие части оборудования, не будут мешать работе деликатного компьютера к ним подключено оборудование.

Черный (горячий) провод идет к латунному или медному винту, который подсоединен к правому (меньшему) слоту. Белый (нейтральный) провод идет к серебряному или хромированному винту, который подсоединен к левому (большему) слоту.Оголенный провод (земля) идет к зеленому винту отдельного пути заземления. Эти подключения всегда должны выполняться квалифицированным электриком!

Разъем IEC

Разъем IEC – это стандартный международный сетевой разъем, используемый в оборудовании. например, компьютеры, принтеры, факсы и многое другое заземленное оборудование, которое есть съемный шнур питания. Один и тот же разъем используется как в 120 В, так и в Оборудование 230 В. Разъем может выдерживать напряжение до 250 В и ток. до 10А.

ЩУКО

Финляндия, Швеция, Германия и многие другие страны Европы используют сетевой разъем SCHUKO (CEE 7/7) в заземленном оборудовании.Разъем имеет два контакта для проведения токоведущих и нулевых проводов (ток до 16 А).

Заземление чаще всего выполняется с помощью небольших металлических деталей. по бокам на разъеме (вы можете увидеть один возле темпа где уходит проволока и еще одна с противоположной стороны). Там это также отверстие для отдельного заземляющего штыря, используемого в некоторых странах.

Сетевой разъем с заземлением для Великобритании

Возможно, самая распространенная электрическая розетка в мире представляет собой трехконтактный сетевой разъем британского типа (BS 1363).Этот разъем используется в Великобритании, Ирландии и большинстве стран мира. страны, которые когда-то были частью Британской империи. Это делает этот сетевой разъем может быть той вилкой, которая используется в большинстве стран.

Этот разъем разработан таким образом, что его можно установить только в стене. с одной стороны, так что закон знает, какой штифт какой. Толталли-металл штырь (вверху на картинке) – штырь заземления. Те булавки, у которых есть часть из них оскорблены живые и нейтральные контакты. Особенностью проводки, используемой в Великобритании, является наличие предохранителя. находится внутри сетевой вилки.Размер этого предохранителя предназначен для защиты провод оборудования от перегрева при коротком замыкании (размер предохранителя определяется размером провода оборудования), потому что главный предохранитель, который питает многие электрические розетки, обычно довольно большие (до 30А). Максимальный ток, который может быть снят с одного розетка 13А.

Незаземленное оборудование

Многие мелкие домашние электронные устройства и световое оборудование предназначены для использование внутри дома не используйте заземление. Это оборудование построено используя двойную изоляцию или изолирующий кожух, чтобы исключить опасность Таким образом предотвращается поражение электрическим током.Незаземленное подключение к источнику питания нужны только живые и нулевые провода.

Разъемы, используемые в незаземленном оборудовании

Самый распространенный разъем в мелкой электронике в Европе – это так называемый разъем EURO и стандартизирован в EN 50 075. Этот разъем разработан таким образом, чтобы его можно было использовать в большинстве регионов Европы. Сетевые разъемы EURO обычно выдерживают только 2,5 ампер тока. Обычно разъем представляет собой формованный штекер, который постоянно подключен. к кабелю и вилке можно купить только с кабелем, входящим в комплект.

Сетевой штекер, используемый в США

Вилка Ungrounde довольно часто используется при слабом освещении и бытовая электроника, такая как телевизоры, видеомагнитофоны и т. д.

В настоящее время многие устройства с двумя контактами имеют один контакт шире, чем Другие. Это для того, чтобы устройство могло положиться (не гарантировано!) на одном конкретном проводе нейтральный, а другой горячий. Это особенно выгодно в осветительных приборах, где оболочка должна быть нейтральной (предохранительной) или другими устройствами, которые хотят иметь приблизительный ориентир на землю (например, некоторые радиостанции).

Устанавливается много телевизионных и стереокомпонентов, а также бытовая техника. с поляризованными вилками, которые имеют более широкую лопатку для нейтрального провода сетевого шнура. В некоторых устройствах «байпасный конденсатор» подключается между белым (нейтральный) провод и заземление шасси оборудования. Конденсатор предлагает относительно низкий импеданс на высоких частотах (например, генерируется радиостанциями и CB. радио) тем самым обеспечивая им “короткий путь” к земле, чтобы для устранения этого типа помех и предлагает высокий импеданс на низкие частоты (через него проходит не так много сетевого тока, поэтому не представляет значительной опасности поражения электрическим током).Нейтральный провод не очень хорошо заземлен на радиочастотах, поэтому это соединение может вызвать больше проблем, чем решить. Иногда конденсатор связи от нейтрали до корпуса может быть до 0,1 мкФ, а если нейтраль и под напряжением по какой-то причине поменяны местами, вы можете получить более 4 мА тока, протекающего на чемодан для оборудования. Такая компоновка, при которой фазный и нейтральный провода по-другому обращаются внутри оборудования не рекомендовано международными правила техники безопасности в течение длительного времени, но это разрешено практикой в ​​США.

Если вы определите, что у вас есть горячее шасси с системой, подключенной таким образом, решение состоит в том, чтобы просто переверните вилку (если можете). Переворачивание вилки может иногда решают проблемы с помехами. В некоторых случаях в бестрансформаторных потребительских приемниках, где Корпус был подключен к нейтральной стороне поляризованной вилки переменного тока через 0,1 мкф конденсатор. Так как в сети нейтраль заземлена, создать небольшой потенциал между корпусом усилителя и (расширенной) сетью земля. Если поблизости от того же цепи, потенциал может возрасти, если проводимость ухудшилась по разным причинам.

Томи Энгдал <[email protected]>

Полное руководство по всему, что вам нужно знать об этой мощной опции

Предупреждение. Перед тем, как приступить к каким-либо аспектам вашей электрической системы, убедитесь, что вы отключили источник питания. А еще лучше позвоните электрику – 1-770-978-2300 – чтобы помочь вам безопасно ремонт или установить электрические компоненты вокруг вашего дома.

Розетка на 240 вольт – это линия электропередачи с двумя линиями на 120 вольт (фаза A и фаза B) с допустимым диапазоном напряжения от 228 до 252 вольт. Исторически 240 называлось 220, потому что диапазон напряжения начинается в двадцатых.

Обе фазы (A и B) питаются в дом от уличного источника питания. В доме будет две фазы горячих проводов, а также нейтраль (для утилизации неиспользованной электроэнергии) и заземляющий провод – в более новых домах (по соображениям безопасности) .

Для каких электронных устройств используется линия с питанием 240?

Есть два основных типа вилок 240. Первая версия – это то, что в настоящее время используется в более новых домах, а более старая версия не имеет заземляющей проводки. Эти 240 розеток и соответствующие им вилки намного больше, чем стандартные 110 розеток, используемые для большинства электронных устройств. Устройства с питанием от 240 вольт включают следующую бытовую технику:

  • Диапазоны
  • Электромобили
  • Сушилки
  • Духовки
  • Печи
  • Водонагреватели

В бесчисленных случаях эти приборы (чаще всего водонагреватели, печи и духовки) имеют жесткую проводку, то есть вы не можете их отключить.Чтобы отсоединить или изменить проводку, необходимо открутить гайки проводки от прибора .

Жесткая проводка делает прибор немного безопаснее, так как нет возможности вызвать искру, если вилка не полностью вставлена ​​в розетку. Если у вас не случится странного инцидента, когда кто-то случайно уронит нож для масла прямо между этим зазором вилки, вы и ваш дом все равно будете в безопасности, если у вас есть версия с вилкой.

Как выглядит розетка 240? Почему так много вилок? Зачем нужен заземляющий штырь?

Современная версия (в более новых домах) содержит четыре штыря (в то время как старая модель имеет только три) .Эти четыре контакта в современной вилке состоят из двух контактных штырей (фаза A и фаза B), , одного контакта нейтрального провода и одного контакта заземляющего провода.

Чтобы помочь вам узнать, какой зубец есть, они имеют уникальную форму, чтобы помочь вам различить разницу. Горячие штыри имеют прямоугольную форму, каждый на 120 вольт (диапазон 114-126 вольт) . Земляной зубец выглядит как полумесяц, сидящий на горизонте. Нейтральный провод имеет форму L прямо напротив заземляющего контакта.Два горячих контакта обычно находятся слева и справа, хотя иногда выход может быть установлен сбоку или перевернутым (намеренно или случайно) .

В старых вилках 240 отсутствует заземляющий провод (только три контакта) , что делает их менее безопасными, чем современная версия с этим заземлением. Основной риск, связанный с отсутствием заземляющего провода, зависит от того, сколько энергии потребляет устройство или прибор. Если потребляемой мощности достаточно для возникновения пожара или искр, заземляющий провод является более безопасным подходом.

Другой фактор риска связан с материалом (металл, пластик или дерево) , из которого изготовлено устройство или прибор. Если электричество может проходить через устройство (поскольку оно в основном сделано из металла) к человеку, заземление необходимо для предотвращения поражения электрическим током. Наш менеджер филиала Дэвид Смит предпочитает заземление на всех своих шнурах, но это не прописано в электрическом кодексе.

Почему существует опция питания 240 В?

Если вы похожи на меня, вам может быть интересно, почему 240 вообще существует.Почему бы просто не использовать прибор с двумя розетками? В дополнение к более простому и целенаправленному решению, 240 также имеет только один нейтральный провод, что делает его более эффективным вариантом питания.

Кроме того, горячие провода, подключенные к вилке на 240 В, не всегда активны. Вместо этого они колеблются шестьдесят раз в секунду. Думайте о фазах A и B как о боксере, который один за другим делает один за другим левый и правый хук, как это показано на рисунке.

Как линия 240 В подключается к домашнему автоматическому выключателю?

Работать в электрическом щите чрезвычайно опасно. Рекомендуем не работать с панелью, а вызвать электрика по телефону 1-770-978-2300. Дэвид Смит, наш менеджер филиала, провел два года обучения, прежде чем он впервые начал работать в группе много лет назад, и когда он, наконец, это сделал, он был обеспокоен потенциальными последствиями небезопасного обращения с ней. Если у вас есть опыт и вам нужно быстрое напоминание о настройке, читайте ниже. И обязательно выключите главный выключатель перед выполнением любых работ с панелью.

Теперь, когда вы знаете, что такое 240-вольтовая линия электропередачи и как с ней взаимодействует вилка, давайте поговорим о том, как она подключается к электрической панели для всего вашего дома.

Чтобы отключить электричество в доме, поместите выключатель вне дома (для новых домов и всех домов, построенных в 2020 году или позже) или над электрической панелью. Если он расположен над электрической панелью, помните, что мощность в той точке, где она идет в ваш дом, все еще горячая.

В вашей электрической коробке четыре точки подключения. Нейтральная шина (белая) , заземляющая шина (медная или зеленая) , фаза A и фаза B.В отличие от стандартных автоматических выключателей, выключатель на 240 В будет перекрывать обе фазные шины в панели. Это делает его вдвое больше, чем у стандартного выключателя 110, который переключается между двумя фазами.

Нанять электрика – опасность работы с вашей электрической системой

Работаете ли вы с ЛЭП 240 или 110, действуйте ответственно. Статистика показывает нам, что даже с учетом того, что мощность 240 больше, чем больше, тем больше людей погибает от 110-вольтных линий электропередач.

Не стоит недооценивать опасность поражения электрическим током, которая может варьироваться в зависимости от времени, в течение которого кто-то подвергается электрошоку, силы тока и потока электричества, количества воды в вашем теле и того, стоите ли вы в воде.

Вместо того, чтобы преодолевать все эти опасности, мы рекомендуем работать с сертифицированным и опытным экспертом, который поможет вам получить желаемую функцию, сохраняя при этом безопасность своей семьи и дома. Позвоните L&M Electric по телефону 1-770-978-2300 , чтобы отремонтировать или установить следующую розетку на 240 вольт.

Розетки на 240 В I Что такое розетка на 240 В?

Что такое розетка на 240 вольт?

Одна стандартная электрическая розетка содержит провод на 120 В и нейтральный провод, которые обеспечивают питание, используя одну фазу вашей электросети.В розетках на 240 В одновременно используются два провода на 120 В и нейтральный провод для питания одной розетки.

В старых домах и бытовой технике можно использовать трехконтактные розетки на 240 вольт. Однако современные розетки и бытовая техника также используют заземляющий провод, что означает, что современные вилки на 240 вольт имеют четыре контакта.

Какие устройства используют розетки на 240 вольт?

Многие крупные электроприборы с электроприводом работают более эффективно при напряжении питания 240 вольт. Розетки на 240 В предназначены для использования с более тяжелыми приборами, которым для работы требуется больше электроэнергии.Возможно, вам потребуется установить розетку на 240 В, если вы приобретете один из следующих предметов:

Определение розеток на 240 В

По сравнению со стандартными розетками на 120 В, розетки на 240 В больше, с закругленными вершинами и тремя или четырьмя отверстиями в зависимости от возраста розетки. У более старых трехштырьковых розеток есть отверстие в виде задней буквы «L» наверху и два диагональных отверстия по бокам. Новые четырехконтактные розетки имеют букву «L» наверху, два вертикальных боковых отверстия и одно отверстие в форме полукруга внизу для заземляющего провода.

Трехконтактные и четырехконтактные розетки на 240 В

Недавно розетки на 240 В перешли с трехконтактных на четырехконтактные. Старые трехконтактные розетки были спроектированы так, чтобы содержать два провода под напряжением и одну нейтраль. Дополнительный контакт на четырехконтактных розетках добавляет провод заземления, обеспечивая дополнительную защиту от поражения электрическим током. Повторное подключение вашей техники к четырехпроводной вилке и установка четырехконтактных розеток на 240 вольт решат любые проблемы с безопасностью или совместимостью.

Положитесь на Mr.Электрооборудование для установки розеток на 240 В

Если вы хотите, чтобы у вас дома были установлены розетки на 240 В, в том числе для электромобиля, свяжитесь с Mr.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *