Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Транзисторы справочник онлайн | gnivc.bitballoon.com

Здесь можно скачать документацию в pdf на отечественные и импортные компоненты. На большинство элементов приведено подробное описание с графиками.

Каждому компоненту соответствует свой pdf- файл с описанием. Часть справочников создана сканированием, а что-то взято с сайтов производителей.

Краткое содержание справочников по электронике.

В приведенных выше электронных справочниках содержится информация (при условии, что она присутствовала в отсканированном первоисточнике), которую невозможно получить из скупых табличных данных. Эти данные могут быть полезны при ремонте бытовой техники и для подбора подходящего аналога. Чтоб скачать соответствующий pdf – файл с документацией на выбранный компонент, необходимо кликнуть по ярлыку pdf в таблице.

Справочник smd транзисторов.

Этот справочник по транзисторам отечественным для поверхностного монтажа составлен из выпускавшихся во времена СССР типов. Хотя отечественные smd транзисторы встречаются в магазинах.

Справочник транзисторов маломощных биполярных.

В справочник вошли транзисторы с максимальным током не более 400ма, не предназначенные для работы с теплоотводом. Чаще всего это высокочастотные транзисторы.

Справочник отечественных транзисторов биполярных средней мощности.

В нем приведены справочные данные транзисторов серий КТ601 -КТ698, КТ902-КТ978 и КТ6102-КТ6117.

Справочник по отечественным мощным транзисторам.

В справочники по транзисторам кт. включена подробная сканированная документация с графиками на биполярные отечественные транзисторы и даташиты на их импортные аналоги. Кроме популярных и широко распространенных транзисторов (КТ502, КТ503, КТ805, КТ814, КТ815, КТ816, КТ817, КТ818, КТ819, КТ837 и проч.), приведены и новые транзисторы, ими справочник дополнен с сайтов производителей. В таблице кратких справочных данных приведены тип проводимости транзистора, значение максимального допустимого постоянного тока, предельного напряжения коллектор – эмиттер и максимальный возможный коэффициент усиления в схеме с общим эмиттером. В pdf документации описана типичная область применения транзисторов в бытовой и промышленной технике. Для маломощных транзисторов кт. где используется цветовая или символьная маркировка, приведена расшифровка. Для мощных транзисторов приведены графики зависимости коэффициента усиления от тока коллектора ( h31 э может изменяться на порядок), зависимость напряжения насыщения от тока (что важно для расчета тепловых потерь), область безопасной работы и зависимость допустимой рассеиваемой мощности от температуры корпуса.
Составные транзисторы
(например, КТ829) в справочнике выделены цветом. Их также можно найти по коэффициенту усиления, он, как правило, больше 500.

Справочник по импортным мощным транзисторам.

Приборы расположены в порядке возрастания напряжения и тока с целью упростить подбор транзисторов по параметрам, поиск аналогов, близких по характеристикам транзисторов и комплементарных пар.

Справочник по отечественным полевым транзисторам.

В кратком описании приведены тип проводимости транзистора, значение максимального допустимого постоянного тока, предельного напряжения сток – исток и сопротивление сток – исток. В справочном листе на полевой транзистор описана типичная область применения. Приведено пороговое напряжение затвора для MOSFET (напряжение отсечки для транзисторов с неизолированным затвором). На некоторые приборы приведены графики допустимой мощности рассеивания в зависимости от температуры корпуса и другие характеристики. Приборы упорядочены по наименованию, приведены импортные аналоги и производители. Этот справочник подходит для уточнения характеристик и поиска аналогов известного транзистора.

Справочник по импортным полевым транзисторам.

В справочнике по MOSFET транзисторам приборы рассортированы в порядке возрастания напряжения и тока, приведен тип корпуса, что удобно для подбора транзистора в справочнике по параметрам под конкретную задачу. Справочник подойдет и для подбора аналогов, хотя транзисторы с одинаковым током и напряжением могут и не быть взаимозаменяемыми – необходимо внимательно сравнивать характеристики. Импортные взяты исключительно из прайсов магазинов, и это повышает их шансы на доставаемость.

В практических применениях полевые транзисторы конкурируют с БТИЗ (смотри IGBT справочник). И те, и другие управляются напряжением, приложенным к затвору и выбор между IGBT и MOSFET чаще всего определяется частотами переключения и рабочим напряжением. На низких частотах и высоких напряжениях эффективнее IGBT, а на высоких частотах и низких напряжениях предпочтительнее MOSFET. В середине этого диапазона все определяется параметрами конкретных приборов. Производители IGBT выпускают транзисторы со все более высокими скоростями переключения, а производители MOSFET, в свою очередь, разрабатывают приборы с высокими рабочими напряжениями, умудряясь сохранять низкое сопротивление стока. Например, весьма хорош полевой транзистор IPW60R045.

Справочник IGBT транзисторов.

В этом справочнике IGBT транзисторы рассортированы в порядке возрастания максимального допустимого тока, дано падение напряжения на транзисторе при этом токе. Причем ток указан при температуре корпуса 100ºС, что чаще всего соответствует реальным рабочим условиям эксплуатации транзисторов (некоторые производители лукавят, указывая ток IGBT транзистора при температуре 25ºС, что на практике недостижимо, а при разогреве допустимый ток может уменьшиться вдвое).

Также приведен тип корпуса и указаны важные особенности (тип прибора по рабочей частоте и наличие обратного диода). Приведены MOSFET транзисторы с близкими характеристиками (в некоторых случаях они могут быть заменой IGBT). В IGBT справочник включены транзисторы из прайсов интернет-магазинов.

Справочник выпрямительных и высоковольтных диодов.

В справочниках приведены тип корпуса, основные электрические характеристики, предельные параметры и температурные характеристики. В справочнике по диодам выпрямительным приведены ВАХ (вольт-амперная характеристика) диодов и графики изменения параметров в зависимости от температуры. Кроме того, перечислены современные отечественные производители диодов с ссылками на соответствующий раздел сайта производителя.

Справочник импортных и отечественных диодов Шоттки.

В справочнике диодов Шоттки компоненты упорядочены по напряжению и току, что удобно для выбора диода по параметрам и подбора аналогов. Приведены типы корпусов, даны ссылки на сайты отечественных производителей.

Справочник по радиолампам отечественным.

В справочнике по радиолампам приведены подробные характеристики распространенных электронных ламп: диодов, триодов, тетродов и пентодов.

Справочник тиристоров отечественных.

В справочнике по тиристорам и симисторам (симметричным тиристорам) приведены вид корпуса, основные электрические характеристики и предельные эксплуатационные параметры. На графиках приведена зависимость допустимого тока в открытом состоянии от температуры и зависимость допустимого напряжения в закрытом состоянии от температуры. Описана область применения тиристоров. Дана максимальная допустимая рассеиваемая мощность.

Справочник стабилитронов отечественных.

В документации по стабилитронам и стабисторам приведена цветовая маркировка компонентов, разброс напряжений стабилизации при разных температурах, графики изменения дифференциального сопротивления, допустимая рассеиваемая мощность и пр. Стабилитроны в справочнике разбиты на функциональные группы.

Отечественные постоянные резисторы. Справочник.

В справочных данных по постоянным резисторам приведена зависимость допустимой рассеиваемой мощности от температуры, габариты, область применения. Резисторы разбиты на группы по назначению (общего применения, прецизионные, высоковольтные, нагрузочные). Если какой-либо тип резисторов справочник и не охватил, то документацию по нему можно найти на сайтах производителей резисторов (пройдя по ссылке). Для некоторых типов указаны импортные аналоги резисторов. Калькулятор цветовой маркировки резисторов.

Отечественные переменные резисторы. Справочник.

Для переменных резисторов в справочнике приведен внешний вид, указаны размеры, мощность, тип характеристики, предельное рабочее напряжение, износоустойчивость. Для резисторов с выключателем приведены данные по контактам выключателя. Описаны переменные резисторы типов СП-хх и РП-хх.

Справочник конденсаторов электролитических, керамических и металлопленочных.

В справочных данных по конденсаторам указаны область применения, типоразмеры, графики зависимости эквивалентного последовательного сопротивления от температуры и частоты, зависимости допустимого импульсного тока от частоты, время наработки, тангенс угла потерь и другие характеристики.

Отечественные операционные усилители. Справочник.

В справочниках по отечественным операционным усилителям указаны типовая схема включения, электрические и частотные характеристики, допустимая рассеиваемая мощность. На операционники К140УД17, К140УД18, К140УД20, К140УД22, К140УД23, К140УД24, К140УД25, К140УД26, сдвоенные и счетверенные ОУ серий К1401УД1 – К1401УД6, микросхемы для звуковой аппаратуры К157 и широкополосные усилители К574 приведена весьма подробная информация: цоколевка, импортный аналог, внутренняя схема операционного усилителя, графики, характеристики, схемы балансировки, включения в качестве инвертирующего и неинвертирующего усилителя – в общем, не хуже импортных datasheets .

Операционные усилители в справочнике расположены в алфавитном порядке. В таблице приведено краткое описание, а подробные характеристики содержатся в pdf файле.

Справочник стабилизаторов напряжения интегральных.

В справочнике по параметрическим стабилизаторам напряжения приведены подробные параметры и характеристики, цоколевка, типовые электрические схемы включения микросхем.

КМОП цифровые микросхемы. Справочник.

В справочнике по цифровым микросхемам (микросхемы серий К561, К176, К1561, 564) приведены статические и динамические электрические характеристики (допустимое напряжение питания, ток потребления, входной ток, максимальный допустимый выходной ток, задержка распространения сигнала, максимальная рабочая частота). В справочнике описана внутренняя структурная схема и логика работы. Для некоторых микросхем даны временные диаграммы работы.

Справочник по ШИМ-контроллерам для источников питания.

Представлены микросхемы ШИМ контроллеров для импульсных источников питания

Справочник по отечественным реле.

В документации по реле приведены паспорта, конструктивные данные и электрические схемы, сопротивление обмотки, износостойкость, режимы коммутации и другие параметры.

Справочник по разъемам низкочастотным.

Даташиты на электрические соединители взята с сайтов производителей (ссылка на них здесь же) и сведена воедино. В справочнике по разъемам в таблице для начала представлены основные параметры разъемов – количество контактов, максимальный допустимый ток на контакт и максимальное напряжение. Подробная информация о конкретном разъеме в справочнике (габаритные размеры, сопротивление контактов, количество контактов разного сечения в одном разъеме, маркировка и т.д.) содержится в datasheet. В справочник вошли как силовые разъемы на токи до 200 А (типа 2РТТ, ШР), так и электрические соединители для подключения слабых сигналов.

Отечественные оптроны. Справочник.

В справочнике по отечественным оптопарам описан принцип действия, основные характеристики и применение диодных, транзисторных, транзисторных оптронов с составными транзисторами на выходе (по схеме Дарлингтона) и тиристорных оптронов. Указан отечественный производитель микросхем. В datasheet на компоненты приведена цоколевка, внутренняя схема, зависимости параметров, коэффициент усиления и напряжение гальваноразвязки.

Справочник по светодиодам отечественным

В справочнике по отечественным светодиодам на первой странице приведены основные параметры светодиодов: номинальный ток светодиода, напряжение светодиодов при номинальном токе и разброс значения силы света для каждого типа приборов. Более подробные характеристики приведены в pdf. Указан отечественный производитель. В самих datasheet приведены подробные характеристики для каждого прибора. Данные взяты с сайтов предприятий, занимающихся производством светодиодов.

Импортные диодные мосты. Справочник.

В справочнике по импортным диодным мостам приведены однофазные и трехфазные мосты. Однофазные мосты собраны с характеристиками по напряжению от 50 до 1200 вольт и токами от 0.5 до 50 ампер. Корпусное исполнение: для поверхностного монтажа, выводного исполнения для пайки в плату и для внешнего монтажа. Трехфазные диодные мосты представлены приборами на токи от 20 до 110 ампер и на напряжение от 50 до 1600В. Для удобства выбора в справочник включены фото диодных мостов. Отдельный раздел посвящен диодным мостам для генераторов отечественных авто (преимущественно семейства ВАЗ, начиная “Копейкой” и заканчивая “Приорой”). В datasheet от украинского производителя “ВТН” описана применяемость, совместимость с разными типами генераторов, приведены технические характеристики, электрическая схема, габаритный чертеж и фотографии.

Справочник детских учреждений
Справочник профессий специалистов

Замена биполярного транзистора на полевой

Замена и подбор транзисторов биполярных и полевых

В данной статье я хочу описать, на какие критерии нужно обращать внимание при подборе замены транзисторам . Надеюсь, статья будет полезной для начинающих радиолюбителей. Постараюсь информацию изложить очень кратко, но достаточно для правильного подбора транзистора при отсутствии аналогичного.

Биполярный и полевой транзистор

Биполярные транзисторы.

Предлагаю оценку и подбор аналога для замены транзистора начинать с анализа схемы – частота, напряжение, ток. Начнем подбор по быстродействию транзистора, то есть рабочей частоте транзистора. При этом граничная fгр. МГц (эта та на которой его коэффициент усиления равен единице) частота транзистора должна быть больше реальной частоты на которой работает устройство, желательно, во много раз. После подбора по частоте, производим выбор по допустимой мощности, иными словами ток коллектора транзистора должен превышать максимальный ток в первичной цепи. Далее подбираем транзистор по допустимому напряжению эмиттер-коллектор, которое также должно превышать максимальное прикладываемое к транзистору напряжение в любой момент времени. Коэффициент усиления: известно, что ток коллектора у биполярного транзистора с током базы связан через параметр h31. Проще говоря, ток коллектора больше тока базы в h31. Из этого можно сделать вывод, что лучше применять транзисторы значение этого параметра у которых как можно больше. Это позволит повысить КПД за счет снижения затрат на управление транзисторами, да и потом, транзистор с большим значением этого параметра проще ввести в режим насыщения. Далее чтобы меньше мощности потерять на транзисторе (при этом он будет меньше греться), нужно чтобы его напряжение насыщения (напряжение коллектор-эмиттер в открытом состоянии) было как можно меньше, ведь мощность выделяемая на транзисторе, равна произведению тока, протекающего через него, и падению напряжения на нем и еще, максимальная мощность рассеяния коллектора (приводится в справочнике) должна быть не меньше реально выделяемой, иначе транзистор не справится (мгновенно выйдет из строя). В статье «Транзисторы для импульсных блоков питания телевизоров. Замена» я уже описывал приемы замены транзисторов .

Полевые транзисторы.

Преимуществ перед биполярными у них много, а самое главное, цена ниже. Наиболее важные преимущества полевых транзисторов, на мой взгляд следующие:

  1. Он управляется не током, а напряжением (электрическим полем), это значительно упрощает схему и снижает затрачиваемую на управление мощность.
  2. В полевых транзисторах нет неосновных носителей, поэтому они могут переключаться с гораздо более высокой скоростью.
  3. Повышенная теплоустойчивость. Рост температуры полевого транзистора при подаче на него напряжения приведет, согласно закону Ома, к увеличению сопротивления открытого транзистора и, соответственно, к уменьшению тока.

Термоустойчивость полевого транзистора помогает разработчику при параллельном соединении приборов для увеличения нагрузочной способности. Можно включать параллельно достаточно большое число полевиков без выравнивающих резисторов в силовых цепях и при этом не опасаться рассиметрирования токов, что очень опасно для биполярных транзисторов. Однако параллельное соединение полевых транзисторов тоже имеет свои особенности.

Что касается подбора транзисторов для замены, то порядок примерно тот же самый, т е быстродействие затем мощность. Напряжение исток-сток также выбирается из тех же соображений, что и для биполярных, максимальный ток стока также выбирается с запасом, здесь это выбрать гораздо проще, т к полевые транзисторы имеют довольно большие допустимые токи стока и их разнообразие очень большое, чего не скажешь про биполярные — биполярные транзисторы с током коллектора больше 20 А, это уже редкость. Полевые транзисторы не имеют напряжения насыщения, у них есть аналогичный параметр — сопротивление открытого канала, у транзисторов с допустимым напряжением до 150 В оно составляет десятки миллиом, у более высоковольтных — омы. Чем меньше значение этого сопротивления, тем ближе параметры транзистора к идеальным и тем меньше потери. Мощность потерь (рассеяния) в открытом состоянии определяется как квадрат тока умноженный на сопротивление открытого канала. Естественно, чем меньше будет это значение, тем меньше будет транзистор греться. Аналог параметра h31 у полевого транзистора это крутизна характеристики. Этот параметр связывает между собой ток стока и напряжение на затворе, иными словами ток стока определяется как произведение напряжения на затворе и крутизны характеристики транзистора. Как правило ключевые транзисторы имеют большую крутизну характеристики. Еще у этого вида транзисторов есть так называемое порговое напряжение на затворе — это минимальное значения управляющего напряжения достаточное для введения транзистора в абсолютно открытый режим (насыщение). При подборе необходимо учитывать, чтобы минимальное напряжение на затворе не было ниже порогового, иначе вся мощность будет выделяться на транзисторе а не на нагрузке, т к он не полностью открыт. Такой режим работы, как правило, транзисторы не выдерживают — после включения выгорают с небольшой (или большой) задержкой. Параметр мощность рассеяния коллектора для биполярного транзистора имеет аналогичный для полевого — мощность рассеяния стока. Параметры абсолютно идентичны.

Активней пользуйтесь справочниками и интернетом, информации по параметрам транзисторов сейчас достаточно.

Замена и подбор транзисторов биполярных и полевых

В данной статье я хочу описать, на какие критерии нужно обращать внимание при подборе замены транзисторам . Надеюсь, статья будет полезной для начинающих радиолюбителей. Постараюсь информацию изложить очень кратко, но достаточно для правильного подбора транзистора при отсутствии аналогичного.

Биполярный и полевой транзистор

Биполярные транзисторы.

Предлагаю оценку и подбор аналога для замены транзистора начинать с анализа схемы – частота, напряжение, ток. Начнем подбор по быстродействию транзистора, то есть рабочей частоте транзистора. При этом граничная fгр. МГц (эта та на которой его коэффициент усиления равен единице) частота транзистора должна быть больше реальной частоты на которой работает устройство, желательно, во много раз. После подбора по частоте, производим выбор по допустимой мощности, иными словами ток коллектора транзистора должен превышать максимальный ток в первичной цепи. Далее подбираем транзистор по допустимому напряжению эмиттер-коллектор, которое также должно превышать максимальное прикладываемое к транзистору напряжение в любой момент времени. Коэффициент усиления: известно, что ток коллектора у биполярного транзистора с током базы связан через параметр h31. Проще говоря, ток коллектора больше тока базы в h31. Из этого можно сделать вывод, что лучше применять транзисторы значение этого параметра у которых как можно больше. Это позволит повысить КПД за счет снижения затрат на управление транзисторами, да и потом, транзистор с большим значением этого параметра проще ввести в режим насыщения. Далее чтобы меньше мощности потерять на транзисторе (при этом он будет меньше греться), нужно чтобы его напряжение насыщения (напряжение коллектор-эмиттер в открытом состоянии) было как можно меньше, ведь мощность выделяемая на транзисторе, равна произведению тока, протекающего через него, и падению напряжения на нем и еще, максимальная мощность рассеяния коллектора (приводится в справочнике) должна быть не меньше реально выделяемой, иначе транзистор не справится (мгновенно выйдет из строя). В статье «Транзисторы для импульсных блоков питания телевизоров. Замена» я уже описывал приемы замены транзисторов .

Полевые транзисторы.

Преимуществ перед биполярными у них много, а самое главное, цена ниже. Наиболее важные преимущества полевых транзисторов, на мой взгляд следующие:

  1. Он управляется не током, а напряжением (электрическим полем), это значительно упрощает схему и снижает затрачиваемую на управление мощность.
  2. В полевых транзисторах нет неосновных носителей, поэтому они могут переключаться с гораздо более высокой скоростью.
  3. Повышенная теплоустойчивость. Рост температуры полевого транзистора при подаче на него напряжения приведет, согласно закону Ома, к увеличению сопротивления открытого транзистора и, соответственно, к уменьшению тока.

Термоустойчивость полевого транзистора помогает разработчику при параллельном соединении приборов для увеличения нагрузочной способности. Можно включать параллельно достаточно большое число полевиков без выравнивающих резисторов в силовых цепях и при этом не опасаться рассиметрирования токов, что очень опасно для биполярных транзисторов. Однако параллельное соединение полевых транзисторов тоже имеет свои особенности.

Что касается подбора транзисторов для замены, то порядок примерно тот же самый, т е быстродействие затем мощность. Напряжение исток-сток также выбирается из тех же соображений, что и для биполярных, максимальный ток стока также выбирается с запасом, здесь это выбрать гораздо проще, т к полевые транзисторы имеют довольно большие допустимые токи стока и их разнообразие очень большое, чего не скажешь про биполярные — биполярные транзисторы с током коллектора больше 20 А, это уже редкость. Полевые транзисторы не имеют напряжения насыщения, у них есть аналогичный параметр — сопротивление открытого канала, у транзисторов с допустимым напряжением до 150 В оно составляет десятки миллиом, у более высоковольтных — омы. Чем меньше значение этого сопротивления, тем ближе параметры транзистора к идеальным и тем меньше потери. Мощность потерь (рассеяния) в открытом состоянии определяется как квадрат тока умноженный на сопротивление открытого канала. Естественно, чем меньше будет это значение, тем меньше будет транзистор греться. Аналог параметра h31 у полевого транзистора это крутизна характеристики. Этот параметр связывает между собой ток стока и напряжение на затворе, иными словами ток стока определяется как произведение напряжения на затворе и крутизны характеристики транзистора. Как правило ключевые транзисторы имеют большую крутизну характеристики. Еще у этого вида транзисторов есть так называемое порговое напряжение на затворе — это минимальное значения управляющего напряжения достаточное для введения транзистора в абсолютно открытый режим (насыщение). При подборе необходимо учитывать, чтобы минимальное напряжение на затворе не было ниже порогового, иначе вся мощность будет выделяться на транзисторе а не на нагрузке, т к он не полностью открыт. Такой режим работы, как правило, транзисторы не выдерживают — после включения выгорают с небольшой (или большой) задержкой. Параметр мощность рассеяния коллектора для биполярного транзистора имеет аналогичный для полевого — мощность рассеяния стока. Параметры абсолютно идентичны.

Активней пользуйтесь справочниками и интернетом, информации по параметрам транзисторов сейчас достаточно.

Биполярные транзисторы, включенные по схеме Дарлингтона, т. е. соединенные с общим коллектором (транзистор Дарлингтона), часто являются составным элементов радиолюбительских конструкций. Как известно, при таком включении коэффициент усиления по току, как правило, увеличивается в десятки раз. Однако добиться значительного запаса работоспособности по напряжению, воздействующему на каскад, удается не всегда. Усилители по схеме Дарлингтона, состоящие из двух биполярных транзисторов (Рис. 1.23), часто выходят из строя при воздействии импульсного напряжения, даже если оно не превышает значение электрических параметров, указанных в справочной литературе.

С этим неприятным эффектом можно бороться разными способами. Одним из них — самым простым — является наличие в паре транзистора с большим (в несколько раз) запасом ресурса по напряжению коллектор-эмиттер. Относительно высокая стоимость таких «высоковольтных» транзисторов приводит к увеличению себестоимости конструкции. Можно, конечно, приобрести специальные составные кремниевые транзисторы в одном корпусе, например: КТ712, КТ825, КТ827, КТ829, КТ834, КТ848, КТ852, КТ853, КТ894, КТ897, КТ898, КТ972, КТ973 и др. Этот список включает мощные и средней мощности приборы, разработанные практически для всего спектра радиотехнических устройств. А можно воспользоваться классической схемой Дарлингтона — с двумя параллельно включенными полевыми транзисторами типа КП501В — или использовать приборы КП501А…В, КП540 и другие с аналогичными электрическими характеристиками (Рис. 1.24). При этом вывод затвора подключают вместо базы VT1, а вывод истока — вместо эмиттера VT2, вывод стока — вместо объединенных коллекторов VT1, VT2.

Рис. 1.23. Схема включения транзисторов по схеме Дарлингтона

Рис. 1.24. Замена полевыми транзисторами составного транзистора по схеме Дарлингтона

После такой несложной доработки, т.е. замены узлов в электрических схемах, универсального применения, усилитель тока на транзисторах VT1, VT2 не выходит из строя даже при 10-кратной и более перегрузке по напряжению. Причем сопротивление ограничительного резистора в цепи затвора VT1 также увеличивается в несколько раз. Это приводит к тому, что полевые транзисторы имеют более высокое входное сопротивление и, как следствие, выдерживают перегрузки при импульсном характере управления данным электронным узлом.

Коэффициент усиления по току полученного каскада не менее 50. Увеличивается прямо пропорционально увеличению напряжения питания узла.

Элементы схемы и их назначение

Резистор Rt. Сопротивление резистора зависит от характера на грузки и выбирается таким, чтобы на выводе затвора параллельно соединенных полевых транзисторов присутствовало 0,5 Упит. При этом максимальный ток не должен превышать 0.2 А (в случае применения полевого транзистора из серии КП501).

Полевые транзисторы VT1, VT2. При отсутствии дискретных транзисторов типа КП501А…В можно без потери качества работы устройства использовать микросхему 1014КТ1В. В отличие, например, от 1014КТ1А и 1014КТ1Б эта микросхема выдерживает более высокие перегрузки по приложенному напряжению импульсного характера — до 200 В постоянного напряжения. Цоколевка включения транзисторов микросхемы 1014КТ1А…1014К1В показана на Рис. 1.25.

Так же как и в предыдущем варианте (Рис. 1.24), полевые транзисторы включают параллельно.

Цоколевка полевых транзисторов в микросхеме 1014КТ1А…В

Автор опробовал десятки электронных узлов, включенных по схеме Дарлингтона. Такие узлы используются в радиолюбительских конструкциях в качестве токовых ключей аналогично составным транзисторам, включенным по схеме Дарлингтона. К перечисленным выше особенностям полевых транзисторов можно добавить их энергоэкономичность, так как в закрытом состоянии из-за высокого входного сопротивления они практически не потребляют тока. Что касается стоимости таких транзисторов, то сегодня она практически такая же, как и стоимость среднемощных транзисторов типа КТ815, КТ817, КТ819 (и аналогичным им), которые принято использовать в качестве усилителя тока для управления устройствами нагрузки.

Источник: Кяшкаров А. П., Собери сам: Электронные конструкции за один вечер. — М.: Издательский дом «Додэка-ХХ1», 2007. — 224 с.: ил. (Серия «Собери сам»).

Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой

Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой

Упрощенный расчет транзистора для работы в ключевом режиме на резистивную нагрузку.

 

Ключевой режим работы характеризуется тем, что транзистор находится в одном из двух состояний: в полностью открытом (режим насыщения), или полностью закрытом (состояние отсечки).

 

Рассмотрим пример, где в качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой сопротивлением 150 Ом. Индуктивным характером катушки в данном примере пренебрежем, считая, что реле будет включено раз и надолго.

Рассчитываем ток коллектора:

Ik=(UccUкэнас)/Rн    , где

Ik –ток коллектора

      Ucc- напряжение питания (27В)

      Uкэнас- напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и может прилично различаться для разных транзисторов), в нашем случае примем 0.4В

      Rн- сопротивление нагрузки (150 Ом)

Итак,

Ik= (27-0.4)/150 = 0.18A = 180мА

На практике из соображений надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент 1.5

Таким образом, нужен транзистор с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением коллектор-эмиттер не менее 1.5*27=40В.

Открываем справочник по биполярным транзисторам .  По заданным параметрам подходит КТ815А (Ikмакс=1.5А Uкэ=40В)

      Следующим этапом рассчитываем ток базы, который нужно создать, чтобы обеспечить ток коллектора 0.18А.

      Как известно, ток коллектора связан с током базы соотношением

      Ik=Iб*h21э,

где h31э – статический коэффициент передачи тока.

 При отсутствии дополнительных данных можно взять табличное гарантированное минимальное значение для КТ815А (40). Но для КТ815 есть график зависимости h31э от тока эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует h31э=60. Разница невелика, но для чистоты эксперимента возьмем графические данные.

Итак,

            Iб=180/60=3мА

Для расчета базового резистора R1 смотрим второй график, где приведена зависимость напряжения насыщения база-эмиттер (Uбэнас) от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет 0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение база-эмиттер находится в пределах 0.6-0.8 В)

Следовательно, сопротивление резистора R1 должно быть равно:

R1=(Uвх-Uбэнас)/Iб = (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.

Из стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)

Если к базе подключен шунтирующий резистор (вводится для более быстрого выключения транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и тогда формула примет вид:

R1= (Uвх-Uбэнас)/(Iб+IR2) = (Uвх-Uбэнас)/(Iб+ Uбэнас/R2)

Так, если R2=1 кОм, то

R1= (5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм

 

Рассчитываем потери мощности на транзисторе:

            P=Ik*Uкэнас

Uкэнас берем из графика: при 180мА оно составляет 0.07В

            P= 0.07*0.18= 0.013 Вт

Мощность смешная, радиатора не потребуется.

Транзисторы и их аналоги

Транзистор   — аналог

Транзистор   — аналог

Транзистор   — аналог

2N1221 —   КТ501Г

2N4260 — КТ363АМ- Купить 2N5875 — 2Т818Б- Купить
2N1613 —   КТ630Г — Купить 2N4261 — КТ363ЕМ- Купить 2N6034 — КТ8130А- Купить
2N1715 — КТ630B — Купить 2N4271 — 2Т653А — Купить 2N6035 — КТ8130Б — Купить
2N2218 — КТ928А — Купить 2N4400 — КТ660А — Купить 2N6036 — КТ8130В — Купить
2N2219 — КТ928Б — Купить 2N4401 — КТ660А — Купить 2N6037 — КТ8131А — Купить
2N2219A — КТ928В — Купить 2N4402 — КТ685А — Купить 2N6038 — КТ8131Б — Купить
2N2221 — КТ3117А — Купить 2N4403 — КТ685В — Купить 2N6039 — КТ8131В — Купить
2N2222A — КТ3117Б — Купить 2N4411 — КТ3127А — Купить 2N6047 — КТ947А — Купить
2N2332 — 2Т208Б — Купить 2N4440 — 2Т921А — Купить 2N6053 — КТ825Б — Купить
2N2334 — 2Т208Г — Купить 2N4494 — KT645А — Купить 2N6054 — КТ825А — Купить
2N2335 — 2Т208Д — Купить 2N4930 — КТ505Б — Купить 2N6093 — КТ912А — Купить
2N2336 — 2Т208Л — Купить 2N4931 — КТ505А — Купить 2N6202 — КТ934А — Купить
2N2337 — 2Т208М — Купить 2N4933 — КТ927А — Купить 2N6203 — КТ934Б — Купить
2N2369 — КТ3142А — Купить 2N5069 — КТ3102Е — Купить 2N6204 — КТ934В — Купить
2N2405 — 2Т630А — Купить 2N5086 — КТ3107Б — Купить 2N6253 — 2Т818В — Купить
2N2440 — 2Т630Б — Купить 2N5087 — КТ3107К — Купить 2N6278 — КТ879Б — Купить
2N2904 — КТ692А — Купить 2N5088 — КТ3102Е — Купить 2N6279 — КТ879А — Купить
2N3055 — КТ8150А — Купить 2N5092 — КТ504А — Купить 2N6362 — КТ930А — Купить
2N3250 — КТ3108А — Купить 2N5177 — КТ909А — Купить 2N6364 — КТ930Б — Купить
2N3250A — КТ3108Б — Купить 2N5178 —   КT909Б — Купить 2N6369 — КТ931А — Купить
2N3251 — КТ3108В — Купить 2N5210 —   КТ3102Б — Купить 2N6388 — КТ899А — Купить
2N3448 — 2Т504А — Купить 2N5400 — КТ6116Б — Купить 2N6428 — КТ3117Б — Купить
2N3725 — КТ635Б — Купить 2N5401 — КТ6116А — Купить 2N6515 — КТ504Б — Купить
2N3733 — КТ907А — Купить 2N5483 — 2Т919А — Купить 2N6516 — КТ504В — Купить
2N3903 — КТ645А — Купить 2N5550 — КТ6117Б — Купить 2N6517 — КТ504А — Купить
2N3904 — КТ6137А — Купить 2N5551 — КТ6117А — Купить 2N6518 — КТ505Б — Купить
2N3905 — КТ313А — Купить 2N5589 — КТ920А — Купить 2N6519 — КТ505А — Купить
2N3906 — КТ6136А — Купить 2N5590 — КТ920Б — Купить 2N6520 — КТ505А — Купить
2N3939 — 2Т506А — Купить 2N5591 — КТ920В — Купить 2N6542 — КТ840Б — Купить
2N4001 — 2Т653Б — Купить 2N5641 — КТ922А — Купить 2N6543 — КТ840А — Купить
2N4060 — КТ681А — Купить 2N5642 — КТ922Б — Купить 2N6546 — 2Т878Б — Купить
2N4123 — КТ503А — Купить 2N5643 — КТ922В — Купить 2N6618 — 2Т3132А — Купить
2N4124 — КТ503Б — Купить 2N5650 — 2Т3114А — Купить 2N6721 — КТ504Б — Купить
2N4125 — КТ502А — Купить 2N5672 — 2Т974А — Купить 2N6853 — 2Т708Б — Купить
2N4126 — КТ502Е — Купить 2N5709 — КТ944А — Купить 2N6972 — КТ874А — Купить
2N4236 — КТ830Г — Купить 2N5758 — 2Т818А — Купить 2N940 — 2Т208Ж — Купить
2N4239 — КТ831Г — Купить 2N5773 — КТ8101А — Купить

Транзисторы

 *  *  *  Транзисторы
2SA1106 — КТ8101Б — Купить 2SA7330 — КТ3107А — Купить 2SA733R — КТ3107А — Купить
2SA610 — КТ361А2 — Купить 2SA733G — КТ3107И — Купить 2SA733Y — КТ3107Б — Купить
2SA611 —   КТ361А3 — Купить 2SA733L — КТ3107И — Купить
 *  *  *
2SB546A — КТ851В — Купить 2SB710 — КТ3173А9 — Купить 2SB970 — КТ3171А9 — Купить
2SВ506A — 2Т842А — Купить 2SB772 — КТ9176А — Купить
 *  *  *
2SC1618 — КТ808БМ — Купить 2SC3150 — КТ8118А — Купить 2SC4242 — КТ8110А — Купить
2SC1619A — КТ808АМ — Купить 2SC3217 — 2Т9155А — Купить 2SC456 — КТ645А — Купить
2SC1815BL — КТ3102Б — Купить 2SC3218 — 2Т9155Б — Купить 2SC544 — КТ315А1 — Купить
2SC1815GR — КТ3102Б — Купить 2SC3257 — КТ854А — Купить 2SC546 — КТ315Б1 — Купить
2SС1815L — КТ3102Б — Купить 2SC3277M — 2Т718А — Купить 2SC714 — КТ645Б — Купить
2SC1815O — КТ3102А — Купить 2SC3306 — КТ8117А — Купить 2SC730 — КТ610А — Купить
2SC1815Y — КТ3102Б — Купить 2SC3360 — 2Т9155В — Купить 2SC9110 — КТ637Б — Купить
2SC1929 — КТ504В — Купить 2SC3412 — КТ886А1 — Купить 2SC9450 — КТ3102А — Купить
2SC2122 — КТ841Б — Купить 2SC3750 — КТ8108А — Купить 2SC945G — КТ3102Б — Купить
2SC216B — КТ850А — Купить 2SC380 — КТ315Г — Купить 2SC945L — КТ3102Б — Купить
2SC2240BL — КТ503Е — Купить 2SC388 — КТ315Г — Купить 2SC945R — КТ3102А — Купить
2SC2240GR — КТ503Е — Купить 2SC4055 — KT8120A — Купить 2SC945Y — КТ3102Б — Купить
2SC2270 — КТ9157 — Купить 2SC4173 — КТ645Б — Купить
 Транзисторы  *  *  *  Транзисторы
2SD1172 — 2Т713А — Купить 2SD415 — КТ683Д — Купить 2SD882 —   КТ9177А — Купить
2SD1565 — 2Т9136АС — Купить 2SD602 — КТ3176А9 — Купить 2SD900B — КТ8183А — Купить
2SD401A — КТ8123А — Купить 2SD814 — КТ3179А9 — Купить
 *  *  *
ВС119 — КТ630Б — Купить BC338-16 — КТ660Б — Купить
BC136 — КТ639Б — Купить BC338-25 — КТ660Б — Купить BC560B— КТ3107И — Купить
ВС140 — КТ630Д — Купить BCЗЗ8-40 — КТ660Б — Купить BC560C — КТ3107И — Купить
BC223A — КТ660Б — Купить BC516 — КТ686Ж — Купить BC635 — КТ503Б — Купить
BC223B — КТ660Б — Купить BC517 — КТ645А — Купить BC636 — КТ684А — Купить
ВС237А — КТ3102А — Купить BC546A — КТ503Д — Купить BC637 — КТ503Г — Купить
BC237B — КТ3102Б — Купить BC546B — КТ3117Б — Купить BC638 — КТ684Б — Купить
BC237C— КТ3102Б — Купить BC546С — КТ3117Б — Купить BC639 — КТ503Е — Купить
BC238A— КТ645А — Купить BC547A — КТ645А — Купить BC640 — КТ684В — Купить
BC238B— КТ3102В — Купить BC547B — КТ3102БМ — Купить BC847A — КТ3189А9 — Купить
BC238C— КТ3102В — Купить BC547C — КТ3102БМ — Купить BC847B — КТ3189Б9 — Купить
BC239A— КТ3102Д — Купить BC548A — КТ3102ВМ — Купить BC847C — КТ3189В9 — Купить
BC239В — КТ3102Д — Купить BC548B — КТ3102ВМ — Купить BC857A — КТ3129Б9 — Купить
BC239C— КТ3102Д — Купить BC549A — КТ3102ВМ — Купить BC857B — КТ3129Г9 — Купить
BC307A— КТ3107Б — Купить BC549B — КТ3102ВМ — Купить BC858A — КТ3129В9 — Купить
BC307B— КТ3107И — Купить BC549C — КТ3102ВМ — Купить
BC307C— КТ3107И — Купить BC54BC — КТ3102ВМ — Купить BCF32 — КТ3172А9 — Купить
BC308A— КТ3107Г — Купить BC550A — КТ3102АМ — Купить BCХ53 — 2Т664А9 — Купить
BC308B— КТ3107Д — Купить BC550B — КТ3102БМ — Купить BCХ56 — КТ665А9 — Купить
BC308С — КТ3107К — Купить BC550C — КТ3102БМ — Купить BCХ70 — КТ3153А9 — Купить
BC309А — КТ3107Е — Купить BC556A — КТ502Д — Купить BCY38 — КТ501Д — Купить
BC309В — КТ3107Ж — Купить BC556B — КТ502Д — Купить BCY39— КТ501М — Купить
BC309С — КТ3107Л — Купить BC556C — КТ502Д — Купить BCY54— КТ501К — Купить
BC327-16 — КТ686А — Купить BC557A — КТ6б8Б — Купить BCY92— 2Т3152А — Купить
BC327-25 — КТ686Б — Купить BC557B — КТ668В — Купить BCY93B— КТ501Л — Купить
BC327-40 — КТ686В — Купить BC557C — КТ3107И — Купить BCW31 — КТ3130Д9 — Купить
BC328-16 — КТ686Г — Купить BC558A — КТ3107Г — Купить BCW33LT1— КТ3130Е9 — Купить
BC328-25 — КТ686Д — Купить BC558C — КТ3107К — Купить BCW71— КТ3139А — Купить
BC328-40 — КТ686Е — Купить BC559A — КТ3107Е — Купить BCW72— КТ3139Б — Купить
BC337-16 — КТ660А — Купить BC559B — КТ3107Ж — Купить BCW73— КТ3139В — Купить
BC337-25 — КТ660А — Купить BC559C — КТ3107Л — Купить
BC337-40 — КТ660А — Купить BC560A — КТ3107Б — Купить
 *  *  *
BD130 — КТ819БМ — Купить BD233 — КТ817Б — Купить BDW22 — КТ818БМ — Купить
BD135 — КТ815Б — Купить BD234 — КТ816Б — Купить BDW51 — КТ819АМ — Купить
BD136 — КТ814Б — Купить BD235 — КТ817В — Купить BDW51B — 2Т819А — Купить
BD136-10 — КТ639В — Купить BD236 — КТ816В — Купить BDW64A — КТ896А — Купить
BD136-16 — КТ639А — Купить BD237 — КТ817Г — Купить BDW65A — КТ8106А — Купить
BD137 — КТ815В — Купить BD238 — КТ816Г — Купить BDX53 — КТ829Г — Купить
BD138 — КТ814В — Купить BD242B — КТ818Г — Купить BDX53A — КТ829В — Купить
BD138-10 — КТ639Е — Купить BD291 — КТ819А — Купить BDX53B — КТ829Б — Купить
BD138-16 — КТ639Г — Купить BD292 — КТ818А — Купить BDX53E — КТ829Д — Купить
BD138-6 — КТ639Д — Купить BD293 — КТ819Б — Купить BDX54 — КТ853Г — Купить
BD139 — КТ815Г — Купить BD295 — КТ819В — Купить BDX54F — КТ712А — Купить
BD140 — КТ814Г — Купить ВD534 — КТ837А — Купить BDX62 — КТ825Д — Купить
BD140-10 — КТ639Ж — Купить BD536 — КТ837Б — Купить BDX63A — КТ827А — Купить
BD140-6 — КТ639И — Купить BD875 — КТ972А — Купить BDY20 — 2Т819В — Купить
BD142 — 2Т819Б — Купить BD876 — КТ973А — Купить BDY73 — КТ819ВМ — Купить
BD202 — КТ818Б — Купить BDV64 — КТ8159В — Купить BDY98 — 2Т841Б — Купить
BD203 — КТ819Г — Купить BDV65 — КТ8158В — Купить
BD204 — КТ818В — Купить BDW21 — КТ819ГМ — Купить
 *  *  *
BF391 — КТ698К — Купить BF492 — КТ505Б — Купить BF970 — КТ3165А — Купить
BF392 — КТ504Б — Купить BF493 — КТ505А — Купить BF979S — КТ3109А — Купить
BF393 — КТ504В — Купить BF506 — КТ3126А — Купить BFP194 — КТ6129А9 — Купить
BF419 — КТ969А — Купить BF554 — КТ3170А9 — Купить BFR90 — КТ3198А — Купить
BF422 — КТ940А — Купить BF565 — КТ3169А9 — Купить BFR90A — КТ3198Б — Купить
BF423 — КТ9115А — Купить BF569 — КТ3192А9 — Купить BFR91 — КТ3198В — Купить
BF458 — КТ940Б — Купить BF595 — КТ3169А9 — Купить BFR91A — КТ3198Г — Купить
BF459 — КТ940А — Купить BF599 — КТ368А9 — Купить BFR92 — КТ3187А9 — Купить
BF472 — КТ9115А — Купить BF820S — КТ666А9 — Купить BFT92 — КТ3191А9 — Купить
BF491 — КТ6127К — Купить BF821S — КТ867А9 — Купить BFY68 — КТ630Е — Купить
 *  *  *
BLX96 — КТ98ЗА — Купить BLX98 — КТ983В — Купить BLY53 — КТ925Б — Купить
BLX97 — КТ983Б — Купить BLY38 — КТ925А — Купить
 Транзисторы  *  *  *  Транзисторы
BU106 — 2Т841А — Купить BU426A — KT868A — Купить BUX21 — 2T866A — Купить
BU126 — КТ845А — Купить BU508 — KT872A — Купить BUX37 — KT848A — Купить
BU207 — КТ846Б — Купить BU508A — KT8107A — Купить BUX48 — КТ856Б — Купить
BU208 — КТ8127Б — Купить BU508D — KT872B — Купить BUX48A — 2T856A — Купить
BU208A — КТ8127А — Купить BU931PFI — KT898A1 — Купить BUX54 — KT506A — Купить
BU209 — КТ846Г — Купить BU931Z — KT897A — Купить BUX98 — KT878A — Купить
BU406 — КТ8124А — Купить BU931ZP — KT898A — Купить BUX98A — KT878B — Купить
BU406 — КТ858А — Купить BU932Z — КТ892Б — Купить BUY21 — KT867A — Купить
BU407 — KT8124B — Купить BUT92A — 2T891A — Купить BUZ60 — КП707А1 — Купить
BU407 — KT857A — Купить BUW76 — KT847A — Купить BUZ90 — КП707Б1 — Купить
BU408 — КТ8124Б — Купить BUX12 — 2T862A — Купить
BU426 — КТ868Б — Купить BUX17B — 2Т718Б — Купить
 *  *  *
BV807 — KT8156A — Купить BVS98A — 2T885A — Купить
 *  *  *
BY67A — KT630A — Купить
 *  *  *
DTA124E — КР1054НК2Б — Купить DTC114E — KP1054HK1B — Купить DTC144E — KP1054HK1A — Купить
DTA144E — KP1054HK2A — Купить DTC124E — КР1054НК1Б — Купить
 *  *  *
FJ401E — 2T3115A-2 — Купить
 *  *  *
KSA539 — KT502A — Купить KSC5021 — КТ8108Б — Купить KSD362 — КТ805БМ — Купить
КSC4106 — Т8136А — Купить KSD227 — KT503A — Купить KSD363 — KT805AM — Купить
 *  *  *
MD5000A — KTC3103A — Купить MD5000F — КТС3103Б — Купить
 *  *  *
MJ2955 — KT8102A — Купить MJE13004 — КТ8164Б — Купить MJE2955T — KT8149A2 — Купить
MJ4645 — 2Т505Б — Купить MJE13005 — KT8164A — Купить MJE3055T — KT8150A2 — Купить
MJ4646 — 2T505A — Купить MJE13006 — КТ8182Б — Купить MJE340 — КТ504В — Купить
MJE13002 — КТ8175Б — Купить MJE13007 — KT8182A — Купить MJE350 — КТ505А — Купить
MJE13003 — KT8175A — Купить MJE13009 — KT8145A — Купить
 *  *  *
MPS2923 — KT680A — Купить MPSA43  — KT6135B — Купить MPSL01 — KT638A — Купить
MPS404 — KT209A — Купить MPSA92 — КТ505А — Купить MPSL51 — КТ632Б1 — Купить
MPSA42 — КТ6135Б — Купить MPSA93 — KT698K — Купить
 *  *  *
PN2905A — KT644A — Купить PN2906A — КТ685Б — Купить PN2907A — КТ644Г — Купить
PN2906 — КТ644Б — Купить PN2907 — KT644B — Купить
 *  *  *
SC558B — КТ3107Д — Купить
 *  *  *
SS8050B — KT6114A — Купить SS9013E — КТ6110Б — Купить SS9016E — КТ6128Б — Купить
SS8050C — КТ6114Б — Купить SS9013F — KT6110B — Купить SS9016F — KT6128B — Купить
SS8050D — KT6114B — Купить SS9013G — КТ6111Г — Купить SS9016G — КТ6128Г — Купить
SS8550B — KT6115A — Купить SS9013H — КТ6111Д — Купить SS9016H — КТ6128Д — Купить
SS8550C — КТ6115Б — Купить SS9014A — KT6111A — Купить SS9016I — KT6128E — Купить
SS8550D — KT6115B — Купить SS9014B — КТ6111Б — Купить SS9018C — КТ6113Г — Купить
SS9012D — KT6109A — Купить SS9014C — KT6111B — Купить SS9018D — КТ6113А — Купить
SS9012E — КТ6109Б — Купить SS9014D — КТ6111Г — Купить SS9018E — КТ6113Б — Купить
SS9012F — KT6109B — Купить SS9015A — KT6112A — Купить SS9018F — KT6113B — Купить
SS9012G — КТ6109Г — Купить SS9015B — КТ6112Б — Купить SS9018H — КТ6113Д — Купить
SS9012H — КТ6109Д — Купить SS9015C — KT6112B — Купить SS9018I — KT6113E — Купить
SS9013D — KT6110A — Купить SS9016D — KT6128A — Купить
 *  *  *
STF143 — КТ501Ж — Купить STF144 — КТ501И — Купить
 Транзисторы  *  *  *  Транзисторы
TIP110 — KT716B — Купить TIP125 — KT8115B — Купить TIP150 — КТ8109Б — Купить
TIP111 — КТ716Б — Купить TIP125 — KT853B — Купить TIP151 — KT8109A — Купить
TIP112 — KT716A — Купить TIP126 — КТ8115Б — Купить TIP3055 — KT8150A1 — Купить
TIP115 — KT852B — Купить TIP126 — КТ853Б — Купить TIP41A — KT8125B — Купить
TIP116 — КТ852Б — Купить TIP127 — KT8115A — Купить TIP41B — КТ8125Б — Купить
TIP117 — KT852A — Купить TIP127 — KT853A — Купить TIP41C — KT8125A — Купить
TIP120 — KT8116B — Купить TIP140 — KT8111B — Купить TIP48 — KT859A — Купить
TIP121 — КТ8116Б — Купить TIP141 — КТ8111Б — Купить TIP661 — KT892A — Купить
TIP122 — KT8116A — Купить TIP142 — KT8111A — Купить
 *  *  *
VN1231 — KP1054HK3A — Купить

Электронный справочник радиолюбителя

Приветствую вас дорогие друзья, меня зовут Владимир Васильев и сегодня я приготовил для вас кое-что интересное.  Каждый радиолюбитель в своей практике постоянно прибегает к помощи различных справочников : это справочники транзисторов, диодов резисторов и прочих деталюх. Конечно в настоящее время в этом нам помогает интернет и поэтому  коллекционирование большой библиотеки справочной литературы  стало не так актуально.

Но все-таки бывают случаи когда интернета может не оказаться под рукой  а в книжном справочнике не очень дружественный интерфейс, им тупо не удобно пользоваться. Особенно не удобно листать электронные книжки на компьютере.

В таких не редких случаях нам может помочь электронный справочник радиолюбителя. А о том, что представляет собой эта программа — справочник вы узнаете прочитав эту статью до конца.

Однако не забудьте подписаться на новые обновления так как информация на моем блоге постоянно обновляется и в дальнейшем без этого нехитрого приема будет сложно отследить за потоком моего сознания 🙂

Итак, для удобства я подготовил для вас содержание так что пользуйтесь на здоровье!


[contents]


Помню, когда я еще учился, кажется это был второй курс мы с одногруппниками частенько делились друг с другом разным софтом,  обоями для рабочего стола и всем тем, что может интересовать простого студента. Все это добро мы передавали друг другу на  дискетах, нарезали на болванки (USB флешки  тогда были не так распространены да и объем их был не велик ). Но круче всего было когда друг приходил в гости со своим жестким диском — вот это было раздолье.

Вот как сейчас помню один из моих друзей-одногруппинков Виталя пришел со своим винтом и подкинул мне всякой всячины — разного софта, в том числе и радиолюбительского. Так что, Виталя,  если ты читаешь эту статью то большой тебе привет и  спасибо за софт!

Так вот среди этого радиолюбительского софта был и справочник радиолюбителя о котором я хочу  вам, дорогие читатели подробненько так рассказать.

Справочник радиолюбителя что это?

Справочник для радиолюбителя это прежде всего удобная программа, содержащая в себе справочные данные на большое количество полупроводниковых  радиоэлементов. Среди всего многообразия можно найти информацию на такие радиодетали как:

  • транзисторы (биполярные, полевые )
  • диоды
  • оптоэлектронные приборы (оптопары, излучающие ИК диоды различные индикаторы)
  • тиристоры (импульсные, запираемые, оптронные и т.д.)
  • аналоговые микросхемы (операционные усилители, компараторы и т.д.)
  • микросхемы для теле-видео аппаратуры
  • цифровые микросхемы

Другими словами справочник радиолюбителя — это электронный справочник включающий в себя: справочник  по транзисторам, справочник по диодам, по тиристорам, микросхемам и многим другим радиодеталям.

Где скачать и как установить?

И хотя этот справочник долгое время был у меня на компе, тем не менее я нашел его на одном из торрент -трекеров. И теперь этот справочник радиодеталей скачать можно по торрент-ссылке, специально для вас приготовил. Надеюсь большинство моих читателей знают как пользоваться программой mtorrent, так что проблем возникнуть не должно.

Когда скачаете то у вас  на руках будет два файлика.

Это файлы-образы диска , причем открыть их просто так не получится. Для начала нужно установить этот образ на виртуальный привод. Другими словами вам нужно воспользоваться программами — виртуальщиками  это такие как: DAEMON Tools,  Alcohol, Nero или UltraISO. Эти программы сами создают виртуальный привод и создают иллюзию того что у вас появился еще один CD-ROM.

У меня с этой задачей справляется тотал командер (специальная хакерская сборка ), одна из  этих программ встроена прямо в него. В результате у меня на компе создался виртуальный привод с буковкой H (О боже. чудеса какие-то, откуда он у меня взялся? 🙂 ) и мы можем наблюдать  содержимое.

Что из себя представляет

Давайте теперь разберемся что это за программа такая и что из себя представляет. Поэтому кликаем по главному exe-шнику, по файлу menu.exe и смотрим что там внутри. 

Сразу видим окно разбитое на несколько пунктов, эти пункты представляют собой разделы справочника

Разделы программы — справочника радиокомпонентов

Полупроводники №1

Нажав на раздел Полупроводники №1 у нас откроется вот такое окно.

И невооруженным взглядом становится понятно что здесь и зачем. Перед нами предстают несколько вкладок: биполярные транзисторы, полевые транзисторы, диоды , оптоэлектроника и тиристоры.

Вкладка биполярные транзисторы дает свободу выбора  по интересующим нас параметрам. В нашем распоряжении такие характеристики как мощность , тип проводимости, частота. Ну и можно выбрать какой транзистор мы ищем обычный, составной или еще какой.

Теперь нажимаем кнопку «вывод» и наблюдаем  все многообразие которое вывалилось на вас в одночасье.

«И Че это и  как в этом разобраться?»- сразу в лоб спросит какой-нибудь Вася, Петя, Коля. Действительно выборка получается очень большая. Это я для статьи немного подрезал скриншот а так картинка получилась внушительной. Таблица вывела нам все транзисторы, содержащиеся в базе, которые удовлетворяют выбранным нами критериям.

Нас это не устраивает, ведь нам нужен какой-нибудь один  конкретный транзистор для наших вполне конкретных целей.   Так что не печалимся ведь   весь результат этой таблицы легко корректировать и фильтровать используя «поиск». Этот поиск находится  над таблицей, там где расположен перечень вкладок,  поэтому незамедлительно делаем безудержный клик.

И здесь мы можем продолжить поиск искомого транзистора. В нашем распоряжении поиск по названию транзистора, по его зарубежным аналогам. Также мы можем отсортировать таблицу по техническим характеристикам. Так выбрав нужный элемент, допустим 2Т117А,  перемещаемся во вкладку «таблица». В результате таблица будет  забита только транзисторами с названием 2Т117А.  Среди них будет и искомый 2Т117А и 2Т117Б и 2Т117В и т.д.

А теперь делаем финт ушами и кликаем на вкладку «габариты» и О-о-о-п-ля.

Перед нами появилась информация о габаритах транзистора, по-моему теперь мы обладаем исчерпывающей информацией о транзисторе  2Т117А , у нас есть его габариты и есть его  технические характеристики. Все, осталось приобрести сам транзистор и впаять его куда надо.

Но это еще не все.

Бывают случаи когда требуется ювелирная сортировка по какому-то диапазону параметров. И для этого случая в программе припасена такая функция как подбор по параметрам.

Точным кликом по вкладке возвращаемся в окно поиска и там под окном выбора по названию элемента есть незаметная кнопка «подбор по параметрам».

Эта кнопка скрывает окно подбора транзисторов по параметрам. Здесь можно производить поиск по группе интересующих параметров. Также  можно очень четко регулировать диапазон поиска по конкретным параметрам. Не плохо да?

Мы рассмотрели принцип работы  со  справочником  радиокомпонентов  на примере транзисторов. О том как работать с другими типами полупроводников  можно также легко разобраться применив  метод научного тыка.

Полупроводники №2

Честно сказать я не совсем понял чем этот раздел полупроводников отличается от рассмотренного нами ранее. Потому, что нажав на пункт «полупроводники №2» у нас откроется окно почти такое же что мы  видели ранее, там где мы могли видеть вкладки выбора транзисторов, диодов или тиристоров.

Конечно может быть там зашита немного другая база комплектующих, не знаю, не разбирался. Одно знаю точно что там поиск осуществляется немного иначе. При нажатии вкладки «поиск» у вас откроется окошко.

Вот на мой взгляд и все отличия, поэтому какой раздел полупроводников использовать выбирайте для себя сами, я остановился на первом варианте.

Аналоговые микросхемы

Оставляем полупроводники за бортом и начнем наш разбор раздела аналоговых микросхем. И перед нами откроется знакомое окно, вот только информация здесь приводится уже для микросхем. В заголовке окна написано «Аналоговые микросхемы для аудиоаппаратуры» это естественно, ведь аналоговые микросхемы к примеру операционные усилители, применяются в аудиотехнике. 

Ладно, это все лирика а нам нужно разобраться  с тем как искать аналоговые микросхемы в этом электронном справочнике.

Короче, выбираем, то ради чего мы открыли это окошко. Пусть наш выбор падет на операционные усилители общего применения, поэтому ставим галочку в нужном месте и нажимаем клавишу  «Выбор».

И как в случае с транзисторами таблица выдала нам  бесчисленное количество микросхем. Но здесь этот результат также поддается корректировке.

Нажав на вкладку поиск здесь также можно ввести интересующую нас информацию. Здесь все точ в точ как  в случае с транзисторами, поэтому  на этом останавливаться не будем.

Отдельно хочется поведать про вкладки «габариты» и «схема включения». Схема включения спецом добавлена для аналоговых микросхем для пущей информативности.

Допустим наш выбор пал на микросхему операционного усилителя К153УД501 и тут же мы можем оценить ее габариты и посмотреть как ее включать в схему, какая схема обвязки ей соответствует.

Микросхемы для теле-видео аппаратуры

Теперь уделим внимание микросхемам применяемым для теле-видео аппаратуры.

Для этих микросхем также есть свое окно выбора, а выбрать здесь есть из чего. Окно разбито на микросхемы для телевизионной аппаратуры и на микросхемы применяемые в видеомагнитофонах.

Например микросхемы для телевизионной аппаратуры разбиты по системам, к которым они относятся или где они должны стоять в аппаратуре:

  • в канале цветности
  • видеоусилители
  • в цепях коммутации
  • в блоках дистанционного управления
  • в системах спутникового телевидения
  • в системах телетекста
  • в радиоканале
  • в узлах развертки и цепях синхронизации
  • в системах питания
  • цифровые микросхемы
  • для тюнеров

Как-то так, выбираем то что нужно и жмем знакомую кнопочку «Вывод». Я выбрал пункт «в канале цветности» и получил знакомую таблицу, только уже заполненную микросхемами для телевизионной аппаратуры.

Таблица для нас знакома, но здесь появились вкладки которые мне показались интересными. Среди них есть знакомая вкладка «Габариты», кроме нее есть еще вкладки «Структурная схема» и «Доп. информация».

И вот к примеру какая есть информация для выбранной микросхемы видеомодулятора µPC1366C:

Мы можем посмотреть ее структурную схему и не гадать как же она внутри устроена. Далее можем оценить ее габариты и увидеть дополнительную информацию о микросхеме.

Хм, интересно получается, хотели получить габариты а самих габаритных размеров почему-то нет. Наверное потому, что буржуйская микросхема но все равно как-то не продумано.

Для микросхем видеомагнитофонов все аналогично, вот только интересно видеомагнитофоны сейчас применяются? А впрочем микросхемы всегда можно найти где применить.

Цифровые микросхемы №1

Вот речь дошла и до цифровых микросхем, коих у нас как полупроводников аш два раздела,  но сейчас остановимся пока только на одном. Так так посмотрим, чтоже из себя представляет окошко.

Окошко открывается и сразу видно как осуществляется выбор. Выбирать можно либо по серии — эта вкладка включена по умолчанию, либо по функциональному назначению. Об этом нам поведает окно если мы выберем соответствующую вкладку.

И не важно какой способ выбора вы выберете результат будет такой же что мы видели ранее — откроется таблица. Но скорректировать поиск мы всегда сможем воспользовавшись вкладкой поиска. Всю важную для нас техническую информацию о параметрах мы возьмем в таблице, а чтобы посмотреть схему или габариты то кликнем нужную вкладку- усе просто.

И к примеру для микросхемы КС531ЛИ1 характеристики будут следующие:

Габаритные размеры и схема:

Цифровые микросхемы №2

Посмотрел я этот раздел, потыкал в разные вкладки — все устроено точно также. Конечно выбор цифровых микросхем в разделе №1 от раздела №2 может отличаться поэтому поступаем следующим образом. Если в одном разделе вы не нашли какую-либо микросхему то не отчаиваемся и смиренно топаем во второй раздел. Ведь когда есть выбор это всегда есть гуд.

Я если честно хотел  еще рассказать о том как пользоваться этим электронным справочником на практике, только вот  теперь это будет лишняя информация. Все что хотел все рассказал в примерах.

А далее я думаю надо поговорить о плюсах и минусах этого справочника.

Плюсы и минусы

Из своего опыта применения этой программы скажу, что плюсов у нее  сполна.

не требует установки — ей можно пользоваться сразу после открытия на виртуальном приводе и не париться различными установками;

мобильная — так как она не требует установки то ее можно скопировать на флешку  и таскать с собой куда угодно хоть на пары, хоть на работу. Весит она порядка 600 Мб, но что это за объем памяти для современных флешек?;

удобство использования—  этот пункт я думаю вы оценили когда мы разбирали интерфейс программы -справочника;

и я думаю каждый из вас найдет в ней что- то свое .

Как ни печально, но минусы у этой программы также присутствуют:

нет поддержки производителем — как ни пытался я найти сайт производителей этой программы, все мои попытки оказались тщетными, видимо этот продукт больше не развивается;

есть ошибки — этот минус надолго останется в моей памяти.  При написании дипломного проекта я постоянно пользовался этой программой но при сборке макета устройства что-то все не очень хорошо складывалось.

Оказалось, что распиновка выводов применяемого мной операционного усилителя  в этом справочнике не соответствовала действительности. Пришлось достаточно повозиться прежде чем удалось найти истину. С другой стороны ошибки могут встречаться и в любом другом справочнике, так что наиболее правдивой информацией я считаю может обладать лишь официальная документация на радиокомпонент. В любом случае друзья будьте внимательны!

Чтож, вроде все что хотел рассказать о электронном справочнике радиолюбителя я рассказал. Так что ребята и девчата если остались какие  вопросы то обязательно задавайте их в комментариях.

Ну чтож друзься а на этом у меня на сегодня все. Поэтому прямо сейчас нажмите на  ссылочку подписаться, тогда вы всегда будете в курсе  о новых статьях.

Также подписаться на обновления блога можно через форму сервиса Email рассылок. Подписавшись через нее вы еще получите приятный подарок, который  составит вам верную службу.

 

А на этом у меня действительно все, за окном уже стемнело, да и спать уже хочется.

Желаю вам друзья успехов в делах и  прекрасного солнечного настроения!

С н/п Владимир Васильев

Расчет параметров биполярного транзистора

Саратовский государственный технический университет

Методические указания

к самостоятельной работе студентов

под контролем преподавателя

по курсу «Промышленная электроника»

для специальности 1004

Одобрено

редакционно-издательским

советом СГТУ

Саратов 2006

Введение

В соответствии с действующей рабочей программой по дисцип­лине «Промышленная электроника» студенты специальности ЭПП должны выполнить 4 самостоятельных расчетно-графические работы под контролем преподавателя. В настоящих методических ука­заниях изложены материалы по первой работе “Расчет параметров биполярного транзистора.

В основных положениях указаний изложен минимальный объем информации, позволяющий студенту выполнить предлагаемое зада­ние. Предполагается, что студент в процессе подготовки к непосредственному расчету должен изучить в полном объеме необходимый материал по рекомендуемым ниже учебникам и пособиям. При этом следует обратить внимание на физические явления, лежащие в основе работы транзистора, разобраться во взаимосвязи между его электрическими параметрами , хорошо представлять порядок величин параметров.

При сдаче работы со студентом проводится собеседование. Приведенные контрольные вопросы помогут студенту не только определить степень его готовности к выполнению расчетов, но и подготовиться к собеседованию.

Кроме формулировки задания, методические указания содержат справочные сведения по транзисторам, которыми студент обязан пользоваться.

Оформление выполненного задания в тетради должно быть аккуратным, с полной записью его условия. Графики выполняются с помощью графических принадлежностей.

Рекомендуются следующие учебники и пособия:

    1. Забродин Ю.С. Промышленная электроника.-М.:Высшая школа, 1982 /стр. 42-64/.

    2. Горбачев Г.Н., Чаплыгин Е.Е. Промышленная электроника. М.: Энергоатомиздат, 1988 /стр. 20-28/.

    3. Основы промышленной электроники. / Под ред. проф. В.Г.Герасимова.-М.: Высшая школа, 1986 /стр. 28-34/.

1. Основные положения

1.1. Биполярный транзистор и схемы его включения

Биполярный транзистор представляет собой кристалл проводника, состоящий из трех слоев с различной проводимостью, как

условно показано на Рис.1. Каждый из слоев снабжён электродами, необходимыми для подключения к внешней цепи, которые называются эмиттер, база и коллектор. Возможны два типа транзисторов и в соответствии с основными носителями заряда в полупроводниковых материалах, используемых в крайних эмиттерном и коллекторном слоях, и в среднем-базовом слое. Как видно из Рис.1., в биполярном транзисторе два перехода, которые называются эмиттерным и коллекторным.

Рис.1

Назначением эмиттерного слоя является формирование рабочих носителей заряда транзистора. Тип этих носителей определяется типом основного носителя эмиттерного слоя. Следовательно, в транзисторе типа рабочими носителями заряда являются дырки, а в транзисторе типа – электроны.

В коллекторном слое осуществляется сбор рабочих носителей заряда, которые в своем дрейфе от эмиттера к коллектору прохо­дят базовый слой. В базовом слое часть рабочих носителей заря­да нейтрализуется основными зарядами материала базового слоя. Биполярные транзисторы изготовлены так, что концентрация основ­ных носителей заряда в эмиттерном слое много больше концентрации основных носителей заряда базового слоя, поэтому в базовом слое нейтрализуется лишь малая часть носителей, поступающая из эмиттера, а 90-99 % рабочих носителей заряда доходят до коллектора.

Для обеспечения описанного выше процесса дрейфа рабочих носителей заряда в биполярном транзисторе необходимо между его электродами подать напряжение от источников ЭДС. Одна из схем включения транзистора типа приведена на Рис.2.

Рис.2

Чтобы поток рабочих носителей заряда (электронов) из эмиттерного слоя поступал в базовый, эмиттерный переход должен быть открыт, т.е. к эмиттерному электроду должен быть подан “минус”, а к базовому -“плюс”. С увеличением напряжения эмиттер – база увеличивается поток носителей заряда, а поэтому и ток эмиттера.

Восполнение дырок в базовом слое, которые нейтрализуют электроны, поступающие из эмиттерного слоя, осуществляется за счет источника внешней цепи. Это обуславливает протекание тока базы, величина которого значительно меньше тока эмиттера, вследствие малой доли потока рабочих носителей заряда, которая нейтрализуется в базовом слое.

Малая величина тока базы определяет функцию базового элект­рода как управляющего. Действительно, эффективное управление транзистором может быть только такое, которое потребляет малый уровень мощности.

Для достижения коллектора электронами эмиттера вошедшими в базовый слой, необходимо, чтобы источник ЭДС, включенный между коллекторным и базовым электродами, обеспечивал подачу на коллектор положительного потенциала относительно базы. Это иллюстрируется на Рис.2.

На Рис.2 представлено включение транзистора по схеме с общей базой. Наряду с такой схемой, на Рис.3. представлены еще две возможные схемы включения транзистора: с общим эмиттером (ОЭ) и общим коллектором (ОК). Как видно из этого рисунка, схемы содержат две внешних цепи с соответствующими источниками ЭДС: входная (левые части схемы) и выходная (правые части). Наименование схемы

Рис.3

включения транзистора определяется электродом, который явля­ется общим для двух этих цепей. Во всех трех схемах базовый электрод входит в состав входной цепи, поскольку по базе происходит управление работой транзистора, и в эту цепь включается источник входного сигнала. Нагрузка включается в выходную цепь.

Входные и выходные токи в представленных схемах включения транзистора, а также напряжения между электродами транзистора, определяемые источниками ЭДС, различны и приведены в таблице 1.

Таблица 1

Токи и напряжения во входной и выходной цепях

схем включения транзистора

Схема включения

Входной ток

Входное напряжение

Выходной ток

Выходное напряжение

ОБ

IЭ

UЭБ

IК

UКБ

ОЭ

IБ

UБЭ

IК

UКЭ

ОК

IБ

UБК

IЭ

UЭК

Полярность напряжений источников ЭДС, показанная на Рис.3. соответствует транзистору типа . При использовании транзистора типа в связи с изменением типа рабочего носителя заряда полярности напряжений источников должны быть изменены.

1.2. Характеристики и параметры транзистора в схеме ОЭ

Сведения о конкретном типе транзистора, необходимые для правильного выбора режима его работы, обычно приводятся в виде характеристик и систем параметров.

Транзистор, описывается, в первую очередь, семейством вход­ных и выходных характеристик. Входными называется семейство вольтамперных характеристик входной цепи схемы включения тран­зистора, построенных для ряда фиксированных значений напряже­ния выходной цепи. Выходными называется семейство вольтамперных характеристик выходной цепи транзистора, построенных для ряда фиксированных значений входного тока. Как видно из таблицы 1 каждой схеме включения транзистора соответствует определенное сочетание входных и выходных токов и напряжений. Поэтому и вход­ные и выходные характеристики транзистора будут определяться схемой его включения.

Ниже будут рассматриваться характеристики транзистора, включенного по схеме ОЭ. Эта схема включения нашла наибольшее распространение.

Типичные входная и выходная статические характеристики транзистора типа представлены на рис.4 и 5*. Входная характеристика – это семейство вольтамперных характеристик IБ (UБЭ), построенных при постоянных значениях напряжения UКЭ. Обычно, как видно из рис.4, приводятся две характеристики: одна для UКЭ=0 , а другая для значения напряжения UКЭ ,соответ­ствующего центру рабочего интервала значений данного параметра. Это связано с тем, что вольтамперные характеристики входной цепи для рабочего интервала значений UКЭ практически не отличаются друг от друга.

Выходная статистическая характеристика транзистора, как показано на Рис.5 – это семейство вольтамперных характеристик IК(UКЭ), построенных для ряда значений тока IБ. На выходной характеристике обычно строится рабочая область, т.е. область значений выходных параметров, при которых допускается эксплуатация транзистора. Границы этой области представленной на Рис.5. связаны с тремя факторами:

__________­­__

*/ Для транзисторов типа напряжения UБЭ и UКЭ– отрицательной полярности.

Рис.4

Рис.5

– максимальным значением напряжения UКЭмах , превышение которого приводит к электрическому пробою в коллекторном переходе транзистора;

– максимальным значением коллекторного тока IКмах , превышение которого может приводить к перегреву эмиттерного перехода;

– максимальным значением мощности, рассеиваемой в коллекторном переходе, превышение которого приводит к перегреву этого перехода, РКмах.

На выходной характеристике, Рис.5., последнему фактору соответствует гипербола

(1)

Как видно из Рис.4 и 5, транзистор представляет собой нелинейный элемент, поскольку его входные и выходные вольтамперные характеристики нелинейные, а следовательно, величины входного и выходного сопротивлений зависят от соответствующих токов и напряжений. Однако на входных и выходных характеристиках транзистора можно выделить участки, где зависимости близки к линейным. В частности , линейными можно считать зависимости в рабочей области Рис.5 , если исключить малые значения напряжения коллектор – эмиттер. Область малых значений UКЭ , где происходит резкое увеличение тока, не используются при работе транзистора в линейном режиме усилителей и генераторов.

Известно из ТОЭ, что на участках, где вольтамперные характеристики нелинейных элементов могут быть аппроксимированные отрезками прямых, эти элементы могут рассматриваться как линейные. Поэтому транзистор в рабочей области часто заменяется эквивалентным четырехполюсником, характеризующимся определенными значениями h параметров, которые являются коэффициентами в соотношениях, связывающих не величины токов и напряжений, а величины их приращений, т.е IБ, IK, ∆UБЭ, ∆UКЭ.

(2)

Из первого соотношения системы (2) при UКЭ=0 (или UКЭ=const) следует

(3)

Из этого же соотношения при IБ=0 (или IБ =const) следует

(4)

Аналогичным образом второе соотношение системы (2) позволяет записать:

(5)

(6)

Физический смысл hпараметров согласно соотношениям (3) – (6) следующий:

h11 – входное сопротивление транзистора, при постоянном значении напряжения UКЭ ;

h12 – коэффициент обратной связи по напряжению;

h21 – коэффициент передачи тока в схеме ОЭ, характеризующий усилительные свойства транзистора при постоянном значении напряжения UКЭ и часто обозначаемый через β;

h22– выходная проводимость транзистора при постоянном токе базы.

1.3. Определение h параметров транзистора

Расчет значений h параметров производится для электрического режима транзистора, соответствующего рабочей точке (точке покоя) на его статических характеристиках. При работе в линейном режиме эта точка обычно располагается в центре ра­бочей области. Поэтому расчету значений h – параметров должно предшествовать определение рабочей области на выходной характеристике и выбор электрических параметров (IБП , IКП , UБЭП , UКЭП ), соответствующих рабочей точке.

Значения h параметров определяются с помощью построений на выходной или входной статической характеристике и с использованием соотношений (3) – (6). При этом обозначения параметров транзистора, входящих в соответствующее соотношение, показывают, какую именно характеристику следует использовать для определения конкретного h параметра.

Величины приращений электрических параметров транзистора в соотношениях (3) – (6) вычисляется как разность между двумя крайними значениями соответствующих параметров. Величина же параметра в рабочей точке должна располагаться в центре интервала между крайними значениями.

Расчет величины параметра h11 проводится по соотношению (3), где приращения значений тока базы и напряжения база-эмиттер определяются как разность соответствующих координат двух точек (крайних) на зависимости IБ(UБЭ) входной характеристи­ки, показанной на Рис.6. Напряжение UКЭ , для которого приводятся построения, должно совпадать с рабочей точкой транзистора.

Рис.6

Построения для расчета величины параметра h22 с помощью соотношения (6) проводится аналогичным образом (см .Рис. 7) на выходной характеристике. Вольтамперная характеристика, на кото­рой выполняются построения, должна соответствовать току базы рабочей точки.

Рис.7

Расчет величины параметра h21 (или β) проводится в два этапа. Сначала по выходным характеристикам строится зависимость IК (IБ) для значения напряжения коллектор-эмиттер в рабочей точ­ке. Фиксированные значения IК этой зависимости, как видно из построения на Рис.8, определяются ординатами точек пересечения вертикальной прямой, проведенной через точку UКЭП, с вольтамперными характеристиками для фиксированных значений IБ. Затем по построенной кривой зависимости IК (IБ) (см. Рис.9) определяются приращения токов коллектора и базы для подстановки в соотношение (4).

Величина параметра h12 близка к нулю. Об этом свидетельствует тот факт, что в рабочем интервале значений напряжения UКЭ вольтамперных характеристики IБ(UБЭ) транзисторов практически не отличаются друг от друга. Обычно величина параметра h12 не определяется.

1.4. Схема замещения транзистора и определении значений ее параметров

Рассмотренные выше h -параметры транзистора вводятся, в известной степени, формально. Поэтому для расчетов электрических схем на транзисторах предпочтительнее использовать схему

Рис.8

Рис.9

замещения полупроводникового прибора. Под схемой замещения пони­мают электрическую схему, составленную из линейных элементов (сопротивлений, ёмкостей, индуктивностей, генераторов тока или напряжений), по своим свойствам отличающихся от реального объекта (в данном случае – транзистора).

В соответствии с Рис.3 схему замещения транзистора целесооб­разно представить в виде Т-образной схемы. Такая простейшая схема приведена на Рис.10. Очевидно, схема замещения справедлива для тех участков статических характеристик транзистора, где вольтамперные характеристики можно считать линейными, т.е. для тех участков, для которых выше определялись значения h –параметров. В связи с этим на Рис.10 токи и напряжения, обозначенные прописными буквами, являются малыми величинами (по сравнению со значениями параметров в рабочей точке) и соответствуют приращениям токов и напряжений, которые использовались при расчете h –параметров.

Рис.10

Схема замещения Рис.10 справедлива для области низких час­тот к включает в себя три активных сопротивления, величины которых можно определить как отношение приращений напряжений в цепях транзистора к соответствующим им приращениям токов:

дифференциальное сопротивление эмиттерного pn перехода,

численные значения которого обычно лежат в пределах от

единиц до десятков Ом;

объёмное сопротивление базы, величина которого в зависимости от типа транзистора составляет 100 – 400 Ом:

дифференциальное сопротивление коллекторного pn перехода, величина которого при включении транзистора по схеме ОЭ составляет несколько кОм и выше.

Кроме того, схема замещения включает генератор тока в цепи коллектора, указывающий на то, что транзистор является активным элементом. Значение тока этого генератора пропорционально значению тока базы iб).

С целью учета частотных свойств транзистора в схеме замещения обычно предусматривается емкость коллекторного pn перехода, шунтирующая источник тока. В связи с тем, что при низких частотах влияние этой емкости незначительно, определение величины этого параметра ниже не предусматривается. Поэтому на схеме Рис.10 присоединение емкости коллекторного перехода обозначено пунктиром.

Как видно из Рис.10 в схему замещения транзистора входят четыре элемента. Величину электрических параметров этих элементов можно связать с величинами четырех h –параметров. Для этого можно использовать законы Кирхгофа, рассмотрев схему замещения транзистора при тех же условиях, при которых были получены соотношения (3) – (6), т.е. при или .

При условии , т.е при коротком замыкании выходных клейм схемы 10 выходной ток, по существу, определяется только величиной тока источника, поскольку сопротивление весьма велико, а , т.е.

(7)

Так как ikи iбэквивалентны приращениям соотвествующих токов и

(8)

Таким образом, параметры h21и β эквивалентны, о чем отмечалось выше.

С учетом эквивалентности параметров и второй закон Кирхгофа, записанный для входного контура схемы Рис.10, дает

(9)

Поскольку токи, протекающие через электроды транзистора, связаны между собой первым законом Кирхгофа

, (10)

а также в соответствии с соотношением (7)

(11)

После замены и эквивалентными им приращениями параметров соотношение (11) представляется в виде

(12)

Откуда

(13)

Условие IБ=const эквивалентно режиму, при котором IБ=0 . Для этого режима второй закон Кирхгофа для выходной цепи позволяет записать соотношение

(14)

С учетом того, что rК(Э)>>rЭ , а величины и эквивалентны величинам приращений параметров и , из соотношения (14) следует

(15)

Второй закон Кирхгофа для входной цепи схемы Рис.10 в режиме с IБ=const позволяет записать

(16)

Откуда вследствие соотношения (14) и эквивалентности и соответственно и получается

(17)

Из соотношений (8), (13), (15), (17) нетрудно получить выражения для определения параметров схемы замещения транзистора через его hпараметры

(18)

(19)

(20)

(21)

Как рассчитать радиатор для транзистора

Электросварка. Как рассчитать радиатор

Энциклопедия радиоэлектроники и электротехники / Сварочное оборудование

 Комментарии к статье

Во время работы полупроводникового прибора в его кристалле выделяется мощность, которая приводит к разогреву последнего. Если тепла выделяется больше, чем рассеивается в окружающем пространстве, то температура кристалла будет расти и может превысить максимально допустимую.

При этом его структура будет необратимо разрушена. Следовательно, надежность работы полупроводниковых приборов во многом определяется эффективностью их охлаждения.

Наиболее эффективным является конвективный механизм охлаждения, при котором тепло уносит поток газообразного или жидкого теплоносителя, омывающего охлаждаемую поверхность.

Чем больше охлаждаемая поверхность, тем эффективнее охлаждение, и поэтому мощные полупроводниковые приборы нужно устанавливать на металлические радиаторы, имеющие развитую охлаждаемую поверхность. В качестве теплоносителя обычно используется окружающий воздух.

По способу перемещения теплоносителя различают:

  • естественную вентиляцию;
  • принудительную вентиляцию.

В случае естественной вентиляции перемещение теплоносителя осуществляется за счет тяги, возникающей возле нагретого радиатора. В случае принудительной вентиляции перемещение теплоносителя осуществляется с помощью вентилятора. Во втором случае можно получить большие скорости потока и, соответственно, лучшие условия охлаждения. Тепловые расчеты можно сильно упростить, если использовать тепловую модель охлаждения  (рис. 18.26) Здесь разница между температурой кристалла TJ и температурой среды ТA вызывает тепловой поток, движущийся от кристалла к окружающей среде, через тепловые сопротивления RJC (кристалл — корпус), RCS (корпус — радиатор) и RSA (радиатор — окружающая среда). Рис 18.26. Тепловая  модель охлаждения Тепловое сопротивление имеет размерность °С/Вт. Суммарное максимальное тепловое сопротивление RJA на участке кристалл — окружающая среда можно найти по формуле: где РПП — мощность, рассеиваемая на кристалле полупроводникового прибора, Вт. Тепловое сопротивление RJC и RCS указывается в справочных данных на полупроводниковые приборы. Например, согласно справочным данным, на транзистор IRFP250N, его тепловое сопротивление на участке кристалл- радиатор равно RJC + RCS = 0,7 + 0,24 = 0,94 °С/ Вт. Это означает, что если на кристалле выделяется мощность 10 Вт, то его температура будет на 9,4 °С больше температуры радиатора. Тепловое сопротивление радиатора можно найти по формуле: Предлагаемая ниже методика основана на рекомендациях по выбору алюминиевых радиаторов серии Max Clip System™ фирмы «AAVID THERMALLOY». На рис. 18.27 приводятся графические зависимости между периметром сечения алюминиевого радиатора и его тепловым сопротивлением для естественного (красная линия) и принудительного (синяя линия) охлаждения воздушным потоком.

По умолчанию считается, что:

  • радиатор имеет длину 150 мм;
  • разница между температурой радиатора TS и температурой окружающей среды Та равна ;
  • скорость потока принудительного охлаждения равна 2 м/с.

Если условия охлаждения отличаются от принятых по умолчанию, то необходимую поправку можно внести, воспользовавшись графиками на рис. 18.28 — рис. 18.30. Рис. 18.27. Зависимости между сечением алюминиевого радиатора и его тепловым сопротивлением Рис. 18.28. Поправочный коэффициент на разницу температуры радиатора и окружающей среды Рис. 18.29. Поправочный коэффициент на скорость воздушного потока Рис. 18.30. Поправочный коэффициент на длину радиатора Для примера рассчитаем радиатор, обеспечивающий охлаждение транзистора ЭРСТ, состоящего из 20-ти транзисторов типа IRFP250N. Расчет радиатора можно вести для одного транзистора, а затем полученный размер увеличить в 20 раз. Так как на ключевом транзисторе рассеивается суммарная мощность 528 Вт, то на каждом транзисторе IRFP250N рассеивается мощность 528/20 = 26,4 Вт. Радиатор должен обеспечивать максимальную температуру кристалла транзистора не более +110 °С при максимальной температуре окружающей среды +40 °С. Найдем тепловое сопротивление RJA для одного транзистора IRFP250N: Теперь найдем тепловое сопротивление радиатора: Зная максимальную температуру кристалла и тепловое сопротивление на участке кристалл-радиатор, определим максимальную температуру радиатора: По графику (рис. 18.28) определим поправочный коэффициент Кт на разницу температуры радиатора и окружающей среды: Для охлаждения радиатора используется вентилятор типа 1,25ЭВ-2,8-6-3270У4, имеющий производительность 280 м3/ч. Чтобы вычислить скорость потока, нужно разделить производительность на сечение воздуховода, продуваемого вентилятором. Если воздуховод имеет площадь поперечного сечения: то скорость воздушного потока будет равна: По графику (рис. 18.29) определим поправочный коэффициент Kv на реальную скорость воздушного потока: Допустим, что в нашем распоряжении имеется большое количество готовых радиаторов, имеющих периметр сечения 1050 мм и длину 80 мм. По графику (рис. 18.30) определим поправочный коэффициент KL на длину радиатора: Чтобы найти общую поправку, перемножим все поправочные коэффициенты: С учетом поправок, радиатор должен обеспечивать тепловое сопротивление: С помощью графика (рис. 18.27) найдем, что для одного транзистора требуется радиатор с периметром сечения 200 мм. Для группы из 20-ти транзисторов IRFP250N радиатор должен иметь периметр сечения не менее 4000 мм. Так как имеющиеся в распоряжении радиаторы имеют периметр 1050 мм, то придется объединить 4 радиатора. На диоде ЭРСТ рассеивается меньшая мощность, но из конструктивных соображений для него можно использовать аналогичный радиатор. Зачастую производители охладителей указывают площадь поверхности радиатора, а не периметр и длину. Чтобы из предлагаемой методики получить площадь радиатора, достаточно умножить длину радиатора на его периметр SP = 400 • 8 = 3200 см2.

Корякин-Черняк С.Л.

  • Смотрите другие статьи раздела Сварочное оборудование.
  • Читайте и пишите полезные комментарии к этой статье.

Расчет радиатора транзистора

К примеру IGBT-транзистор FGA25N120ANTD от Fairchild Semiconductor, если его правильно смонтировать, теоретически способен отдать через свой корпус порядка 300 ватт тепловой мощности при температуре корпуса в 25 °C! А если температура его корпуса будет 100 °C, то транзистор сможет отдавать 120 ватт, что тоже совсем немало. Но для того чтобы корпус транзистора в принципе смог отдать это тепло, необходимо обеспечить ему надлежащие рабочие условия, чтобы он раньше времени не сгорел.

Все силовые ключи выпускаются в таких корпусах, которые можно легко установить на внешний теплоотвод — радиатор. При этом в большинстве случаев металлическая поверхность ключа или другого устройства в выводном корпусе, электрически соединена с одним из выводов данного устройства, например с коллектором или со стоком транзистора.

Так вот, задача радиатора как раз и состоит в том, чтобы удержать транзистор, и главным образом его рабочие переходы, при температуре, не превышающей максимально допустимую.

Если корпус кремниевого транзистора полностью металлический, то типичная максимальная температура составляет примерно 200 °C, если же корпус пластиковый, то 150 °C. Данные о максимальной температуре для того или иного транзистора вы сможете легко найти в даташите. Например для FGA25N120ANTD лучше если его температура не будет превышать 125 °C.

Зная все основные тепловые параметры, несложно подобрать подходящий радиатор.

Достаточно лишь выяснить максимальную температуру окружающей среды, в которой будет работать транзистор, мощность, которую должен будет рассеивать транзистор, затем подсчитать температуру переходов транзистора с учетом тепловых сопротивлений соединений кристалл-корпус, кропус-радиатор, радиатор-окружающая среда, после чего останется выбрать радиатор, с которым температура транзистора будет хотя бы немного ниже максимально допустимой.

Важнейшим параметром при подборе и расчете радиатора является тепловое сопротивление. Оно равно отношению величины перепада температур на поверхности теплового контакта в градусах к передаваемой мощности.

  • Когда тепло передается посредством процесса теплопроводности, то тепловое сопротивление остается величиной постоянной, которая не зависит от температуры, а зависит лишь от качества теплового контакта.
  • Если переходов (тепловых контактов) несколько, то тепловое сопротивление перехода, состоящего из нескольких последовательных соединений, окажется равно сумме тепловых сопротивлений этих соединений.
  • Так, если транзистор будет смонтирован на радиатор, то общее тепловое сопротивление при теплопередаче будет равно сумме тепловых сопротивлений: кристалл-корпус, корпус-радиатор, радиатор-окружающая среда. Соответственно температура кристалла находится в этом случае по формуле:
  • Для примера рассмотрим случай, когда нам необходимо подобрать радиатор для двух транзисторов FGA25N120ANTD, которые будут работать в схеме двухтактного преобразователя (push-pull), причем на каждом транзисторе будет рассеиваться по 15 ватт тепловой мощности, которую необходимо передать в окружающую среду, то есть от кристаллов транзисторов через радиатор — воздуху.
  • Поскольку транзисторов два, то сначала найдем радиатор для одного транзистора, после чего просто возьмем радиатор с вдвое большей площадью теплообмена, с вдвое меньшим тепловым сопротивлением (будем использовать изолирующие прокладки).

Пусть наше устройство будет работать при температуре окружающей среды в 45°C. Пусть температура кристалла удерживается не выше 125°C.

В даташите видим, что для встроенного диода тепловое сопротивление кристалл-корпус больше теплового сопротивления кристалл-корпус непосредственно IGBT, и оно равно 2 °C/Вт.

Это значение и будем брать в расчет в качестве теплового сопротивления кристалл-корпус.

Тепловое сопротивление силиконовой изолирующей прокладки составляет порядка 0,5 °C/Вт — это и будет тепловое сопротивление корпус-радиатор.

Теперь, зная рассеиваемую мощность, максимальную температуру кристалла, максимальную температуру окружающей среды, тепловое сопротивление кристалл-корпус и тепловое сопротивление корпус-радиатор, найдем необходимое тепловое сопротивление радиатор-окружающая среда.

Итак, нам необходимо подобрать такой радиатор, чтобы тепловое сопротивление радиатор-окружающая среда получилось в данных условиях 2,833 °C/Вт или меньше. И до какой температуры в этом случае перегреется радиатор по сравнению с окружающей средой?

Возьмем найденное тепловое сопротивление на границе радиатор-окружающая среда, и умножим на рассеиваемую мощность, для нашего примера 15 Вт.

Перегрев составит около 43 °C, то есть температура радиатора будет около 88 °C.

Поскольку транзисторов в нашей схеме будет два, то и мощности рассеять нужно будет вдвое больше, значит необходим радиатор с тепловым сопротивлением вдвое меньшим, то есть 1,4 °C/Вт или меньше.

Если у вас нет возможности подобрать радиатор именно с найденным тепловым сопротивлением, то можно воспользоваться старым добрым эмпирическим методом — обратиться к графику из справочника.

Зная разность температур окружающая среда — радиатор (для нашего примера 43 °C), зная рассеиваемую мощность (для нашего примера для двух транзисторов — два по 15 Вт), находим необходимую площадь радиатора, то есть общую площадь контакта радиатора с окружающим воздухом (для нашего примера — два по 400 кв.см).

Смотрите также по этой теме: Дюйм*градус/ватт — что это за такой параметр радиатора?

Андрей Повный

Простой расчет площади теплоотвода для мощных транзисторов и тиристоров

Во время работы мощные полупроводниковые приборы выделяют в окружающую среду определенную теплоту.

Если не позаботиться об их охлаждении, транзисторы и диоды могут выйти из строя из-за перегрева рабочего кристалла. Обеспечение нормального теплового режима транзисторов (и диодов) — одна из важных задач.

Для правильного решения этой задачи нужно иметь представление о работе радиатора и технически грамотном его конструировании.

Конструкторы чаще выдумывают, чем рассчитывают, какую площадь должен иметь теплоотвод. Из-за этого либо сго­рают транзисторы, либо теплоотводы получаются более громоздкими.

Как известно, любой нагретый предмет охлаждаясь отдает тепло окружающей среде. Пока количество тепла, выделяющегося в транзисторе, больше отдаваемого им среде — температура корпуса транзистора будет непрерывно возрастать.

При некотором ее значении наступает так называемый тепловой баланс, то есть равенство количеств рассеиваемого и выделяемого тепла. Если температура теплового баланса меньше максимально допустимой для транзистора — он будет надежно работать. Если эта температура выше допустимой максимальной температуры — транзистор выйдет из строя.

Для того, чтобы тепловой баланс наступал при более низкой температуре, необходимо увеличить теплоотдачу транзистора.

Есть такой параметр, как тепловое со­противление. Он показывает, на сколь­ко градусов нагревается объект, если в нем выделяется мощность 1 Вт. К сожа­лению, в справочниках по транзисторам такой параметр приводится редко. На­пример. для транзистора в корпусе ТО-5 тепловое сопротивление равно 220°С на 1 Вт.

Это означает, что если в тран­зисторе выделяется 1 Вт мощности, то он нагреется на 220°С. Если допускать на­грев не более чем до 100°С, например, на 80°С относительно комнатной темпе­ратуры, то получим, что на транзисторе должно выделяться не более 80/220 = 0,36 Вт.

В дальнейшем будем считать до­пустимым нагрев транзистора или тири­стора не более, чем на 80°С.

  1. Существует грубая формула для рас­чета теплового сопротивления теплоотвода Q = 50/ √S °С/Вт. (1)
  2. где S — площадь поверхности теплоотвода, выраженная в квадратных сантиме­трах. Отсюда площадь поверхности можно рассчитать по формуле:
  3. S = 2. ( 2 )

Рассмотрим в качестве примера расчет теплового сопротивления конструкции, показанной на рисунке. Конструкция теплоотвода состоит из 5 алюминиевых пластин, собранных в пакет. Предположим, W=20 см, D=10 см, а высота (на рисунке не показана) 12 см.

каждый «выступ» имеет площадь 10×12 = 120 см2, а с учетом обеих сторон 240 см2. Десять «выступов’» имеют площадь 2400 см2, а пластина две стороны х 20 х 12 = 480 см2. Итого получаем S=2880 см2. По формуле (1) рассчитываем Q=0,93°С/Вт.

При допустимом нагреве на 80°С получаем мощность рассеяния 80/0,93 = 90 Вт.

Теперь проведем обратный расчет. Предположим, нужен блок питания с выходным напряжением 12 В и током 10 А. После выпрямителя имеем 17 В. следовательно, падение напряжения на транзисторе составляет 5 В, а значит, мощность на нем 50 Вт. При допустимом нагреве на 80°С получим требуемое тепловое сопротивление Q=80/50= =1.6°С/Вт. Тогда по формуле (2) определим S= 1000 см2.

Радиаторы и охлаждение

В физике, электротехнике и атомной термодинамике есть известный закон — ток, протекающий по проводам, нагревает их. Придумали его Джоуль и Ленц, и оказались правы — так оно и есть. Всё, что работает от электричества, так или иначе часть проходящей энергии передаёт в тепло.

Так уж получилось в электронике, что самым страдающим от тепла объектом нашей окружающей среды является воздух. Именно воздуху нагревающиеся детали передают тепло, а от воздуха требуется принять тепло и куда-нибудь подевать. Потерять, к примеру, или рассеять по себе. Процесс отдачи тепла мы с вами назовем охлаждением.

Наши электронные конструкции тоже рассеивают немало тепла, одни — больше, другие — меньше.

Греются стабилизаторы напряжения, греются усилители, греется транзистор, управляющий релюшкой или даже просто мелким светодиодом, разве что греется ну совсем немного. Ладно, если греется немного.

Ну а если он жарится так, что руку держать нельзя? Давайте пожалеем его и попробуем как-нибудь ему помочь. Так сказать, облегчить его страдания.

Вспомним устройство батареи отопления. Да, да, та самая обычная батарея, что греет комнату зимой и на которой мы сушим носки и футболки . Чем больше батарея, тем больше тепла будет в комнате, так ведь? По батарее протекает горячая вода, она нагревает батарею. У батареи есть важная вещь — количество секций.

Секции контактируют с воздухом, передают ему тепло. Так вот, чем больше секций, то есть чем больше занимаемая площадь батареи, тем больше тепла она может нам отдать. Приварив еще парочку секций, мы сможем сделать теплее нашу комнату.

Правда, при этом горячая вода в батарее может остыть, и соседям ничего не останется.

Рассмотрим устройство транзистора.

На медном основании (фланце) 1 на подложке 2 закреплен кристалл 3. Он подключается к выводам 4. Вся конструкция залита пластмассовым компаундом 5. У фланца есть отверстие 6 для установки на радиатор.

Вот это по сути та же самая батарея, посмотрите! Кристалл греется, это как горячая вода. Медный фланец контактирует с воздухом, это секции батареи. Площадь контакта фланца и воздуха — это место нагревания воздуха. Нагревающийся воздух охлаждает кристалл.

Как сделать кристалл холоднее? Устройство транзистора мы изменить не можем, это понятно. Создатели транзистора об этом тоже подумали и для нас, мучеников, оставили единственную дорожку к кристаллу — фланец.

Фланец — это как одна-единственная секция у батареи — жарить жарит, а тепла воздуху не передается — маленькая площадь контакта.

Вот тут предоставляется простор нашим действиям! Мы можем нарастить фланец, припаять к нему еще «парочку секций», то бишь большую медную пластинку, благо фланец сам медный, или же закрепить фланец на металлической болванке, называемой радиатором. Благо отверстие во фланце приготовлено под болт с гайкой.

Что же такое радиатор? Я твержу уже третий абзац про него, а толком так ничего и не рассказал! Ладно, смотрим:

Как видим, конструкция радиаторов может быть различной, это и пластинки, и ребра, а еще бывают игольчатые радиаторы и разные другие, достаточно зайти в магазин радиодеталей и пробежаться по полке с радиаторами .

Радиаторы чаще всего делают из алюминия и его сплавов (силумин и другие). Медные радиаторы лучше, но дороже.

Стальные и железные радиаторы применяются только на очень небольшой мощности, 1-5Вт, так как они медленно рассеивают тепло.

Тепло, выделяемое в кристалле, определяется по очень простой формуле P=U*I, где P — выделяемая в кристалле мощность, Вт, U = напряжение на кристалле, В, I — сила тока через кристалл, А. Это тепло проходит через подложку на фланец, где передается радиатору. Далее нагретый радиатор контактирует с воздухом и тепло передается ему, как следующему участнику нашей системы охлаждения.

Посмотрим на полную схему охлаждения транзистора.

У нас появились две штуки — это радиатор 8 и прокладка между радиатором и транзистором 7. Её может и не быть, что и плохо, и хорошо одновременно. Давайте разбираться.

Расскажу о двух важных параметрах — это тепловые сопротивления между кристаллом (или переходом, как его еще называют) и корпусом транзистора — Rпк и между корпусом транзистора и радиатором — Rкр.

Первый параметр показывает, насколько хорошо тепло передается от кристалла к фланцу транзистора. Для примера, Rпк, равное 1,5градуса Цельсия на ватт, объясняет, что с увеличением мощности на 1Вт разница температур между фланцем и радиатором будет 1,5градуса.

Иными словами, фланец всегда будет холоднее кристалла, а насколько — показывает этот параметр. Чем он меньше, тем лучше тепло передается фланцу.

Если мы рассеиваем 10Вт мощности, то фланец будет холоднее кристалла на 1,5*10=15градусов, а если же 100Вт — то на все 150! А поскольку максимальная температура кристалла ограничена (не может же он жариться до белого каления!), фланец надо охлаждать. На эти же 150 градусов .

К примеру:
Транзистор рассеивает 25Вт мощности. Его Rпк равно 1,3градуса на ватт. Максимальная температура кристалла 140градусов. Значит, между фланцем и кристаллом будет разница в 1,3*25=32,5градуса. А поскольку кристалл недопустимо нагревать выше 140градусов, от нас требуется поддерживать температуру фланца не горячее, чем 140-32,5=107,5градусов. Вот так.

А параметр Rкр показывает то же самое, только потери получаются на той самой пресловутой прокладке 7.

У нее значение Rкр может быть намного больше, чем Rпк, поэтому, если мы конструируем мощный агрегат, нежелательно ставить транзисторы на прокладки. Но всё же иногда приходится.

Единственная причина использовать прокладку — если нужно изолировать радиатор от транзистора, ведь фланец электрически соединен со средним выводом корпуса транзистора.

Вот давайте рассмотрим еще один пример.
Транзистор жарится на 100Вт. Как обычно, температура кристалла — не более 150градусов. Rпк у него 1градус на ватт, да еще и на прокладке стоит, у которой Rкр 2 градуса на ватт.

Разница температур между кристаллом и радиатором будет 100*(1+2)=300градусов.

Радиатор нужно держать не горячее, чем 150-300 = минус 150 градусов: Да, дорогие мои, это тот самый случай, который спасет только жидкий азот: ужос!

Намного легче живется на радиаторе транзисторам и микросхемам без прокладок. Если их нет, а фланцы чистенькие и гладкие, и радиатор сверкает блеском, да еще и положена теплопроводящая паста, то параметр Rкр настолько мал, что его просто не учитывают.

Разобрались? Поехали дальше!

Охлаждение бывает двух типов — конвекционное и принудительное. Конвекция, если помним школьную физику, это самостоятельное распространение тепла. Так же и конвекционное охлаждение — мы установили радиатор, а он сам там как-нибудь с воздухом разберется.

Радиаторы конвекционного типа устанавливаются чаще всего снаружи приборов, как в усилителях, видели? По бокам две металлические пластинчатые штуковины. Изнутри к ним привинчиваются транзисторы.

Такие радиаторы нельзя накрывать, закрывать доступ воздуха, иначе радиатору некуда будет девать тепло, он перегреется сам и откажется принимать тепло у транзистора, который долго думать не будет, перегреется тоже и: сами понимаете что будет.

Принудительное охлаждение — это когда мы заставляем воздух активнее обдувать радиатор, пробираться по его ребрам, иглам и отверстиям. Тут мы используем вентиляторы, различные каналы воздушного охлаждения и другие способы. Да, кстати, вместо воздуха запросто может быть и вода, и масло, и даже жидкий азот. Мощные генераторные радиолампы частенько охлаждаются проточной водой.

Как распознать радиатор — для конвекционного он или принудительного охлаждения? От этого зависит его эффективность, то есть насколько быстро он сможет остудить горячий кристалл, какой поток тепловой мощности он сможет через себя пропустить.

Смотрим фотографии.

Первый радиатор — для конвекционного охлаждения. Большое расстояние между ребрами обеспечивает свободный поток воздуха и хорошую теплоотдачу. На второй радиатор сверху одевается вентилятор и продувает воздух сквозь ребра. Это принудительное охлаждение. Разумеется, использовать везде можно и те, и те радиаторы, но весь вопрос — в их эффективности.

У радиаторов есть 2 параметра — это его площадь (в квадратных сантиметрах) и коэффициент теплового сопротивления радиатор-среда Rрс (в Ваттах на градус Цельсия). Площадь считается как сумма площадей всех его элементов: площадь основания с обеих сторон + площадь пластин с обеих сторон.

Площадь торцов основания не учитывается, так там квадратных сантиметров ну совсем немного будет .

Пример:радиатор из примера выше для конвекционного охлаждения.
Размеры основания: 70х80мм
Размер ребра: 30х80мм
Кол-во ребер: 8
Площадь основания: 2х7х8=112кв.см
Площадь ребра: 2х3х8=48кв.см.

Общая площадь: 112+8х48=496кв.см.

Коэффициент теплового сопротивления радиатор-среда Rрс показывает, на сколько увеличится температура выходящего с радиатора воздуха при увеличении мощности на 1Вт. Для примера, Rрс, равное 0,5 градуса Цельсия на Ватт, говорит нам, что температура увеличится на полградуса при нагреве на 1Вт.

Этот параметр считается трехэтажными формулами и нашим кошачьим умам ну никак не под силу: Rрс, как и любое тепловое сопротивление в нашей системе, чем меньше, тем лучше.

А уменьшить его можно по-разному — для этого радиаторы чернят химическим путем (например алюминий хорошо затемняется в хлорном железе — не экспериментируйте дома, выделяется хлор!), еще есть эффект ориентировать радиатор в воздухе для лучшего прохождения его вдоль пластин (вертикальный радиатор лучше охлаждается, чем лежачий). Не рекомендуется красить радиатор краской: краска — лишнее тепловое сопротивление. Если только слегка, чтобы темненько было, но не толстым слоем!

В приложении есть небольшая программа, в которой можно посчитать примерную площадь радиатора для какой-нибудь микросхемы или транзистора. С помощью него давайте рассчитаем радиатор для какого-нибудь блока питания.

Схема блока питания.

Блок питания выдает на выходе 12Вольт при токе 1А. Такой же ток протекает через транзистор. На входе транзистора 18Вольт, на выходе 12Вольт, значит, на нем падает напряжение 18-12=6Вольт. С кристалла транзистора рассеивается мощность 6В*1А=6Вт.

Максимальная температура кристалла у 2SC2335 150градусов. Давайте не будем эксплуатировать его на предельных режимах, выберем температуру поменьше, для примера, 120градусов.

Тепловое сопротивление переход-корпус Rпк у этого транзистора 1,5градуса Цельсия на ватт.

Поскольку фланец транзистора соединен с коллектором, давайте обеспечим электрическую изоляцию радиатора. Для этого между транзистором и радиатором положим изолирующую прокладку из теплопроводящей резины. Тепловое сопротивление прокладки 2градуса Цельсия на ватт.

Для хорошего теплового контакта капнем немного силиконового масла ПМС-200.

Это густое масло с максимальной температурой +180градусов, оно заполнит воздушные промежутки, которые обязательно образуются из-за неровности фланца и радиатора и улучшит передачу тепла.

Многие используют пасту КПТ-8, но и многие считают её не самым лучшим проводником тепла.
Радиатор выведем на заднюю стенку блока питания, где он будет охлаждаться комнатным воздухом +25градусов.

Все эти значения подставим в программку и посчитаем площадь радиатора. Полученная площадь 113кв.см — это площадь радиатора, рассчитанная на длительную работу блока питания в режиме полной мощности — дольше 10часов.

Если нам не нужно столько времени гонять блок питания, можно обойтись радиатором поменьше, но помассивнее.

А если мы установим радиатор внутри блока питания, то отпадает необходимость в изолирующей прокладке, без нее радиатор можно уменьшить до 100кв.см.

А вообще, дорогие мои, запас карман не тянет, все согласны? Давайте думать о запасе, чтобы он был и в площади радиатора, и в предельных температурах транзисторов. Ведь ремонтировать аппараты и менять пережаренные транзисторы придется не кому-нибудь, а вам самим! Помните об этом!

Источник: www.radiokot.ru

Список радиоэлементов

Скачать список элементов (PDF)

Расчёт радиатора для транзистора

Расчёт ребристого радиатора при естественном воздушном охлаждении для транзистора 2ТА заданной мощности 15 Вт.

Необходимо сопоставить максимальную мощность рассеяния транзистора при допустимой температуре р-п перехода Тп, температуре среды Тс и тепловом контактном сопротивлении R пк с заданной мощностью транзистора.

Если заданная мощность Р превышает Рмах, то данный транзистор на заданную мощность применять нельзя. R кр — тепловое контактное сопротивление между корпусом и радиатором. Определяем число рёбер, n , шт. Рекомендуется выбирать на одно ребро больше расчётного.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты: Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.По завершению появится ссылка для доступа к найденным материалам

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Теплоотвод 2. Алюминиевые радиаторы

Расчет радиатора для транзистора. Расчет пластинчатого (ребристого) радиатора

Она и так весёлая На самом деле, вакуумным приборам, работающим в штатном режиме, дополнительный отвод тепла не требуется. А вот мощным транзисторам, микросхемам и всяким диодам, которые толком и на баяне играть не умеют и, подобно лампам, рассеивать тепловую мощность путём естественной конвекции не научились — подавай принудительный отвод тепла от кристалла полупроводника.

А не подашь, отойдут стройными рядами от мира сего из-за перегрева и последующего разрушения этого самого рабочего кристалла. Так вот, для обеспечения эффективного отвода тепла от силового элемента и применяют теплоотводы радиаторы.

Полный расчёт радиатора — вещь кропотливая. Можно воспользоваться грубым расчётом — для рассеивания 1 ватта тепла, выделяемого полупроводниковым прибором, достаточно использовать площадь теплоотвода, равную 30 квадратным сантиметрам.

Но лучше воспользоваться специальной программой. Эта формула непререкаема и не должна вызывать никаких сомнений. А вот формулы по переводу рассчитанного теплового сопротивления в площадь поверхности радиатора, выуженные из нашей справочной литературы — не вызвали чувства глубокого удовлетворения, в связи с существенным несоответствием получаемых результатов суровой реальности жизни.

Пришлось искать правду в источниках империалистических агрессоров, а конкретно — в рекомендациях по выбору алюминиевых радиаторов американской фирмы Aavid Thermalloy.

Информация эта неожиданно обнаружилась в электротехническом справочнике г-на Корякина-Черняка С. Теперь давайте определимся с терминологией.

S — площадь поверхности радиатора, равная удвоенной суммарной площади основания радиатора и всех площадей рёбер радиатора.

Почему удвоенной? Потому, что и основание, и все рёбра теплоотвода имеют по две поверхности, которыми и излучают тепло в окружающее пространство. Q — тепловое сопротивление между радиатором и окружающей средой. Спецификация большинства радиаторов содержит этот параметр.

Q1 — тепловое сопротивление между кристаллом и корпусом силовых элементов обычно приводится в справочнике и обозначается R thJC.

Q2 — значение теплового сопротивление корпус-радиатор стремиться к нулю в тех случаях, когда мы прикручиваем транзистор к отполированной поверхности радиатора без изолирующих прокладок, или используем тонкие современные подложки из из оксида алюминия Al2O3 , нитрида алюминия AlN , или оксида бериллия BeO.

В случае применения слюды значение теплового сопротивления может составлять 0.

Т1 — максимально допустимая температура внутри корпуса, в котором находится радиатор, либо максимальная температура окружающей среды, если рёбра радиатора выведены наружу.

Я бы рекомендовал подобрать это значение, исходя из температуры радиатора градусов. Если совсем лень — ставим 1. Если это не так, ищем в справочнике параметр теплового сопротивления, на используемый вид подложки, и заносим его в таблицу.

А если предусмотрен, надо озадачиться выяснением этой самой величины скорости воздушного потока, омывающего наш теплоотвод. А приведу-ка я на следующей странице кусок главы из электротехнического справочника уважаемого автора Корякина-Черняка С.

Если Вы вдруг озадачились рассеиванием на радиаторе слишком высоких мощностей, калькулятор может выдать отрицательные значения. Смотрим формулу и видим — это нормально.

Происходит это из-за ненулевого значения теплового сопротивления кристалл-корпус.

Тут природу не обманешь — надо либо поднимать значение максимальной температуры кристалла Т2, либо искать транзистор с меньшим тепловым сопротивлением, либо сажать несколько транзисторов в параллель.

Теперь, что касается покупки радиатора по кропотливо рассчитанным нашей таблицей параметрам. Если производитель солидный, можно воспользоваться приведённым в технической документации значением удельного теплового сопротивления.

Если этот производитель Kinsten Industrial, или прочий китайский «no trademark» — воздержитесь от доверительных чувств к указанному в DataSheet параметру теплового сопротивления, а лучше старательно, по приведённым чертежам, просчитайте суммарную площадь подложки и граней, умножьте полученный результат на 2 и оценивайте возможность применения данной железяки в вашем устройстве, исходя из общей площади поверхности радиатора.

С этим всё, дальше кусок из умного справочника. Это нужно знать Весь перечень знаний находится на этой странице. Весь перечень знаний находится на этой странице. Онлайн расчёт площади радиаторов для транзисторов и микросхем.

На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками

Радиаторы для полупроводниковых приборов. Во время работы мощные полупроводниковые приборы выделяют в окружающую среду определенную теплоту. Если не позаботиться об их охлаждении, транзисторы и диоды могут выйти из строя из-за перегрева рабочего кристалла.

Обеспечение нормального теплового режима транзисторов и диодов — одна из важных задач. Для правильного решения этой задачи нужно иметь представление о работе радиатора и технически грамотном его конструировании.

Как известно, любой нагретый предмет охлаждаясь отдает тепло окружающей среде.

Во время своей работы интегральные стабилизаторы напряжения, особенно линейные, выделяют в окружающую среду определенное количество.

Расчет радиатора для транзистора. Расчет пластинчатого (ребристого) радиатора

В физике, электротехнике и атомной термодинамике есть известный закон — ток, протекающий по проводам, нагревает их. Придумали его Джоуль и Ленц, и оказались правы — так оно и есть. Всё, что работает от электричества, так или иначе часть проходящей энергии передаёт в тепло.

Так уж получилось в электронике, что самым страдающим от тепла объектом нашей окружающей среды является воздух. Именно воздуху нагревающиеся детали передают тепло, а от воздуха требуется принять тепло и куда-нибудь подевать. Потерять, к примеру, или рассеять по себе.

Процесс отдачи тепла мы с вами назовем охлаждением.

3.1 Расчёт параметров радиатора для отвода тепла от транзистора

Запросить склады. Перейти к новому. Расчет радиатора ключевого транзистора. Дано: IRF работающий в ключевом режиме, линейка светодиодов шт идут сразу с резисторами ток одного 20 мА, питание 5 вольт. Каким образом расчитать радиатор для данного транзистора?

Часть 1: Расчет тепловыделения и радиатора при постоянном токе Сначала простой случай, расчет радиатора по данным тепловыделения при постоянном токе. Например, переключение производится не чаще чем с частотой 1 Гц.

Во время своей работы интегральные стабилизаторы напряжения, особенно линейные, выделяют в окружающую среду определенное количество тепла. Если заранее не позаботиться об их охлаждении, то они могут выйти из строя, из-за перегрева рабочей структуры кристалла.

Для обеспечения высокой точности и стабильности напряжения питания в современных электронных устройствах широкое распространение получили интегральные стабилизаторы напряжения ИМС серии хх78хх отечественный аналог КР которые производят многие зарубежные фирмы.

Параметры некоторых ИМС стабилизаторов напряжения согласно данным из [1], приведены в табл. При мощности нагрузки более 1 Вт, ИМС линейного стабилизатора напряжения необходимо эксплуатировать с теплоотводом, к которому они крепятся болтовым соединением.

Промышленность выпускает различные виды радиаторов на любой вкус: пластинчатые, ребристые, штыревые, игольчатые и др.

Онлайн расчёт площади радиаторов для транзисторов и микросхем

Оглавление :: Поиск Техника безопасности :: Помощь. Чтобы рассчитать отвод тепла от силового элемента, используется понятие теплового сопротивления. По определению:. Вашему вниманию подборка материалов:. П рактика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы.

Обеспечение нормального теплового режима транзисторов (и диодов) — одна из важных . Полный расчет радиатора — очень трудоемкий процесс.

Простой расчет площади теплоотвода для мощных транзисторов и тиристоров

Часто необходимо, как мы видели в приведенных выше схемах, использовать мощные транзисторы или другие сильноточные устройства, такие, как КУВ или силовые выпрямители, рассеивающие мощности во много ватт.

Недорогой и очень распространенный мощный транзистор 2N, правильно смонтированный, рассеивает мощность до Вт.

Все мощные устройства выпускаются в корпусах, обеспечивающих тепловой контакт между их металлической поверхностью и внешним радиатором.

6.04. Мощные транзисторы и отвод тепла

ВИДЕО ПО ТЕМЕ: Как расчитать радиатор

Пытаюсь рассчитать радиатор для полевого транзистора IRF Силовая электроника, от простого к сложному. В своей конструкции хочется добиться рассеиваемой мощности Вт на IRF Ток через транзистор до 10 А, напряжение до 30 В соответственно с корректировкой на Вт. Мощные полевики обеспечивают заявленные мощностные параметры только в режиме полного открытия. Дело в том, что они состоят из множества параллельных мелких ячеек.

Рисунок 2 — Зависимость площади радиатора от перегрева и мощности рассеяния ЭРЭ коэффициент запаса 1,5. Определим необходимое значение напряжения на вторичной обмотке трансформатора.

Как рассчитать радиатор

Радиатор расчет. Как рассчитать радиатор для полупроводниковых. May 19, — Какой простой формулой можно подсчитать площадь радиатора охлаждения, если мне известны следующие параметры: температура воздуха-до 30 град.

Сразу скажем — научно-обоснованной методики для расчета охлаждающих радиаторов не существует.

Здесь мы приведем только пару-другую эмпирических способов, которые оправдали себя на практике и годятся для того, чтобы рассчитывать пассивные то есть без обдува радиаторы для подобных усилителей или для аналоговых источников питания, о которых пойдет речь в следующей главе. Типичный пластинчатый радиатор Сначала рассмотрим, как рассчитывать площадь радиаторов, исходя из их геометрии. Для расчета его площади нужно к площади его основания прибавить суммарную площадь его ребер также с каждой стороны.

Во время работы полупроводникового прибора в его кристалле выделяется мощность, что приводит к нагреву прибора. При этом его структура будет необратимо разрушаться. Следовательно, надежность работы полупроводниковых приборов во многом определяются эффективностью их охлаждения.

Радиаторы для полупроводниковых приборов

            Радиаторы для полупроводниковых приборов

Во время работы мощные полупроводниковые приборы выделяют в окружающую среду определенную теплоту. Если не позаботиться об их охлаждении, транзисторы и диоды могут выйти из строя из-за перегрева рабочего кристалла.

  Обеспечение нормального теплового режима транзисторов (и диодов) — одна из важных задач. Для правильного решения этой задачи нужно иметь представление о работе радиатора и технически грамотном его конструировании.

Как известно, любой нагретый предмет охлаждаясь отдает тепло окружающей среде. Пока количество тепла, выделяющегося в транзисторе, больше отдаваемого им среде — температура корпуса транзистора будет непрерывно возрастать.

При некотором ее значении наступает так называемый тепловой баланс, то есть равенство количеств рассеиваемого и выделяемого тепла. Если температура теплового баланса меньше максимально допустимой для транзистора — он будет надежно работать. Если эта температура выше допустимой максимальной температуры — транзистор выйдет из строя.

Для того, чтобы тепловой баланс наступал при более низкой температуре, необходимо увеличить теплоотдачу транзистора. 

Известны три способа передачи тепла: Теплопроводность, Лучеиспускание и Конвекция. Теплопроводность воздуха обычно мала — этим значением при расчете радиатора можно пренебречь.

Доля тепла, рассеиваемая лучеиспусканием значительна лишь при высоких температурах (несколько сотен градусов по Цельсию), поэтому этой величиной при относительно низких температурах работы транзисторов (не более 60-80 градусов) также можно пренебречь.

Конвекция — это движение воздуха в зоне нагретого тела, обусловленное разностью температур воздуха и тела. Количество тепла, отдаваемого нагретым предметом, пропорционально разности температур предмета и воздуха, площади поверхности и скорости воздушного потока, омывающего тело.

В молодости я столкнулся с оригинальным решением отвода тепла от мощных выходных транзисторов. Транзисторы (тогда для построения усилителей применяли транзисторы типа П210) на длинных проводах находились вне корпуса. К корпусу были прикручены две пластиковые баночки с водой, а транзисторы лежали в них.

Таким образом было обеспечено «водяное» эффективное охлаждение. Когда вода в баночках нагревалась — ее просто заменяли на холодную… Вместо воды можно использовать минеральное (жидкое) или трансформаторное масло…

Сейчас промышленность начала серийно выпускать водяные системы охлаждения процессоров и видеокарт компьютеров — по принципу автомобильных радиаторов (но это — уже, на мой взгляд, экзотика…).

Для обеспечения эффективного отвода тепла от кристалла полупроводника применяют теплоотводы (радиаторы). Познакомимся с некоторыми из конструкций радиаторов.

На приведенных рисунках показаны четыре разновидности теплоотводов.

Простейшим из них является пластинчатый радиатор. Площадь его поверхности равна сумме площадей двух сторон. Идеальной формой такого теплоотвода является круг, далее идут квадрат и прямоугольник. Пластинчатый радиатор целесообразно применять при небольших мощностях рассеивания. Устанавливаться такой радиатор должен вертикально, в противном случае — эффективная площадь рассеяния снижается.

Усовершенствованный пластинчатый теплоотвод представляет собой набор из нескольких пластин, загнутых в разные стороны. Этот радиатор при площади поверхности равной простейшему пластинчатому имеет меньшие габариты. Устанавливается такой теплоотвод аналогично пластинчатому.

Количество пластин может быть различным — в зависимости от необходимой поверхности. Площадь рассеивания такого радиатора равна сумме площадей всех загнутых участков пластин, плюс площадь поверхности центральной части.

Это тип радиатора имеет и недостатки: пониженную эффективность отвода тепла от всех пластин, а также невозможность получения идеально прямой поверхности в местах соединения пластин между собой.

Для изготовления пластинчатых радиаторов следует использовать пластины с толщиной не менее 1,5 (лучше — 3) миллиметров.

Ребристый радиатор — обычно цельнолитой, либо фрезерованный — может быть с одно или двухсторонним оребрением. Двухстороннее оребрение позволяет увеличить площадь поверхности. Площадь поверхности такого теплоотвода равна сумме площадей поверхности всех пластин и сумме площади поверхности основного тела радиатора.

Самым эффективным из всех перечисленных является штыревой (или игольчатый) радиатор. При минимальном объеме такой радиатор имеет максимальную эффективную площадь рассеивания. Площадь поверхности такого теплоотвода равна сумме площадей каждого штырька и площади основного тела.

Также существуют теплоотводы с принудительной подачей воздуха (пример — кулер процессора в вашем компьютере).

Эти теплоотводы при небольшой площади поверхности радиатора способны рассеивать в окружающую среду значительные мощности (к примеру — процессор среднего быстродействия Р-1000 выделяет, в зависимости от загрузки 30-70 ватт тепловой энергии).

Недостаток таких теплоотводов — повышенный шум при  эксплуатации и ограниченный срок работы (механический износ вентилятора).

Материалом для радиаторов обычно служит алюминий и его сплавы. Лучшей эффективностью обладают теплоотводы, выполненные из меди, но вес и стоимость таких радиаторов выше, чем у алюминиевых.

Полупроводниковый прибор крепится на теплоотвод при помощи специальных  фланцев. Если необходимо изолировать прибор от радиатора — применяются различные изоляционные прокладки. Применение прокладок снижает эффективность передачи тепла от кристалла, поэтому, если есть возможность — лучше изолировать теплоотвод от шасси конструкции.

Для более эффективного отвода тепла поверхность, которая соприкасается с полупроводниковым прибором, должна быть ровной и гладкой. Для повышения эффективности применяют специальные термопасты (например «КПТ-8»).

Применение термопаст способствует уменьшению теплового сопротивления участка «корпус — теплоотвод» и позволяет несколько понизить температуру кристалла. В качестве прокладок используют слюду, различные пленки из пластмассы, керамику. В свое время мной было получено авторское свидетельство по способу изолирования корпуса транзистора от теплоотвода.

Суть данного метода заключается в следующем: Поверхность теплоотвода покрывается тонким слоем термопасты (например типа КПТ-8), на поверхность пасты наносится (методом насыпания) слой кварцевого песка (я использовал песок из плавкого предохранителя), далее излишек песка удаляется стряхиванием и транзистор плотно прижимается при помощи хомута, изготовленного из изоляционного материала. При заводских испытаниях данного метода «прокладка» выдерживала кратковременно подачу напряжения в 1000 вольт (от мегометра).

Некоторые зарубежные мощные транзисторы выпускаются в изолированном корпусе — такой транзистор можно крепить непосредственно к теплоотводу без применения каких либо прокладок (но это не исключает применения термопаст!).

Источником тепла в системе транзистор-радиатор-окружающая среда является коллекторный P-N переход. Весь путь тепла в этой системе можно разделить на три участка: переход — корпус транзистора, корпус транзистора — теплоотвод, теплоотвод — окружающая среда.

Вследствие неидеальности передачи тепла температуры перехода, корпуса транзистора и окружающей среды существенно отличаются. Это происходит потому, что тепло на своем пути встречает некоторое сопротивление, называемое тепловым сопротивлением. Это сопротивление равно отношению разности температур на границах участка к рассеиваемой мощности.

Сказанное можно проиллюстрировать примером: по справочнику тепловое сопротивление переход-корпус транзистора П214 равно 4 градуса Цельсия на ватт.

Это означает, что в случае рассеивания на переходе мощности в 10 ватт, переход будет «теплее» корпуса на 4*10=40 градусов! Если учесть при этом тот факт, что максимальная температура перехода равна 85 градусам, то станет ясно, что температура корпуса при указанной мощности не должна превышать 85-40= 45 градусов Цельсия.

Наличие теплового сопротивления радиатора является причиной существенного различия температуры его участков, разноудаленных от места установки транзистора. Это означает, что в активной отдаче тепла участвует не вся поверхность радиатора, а лишь часть ее, которая имеет наиболее высокую температуру и поэтому наилучшим образом омывается воздухом.

Эта часть и называется эффективной поверхностью радиатора. Она будет тем больше, чем выше теплопроводящая способность радиатора. Теплопроводящая способность радиатора зависит от свойств материала из которого изготовлен теплоотвод и его толщины. Вот поэтому для изготовления теплоотводов используют медь или алюминий.

Полный расчет радиатора — очень трудоемкий процесс. Для грубого расчета можно использовать следующие данные: Для рассеивания 1 ватта тепла, выделяемого полупроводниковым прибором, достаточно использовать площадь теплоотвода, равную 30 квадратным сантиметрам.

Рекомендуемые площади радиаторов для некоторых диодов приведены в таблице:

В журнале «Радио» была опубликована статья инженера Агеева по расчету теплоотводов для полупроводниковых приборов. Вы можете закачать скан этой статьи (приношу заранее извинения за не очень высокое качество) здесь (280 Кбайт).

В журнале «Радиоаматор-Конструктор» была опубликована статья неизвестного автора по методике упрощенного расчета радиаторов. Просмотреть статью можно здесь.

Литература по теме: Ю.Ф.Скрипников «Радиаторы для полупроводниковых приборов» (около 2 мегабайт) можно скачать здесь.

Расчет теплоотвода силового элемента

Как рассчитать систему отвода тепла от силового элемента электронной схемы (10+)

Расчет теплоотвода силового элемента

  • Оглавление :: ПоискТехника безопасности :: Помощь
  • Чтобы рассчитать отвод тепла от силового элемента, используется понятие теплового сопротивления. По определению:
  • [Тепловое сопротивление, грЦ / Вт] = ([Температура в горячей точке, грЦ] — [Температура в холодной точке, грЦ]) / [Рассеиваемая мощность, Вт]

Это означает, что если от горячей точки к холодной поступает тепловая мощность X Вт, а тепловое сопротивление составляет Y грЦ / Вт, то разница температур составить X * Y грЦ.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Формула для расчета охлаждения силового элемента

  1. Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:
  2. [Температура кристалла силового элемента, грЦ] = [Температура окружающей среду, грЦ] + [Рассеиваемая мощность, Вт] * [Полное тепловое сопротивление, грЦ / Вт]
  3. где [Полное тепловое сопротивление, грЦ / Вт] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт] + [Тепловое сопротивление между корпусом и радиатором, грЦ / Вт] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт] (для случая с радиатором),
  4. или [Полное тепловое сопротивление, грЦ / Вт] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт] + [Тепловое сопротивление между корпусом и окружающей средой, грЦ / Вт] (для случая без радиатора).
  5. В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка. По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой. Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

[Тепловое сопротивление, грЦ / Вт] = [120, (грЦ * кв. см) / Вт ] / [Площадь радиатора или металлической части корпуса элемента, кв. см].

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

[Площадь выводов, кв. см.] = Пи * ([Длина правого вывода, см.] * [Диаметр правого вывода, см.] + [Длина левого вывода, см.] * [Диаметр левого вывода, см.])

Пример расчета отвода тепла от стабилитрона без радиатора

Пусть стабилитрон имеет два вывода диаметром 1 мм и длиной 1 см. Пусть он рассеивает 0.5 Вт. Тогда:

Площадь выводов составит около 0.6 кв. см.

Тепловое сопротивление между корпусом (выводами) и окружающей средой составит 120 / 0.6 = 200.

Тепловым сопротивлением между кристаллом и корпусом (выводами) в данном случае можно пренебречь, так как оно много меньше 200.

Примем, что максимальная температура, при которой будет эксплуатироваться устройство, составит 40 грЦ. Тогда температура кристалла = 40 + 200 * 0.5 = 140 грЦ, что допустимо для большинства стабилитронов.

Онлайн расчет теплоотвода — радиатора

Обратите внимание, что у пластинчатых радиаторов нужно считать площадь обеих сторон пластины. Для дорожек печатной платы, используемых для отвода тепла, нужно брать только одну сторону, так как другая не контактирует с окружающей средой. Для игольчатых радиаторов необходимо приблизительно оценить площадь одной иголки и умножить эту площадь на количество иголок.

Онлайн расчет отвода тепла без радиатора

Несколько элементов на одном радиаторе

  • Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:
  • [Температура радиатора, грЦ] = [Температура окружающей среды, грЦ] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт] * [Суммарная мощность, Вт]
  • Далее рассчитываем для каждого элемента.
  • [Температура кристалла, грЦ] = [Температура радиатора, грЦ] + ([Тепловое сопротивление между кристаллом и корпусом элемента, грЦ / Вт] + [Тепловое сопротивление между корпусом элемента и радиатором, грЦ / Вт]) * [Мощность, рассеиваемая элементом, Вт]

Проверяем, что температура кристалла на превышает максимально допустимую.

(читать дальше…) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Транзисторные схемы

| Electronics Club

Транзисторные схемы | Клуб электроники

Типы | Токи | Функциональная модель | Использовать как переключатель | Выход IC | Датчики | Инвертор | Дарлингтон пара

Следующая страница: Емкость

См. Также: Транзисторы

На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей. Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, включены в страница транзисторов.

Типы транзисторов

Есть два типа стандартных (биполярных) транзисторов, NPN и PNP , с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.

Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E).Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.

Обозначения схем транзисторов

Пара Дарлингтона – это два транзистора, соединенных вместе. чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярных) транзисторов, есть полевые транзисторы , которые обычно обозначаются как FET s. У них разные символы схем и свойства, и они не рассматриваются на этой странице.

Rapid Electronics: транзисторы


Токи транзисторов

На схеме показаны два пути тока через транзистор.

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут , небольшой ток течет в основание (B) транзистор. Этого достаточно, чтобы светодиод B тускло светился. Транзистор усиливает этот небольшой ток, чтобы позволить большему току течь через его коллектор (C) к его эмиттеру (E).Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

При разомкнутом переключателе базовый ток не течет, поэтому транзистор отключается коллекторный ток. Оба светодиода выключены.

Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любыми маломощными светодиодами общего назначения. Транзистор NPN (например, BC108, BC182 или BC548). Это хороший способ проверить транзистор и убедиться, что он работает.

Транзистор усиливает ток и может использоваться как переключатель, как описано на этой странице.

С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал. но это еще не рассматривается на этом веб-сайте.

Режим общего эмиттера

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток) а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом . Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.



Функциональная модель NPN-транзистора

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры.Более полезно использовать эту функциональную модель.

  • Переход база-эмиттер ведет себя как диод.
  • A базовый ток I B течет только при напряжении V BE на переходе база-эмиттер составляет 0,7 В или более.
  • Малый базовый ток I B управляет большим током коллектора Ic варьируя сопротивление R CE .
  • Ic = h FE × I B (если транзистор не открыт и не насыщен).h FE – коэффициент усиления по току (строго по постоянному току), Типичное значение для h FE – 100 (это отношение, поэтому у него нет единиц измерения).
  • Сопротивление коллектор-эмиттер R CE регулируется током базы I B :
    I B = 0 , R CE = бесконечность, транзистор выключен
    I B малый , R CE уменьшенный, транзистор частично включен
    I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)
Дополнительные примечания:
  • Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора. и резистор может быть подключен последовательно с базой.
  • Транзисторы имеют максимальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться , даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется « насыщенный ».
  • При насыщении транзистора напряжение коллектор-эмиттер В CE снижается почти до 0В.
  • При насыщении транзистора определяется ток коллектора Ic. напряжением питания и внешним сопротивлением в цепи коллектора, а не коэффициент усиления транзистора по току.В результате соотношение Ic / I B для насыщенного транзистора коэффициент усиления по току меньше FE .
  • Ток эмиттера I E = Ic + I B , но Ic намного больше, чем I B , поэтому примерно I E = Ic.

Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ . Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в В этом состоянии транзистор может перегреться и выйти из строя.

В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в называется насыщенным , потому что он больше не может пропускать ток коллектора Ic.

Устройство, переключаемое транзистором, называется нагрузкой .

При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора. Ic (макс.) и его минимальное усиление по току ч FE (мин.) . Номинальное напряжение транзистора может быть проигнорировано для напряжения питания менее 15 В.

Технические данные транзистора

Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например Быстрая электроника.

Мощность, развиваемая переключающим транзистором, должна быть очень маленькой

Мощность, развиваемая в транзисторе, отображается как нагрев , и транзистор будет разрушен, если станет слишком горячим. Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что мощность, развиваемая внутри него, будет очень маленькой.

Мощность (тепло), развиваемая в транзисторе:

Power = Ic × V CE

  • Когда OFF : Ic равно нулю, поэтому мощность равна нулю .
  • Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Было бы реле лучше транзисторного переключателя?

Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что для переключения тока катушки реле может все же потребоваться маломощный транзистор. Для получения дополнительной информации, включая преимущества и недостатки, см. страницу реле.

Защитный диод для нагрузок с катушкой, таких как реле и двигатели

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле, диод должен быть подключен к нагрузке, чтобы защитить транзистор от кратковременное высокое напряжение, возникающее при отключении нагрузки.

На схеме показано, как защитный диод подключен к нагрузке «в обратном направлении», в данном случае катушка реле.

Для этого подходит сигнальный диод типа 1N4148.

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Подключение транзистора к выходу включения / выключения цифровой ИС

Большинство ИС не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора. для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА, Достаточно для многих реле и других нагрузок без транзистора.

Базовый резистор ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение. но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен. при включении.

Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя. особенно если транзистор переключает большой ток (> 100 мА).

В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.

Переключение нагрузки с другим напряжением питания

Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В) для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).

Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN используется на выходе IC. Однако, если на выходе IC используется транзистор PNP, положительные (+) соединения вместо этого должны быть связаны.

Выбор транзистора и базового резистора для цифрового выхода ИМС

Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения. цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле. Данные о транзисторах можно получить у большинства поставщиков, например см. Быстрая электроника.

1. Выберите правильный тип транзистора, NPN или PNP

Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?

  • Для включения, когда на выходе IC высокий , используйте NPN-транзистор .
  • Для включения, когда на выходе IC низкий уровень , используйте транзистор PNP .

Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.

Транзисторный переключатель NPN
нагрузка включена, когда выход IC высокий

Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий

2.Узнайте напряжение питания и характеристики нагрузки.

Для определения требуемых свойств транзистора вам необходимо знать следующие значения:

  • Vs = напряжение питания нагрузки.
  • R L = сопротивление нагрузки (например, сопротивление катушки реле).
  • Ic = ток нагрузки (= Vs / R L ).
  • Максимальный выходной ток микросхемы – см. Таблицу данных на микросхему. Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
  • Vc = напряжение питания IC (обычно это Vs, но оно будет другим, если IC и нагрузка имеют отдельные источники питания).

Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).

3. Определить требуемые свойства транзистора

Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:

  • Максимальный ток коллектора транзистора Ic (макс.) должен быть больше тока нагрузки:
    Ic (макс.)> напряжение питания Vs
    сопротивление нагрузки R L
  • Минимальный коэффициент усиления по току транзистора h FE (мин) должен быть не менее 5 умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.
    ч FE (мин)> 5 × ток нагрузки Ic
    макс. IC current
4. Определите значение для базового резистора R
B

Базовый резистор (R B ) должен пропускать ток, достаточный для обеспечения нормальной работы транзистора. полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз значение, которое просто насыщает транзистор.Используйте приведенную ниже формулу, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.

R B = 0,2 × R L × h FE (см. Примечание)

Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС но 12 В для нагрузки используйте формулу ниже для R B :

R B = Vc × h FE , где Vc – напряжение питания
IC
5 × Ic
5.Проверьте, нужен ли вам защитный диод

Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой): диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания. высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «в обратном направлении», как показано на рисунке. на диаграммах выше.

Пример

Выход из КМОП-микросхемы серии 4000 требуется для работы реле с 100, включается, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.

  • Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
  • Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
  • Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60 (5 × 60 мА / 5 мА).
  • Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА и ч FE (мин) = 100 .
  • R B = 0,2 × R L × h FE = 0,2 × 100 × 100 = 2000, поэтому выберите R B = 1k8 или 2k2 .
  • Для катушки реле требуется защитный диод .

Rapid Electronics: транзисторы


Использование транзистора в качестве переключателя с датчиками

На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.

Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить защитный диод поперек нагрузки.

Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее 1к (10к в примере ниже), чтобы защитить транзистор, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база ток разрушит транзистор.

Светодиод загорается, когда LDR находится в темноте

Светодиод загорается при яркости LDR

Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что будет промежуточная яркость, когда транзистор будет частично на (не насыщенный). В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток. Нет проблем с малым током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.

Другие датчики, например термистор, могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор. Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя мультиметр для определения минимального и максимального значений сопротивления датчика (Rmin и Rmax), а затем по этой формуле:

Значение переменного резистора:
Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100, Rmax = 1M, поэтому Rv = квадратный корень из (100 × 1M) = 10к.

Вы можете сделать гораздо лучшую схему переключения, подключив датчики к подходящему IC (чип). Действие переключения будет намного более резким без частичного включения.



Транзисторный инвертор (НЕ затвор)


Дарлингтон пара

Пара Дарлингтона – это два транзистора, соединенных вместе, так что ток, усиливаемый первым, усиливается. далее вторым транзистором.

Пара ведет себя как одиночный транзистор с очень высоким коэффициентом усиления по току, так что для включения пары требуется лишь крошечный базовый ток.

Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления (h FE1 и h FE2 ), умноженные вместе – это дает паре очень высокий коэффициент усиления по току, например 10000.

Коэффициент усиления по току пары Дарлингтона:
h FE = h FE1 × h FE2

Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые являются соединены последовательно так 1.Для включения требуется 4В.

Rapid Electronics: транзисторы Дарлингтона

Транзисторы Дарлингтона

пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами. (B, C и E) эквивалентно стандартному транзистору.

Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов. TR1 может быть маломощным, но TR2 может потребоваться высокая мощность. Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.

Цепь сенсорного переключателя

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.

Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любого общего назначения. транзисторы малой мощности назначения.

100к резистор защищает транзисторы, если контакты соединены куском провода.

Схема сенсорного переключателя


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.


Следующая страница: Емкость | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

Выбор дискретных транзисторов [Analog Devices Wiki]

Джеймс Брайант

Один из распространенных вопросов, которые задают автору и его коллегам из отдела приложений: «В примечании к применению для XXXX требуется транзистор 3N14159 – где я могу его получить?» Исследования показывают, что 3N14159 был устаревшим в течение многих лет – или его можно получить (при минимальном заказе в 1 000 000 штук) со сроком выполнения заказа 21 месяц на заводе в Тимбукту.Правильный вопрос – не «Где мне взять это конкретное устройство?» но «Какие другие, легко доступные устройства будут работать в этом приложении?»

Существуют десятки тысяч, возможно, сотни тысяч различных типов дискретных транзисторов, и почти всегда в системе есть несколько мест, где дискретный транзистор необходим. Что мы выбираем и почему?

Для многих приложений нет необходимости выбирать какой-либо конкретный транзистор – достаточно использовать первый подходящий, который попадется под руку.Как правильно выбрать транзистор, не тратя время на ненужные детали?

Мы не будем здесь обсуждать физику транзисторов. Существует множество учебников, в которых дается хорошее изложение основ, и есть бесчисленное множество других книг и статей как по основным принципам, так и по подробным исследованиям конкретных вопросов. Но нам действительно нужно знать, что они делают, и может быть полезно узнать немного о том, почему они ведут себя именно так, поэтому мы немного поговорим о транзисторных структурах.

ТРАНЗИСТОРЫ

Транзистор – это твердотельное трехполюсное усилительное устройство. Для входных и выходных сигналов имеется общая клемма, а сигнал на одной из оставшихся клемм управляет током на другой.

Рисунок 1 Основная функция транзистора

Существует два основных типа транзисторов – транзисторы с биполярным переходом и полевые транзисторы, известные соответственно как BJT и FET.

Однако самый основной вопрос при выборе транзистора заключается не в том, BJT это или полевой транзистор, а в его полярности – используется ли его выходной вывод положительным или отрицательным по отношению к его общему выводу? Если ответ положительный, нам нужен NPN BJT или N-канальный полевой транзистор, в противном случае нам нужен PNP или P-канал.Это критически важно, но настолько очевидно, что дальнейшего обсуждения этой темы не требуется. В остальной части статьи, за исключением случаев, когда конкретно рассматривается этот вопрос, мы будем использовать положительные случаи (NPN & N-канал) для всех наших примеров.

Хотя полевые транзисторы были продемонстрированы и запатентованы почти на двадцать лет раньше, чем биполярные транзисторы 1 , первые практические транзисторы были биполярными 2 . Транзистор NPN состоит из тонкой базы полупроводника P-типа, зажатой между двумя областями N-типа, эмиттером и коллектором.Если ток течет от базы к эмиттеру и на коллекторе присутствует положительное смещение, в коллекторе протекает больший ток, пропорциональный току базы.

Рисунок 2 Биполярный переходной транзистор NPN (BJT)

Из рисунка 2 мы видим, что BJT – это усилитель тока – выходной ток в ß раз превышает входной ток, а ß может незначительно изменяться в зависимости от базового тока, так что усилитель не является полностью линейным. (Ss или h fe – это коэффициент усиления по току транзистора.Входное сопротивление не является ни низким, ни линейным, поэтому мы также можем рассматривать BJT как I out / V в усилителе (крутизна) с кремниевым диодом в качестве входного устройства. Понятно, что чем больше значение ß, тем лучше усилитель тока. Для большинства приложений достаточно минимального значения 80–100, но нередки значения, превышающие несколько сотен. (Возможны “супер-бета” транзисторы с ß до нескольких тысяч, но они имеют очень узкую базовую область и низкие напряжения пробоя и настолько хрупки, что используются редко, за исключением аналоговых интегральных схем.)

Существует два типа полевых транзисторов, полевые транзисторы с переходом (JFET) и полевые транзисторы с изолированным затвором (IGFET), более часто, но менее точно, называемые металлооксидно-кремниевыми полевыми транзисторами (MOSFET), которые я буду использовать здесь, и оба имеют любую полярность. (N-канал для положительного питания, P-канал для отрицательного). Полевые транзисторы имеют очень высокое входное сопротивление (но их входная емкость может быть довольно большой – десятки или даже сотни пФ ) и, следовательно, являются устройствами крутизны (I из / В в ).

Сегодня MOSFET – более распространенное устройство. Версия с N-каналом состоит из полоски кремния P-типа с двумя диффузорами N-типа. Поверх полосы между диффузорами находится очень тонкий слой диоксида кремния (или другого изолятора), покрытый проводящей пленкой (обычно из алюминия или поликристаллического кремния). Положительный потенциал на этом проводящем затворе приводит к тому, что материал P-типа непосредственно под изолятором становится N-типом, соединяя диффузию стока и истока и позволяя току течь.Сила тока зависит от приложенного напряжения, поэтому устройство работает как усилитель, а также как переключатель.

Рис.3 МОП-транзистор с N-канальным режимом расширения

Обычно полевые МОП-транзисторы относятся к этому типу – отключены при несмещении и включены напряжением смещения. Такие устройства известны как устройства расширенного режима. Однако можно сделать полевые транзисторы, которые включаются без смещения и выключаются отрицательным (положительным для P-канала) напряжением. Все полевые полевые транзисторы (полевые транзисторы) относятся к этому типу, но есть и некоторые полевые МОП-транзисторы в режиме истощения.

MOSFET в режиме истощения имеет неглубокую диффузию под оксидом затвора, соединяя сток и исток и позволяя току течь без смещения затвора. Когда затвор смещен отрицательно (для N-канала), эта диффузия ограничивается результирующим электрическим полем, и устройство перестает проводить.

Рисунок 4 МОП-транзистор с N-канальным режимом истощения

N-канальный JFET состоит из полоски кремния N-типа с соединениями (сток и исток) на каждом конце и диффузией затвора P-типа между ними.Без смещения на затворе ток может течь в канале N-типа ниже диффузионного. Когда затвор смещен отрицательно, зона истощения расширяется, заполняя канал, и ток стока прекращается.

Рисунок 5 JFET-транзистор с N-канальным режимом истощения

ВЫБОР ТРАНЗИСТОРОВ

Для большинства транзисторных приложений общего назначения нам нужны непроводящие устройства с нулевым смещением на управляющем входе (база или затвор). Такими устройствами являются BJT или полевые МОП-транзисторы в режиме улучшения.В оставшейся части этой статьи не будут рассматриваться полевые транзисторы в режиме истощения – хотя они являются ценными компонентами в ряде приложений, они настолько менее распространены, чем BJT и устройства режима улучшения, что отдельный раздел для них на самом деле не нужен, особенно когда большая часть Вопросы, которые мы обсудим, являются общими для всех транзисторов любого типа.

Итак, нам нужен транзистор. Мы знаем, является ли его питание положительным или отрицательным, и поэтому, нужно ли нам устройство с каналом NPN / N или с каналом PNP / P.Но нужен ли нам BJT или MOSFET?

Во многих случаях это не имеет значения. Дискретные полевые МОП-транзисторы, возможно, на десять или двадцать процентов дороже, чем биполярные транзисторы, но им не нужны базовые резисторы, которые стоят дорого и занимают дорогую площадь на плате. Они немного более уязвимы к электростатическим повреждениям ( ESD ) во время обращения, но они не потребляют ток базы и не нагружают цепи постоянного тока (поскольку они имеют относительно большую входную емкость, они могут вызвать проблемы емкостной нагрузки в более высокочастотных цепях).Когда-то пороговое напряжение затвора (значение В gs , при котором MOSFET начинает проводить) составляло несколько вольт, поэтому их нельзя было использовать с очень низкими напряжениями питания, но сегодня пороговые напряжения многих устройств равны сравнимо с базовым напряжением включения 0,7 В кремниевого биполярного транзистора. Так что, где нам нужен усилитель или логический переключатель, нам, вероятно, все равно.

Но вход BJT – кремниевый диод. Мы можем использовать его тепловые свойства для измерения температуры и его высокий ток при перегрузке, чтобы действовать как фиксирующая или ограничивающая цепь, поэтому есть некоторые схемы, в которых мы должны иметь BJT.

В течение примерно двадцати лет журнал Elektor 3 публиковал схемы, созданные на основе транзисторов, которые он называет TUN и TUP («Transistor Universal NPN» и «Transistor Universal PNP»). Эти транзисторы являются кремниевыми планарными BJT, и любой транзистор, который превышает следующие спецификации, соответствует требованиям:

Устройство Тип BV ceo I c (макс.) ß [h fe ] (мин.) P до (макс.) f t (Мин.)
TUN NPN 20 V 100 мА 100 100 мВт 100 МГц
TUP PNP -20 V -100 мА 100 100 мВт 100 МГц

Подходят самые дешевые кремниевые малосигнальные транзисторы.Я должен предложить добавить в список MUN и MUP («универсальный N-канал MOSFET» и «универсальный P-канал MOSFET») – и самые дешевые малые полевые МОП-транзисторы соответствуют этой спецификации:

Устройство Тип BV ds I c (макс.) V GS (th) P tot (макс.) / на t выкл (макс.)
MUN N-канал 20 V 100 мА 0.5 В до 2 В 100 мВт 20 нСм
MUP P-канал -20 В -100 мА -0,5 В до -2 В 100 мВт 20 нс

Большинство версий SPICE содержат стандартные BJT и MOSFET, похожие на эти «универсальные» устройства. Поэтому при разработке системы, содержащей дискретные малосигнальные транзисторы, используйте эти универсальные схемы на этапе проектирования и выберите наиболее удобный ( i.е. лучшая комплектация, доступность и невысокая стоимость) при заказе. Однако при публикации или описании дизайна используйте общую терминологию, чтобы было ясно, что точный выбор устройства вряд ли будет иметь значение.

Конечно, многие конструкции не могут использовать эти стандартные устройства – некоторые спецификации должны выходить за рамки простого стандарта. В таких случаях укажите исключения, например: –

MUN кроме выше BV DS = 250 В

ТУП кроме выше ß = 200

Когда в опубликованном проекте используется конкретный транзистор, разумно подумать о том, необходимо ли выбранное устройство для дизайна или это был просто первый транзистор, выпавший из ящика для мусора 4 , когда конструктор построил свой прототип 5 .Изучите лист данных (если транзистор настолько загадочен, что вы не можете найти лист данных, изучите схему, в которой он используется): –

  1. Есть ли у устройства какие-то необычные характеристики?

  2. Используется ли эта характеристика в схеме?

  3. Ожидаете ли вы, что схема будет работать с TUN / TUP?

  4. Предлагает ли быстрая проверка программного обеспечения (SPICE), что оно будет работать с TUN / TUP?

  5. Можно ли предположить, что немного менее быстрая проверка оборудования (макетной платы) будет работать с TUN / TUP?

Если ответы на все вопросы «Да», то, вероятно, было бы разумно изучить пункты 1 и 2 немного более внимательно, но если ответы «Нет, нет, да, да, да», почти наверняка безопасно заменить устройство. с общим.

ПАРАМЕТРЫ ТРАНЗИСТОРА

Максимально допустимое напряжение коллектор / сток. BVceo или BVds Если максимальное напряжение питания ниже, чем BV ceo или BV ds , и в коллекторе / стоке нет индуктивной схемы, которая могла бы вызвать более высокие переходные процессы напряжения, и нет внешнего источника сигнала, который мог бы применяться более высоким напряжения, то нам не нужно беспокоиться об этой спецификации.

С другой стороны, существует множество схем, в которых можно ожидать, что транзистор будет работать с высокими значениями В ce или В ds , либо в установившемся состоянии, либо в переходных процессах, и очень важно, чтобы В этом случае выбирается правильный максимум.Старые учебники склонны предполагать, что транзисторы являются устройствами низкого напряжения и что за редким исключением они дороги – полезно помнить, что сегодня

Биполярные транзисторы и полевые МОП-транзисторы с пробивным напряжением более 500 В недороги и легко доступны, хотя коэффициент усиления по току ß высоковольтных биполярных транзисторов чаще находится в диапазоне 40–100, а не = 100 для TUN / TUP. Точно так же пороговое напряжение затвора высоковольтного полевого МОП-транзистора с большей вероятностью будет в диапазоне 2–5 В, а не 500–2000 мВ для MUN / MUP.

Абсолютный максимальный ток коллектора / стока. Ic (max) или Id (max) Максимальный ожидаемый ток коллектора / стока не должен превышать абсолютный максимальный номинальный ток устройства. Учитывая, что значение TUN / etc для этого составляет 100 мА , это маловероятно для схем со слабым сигналом, но если транзистор требуется для подачи питания на нагрузку, необходимо проверить максимальный ток.

Абсолютный максимальный номинальный ток некоторых устройств можно разделить на номинальный ток постоянного (или, возможно, средний) ток и более высокий рейтинг переходных процессов для коротких импульсов.Важно убедиться, что пиковые переходные токи находятся в номинальных пределах.

Большинство малосигнальных транзисторов имеют номиналы I max , превышающие 100 мА – обычно 300-1000 мА – и многие устройства, которые соответствуют спецификации TUN / и т. Д., Действительно имеют такой рейтинг и могут использоваться при таких средних токах необходимы. Если требуются более высокие токи, устройства TUN и т. Д. Будут неадекватными, и необходимо выбрать устройство питания. При более высоких токах важно соблюдать номинальную мощность, а также номинальный ток, корпусы, вероятно, будут больше, и может потребоваться радиатор.Биполярные транзисторы с более высокими максимальными токами могут иметь более низкие значения ß при больших токах.

Пакеты и мощность. Существует бесчисленное множество различных корпусов транзисторов от почти микроскопических корпусов для поверхностного монтажа до больших пластиковых и металлических корпусов, способных обрабатывать несколько кВт при соответствующем охлаждении. Выберите тот, который наиболее удобен для вашего применения – поверхностный монтаж для массового производства, свинцовый для прототипирования и мелкосерийного производства, где удобна простота ручной пайки, и любой блок питания, подходящий, когда необходимо учитывать рассеивание и радиаторы.

Некоторые из наиболее распространенных корпусов транзисторов показаны на рис. 6 вместе с парой германиевых транзисторов с германиевым переходом очень ранних британских «красных пятен» (f t = 700 кГц) в кованых алюминиевых корпусах конца 1950-х годов. («Красные пятна» включены для исторического интереса – в подростковом возрасте автор этой статьи использовал эти транзисторы «Красного пятна», которые были бракованными с производственной линии, производящей устройства, на самом деле имевшие типовые номера – несмотря на то, что они бракованные, они все еще стоили около 1 фунт стерлингов за штуку [более 20 долларов в текущих ценах] для создания ряда различных радиоприемников и усилителей, а также счетчика Гейгера.)

Рисунок 6 Некоторые корпуса транзисторов

Тепло уходит от большинства корпусов через их выводы, поэтому фактические тепловые характеристики малосигнальных транзисторов зависят как от печатной платы, на которой он установлен, так и от корпуса. Даже самые маленькие транзисторы для поверхностного монтажа могут рассеивать несколько сотен мВт, что намного больше максимального предела, указанного в спецификации TUN / etc. Одно и то же устройство в разных корпусах может иметь разную максимальную мощность – RTFDS 6 осторожно.

В корпусах более мощных устройств есть металлические области, обеспечивающие теплопроводность к радиатору, поэтому внимательно ознакомьтесь с характеристиками рассеивания и требованиями к радиатору для этих устройств. Корпус TO-264 на рисунке 6 может рассеивать 2,5 кВт на подходящем радиаторе.

Разные устройства в одном корпусе могут иметь разную распиновку. Важно понимать, что два транзистора с одинаковыми электрическими характеристиками и корпусом могут иметь разные выводы и, следовательно, не могут быть взаимозаменяемыми сразу.На рисунке 7 показаны шесть возможных соединений BJT пакетов TO-92 и SOT-23. Еще в 1990-х автору удалось найти по крайней мере одно устройство с каждой из этих выводов, и хотя этот список был утерян, у него нет оснований предполагать, что современные транзисторы менее разнообразны.

Рисунок 7 На корпусе возможно шесть выводов

В высокочастотной конструкции может быть полезно выбрать устройство с распиновкой, обеспечивающей наименьшее паразитное реактивное сопротивление в разводке печатной платы.

Ток утечки коллектора / стока. Ice0 или Idss0 (иногда называется «ток отсечки» .) Это небольшой ток утечки, который течет от коллектора к эмиттеру или от стока к истоку, когда транзистор выключен. Обычно он составляет порядка десятков нА, но в таблицах данных иногда устанавливаются довольно большие максимальные значения для худшего случая, чтобы снизить затраты на тестирование. Транзисторы, используемые в качестве переключателей или усилителей очень низкого уровня, следует выбирать для утечки менее 50 нА, но для большинства приложений 200 нА или даже более вполне приемлемы.

Рис.8 Инвертор с очень низким энергопотреблением, использующий полевой МОП-транзистор с малой утечкой.

Инвертор малой мощности, показанный на рисунке 8, является примером схемы, требующей очень низкой утечки коллектора / дренажа. Утечка стока 100 нА дает падение напряжения 1 В и выходное напряжение 2,0 В, только на пороге разрешенных уровней логической 1, поэтому в практических конструкциях следует использовать полевые МОП-транзисторы с утечкой стока / истока = 50 нА. (Обратите внимание, что хотя этот инвертор очень маломощный [300 нА = 0.9 мкВт, когда транзистор включен], это также очень медленно – при условии, что выходная емкость транзистора плюс емкость дорожки плюс входная емкость следующего каскада составляет 20 пФ , что не является необоснованным, время нарастания у него составляет около 0,2 мс, а не проблема для приложений постоянного тока, но бесполезна даже для цепей переключения средней скорости.)

Текущее усиление. ß или hfe Коэффициент усиления по току BJT – это отношение тока коллектора к току базы, когда устройство не находится в режиме насыщения ( i.е. , напряжение коллектор / база положительное [для устройства NPN]). ß обычно довольно постоянен в широком диапазоне токов, но он может быть немного ниже при очень низких базовых токах и почти наверняка начнет падать, когда ток коллектора приблизится к своему абсолютному максимальному значению. Поскольку это соотношение, это безразмерная величина.

TUN и TUP имеют ß = 100, но сильноточные и высоковольтные BJT могут иметь несколько более низкие (= 40 или 50) минимальные заданные значения.

Рис.9 Транзисторный (BJT или MOSFET) эмиттер / истоковый повторитель

Выходной каскад эмиттерного повторителя / истокового повторителя, показанный на рисунке 9, одинаково точен как с BJT, так и с MOSFET.В простых эмиттерных повторителях предполагается, что напряжения база / эмиттер или затвор / исток В, , , или В, , , gs, , остаются постоянными, обеспечивая фиксированное смещение между входным напряжением и напряжением нагрузки, но в более точных схемах. обратная связь может быть получена от соединения эмиттер (источник) / нагрузка.

Рисунок 10 Поскольку базовый ток не течет по их выходам, BJT менее точны, чем полевые транзисторы, как токовые выходные каскады.

Поскольку часть эмиттерного тока должна протекать в базе, коллекторный и эмиттерный токи BJT не идентичны, что означает, что токовый выходной каскад на рисунке 10 должен быть выполнен с использованием MOSFET, а не BJT, поскольку MOSFET имеют практически нулевой ток затвора. .

Прямая крутизна. gfs Прямая крутизна полевого транзистора – это отношение ΔI ds / ΔV gs , когда устройство включено и цепь стока не ограничена по току. Он измеряется в сименсах (S) (или, для традиционалистов среди нас, в mhos или обратных омах [Ʊ], которые являются устаревшим названием и символом одного и того же). Малосигнальные полевые транзисторы и полевые МОП-транзисторы могут иметь g fs всего в несколько мс, но более крупные могут иметь усиление от больших долей сименса до нескольких сименсов или более.

Как правило, изменения напряжения затвора на несколько вольт достаточно для изменения тока стока с минимального (выключенного) до его абсолютного максимального значения. Также важно знать, при каком напряжении на затворе начинается проводимость – см .:

Пороговое напряжение затвора. Vgs (th) Пороговое напряжение затвора полевого МОП-транзистора – это напряжение затвора / истока, при котором правильно смещенный сток начинает потреблять ток. Определение «запусков» будет указано в листе данных и может составлять всего несколько мкА, но более вероятно, что оно будет определено как 1 мА, или даже больше для полевого МОП-транзистора высокой мощности.Выше этого порогового значения ток стока будет очень быстро расти с небольшим увеличением напряжения затвора.

Если полевой МОП-транзистор должен управляться логикой, важно, чтобы его пороговое напряжение было выше наихудшего значения логического 0 в температурном диапазоне схемы, которое, вероятно, составит не менее нескольких сотен мВ , иначе это может начать включаться, когда его предполагается выключить.

Напряжение насыщения. Vce (sat) Когда BJT включается достаточно сильно, чтобы падение напряжения на его коллекторной нагрузке было достаточным для понижения потенциала коллектора ниже потенциала базы (другими словами, переход база-коллектор смещен в прямом направлении), это называется насыщенный .Это напряжение насыщения не пропорционально току коллектора, поэтому модель насыщенного транзистора – это не просто сопротивление между его коллектором и эмиттером.

Два примера важности низкого напряжения насыщения:

[A] В классической логике TTL каждый входной сигнал направляет 1,6 мА в управляющий им выход логического 0. При полном разветвлении 10 это означает, что выходной транзистор TTL может потребовать около 16 мА с напряжением насыщения не более 400 мВ .

[B] Когда силовой BJT используется для переключения сильноточных нагрузок, его рассеяние при заданном токе нагрузки пропорционально его напряжению насыщения. Чем ниже напряжение насыщения, тем меньше тепла необходимо отводить от транзистора.

Обратите внимание, что когда вы снимаете входной привод с насыщенного транзистора, возникает задержка (обычно нсек или десятки нсек, но может быть больше), прежде чем он начнет отключаться. Это его время восстановления насыщения и может быть указано, при четко определенных условиях, в его техническом паспорте.

О сопротивлении. Полевые МОП-транзисторы Ron не насыщаются, потому что они являются основными носителями. Когда они включены с напряжением затвора, значительно превышающим пороговое напряжение затвора, они ведут себя как резисторы с низким номиналом, и их на сопротивлении указано в их технических характеристиках. Применяется закон Ома – падение напряжения пропорционально току и включенному сопротивлению, а их рассеяние составляет I 2 R.

Коэффициент шума. NF Большинство применений транзисторов имеют относительно высокий уровень шума, и шум не является проблемой.Но если это проблема, то это критически важно. Многие транзисторы, как BJT, так и FET, имеют коэффициент шума, указанный и гарантированный их производителями. При сравнении коэффициентов шума различных устройств очень важно, чтобы коэффициенты шума измерялись при одинаковом импедансе источника. Если транзисторы предназначены для использования в радиосистемах, вероятно, что их NF будет измеряться при 50 Ом, поэтому сравнение простое, но бессмысленно сравнивать NF двух устройств, у которых NF были измерены при разных импедансах.В документе, относящемся к более ранней версии RAQ 7 , подробно рассматриваются эти и другие проблемы шума, и к нему следует обращаться, если вам интересна эта тема.

Частота перехода. ft f t BJT – это частота, на которой коэффициент усиления по току при коротком замыкании (на ВЧ) на выходе равен единице. Опять же, я не предлагаю обсуждать, как это можно измерить 8 , а просто хочу отметить, что f t является наиболее широко используемым показателем качества для сравнения частотной характеристики биполярных транзисторов.Большинство TUN и TUP будут иметь f t значительно выше минимума 100 МГц , но транзисторы высокой мощности и высокого напряжения часто будут иметь довольно низкие значения.

Полевые транзисторы представляют собой крутильные устройства с бесконечно малым входным постоянным током, поэтому неправильно учитывать их усиление по постоянному току. Но поскольку они имеют входную емкость (C gs ) от пФ до сотен пФ , их емкостное входное сопротивление относительно низкое на ВЧ, поэтому их входной ток ВЧ может быть измерен, а их f t получено.Иногда лист данных FET или MOSFET будет содержать значение f t , полученное таким образом, и его, безусловно, допустимо использовать, если доступно, для оценки частотной характеристики FET, но обычно скорость полевых транзисторов указывается с точки зрения переключения раз.

Время переключения. t (on) & t (off) Большинство полевых транзисторов и многие BJT имеют спецификации времени переключения, определяемые как время, затрачиваемое на определенные условия (RTFDS 9 ) для повышения выходного тока от нуля до указанного значения, или вернуться к нулю соответственно.Предполагается, что сигнал переключения является мгновенным (юридическая фикция) или определяется как несколько нсек. Сравнение времени переключения – надежный способ сравнения относительных скоростей транзисторов при условии, что они испытываются в аналогичных условиях.

Емкости. C ?? С транзистором связаны три емкости: входная емкость C в , выходная емкость C на выходе и емкость Миллера 10 (или обратная связь) C fb .Разные производители используют разные названия (поэтому C в заголовке), но какое именно название должно быть ясно видно из рисунка 11.

Рисунок 11 Паразитные емкости транзисторов (разные производители используют разные названия / символы)

Как мы уже видели, полевые транзисторы, особенно силовые полевые МОП-транзисторы, могут иметь значения Cin до 1 нФ или даже больше, хотя малосигнальные полевые МОП-транзисторы будут иметь гораздо меньшие значения, вероятно, в диапазоне 15-50 пФ .Тем не менее, при проектировании схем, в которых такая емкость может влиять на время нарастания или стабильность схемы, важно обеспечить, чтобы конструкция учитывала такие значения и чтобы устройства были выбраны с емкостями, допускаемыми конструкцией схемы.

ВЫБОР ТРАНЗИСТОРА

Итак, нам нужен транзистор для конструкции. Как мы выбираем?

Было бы неплохо иметь базу данных по каждому транзистору в мире, прикрепленную к электронной таблице, чтобы после ввода предельных значений каждого важного параметра мы видели список каждого из них, который соответствует нашим требованиям.К сожалению, составить такой список невозможно – он огромен и будет меняться день ото дня по мере появления новых транзисторов и устаревания старых. Однако такие дистрибьюторские компании, как Avnet, Arrow, Digi-Key, Mouser, Premier Farnell и RS Components имеют на своих веб-сайтах системы параметрического поиска 11 , которые позволяют нам делать то же самое с тем преимуществом, что, хотя они и не показывают все устройства в мире, те, которые они показывают, вероятно, будут легко доступны.У многих производителей тоже есть такие параметрические поисковые системы, которые даже более актуальны, но преимущество дистрибьюторских систем в том, что они позволяют нам сравнивать устройства многих производителей на одном сайте и, как правило, также дают некоторое представление. фактического наличия.

Итак, ответ на вопрос – составить список необходимых параметров и выйти в онлайн. Поисковая система каждого дистрибьютора немного отличается, и, конечно, акции каждого дистрибьютора (и, возможно, цены) также различаются, поэтому, вероятно, лучше использовать более одного и сравнивать результаты.

Мы уже обсудили, какие параметры выбрать, но суммируем основные по порядку: –

Полярность: – NPN / N-канал или PNP / P-канал?
Тип: – BJT или FET?
Рабочее напряжение: – Выберите минимальное безопасное значение для BV ceo или BV ds (Также может быть хорошей идеей выбрать максимальное значение, так как транзисторы с очень высоким напряжением могут иметь более низкое значение. gain и выше V ce (sat) или R на и наверняка будут немного дороже.)
Максимальный ток: – Выберите значение = 33% выше максимального ожидаемого тока коллектора / стока. (Возможно, вам придется учитывать пиковые переходные токи, а также максимальные токи в установившемся режиме.)
Пакет: – Какой пакет, и распиновка , вам нужен? (Если устройство поставляется в нескольких упаковках, абсолютный максимальный ток и номинальная мощность могут отличаться в зависимости от пакет выбран – проверьте это. Также в руководстве по параметрическому выбору может не быть деталей о распиновке.)
Мощность: – Какое максимальное рассеивание? (Помните, что выключатель рассеивает очень мало энергии в выключенном состоянии, а когда он включен, большая часть мощности приходится на нагрузку, а не на сам выключатель.Во время переключения рассеиваемая мощность выше, но это важно только в том случае, если устройство постоянно переключается с высокой скоростью.)

Каждый раз, когда мы выбираем транзистор, необходимо определять указанные выше параметры. Остальные могут быть критическими в одних приложениях и не важными для других, поэтому вы должны решить для себя, какие из них имеют значение в вашем приложении, и выбрать устройства, которые соответствуют вашим требованиям. Рассмотрите весь оставшийся список, но укажите только те, которые вам действительно интересны: –

Ток утечки: – I ce0 или I ds0
Коэффициент усиления по току: – ß или h fe – Для некоторых приложений требуется ß = 100
Крутизна: – г fs – Редко требуется подлежит уточнению.
Пороговое напряжение затвора: – В gs (th) – Оно должно быть совместимо с уровнями любой логики, используемой для управления MOSFET в качестве переключателя, и не должно быть слишком большим, если MOSFET используется с низкое напряжение питания.
Напряжение насыщения: – В ce (sat) – Важно только тогда, когда BJT используется в качестве переключателя (логического или силового).
На сопротивлении: – R на – Важно, когда полевой МОП-транзистор используется в качестве переключателя питания, но не обычно в усилителях или логических приложениях.
Показатель шума: – NF – Важно только в усилителях (очень) малых сигналов или малошумящие генераторы.
Частота перехода: – f t – Важно только в ВЧ усилителях или генераторах.
Время переключения: – t (вкл.) & t (выкл.) Этот параметр редко имеет значение, за исключением транзисторов, используемых в быстрых логических интерфейсах и быстром переключении мощности.
Емкость: – C в , C вне и C fb (или их версии от разных производителей.) – Эти параметры редко нужно указывать для приложений LF BJT, но поскольку полевые МОП-транзисторы могут иметь довольно большой C в имеет смысл помещать значения наихудшего случая в SPICE-модели схем с дискретными полевыми МОП-транзисторами, чтобы гарантировать, что их емкость не является проблемой.

Когда вы введете выбранные вами параметры в поисковую систему, вы, если повезет, получите список устройств с нужными вам характеристиками. Если вы уверены, что правильно выбрали параметры, выберите от пяти до десяти самых дешевых, которые есть в наличии. Сделайте то же самое с еще парой поисковых систем дистрибьюторов, а затем сравните свои списки. Вы должны обнаружить, что они похожи – в таком случае выберите самое дешевое устройство, доступное у большинства поставщиков.

Получите SPICE-модель этого устройства и убедитесь, что она совместима с SPICE-симуляцией вашей конструкции.Если это так, создайте прототип оборудования с этим устройством и также проверьте его производительность. Если все в порядке, вы выбрали транзистор.

Однако, когда вы публикуете свой дизайн или отправляете его в производство, не указывайте устройство, которое вы выбрали, как если бы это был единственно возможный выбор. Спецификация должна выглядеть примерно так: «Транзистор TR3 представляет собой N-канальный MOSFET в корпусе TO-92 (распиновка s- g -d на контактах 1-2-3), его BV ds0 должен быть не менее + 25V, I ds (max) не должно быть меньше 250 мА , V gs (th) должно быть в пределах 600 мВ – 1.8V и C в должны быть меньше 65 пФ . Большинство полевых МОП-транзисторов, соответствующих этому описанию, должны работать в этой схеме, но анализ SPICE и создание прототипов были выполнены с помощью 2Nxxxx. Анализ SPICE для 2Nyyyy, 2Nzzzz и VNaaaa показывает, что эти устройства также должны работать хорошо, но многие другие NMOSFET-транзисторы с аналогичными характеристиками также могут быть удовлетворительными ». Конечно, вам действительно стоит провести SPICE-анализ 2Nyyyy, 2Nzzzz и VNaaaa, которые, конечно же, будут одними из самых дешевых и наиболее доступных устройств из вашего списка.

Аналогичная процедура применяется, если проект, который вы хотите использовать, требует 3N14159. и вы не можете его найти. Если у вас есть его данные, изучите схему и решите, какие из параметров устройства важны. Если вы не можете найти его данные, изучите схему и попытайтесь определить, какие параметры транзистора необходимы для правильной и безопасной работы. Попробуйте симуляцию SPICE, чтобы проверить работоспособность, но будьте немного консервативны в выборе бездымных (, т.е. безопасных – он не взорвется) значений напряжения пробоя, тока и мощности, поскольку это не ваша конструкция, и может быть что-то вы упускается из виду.Используйте выбранные вами значения в параметрическом поиске с последующей проверкой программного и аппаратного обеспечения, как описано выше. Если все пойдет хорошо, у вас есть запасные части для 3N14159, и вам не придется ехать в Тимбукту.

Джеймс Брайант Калшот – Англия Апрель 2014 г.

Вернуться к предыдущей главе

Перейти к следующей главе

Вернуться к содержанию

Список литературы

[1] Джулиус Лиллиенфилд – Заявка на патент Канады CA272437 (1925) / Патент США US1745175 – Способ и устройство для управления электрическими токами 1930-01-28

[2] Shockley, Brattain & Bardeen – Bell Telephone Labs 1947 г.
John Bardeen & Walter Brattain: – Патент США US2524035 – Трехэлектродный элемент схемы с использованием полупроводниковых материалов 1948-02-26 (выпущен 1950-10-03)
Уильям Шокли: – Патент США US2569347 – Элемент схемы, использующий полупроводниковый материал, 1948-06-26 (выдан 25.09.1951)

[3] http: // www.elektor.com/

[4] У каждого инженера должна быть коробка с использованными компонентами, оставшимися от предыдущих проектов, в качестве источника внезапно необходимых деталей для новых. В идеале у них должен быть разумный набор вещей, но не настолько, чтобы их было трудно искать. Спичечный коробок слишком мал, 40-футовый интермодальный контейнер обычно слишком велик (если вы не морской инженер, работающий на морских буровых установках).

[5] Разработчики интегральных схем делают это слишком часто при написании таблиц данных.Вместо того, чтобы указывать общую часть, они указывают ту, которую они фактически использовали – это был предпроизводственный образец патагонского стартапа, обанкротившегося в 1976 году, или что-то столь же нелепое. Это одна из причин высокого уровня безумия среди людей. инженеры-прикладники, которые должны убедить клиентов, что использование заменителя на самом деле не является признанием поражения и не может ускорить Армагеддон или дождь из лягушек и рыб.

[6] «Прочтите Friendly Data Sheet!»

[7] В этих ссылках обсуждается тепловой шум и коэффициенты шума в контексте резисторов и операционных усилителей, но физика в равной степени применима и для транзисторов.

http://www.analog.com/en/high-speed-op-amps/low-noise-low-distortion-amplifiers/products/raq_jb_resistor_noise_can_be_deafening_issue25/resources/faq.html?display=popup

http://www.analog.com/en/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/products/RAQ_JB_Op_Amp_Noise_can_be_Deafening_Too_Issue26/resources/faq.html?display=popup

http://www.analog.com/static/imported-files/rarely_asked_questions/moreInfo_raq_opAmpNoise2.html

[8] Cadence хорошо поработали,
http: // www.cadence.com/Community/blogs/rf/archive/2008/07/16/measuring-transistor-ft.aspx

[9] «Прочтите дружественный технический паспорт»

[10] Назван в честь Джона Милтона Миллера, который впервые описал его эффекты в 1920 году.

https://en.wikipedia.org/wiki/John_Milton_Miller Миллер, конечно, работал с термоэмиссионными клапанами (лампами), но название и эффект до сих пор актуальны для полупроводниковых триодов (БЮТ и полевые транзисторы).

[11] Источники транзисторов
https: // avnetexpress.avnet.com/store/em/EMController/Discrete/Bipolar-Transistor/GP-BJT/_/N-100083?action=products&cat=1&catalogId=500201&categoryLink=true&cutTape=&inStock=&langId=-1&myCatalog=&ropi=html = & storeId = 500201 & term = & topSellers = & categoryLink = true и
https://avnetexpress.avnet.com/store/em/EMController/Discrete/Transistor/MOSFET/_/N-100099?action=products&cat=1&catalogId=500201&category&categoryLink=tape & inStock = & langId = -1 & myCatalog = & npi = & proto = & RegionalStock = & rohs = & storeId = 500201 & term = & topSellers = & categoryLink = true

http: // компоненты.arrow.com/semiconductor-discrete/transistors/ и
http://components.arrow.com/part/search/%5E7/42/855?region=na&whereFrom=gnav и
http://components.arrow.com/ part / search /% 5E7 / 42/942? region = na & whereFrom = gnav

http://www.digikey.com/product-search/en/discrete-semiconductor-products/transistors-bjt-single/1376376?k=transistor и
http://www.digikey.com/product-search/en / Discrete-Semiconductor-Products / Fets-Single / 1376381? k = транзистор

http: // www.mouser.com/Semiconductors/Discrete-Semiconductors/Transistors/Transistors-Bipolar-BJT/_/N-ax1sh/ и
http://www.mouser.com/Semiconductors/Discrete-Semiconductors/Transistors/MOSFET/_/N- ax1sf /

http://uk.farnell.com/transistors-bipolar-bjt-single и http://uk.farnell.com/mosfets

http://uk.rs-online.com/web/c/semiconductors/discrete-semiconductors/bipolar-transistors/ и
http://uk.rs-online.com/web/c/semiconductors/discrete-semiconductors/ МОП-транзисторы /

Можно ли найти таблицу сравнения транзисторов или базу данных?

, когда я использую транзисторы, я обычно смотрел на различные параметры моей конструкции, такие как напряжение питания, частота, коэффициент усиления по току, мощность.Затем я выбираю подходящий транзистор,

.

а) DC i) Низкое напряжение, низкая мощность, высокая бета -> BC547 (NPN), BC548 (NPN), 2N222 (NPN), BC557 (PNP) Приложения-> на регулятор (с стабилитроном), драйвер светодиода (для микроконтроллера)

ii) Низкое напряжение, средняя мощность, средняя бета -> SL100 (NPN), CK100 (PNP), BD139, BD140. Приложения-> Драйвер реле, регулятор прохода серии малой мощности, H-мост, драйвер двигателя постоянного тока

iii) низкое напряжение, высокая мощность, низкая бета-> 2N3055, TIP127, TIP125.

Применения-> Регулятор прохода серии высокой мощности, инвертор прямоугольной формы, драйвер двигателя постоянного тока, H-мост

b) Звуковая частота (20 Гц-20 кГц)

i) Низкое напряжение, низкая мощность, высокая бета -> BC547 (NPN), BC548 (NPN), BC557 (PNP).

Applications-> Pre-amp, Tone control, эквалайзер.

ii) Низкое напряжение, средняя мощность, средняя бета-> SL100, CK100.

Применение-> Усилитель звука средней мощности.

в некоторых схемах вы не можете напрямую соединять транзисторы, такие как SL100, CK100, BD139, BD140, с некоторыми микроконтроллерами. для управления реле, двигателями постоянного тока, лампами накаливания постоянного тока, потому что бета этих транзисторов будет мала. поэтому для этого потребуется ток в несколько миллиампер, микроконтроллер может не передавать / потреблять такой большой ток.поэтому вы должны использовать предварительный драйвер (BC547), тогда он должен быть подключен к транзистору. если вы не хотите тратить энергию на управление силовым транзистором, вы можете выбрать MOSFET.

, вы можете выполнить вышеупомянутые шаги, если вы создадите свою схему с нуля. но это может не помочь вам отремонтировать схемы, заменив неисправный транзистор (устаревший) на новый. если вы хотите сделать это, вы получите техническое описание устаревшего / труднодоступного транзистора. и посмотрите на различные параметры, затем суммируйте их и посмотрите на техническое описание широко используемых транзисторов (вы можете просто заменить его, как если бы заменяли неисправный резистор на новый).иногда это может работать, а может и не работать (потому что это зависит от различных параметров конструкции, таких как помехозащищенность, коэффициент усиления по напряжению / току, стабильность точки Q, тип смещения и т. д.)

Я предлагаю вам иметь в наличии легкодоступные транзисторы, составить диаграмму этих параметров транзистора и попытаться спроектировать схемы.

Ремонт

– Как найти замену транзистору?

Обратите внимание, что BC106, вполне возможно, никогда не существовал – см. “BC106, где ты?” обратите внимание в конце этого ответа.

Наиболее важные параметры небольших биполярных транзисторов (например, ваших двух) –

  • Максимально допустимое напряжение коллектора (Vc или Vce или Vceo)
  • Максимально допустимый ток коллектора (Ic или Ic или …)
  • Минимальные и типичные значения усиления по току (= “Бета”)
  • NPN или PNP
  • Упаковка может иметь значение
  • Рассеивание мощности может иметь значение.

Если вы используете деталь, которая имеет, по крайней мере, такое же значение Vc max или выше, по крайней мере, такое же значение Ic max или выше и такое же или большее типичное усиление по току, то транзистор будет приемлемо работать в большинстве схем.Существуют особые требования, на которые влияет ряд других параметров, но в большинстве случаев вам не нужно о них беспокоиться.

Вы можете найти многие из транзисторов Digikey здесь
или вы можете начать с начала и поискать на всем сайте Digikey с описанием BC107 здесь.

Вы можете использовать тот же метод для своего 2N3634, если знаете его параметры.

Стоит отметить, как пришел к вышеуказанному поиску транзисторов.
Я просто ввел «транзистор» (без кавычек) в поле поиска на верхнем уровне, затем щелкнул «Транзисторы (BJT) – одиночные (13 797 элементов)», и это привело меня на страницу поиска транзисторов выше

Следующим по важности параметром является «Ft» – эффективная максимальная рабочая частота (хотя транзистор на этой частоте не нужен).Если вам нужно позаботиться о Ft, скорее всего, вы должны показать нам свою схему и рассказать, что вы собираетесь делать, а затем попросить совета.

Хороший источник (один из многих) информации о доступных в США транзисторах можно найти в онлайн-каталоге Digikeys. Он позволяет вам выбрать Vc, Ic, Beta, Ft и т. Д. Будет ли полезны вам компоненты, зависит от того, в какой стране вы находитесь.

Полезный сайт, который позволяет искать сразу в каталогах 20+ поставщиков – www.findchips.com. Поиск BC106 на этом сайте возвращает

.

показывает, что 7 поставщиков (вероятно) имеют его в наличии – НО оказывается, что ни один из имеющихся на складе не является транзистором, который вам нужен – код BC106 также появляется в других номерах деталей :-(.

Вместо того, чтобы пытаться отследить один на этом этапе, я отмечу, что
Digikey продает BC107 = 45 В, 100 мА, NPN, бета = 200, рассеивание 300 мА, бета =? здесь
Используется металлический корпус TO18 старого образца, но рассеиваемая мощность ниже, чем у большинства выводных устройств в пластиковом корпусе.

Используя страницу выбора транзисторов Digikeys, как упомянуто выше, и выбрав транзисторы со спецификациями, по крайней мере, такими же хорошими, как указано выше, и используя корпус с выводами TO18 или TO92 (пластик), было получено 51 вариант. Из них самыми дешевыми в наличии являются BC337-40, NPN, 45 В, 800 мА, Beta = 250, FT = 100 МГц, корпус TO92, рассеиваемая мощность 625 мВт. Вероятно, в большинстве случаев он станет отличной заменой BC107.
Также подходят версии MPSA18, ZTX692, ZTX694 & 2SC29250.


Обратите внимание, что выше я упустил некоторые детали, которые на данном этапе могут скорее запутать, чем помочь.
, например, Beta обычно указывается при указанном токе.


BC106 где ты ?:

Кажется возможным, что BC106 никогда не существовало. BC100 сделал, а BC107 сделал. Некоторые схемы относятся к BC106, но это не гарантирует его существования.

Очень вероятно, что если вы используете BC337-40 или аналогичный, он будет очень хорошо работать с исходной схемой, НО просмотр схемы будет даже лучше.

В качестве примера затухания мозга и BC106 это обсуждение от 2009 года относится к BC106, предположительно на принципиальной схеме здесь НО , когда я смотрю, я обнаруживаю, что в схеме используется BC107.

SO BC106 вероятно (но не обязательно) не существует. Некоторые схемы ссылаются на него, но нет доступных (пока) таблиц данных, а в моем руководстве (книге) по селекторам начала 1970-х его нет. Ссылки на схемы, скорее всего, ошибочны.

Для почтенного Phillips 1977 BC107-BC109 см. Техническое описание.

1989 SGS Thomson техническое описание здесь

Краткое и очень простое руководство по выбору транзистора

Вы с трудом выбираете транзистор для своего будущего проекта? Не заставляет ли вас нервничать мысль о выборе подходящего транзистора? Если да, то вы попали в нужное место!

В этом посте мы проведем вас через процесс выбора подходящего транзистора в соответствии с вашим приложением.Планируете ли вы использовать транзистор в качестве переключателя или усилителя, у нас есть все необходимое!

Прежде чем перейти к процессу выбора транзистора, давайте сначала разберемся, что такое транзистор. В основном существует два типа транзисторов – BJT (биполярные транзисторы) и полевые транзисторы (полевые транзисторы). Транзисторы служат для усиления или переключения в большинстве электронных схем. Напряжения, приложенные к его выводам, определяют режим работы транзистора.

Транзисторы состоят из двух типов областей – p-типа и n-типа. Эти области создаются путем добавления примесей в полупроводник (обычно кремний), и этот процесс называется легированием. Для формирования области p-типа бор используется в качестве легирующего материала. Поскольку бор имеет три электрона на своей внешней оболочке, он соединяется с тремя электронами кремния, оставляя «дырку» на месте четвертого электрона. Так образуются дырки, и они производят положительный заряд, поэтому область называется областью «p-типа».

Аналогичным образом, чтобы сформировать область n-типа, используется фосфор (имеющий пять валентных электронов). Четыре его электрона соединяются с четырьмя электронами кремния, и один электрон остается свободным для перемещения. Это создает общий отрицательный заряд, и поэтому область называется областью «n-типа».

BJT – это полупроводниковый прибор, состоящий из двух p-n-переходов, соединенных взаимно встречно. Он может иметь два типа конфигурации – PNP или NPN, в зависимости от концентрации легирования. Обычно кремний используется в качестве подложки внутри BJT и легируется в соответствии с требованиями к напряжению и току.BJT имеет три вывода – базу, эмиттер и коллектор. Если это транзистор PNP, вывод базы подключается к области n-типа, а выводы коллектора и эмиттера подключаются к каждой из двух областей p-типа.

У полевых транзисторов

также есть три клеммы, как у BJT, но они сделаны с использованием только одного типа материала в качестве основной подложки, то есть либо p-типа, либо n-типа. Три терминала называются затвором, стоком и истоком. Затвор подключен к основной подложке, а исток и сток подключены к сильно легированным областям p-типа или n-типа.

При работе в качестве усилителя транзистор преобразует низкий входной ток в большой выходной ток, давая усиленный ток на выходе. При работе в качестве переключателя транзистор принимает небольшой ток в качестве входа и использует его для управления большим током в другом месте, следовательно, меньший входной ток включает больший ток.

Чтобы понять, как ток течет через транзистор, рассмотрим два p-n перехода, соединенных спина к спине. Основными носителями в области n-типа являются электроны, а в области p-типа – дырки.Учитывая, что у нас есть транзистор NPN, и мы прикладываем отрицательное напряжение к области n-типа (эмиттер), электроны уходят от отрицательного напряжения в область p-типа (базу). Мы понимаем, что область эмиттер-база смещена вперед.

Электроны, которые вошли в область p-типа, некоторые из них рекомбинируют с дырками, присутствующими в базе, в то время как другие продолжают течь к коллектору, составляя ток коллектора. Число электронов, поступающих в область коллектора, можно изменять, управляя базой.Переход коллектор-база имеет обратное смещение, поскольку на коллектор подается положительное напряжение.

Теперь мы знаем, что транзисторы работают, когда электроны текут от эмиттера к коллектору через базу, и, изменяя концентрацию легирования и приложенные напряжения на каждом из трех выводов, можно управлять режимом работы транзистора.

Прежде чем подавать какое-либо напряжение на транзистор, обязательно ознакомьтесь с его таблицей данных и выясните, какая из его ножек является базой, какая – эмиттером, а какая – коллектором.Как только вы это поймете, вы можете подавать на него питание. Если вы подключите свой транзистор неправильно, есть вероятность, что вы получите решетчатый транзистор и запах гари!

Обычно при подключении транзистора в качестве усилителя переход база-эмиттер смещен в прямом направлении, а область база-коллектор – в обратном направлении. Например, если вы используете транзистор NPN, то вы должны подключить положительный источник напряжения к области p-типа (базу), а отрицательный вывод – к эмиттеру, который состоит из материала n-типа.Это делает переход база-эмиттер смещенным вперед. Аналогичным образом, для обратного смещения перехода коллектор-база необходимо подать положительное напряжение на коллектор и отрицательное напряжение на базу. Вход в усилитель подается через переход эмиттер-база, а выход получается из коллектора.

При подключении транзистора в качестве переключателя обычно заземляют эмиттер и подают сигнал переключения в качестве входа на базу. Выходная нагрузка подключена к коллектору, который транзистор будет включать и выключать с помощью сигнала, подаваемого на базу.Транзистор работает в областях «насыщения» и «отсечки», когда он включен и выключен соответственно.

Вот некоторые из ключевых характеристик транзисторов, которые вы должны понять, прежде чем покупать транзистор для вашего будущего проекта.

Ток коллектора

Максимальный ток коллектора для обычных транзисторов измеряется в миллиамперах, а у силовых транзисторов – в амперах. Максимальное значение тока коллектора, указанное в паспорте транзистора, не должно превышаться.

Напряжение насыщения

Чтобы транзистор работал в режиме насыщения, между коллектором и эмиттером должно быть приложено определенное напряжение. Вы можете легко найти это напряжение, указанное как V CE в техническом описании транзистора. Это напряжение должно присутствовать между коллектором и эмиттером, чтобы транзистор мог войти в режим насыщения.

Напряжение пробоя

Два напряжения пробоя – напряжение пробоя коллектор-база и напряжение пробоя коллектор-эмиттер являются важными характеристиками транзисторов.Эти значения не должны превышаться во время работы, потому что повышенное напряжение может повредить ваш транзистор.

Текущее усиление

Другой важной характеристикой является коэффициент усиления транзистора по прямому току, обозначаемый как β. Небольшой входной ток на базе используется для увеличения тока на коллекторе. Ток в базе усиливается в соответствии со значением β.

Эта характеристика используется в усилителях на основе транзисторов, которые обычно используются в схемах RF и других схемах усиления звука.Для разных приложений требуются разные коэффициенты усиления по току, поэтому важно проверять значение β при выборе транзистора.

Материал

Обычно транзисторы изготавливаются из кремния в качестве основной полупроводниковой подложки. Это связано с тем, что кремний обладает превосходными свойствами и предлагает напряжение перехода около 0,6 вольт. Для изготовления транзисторов также используются другие полупроводниковые материалы, но они обладают другими свойствами и имеют другое напряжение на переходе.

Полярность

Как объяснялось в предыдущих разделах, транзисторы могут быть PNP или NPN.Это влияет на полярность выходного напряжения. Обычно нам требуется положительное выходное напряжение, поэтому транзисторы NPN обычно используются во многих приложениях.

Выбирая транзистор для своего проекта, вы должны быть уверены в исходном напряжении, рассеиваемой мощности и рабочих токах, которые будут использоваться в проекте. Это позволит вам решить, какой транзистор выбрать, исходя из вышеперечисленных параметров – напряжения насыщения, напряжения пробоя, тока коллектора, коэффициента усиления по току.Вы можете найти эти параметры в инструкции производителя, прилагаемой к транзистору. Более того, вам нужно увидеть, нужна ли вам положительная полярность на выходе или отрицательная, как описано выше.

Убедитесь, что значения тока и напряжения не превышают максимальные значения, указанные производителем, иначе вы можете разрушить свой транзистор.

% PDF-1.2 % 1269 0 объект > эндобдж xref 1269 125 0000000016 00000 н. 0000002875 00000 н. 0000003052 00000 н. 0000003193 00000 п. 0000006435 00000 н. 0000006597 00000 н. 0000006666 00000 н. 0000006766 00000 н. 0000006922 00000 н. 0000007088 00000 н. 0000007263 00000 н. 0000007391 00000 н. 0000007583 00000 н. 0000007694 00000 п. 0000007810 00000 п. 0000007939 00000 п. 0000008062 00000 н. 0000008192 00000 н. 0000008319 00000 н. 0000008456 00000 н. 0000008602 00000 н. 0000008755 00000 н. 0000008902 00000 н. 0000009052 00000 н. 0000009199 00000 н. 0000009348 00000 п. 0000009497 00000 н. 0000009643 00000 п. 0000009788 00000 н. 0000009930 00000 н. 0000010072 00000 п. 0000010215 00000 п. 0000010352 00000 п. 0000010490 00000 п. 0000010628 00000 п. 0000010769 00000 п. 0000010906 00000 п. 0000011044 00000 п. 0000011184 00000 п. 0000011322 00000 п. 0000011489 00000 п. 0000011643 00000 п. 0000011758 00000 п. 0000011899 00000 п. 0000012092 00000 п. 0000012225 00000 п. 0000012358 00000 п. 0000012486 00000 п. 0000012617 00000 п. 0000012756 00000 п. 0000012894 00000 п. 0000013028 00000 п. 0000013161 00000 п. 0000013288 00000 п. 0000013421 00000 п. 0000013568 00000 п. 0000013703 00000 п. 0000013858 00000 п. 0000014007 00000 п. 0000014157 00000 п. 0000014305 00000 п. 0000014451 00000 п. 0000014578 00000 п. 0000014741 00000 п. 0000014933 00000 п. 0000015073 00000 п. 0000015189 00000 п. 0000015357 00000 п. 0000015462 00000 п. 0000015632 00000 п. 0000015811 00000 п. 0000015929 00000 п. 0000016056 00000 п. 0000016255 00000 п. 0000016379 00000 п. 0000016504 00000 п. 0000016680 00000 п. 0000016798 00000 п. 0000016932 00000 п. 0000017091 00000 п. 0000017257 00000 п. 0000017420 00000 п. 0000017610 00000 п. 0000017720 00000 п. 0000017838 00000 п. 0000017987 00000 п. 0000018128 00000 п. 0000018281 00000 п. 0000018414 00000 п. 0000018546 00000 п. 0000018701 00000 п. 0000018839 00000 п. 0000018972 00000 п. 0000019091 00000 п. 0000019236 00000 п. 0000019380 00000 п. 0000019521 00000 п. 0000019655 00000 п. 0000019798 00000 п. 0000019932 00000 п. 0000020068 00000 н. 0000020191 00000 п. 0000020347 00000 п. 0000020499 00000 н. 0000020673 00000 п. 0000020839 00000 п. 0000020996 00000 н. 0000021121 00000 п. 0000021275 00000 п. 0000021392 00000 п. 0000021542 00000 п. 0000022709 00000 п. 0000024036 00000 п. 0000024237 00000 п. 0000024824 00000 п. 0000025035 00000 п. 0000026211 00000 п. 0000027383 00000 п. 0000027594 00000 п. 0000028007 00000 п. 0000029686 00000 п. J Ը¹ ׇ +) / P -60 >> эндобдж 1272 0 объект > эндобдж 1392 0 объект > транслировать 7 $ & -_- IED0 [wY9dI3҈ & Bj & aX> TL # eldbrd `C1hajOn + mb>% M0mp-H9Q (pr

Как рассчитать значение Vce в транзисторе

Транзисторы являются строительными блоками современной электронной эры.Они работают как небольшие усилители, которые усиливают электрические сигналы по мере необходимости для облегчения работы схемы. Транзисторы состоят из трех основных частей: базы, коллектора и эмиттера. Параметр транзистора «Vce» означает напряжение, измеренное между коллектором и эмиттером, что чрезвычайно важно, поскольку напряжение между коллектором и эмиттером является выходным сигналом транзистора. Более того, основная функция транзистора заключается в усилении электрических сигналов, и Vce представляет результаты этого усиления.По этой причине Vce является наиболее важным параметром при проектировании схем транзисторов.

    Найдите значение напряжения коллектора (Vcc), резисторов смещения (R1 и R2), резистора коллектора (Rc) и резистора эмиттера (Re). Используйте схему транзистора на веб-странице Learning About Electronics (см. Ссылку в разделе Ресурсы) в качестве модели того, как эти параметры схемы подключаются к транзистору. Обратитесь к электрической схеме вашей транзисторной схемы, чтобы найти значения параметров.Для наглядности предположим, что ваш Vcc составляет 12 вольт, R1 – 25 кОм, R2 – 15 кОм, Rc – 3 кОм и Re – 7 кОм.

    Найдите значение бета для вашего транзистора. Бета – это текущий коэффициент усиления или коэффициент усиления транзистора. Он показывает, насколько транзистор усиливает базовый ток, то есть ток, который появляется на базе транзистора. Бета – это константа, которая для большинства транзисторов находится в диапазоне от 50 до 200. См. Паспорт транзистора, предоставленный производителем.Найдите в таблице данных фразу «коэффициент усиления по току», «коэффициент передачи по току» или переменную «hfe». При необходимости обратитесь к производителю транзистора для получения этого значения. Для наглядности предположим, что бета равно 100.

    Рассчитайте номинал базового резистора Rb. Базовый резистор – это сопротивление, измеренное на базе транзистора. Это комбинация R1 и R2, как указано формулой Rb = (R1) (R2) / (R1 + R2). Используя числа из предыдущего примера, уравнение работает следующим образом:

    Rb = [(25) (15)] / [(25 + 15)] = 375/40 = 9.375 кОм.

    Рассчитайте базовое напряжение Vbb, которое представляет собой напряжение, измеренное на базе транзистора. Используйте формулу Vbb = Vcc * [R2 / (R1 + R2)]. Используя числа из предыдущих примеров, уравнение работает следующим образом:

    Vbb = 12 * [15 / (25 + 15)] = 12 * (15/40) = 12 * 0,375 = 4,5 вольт.

    Рассчитайте ток эмиттера, то есть ток, протекающий от эмиттера к земле. Используйте формулу Ie = (Vbb – Vbe) / [Rb / (Beta + 1) + Re], где Ie – переменная для тока эмиттера, а Vbe – это напряжение от базы к эмиттеру.Установите Vbe на 0,7 В, что является стандартом для большинства транзисторных схем. Используя числа из предыдущих примеров, уравнение работает следующим образом:

    Ie = (4,5 – 0,7) / [9,375 / (100 + 1) + 7000] = 3,8 / [92,82 + 7000] = 3,8 / 7,092 = 0,00053 ампер.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *