Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) (видео)

 Светодиоды - это современные, экономичные, надежные радиоэлементы, применяемые для световой индикации. Мы думаем об этом знает каждый и все! Именно исходя из этого опыта, столь высоко желание применить именно светодиоды, для конструирования самых различных электрических схем, как в бытовой электронике, так и для автомобиля. Но здесь возникают определенный трудности. Ведь самые распространенные светодиоды имеют напряжение питания 3…3,3 вольта, а бортовое напряжение автомобиля в номинале 12 вольт, при этом порой поднимается и до 14 вольт. Само собой здесь всплывает закономерное умозаключение, что для подключения светодиодов к 12 вольтовой сети машины, необходимо будет понизить напряжение. Именно этой теме, подключению светодиода к бортовой сети автомобиля и понижению напряжения, будет посвящена статья.

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

 Прежде, чем перейти к конкретным схемам и их описаниям, хотелось бы сказать о двух принципиально разных, но возможных вариантах подключения светодиода к 12 вольтовой сети.

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю - светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери.

То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения. А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод. Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло.

А это актуально! Но что сделать, таков уж принцип их работы. В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло. Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

 Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле.  14,5-3,3= 11,2 вольта. То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод.  Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается. R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле  P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.
 Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

 Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети.  К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV. Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

 Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт. Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.
Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор. Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен. По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно. Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные - завышенные.

 О применение аналогичных микросхем мы уже рассказывали в статье "Зарядное устройство на 5 вольт в машине". Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

 Подводя итог о подключении светодиода к 12 вольтовой сети можно сказать о простоте выполнения схемотехники. Как со случаем где применяется резистор, так и с микросхемой – стабилизатором. Все это легко и просто. По крайней мере, это самое простое, что может вам встретиться в электронике. Так что осилить подключение светодиода к бортовой сети машины в 12 вольт  должен каждый и наверняка. Если уж и это не «по зубам», то за более сложное и вовсе браться не следует.

Видео по подключению светодиода к сети в автомобиле

... а теперь чтобы вам было легче прикинуть какой номинал сопротивления нужен и какой мощностью для вашего конкретного случая, можете воспользоваться калькулятором подбора резистора

Расчет ограничивающего ток резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Будем полагать что вы знаете что такое светодиод и какие они бывают.

Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный - 1,8...2В;
  • зеленый и желтый - 2...2,4В;
  • белые и синие - 3...3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем - 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит - Uсвет = 5В - 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит - Uсвет = 5В - 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Как подключить диоды в автомобиле?

Инструкция о том, как правильно подобрать сопротивление в цепи, чтобы диоды не перегорали Просмотров: 22255

Очень часто мы видим на дорогах автомобили с полусгоревшими ангельскими глазками или ДХО, часть диодов на которых не светится, а другая часть неприятно моргает. Наверняка эти водители очень расстроены «качеством» диодов и лично для себя поставили точку в их использовании. Но если бы они знали – как мало нужно было сделать чтобы светодиоды не перегорали и не моргали. А именно, нужно было провести элементарный расчёт тока в сети и подключить всё правильным образом.

Расчет и подключение светодиодов.

Светодиод - это полупроводниковый прибор. Поэтому, при его включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод ("минус"), а другой - анод ("плюс"). Светодиод будет "гореть" только при прямом включении. При обратном включении светодиод "гореть" не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется "рабочей" зоной, так как именно здесь обеспечивается работа светодиода.

Рассмотрим схему подключения одного светодиода и формулу расчета резистора (резистор может быть припаян к любому из контактов):

где Uпит – напряжение источника питания, Uпр – прямое максимальное напряжение светодиода, Iпр – прямой максимальный ток.
Для примера, рассмотрим каталог светодиодов:
Возьмем произвольный светодиод. Напряжение питания 13,6 В (Так как при работе автомобиля за счёт генератора напряжение немного выше стандартных 12 В ). Рассмотрим параметры обычного среднего светодиода. Прямой ток 5мА (0,005А). Максимальное прямое напряжение - 2,8 В. Подставим данные в формулу:

Однако нельзя забывать, что производители резисторов изготавливают их с определёнными номиналами, так что ровно на 2160 Ом возможно не удастся найти, но ближайший к этому значению будет 2200 Ом. Кроме расчета сопротивления нужно вычислить рассеиваемую на нем мощность по формуле:

Исходя из этого, при подключении светодиода АЛ102АМ к источнику питания с напряжением 13,6 В. нам потребуется резистор с сопротивлением 2,2 кОм на 0,125 Вт.
Теперь рассмотрим последовательное соединение нескольких светодиодов по формуле, которая имеет следующий вид:


где N –число подключенных светодиодов. Чтобы схема работала, необходимо соблюдение условия Uист > N•Uпр . Вследствие этого неравенства можно определить максимальное количество светодиодов при последовательном подключении:

Пример 1
Вновь используем светодиод c Uпр = 2,8 В. Вычислим максимальное количество светодиодов, которое можно последовательно подключить в цепь с источником питания 13,6 В. Воспользуемся формулой Nmax = INT(Uист/Uпр) = INT(13,6 / 2,8) = INT(4,85) = 4. В итоге получаем целое число 4 и остаток 0,85, который отбрасываем. Теперь рассчитаем резистор при максимальном количестве светодиодов. Используем формулу:

Процесс расчета резистора при параллельном подключении светодиодов ничем не отличается от первой схемы! Та же самая школьная физика

Но справедливости ради стоит отметить, что правильное сопротивление это ещё пол беды. Есть вторая проблема – микроперепады напряжения в сети. Если машина уже имеет небольшой износ, то есть вероятность, что штатный стабилизатор напряжения допускает небольшие перепады, которые могут с лёгкостью «погубить» вашу подсветку. В этом случае рекомендуем воспользоваться стабилизатором напряжения. Более подробную информацию о нём можно почитать здесь.

Полный каталог светодиодов с техническими характеристиками(сила тока, напряжение и т.д.) можно посмотреть здесь

Пример 2

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В

Iсветодиода = 20 мА = 0. 02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

Пример 3

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов.

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uгасящее = Uпитания – N * Uсветодиода

Uпитания = 15 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 4

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.


R = Uгасящее/Iсветодиода

Uгасящее = Uпитания – N * Uсветодиода

Uпитания= 7 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 5

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 Вольта 20 мА
2-ой зеленый напряжение 2.5 Вольта 20 мА
3-ий синий напряжение 3 Вольта 50 мА
4-ый белый напряжение 2. 7 Вольта 50 мА
5-ый желтый напряжение 3.5 Вольта 30 мА

Разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый


рассчитываем для каждой ветви резисторы:

R = Uгасящее/Iсветодиода

Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

Аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

Важно! Если в расчёте получилось сопротивление с дробным значением, для котрого нет подходящего резистора - возьмите резистор с запасом (сопротивлением чуть больше)!

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.


Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристика Длина волны, нМ Напряжение, В
Инфракрасныеот 760 до 1,9
Красные610 — 760 от 1,6 до 2,03
Оранжевые590 — 610 от 2,03 до 2,1
Желтые570 — 590 от 2,1 до 2,2
Зеленые500 — 570от 2,2 до 3,5
Синие450 — 500 от 2,5 до 3,7
Фиолетовые400 — 450 2,8 до 4
Ультрафиолетовыедо 400 от 3,1 до 4,4
Белыеширокий спектр от 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.


Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1…Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.


Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн. п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.


Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.


Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Всего наилучшего! До новых встреч на сайте Raschet.info.

Как подключить светодиод к 12 вольтам, светодиоды 12 вольт


Как подключить светодиод к 12 вольтам? Также просто, как и к 9-ти. Подключение светодиодов к источникам питания производится через ограничивающий резистор. Вся проблема и состоит в правильном расчёте сопротивления для светодиода.

Светодиоды 12 вольт

При подключении светодиода к 12 вольтам вначале выясняем, что за светодиод нам надо подключить. Как правило, у обычных светодиодов падение напряжения на них составляет 2 вольта (у синих и белых по 4 вольта). Также надо знать рабочий ток светодиода. Это, как правило, 10 или 20 мА. Мы будем считать, что у нас красный светодиод, требующий 2 вольта питания и ток 20 мА.

При падении напряжения на светодиоде 2 вольта при 12 вольт-м питании у нас остаётся 10 вольт, которые нам надо погасить резистором. Надо рассчитать его сопротивление.

R = U / I

Получаем 10 / 0.02 = 500 ом. Находим ближайшее большее значение номинала резистора по ряду Е24 (самый распространённый) - 510 ом. Это ещё не всё. Для надёжной работы этой схемы необходимо рассчитать мощность резистора. Мощность - это напряжение, умноженное на ток.

P = U * I

Т.е. напряжение, падающее на резисторе (10 В) умножаем на ток, текущий через него (0.02 А) и получаем 10 * 0.02 = 0.2 Вт или 200 мВт. Стандартный больший номинал резисторов - 0.25 Вт. Всё.

Если мы, к примеру, захотим подключить два светодиода к 12 вольтам, то всё почти также.

Разница будет только в том, что на двух светодиодах будет падать не 2, а уже 2 * 2 = 4 вольта. Т.о. на резистор останется 12 -4 = 8 вольт. Дальше всё также. Сопротивление резистора R = 8 / 0.02 = 400 ом. Ближайшее большее значение по Е24 - 430 ом. Мощность 8 * 0.02 = 0.16 Вт. Ближайшее большее значение такое же, как и в предыдущем примере - 0.25 Вт. Всё просто. Кстати, где поставить резистор, не имеет никакого значения. Со стороны анода, или катода, или, в случае с несколькими светодиодами, между ними.
И не светите яркими светодиодами в глаза. Это опасно.

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

 При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире.
 Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

 Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

 Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

 

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

 

(...как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не  стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

 

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

 Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье "Драйвер для светодиодов (светодиодной лампы)".

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений - первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Подключение светодиода к 12 В

Подключение светодиода к источнику питания 12 В может быть осуществлено несколькими способами. Первым вариантом решения задачи является увеличение последовательно соединенных светодиодов в цепи. Второй способ связан с применением токоограничивающего резистора.

Рассмотрим оба способа.

Расчет резистора на примере одного светодиода

Большинство светодиодов имеют прямое падение напряжения при допустимом токе 1,8 – 3,6 В. Следовательно, для подключения к источнику 12 В нам необходимо понизить напряжение на светодиоде, в противном случае он сгорит. Это выполняется при помощи токоограничивающего резистора. При правильно подобранном сопротивлении которого светодиод будет работать исправно. Чтобы узнать где катод, а где анод светодиода прочтите эту статью.

Допустим, что у нас имеется белый светодиод, параметры которого следующие:

Расчет резистора проводится согласно следующей формуле:

где Uп – это напряжение питания, Uсв – прямое падение напряжения на светодиоде, а  I – ток светодиода, 0,75 – коэффициент надежности светодиода.

Если неизвестен ток светодиода, но известна его мощность, формула приобретает вид:

В нашем случае, ток светодиода известен.

Исходя из наших расчетов, нам необходим ближайший по номиналу резистор на 620 Ом. В случае если рассчитанное сопротивление выйдет таким, что резистор подобрать будет сложно, то есть смысл использовать несколько параллельно соединенных резисторов.

Чтобы резистор не сгорел, необходимо правильно подобрать его по мощности. Для этого сделаем расчет мощности выделяемой на резисторе.

Рассчитываем сопротивление светодиода:

Затем рассчитываем общий ток в цепи с учетом добавленного сопротивления резистора:

Подставляем получившееся значение в формулу мощности постоянного тока:

Делаем вывод, что нам нужен резистор, рассчитанный как минимум на 0,25 Вт мощности. Если у вас не имеется такого резистора под рукой, можно выйти из ситуации при помощи двух подключенных параллельно резистора по 0,125 Вт каждый или просто поставив увеличить номинал резистора на 15-20%(в данном случае это возможно, но при этом яркость светодиода снизится).

Подключение 3-х светодиодов к 12 В

Подключение трех светодиодов к источнику питания 12 В, позволяет использовать резистор с меньшей мощностью, так как суммарное падение напряжения на трех светодиодах будет больше в 3 раза.

Допустим, что у нас имеется желтый светодиод со следующими параметрами:

Рассчитаем сопротивление балластного резистора по уже известной формуле:

Ближайший резистор, подходящий по номиналу 510 Ом, определим требуемую мощность

Рассчитываем сопротивление светодиода:

Общий ток в цепи с учетом добавленного сопротивления резистора:

Подставляем получившееся значение в формулу мощности постоянного тока:

По сравнению с предыдущим примером, в данном случае нам требуется менее мощный резистор, а значит, выбираем на 0,125 Вт.

Данная схема подключения используется в светодиодных лентах на 12 В, с той лишь разницей, что там таких цепочек несколько и между собой они соединены параллельно.

Этот способ имеет существенный недостаток – при сгорании одного из светодиодов, остальные перестают работать.

  • Просмотров:
  • Закон

    Ом - Зачем нужны резисторы в светодиоде

    Светодиод - это диод, сделанный из полупроводникового материала, который генерирует фотоны света, когда через материал протекает ток. Чем больше ток через светодиод, тем больше света будет излучать светодиод, тем он будет ярче. Однако существует верхний предел - величина тока, достаточная для повреждения светодиода.

    Светодиод оказывает небольшое сопротивление протекающему через него току. Большая часть небольшого сопротивления, которое он предлагает, происходит из-за потери энергии из-за излучаемого света, а генерация фотонов настолько эффективна, что сопротивление довольно незначительно.Однако по мере увеличения тока, увеличения количества света, светодиод в какой-то момент выйдет из строя, потому что количество тока, проходящего через светодиод, вызывает повреждение материала. При достаточно большом токе катастрофическое испарение материала может привести к небольшому взрыву внутри внешней оболочки светодиода. При более низких уровнях тока в цифровых схемах 3,3 В или 5 В наиболее вероятным результатом является отказ полупроводникового материала и прекращение проводимости, а светодиод больше не светится.

    Как напряжение цепи влияет на потребление тока светодиодами? Поскольку светодиод - это тип диода, уравнение диода Шокли описывает ток, который диод допускает при различных уровнях напряжения. Уравнение показывает, что результаты функции Шокли для заданного диапазона напряжений следует экспоненциальной кривой. Это означает, что небольшие изменения напряжения могут привести к большим изменениям тока. Таким образом, использование светодиода в простой цепи, напряжение которой выше, чем прямое напряжение светодиода, может привести к тому, что светодиод будет потреблять на удивление больше тока, чем рекомендуемые уровни, что приведет к отказу светодиода.

    См. Тему «Светодиодная цепь» в Википедии, а также «Уравнение диода Шокли» в Википедии.

    Итак, идея состоит в том, чтобы спроектировать схему светодиода так, чтобы ограничить количество тока, протекающего через светодиод. Мы хотим сбалансировать наличие достаточного тока, чтобы обеспечить желаемый уровень яркости, не имея такого большого значения, чтобы светодиодный материал выходил из строя. Самый распространенный метод ограничения тока - это добавление в схему резистора.

    Светодиод должен иметь технический паспорт, в котором описаны электрические характеристики светодиода и допуски.Например, см. Этот технический паспорт Номер модели: YSL-R531R3D-D2.

    Первые характеристики, которые нас интересуют, это (1) максимальный ток, который светодиод может выдержать до того, как возможен отказ материала, приводящий к отказу светодиода, и (2) каков рекомендуемый диапазон тока. Эти и другие максимальные значения для типичного стандартного красного светодиода (разные светодиоды будут иметь разные значения) приведены в таблице, дублированной ниже.

    В таблице технических данных для этого стандартного красного светодиода мы видим, что максимальный ток составляет 20 мА, а рекомендуемый диапазон - от 16 мА до 18 мА.Этот рекомендуемый диапазон - это ток, при котором светодиоды должны быть максимально яркими, без риска повреждения материала. Мы также видим, что номинальная рассеиваемая мощность составляет 105 мВт. Мы хотим быть уверены в том, что при проектировании нашей схемы светодиодов мы придерживаемся этих рекомендуемых диапазонов.

    В следующей таблице мы находим значение прямого напряжения для светодиода 2,2 В. Значение прямого напряжения - это падение напряжения при протекании тока через светодиод в прямом направлении от анода к катоду. См. Что такое «прямое» и «обратное» напряжение при работе с диодами ?.

    Если бы мы использовали этот светодиод в цепи с напряжением 2,2 В и током 20 мА, тогда светодиод будет рассеивать 44 мВт, что находится в пределах нашей зоны безопасности по рассеянию мощности. Если ток изменится с 20 мА до 100 мА, рассеиваемая мощность будет в 5 раз больше или 220 мВт, что намного выше номинальной рассеиваемой мощности 105 мВт для светодиода, поэтому можно ожидать, что светодиод выйдет из строя. Посмотрите, что происходит с моим светодиодом, когда я подаю слишком большой ток ?.

    Для уменьшения тока через светодиод до рекомендуемых уровней введем в схему резистор.Какой номинал резистора мы должны использовать?

    Мы рассчитываем номинал резистора, используя закон Ома, В = I x R . Однако мы сделаем алгебраическое преобразование, потому что мы хотим найти сопротивление, а не напряжение, поэтому вместо этого мы используем формулу R = V / I .

    Значение I, тока в амперах, довольно очевидно, давайте просто используем рекомендуемый минимум 16 мА или 0,016 А из таблицы данных светодиода в преобразованной формуле. Но какое значение мы должны использовать для вольт, В?

    Нам нужно использовать падение напряжения на резисторе, которое является вкладом резистора в общее падение напряжения во всей цепи.Таким образом, нам нужно будет вычесть вклад падения напряжения светодиода из общего напряжения цепи, чтобы определить вклад падения напряжения, необходимый для резистора. Падение напряжения светодиода - это значение прямого напряжения, падение напряжения в прямом направлении от анода к катоду, из таблицы выше.

    Для стандартного проекта Raspberry Pi, использующего шину 3,3 В в качестве источника питания, расчет будет (3,3–2,2 В) / 0,016 А = 69 Ом (округление до 68,75 в большую сторону)

    Итак, почему обычно используется сопротивление резистора, например 200 Ом, если в расчетах указано 69 Ом?

    Простой ответ заключается в том, что резистор на 200 Ом - это обычный резистор, включенный во многие экспериментальные наборы.Мы хотим использовать общий резистор, если свет, излучаемый светодиодом, не будет заметно уменьшаться.

    Итак, если мы заменим резистор 69 Ом на резистор 200 Ом, как изменится ток? Опять же, на этот раз мы используем закон Ома для определения тока в цепи, I = V / R или 3,3 В / 200 Ом = 0,0165 A , и когда мы смотрим на таблицу данных светодиода, мы видим, что это значение находится в рекомендуемый диапазон от 16 мА до 18 мА, поэтому светодиод должен быть достаточно ярким.

    Действительно ли мне нужны резисторы при управлении светодиодами с помощью Arduino?

    40 участок,

    Я должен сказать, что управление светодиодом без резистора НЕ РЕКОМЕНДУЕТСЯ, если вы не знаете, что делаете.Однако, если вы понимаете, как ведет себя светодиод, вы можете безопасно управлять им без резистора. На самом деле, часто лучше управлять светодиодом без токоограничивающего резистора.

    Зачем управлять светодиодом без резистора? Просто, чтобы сделать вашу схему более энергоэффективной.

    Следует ли управлять светодиодом с ШИМ, установленным на постоянный рабочий цикл (т.е. 5 В ШИМ при рабочем цикле 34% для достижения среднего напряжения 1,7 В)?

    Да и нет. Использование ШИМ может работать так же хорошо, как и приложение определенного напряжения (если вы будете осторожны), но есть способы получше.О чем следует беспокоиться при использовании подхода ШИМ.

    1. Важна частота ШИМ. При использовании ШИМ в этом сценарии вы полагаетесь на способность компонентов вашей схемы временно обрабатывать большие токи. Больше всего вас беспокоит то, как светодиод справляется с временным высоким током и как выходная цепь вашего чипа может справиться с временным высоким током. Если эта информация не указана в даташите, значит, авторы даташита были ленивы. НО!!! Если эта информация указана в таблице данных, вы можете безопасно воспользоваться ею.Например, светодиод, который у меня рядом, имеет максимальный ток 40 мА. Тем не менее, он также имеет рейтинг «пикового прямого тока» 200 мА с примечанием, что ток не может оставаться на уровне 200 мА дольше 10 мкс. Таааааааааааааааааааааач ... Я могу управлять светодиодом с напряжением 1,7В (типичное прямое напряжение для светодиодов из таблицы). При рабочем цикле 34% и источнике питания 5 В (34% от 5 В = 1,7 В) среднее напряжение составляет 1,7 В, мне просто нужно убедиться, что время включения ШИМ составляет 10 мкс или меньше. Во время работы ток через светодиод, вероятно, вырастет примерно до 58 мА (58 мА = типичное потребление тока при 1.7В моего диода делят на 34%). 58 мА превышают максимальный постоянный ток моих светодиодов 40 мА на 18 мА. Наконец ... мне понадобится частота ШИМ 33,3 кГц или выше, чтобы безопасно управлять моим светодиодом (33,3 кГц = обратная величина [10 мкс времени включения, деленная на 34%, чтобы получить период ШИМ]). В РЕАЛЬНОСТИ я мог безопасно использовать ШИМ для питания моего светодиода с более медленной частотой ШИМ. Причина в следующем: в таблицах данных обычно не указываются все допустимые сценарии работы компонента. Они не описывают эти сценарии, потому что поставщик не хочет тратить время на определение и поддержку использования своего компонента для угловых вариантов использования.Например, с моим светодиодом, если я могу постоянно работать со светодиодом при 40 мА (40 мА - это максимальный постоянный ток), и я могу работать со светодиодом при 200 мА в течение 10 мкс. Тогда я могу быть на 99,99999% уверен, что могу безопасно управлять светодиодом при 100 мА в течение некоторого периода, превышающего 10 мкс, возможно, близкого к 20 мкс.

    ПРИМЕЧАНИЕ. Все компоненты могут безопасно справляться с временными пиками тока, превышающими их максимальные номинальные значения, пока продолжительность пиков тока составляет ДОСТАТОЧНО МАЛЕНЬКАЯ . Некоторые компоненты будут более снисходительными, чем другие, и, если вам повезет, в таблице данных компонента будет указано, насколько хорошо он может справляться с всплесками тока.

    1. Напряжение вашего ШИМ важно. Я продемонстрирую свою точку зрения на примере, а не через объяснение. Если мы используем светодиод, о котором я говорил ранее, мы знаем, что рабочий цикл 34% при 33,3 кГц и 5 В является безопасным. Однако, если бы наше напряжение составляло 12 В, нам пришлось бы переработать наши расчеты, чтобы сохранить то же количество тока, протекающего через светодиод. Наш рабочий цикл должен упасть до 14,167% (1,7 В, разделенные на 12 В), а минимальная частота ШИМ должна снизиться до 14,285 кГц (обратное значение [10 мкс, разделенное на 14.167%]). ОДНАКО! , это повод для беспокойства. В сценарии 5 В мы применяем 5 В для 10 мкс, а в сценарии 12 В мы применяем 12 В для 10 мкс. Мы увеличили напряжение более чем вдвое за эти 10 мкс, должны быть некоторые последствия. И да, есть! В моем техническом описании светодиодов нет данных, необходимых для того, чтобы знать, какое напряжение я могу использовать в течение 10 мкс, прежде чем я поврежу свой светодиод. Наверняка 1000V на 10us поджарит мой светодиод. Но как мне узнать, поджарит ли мой светодиод 5 В при 10 мкс? или 12 В на 10 мкс? Если для него нет спецификации, вы рискуете.Итак ... 5 В на 10 мкс - это рискованно, но, скорее всего, безопасно.

    ПРИМЕЧАНИЕ. Вы можете добавить в схему конденсатор, чтобы усреднить ШИМ и устранить эту проблему.

    1. Вам необходимо знать возможности выходного контакта, к которому вы также подключили свой светодиод. Самым важным параметром будет максимальный выходной ток. Я считаю, что для Arduino Uno это 40 мА. Вам следует выбрать рабочий цикл ШИМ, при котором среднее напряжение поддерживает ток, проходящий через светодиод, ниже 40 мА.Чтобы узнать, какие напряжения будут производить такой ток, вам нужно взглянуть на кривую ВАХ светодиодов (график зависимости тока от напряжения). Для типичного светодиода напряжение от 0,7 В (типичное минимальное напряжение, необходимое для излучения светодиода) до 1,25 В почти наверняка будет безопасным. Почему 1,25 В, вероятно, безопасно? Что ж, большинство светодиодов не превышает 40 мА при 1,25 В даже без токоограничивающего резистора. Еще одна вещь, помогающая защитить кого-то в случае, если они прикладывают слишком большое напряжение, заключается в том, что цифровая выходная цепь Arduino будет иметь собственное выходное сопротивление, это выходное сопротивление будет низким, но даже выходное сопротивление 20 Ом обеспечит значительную количество защиты.Arduino uno имеет сопротивление цифрового выхода около 250 Ом. Короче говоря, если вы управляете светодиодом, используя ШИМ при 1,0 В на высокой частоте, для обычного светодиода нет никаких шансов, что вы повредите свой цифровой выход на Arduino Uno.

    2. ШИМ-подход управляет светодиодом по разомкнутому контуру (как и при использовании источника питания 1,7 В без ШИМ). Вы прикладываете к светодиоду среднее напряжение , которое является правильным значением для включения светодиода, но недостаточно высоким, чтобы повредить светодиод.К сожалению, диапазон напряжения от включенного (и достаточно яркого, чтобы видеть) до поврежденного светодиода очень мал (этот диапазон на моем светодиоде составляет около 0,7 В). Есть несколько причин, по которым 1,7 В, которые вы думаете, что вы применяете, не всегда будет 1,7 В ...

    а. Изменения температуры окружающей среды. Что делать, если у вас есть драйвер двигателя, регулятор напряжения и т. Д. В закрытой коробке, в которой также находится светодиод. Эти другие компоненты нередко повышают температуру внутри корпуса с 25 ° C до 50 ° C.Это повышение температуры ИЛИ изменит поведение вашего светодиода, вашего регулятора напряжения и т. Д. Когда-то безопасное 1,7 В перестанет быть 1,7 В, а светодиод, который раньше жарил при 2,5 В, теперь будет жариться при 2,2 В.

    г. Изменения напряжения питания. Что, если бы вашим источником питания был аккумулятор. По мере разряда батареи напряжение значительно падает. Что, если вы спроектировали свою схему так, чтобы она хорошо работала со слегка использованной батареей 9 В, но затем вы добавили новую батарею на 9 В. Новые свинцово-кислотные батареи на 9 В обычно имеют фактическое напряжение 9 В.5В. В зависимости от схемы, которая обеспечивает 5 В, используемое для ШИМ, эти дополнительные 0,5 В могут повысить ваши 5 В ШИМ до 5,3 В. Что, если бы вы использовали аккумуляторную батарею? У них есть еще больший диапазон напряжений на протяжении всего цикла разряда.

    г. Есть и другие сценарии, например, индуцированный ток от электромагнитных помех (двигатели будут делать это).

    Наличие токоограничивающего резистора избавляет вас от многих из этих проблем.

    Использование ШИМ для управления светодиодом - не очень хорошее решение. Есть ли лучший способ, при котором не требуется резистор ограничения тока?

    Да! Делайте то, что они делают в светодиодных лампах для вашего дома.Управляйте светодиодом с помощью регулятора тока. Установите регулятор тока на управление током, на который рассчитан ваш светодиод.

    При правильном контроллере тока его можно значительно увеличить, и вы можете безопасно управлять светодиодом, не беспокоясь о большинстве проблем, связанных с разомкнутым контуром управления светодиодом.

    Обратная сторона: Вам нужен регулятор тока, и вы увеличили сложность схемы в 10 раз. Но не расстраивайтесь. Вы можете купить микросхемы контроллера тока, микросхемы драйверов светодиодов или сделать свой собственный повышающий преобразователь с управляемым током.Это не так уж и сложно. Выделите немного времени в своем плотном графике и узнайте о повышающих и понижающих преобразователях. Узнайте об импульсных источниках питания. Именно они питают ваш компьютер, и они чрезвычайно энергоэффективны. Затем либо создайте ее с нуля, либо купите недорогую микросхему, которая сделает большую часть работы за вас.

    Конечно, как и во всех электронных схемах, вы всегда можете сделать больше вещей, чтобы улучшить вашу схему. Ознакомьтесь с рисунком 3 в следующем PDF-файле, чтобы увидеть, насколько сложной в наши дни может быть даже бытовая светодиодная лампа...

    http://www.littelfuse.com/~/media/electronics/design_guides/led_protectors/littelfuse_led_lighting_design_guide.pdf.pdf

    Итого: Вы должны решить для себя, на какой риск вы готовы пойти со своей схемой. Использование 5V PWM для управления светодиодом, вероятно, будет работать нормально (особенно если вы добавите конденсатор для сглаживания прямоугольной волны PWM и максимальной частоты PWM). Не бойтесь выводить свою электронику за пределы их обычных условий эксплуатации, просто будьте в курсе, когда вы это делаете, знайте, на какие риски вы идете.

    Наслаждайтесь!

    FYI: Меня удивляет, как много людей сразу же переходят к ответу: «ВЫ ДОЛЖНЫ ИСПОЛЬЗОВАТЬ ОГРАНИЧИТЕЛЬНЫЙ РЕЗИСТОР ТОКА». Это благие намерения, но слишком безопасный совет.

    Орт

    Почему резистор должен быть на аноде светодиода?

    Посмотрите еще раз на книгу Forrest Mims III . Он не утверждает, что резисторы должны быть на аноде, и есть примеры, когда они находятся на катоде. В моей книге 1988 года серийная защита светодиодов представлена ​​на P.69:

    ЦЕПЬ ПРИВОДА СИД

    - Поскольку светодиоды зависят от тока, обычно необходимо защитить их от чрезмерного тока с помощью последовательного резистора. Некоторые светодиоды имеют встроенный резистор. Скорее не .

    Затем дается формула о том, как рассчитать сопротивление по напряжению питания и прямому току светодиода. На прилагаемой схеме резистор установлен на аноде, но не объясняется, что выбор произвольный.

    Однако на той же странице представлено устройство «индикатор полярности светодиода», в котором два последовательно соединенных светодиода совместно используют резистор, который обязательно находится на аноде одного и катоде другого.В «трехпозиционном индикаторе полярности» ограничительный резистор находится на стороне питания, а не на стороне земли.

    Обычно в некотором смысле лучше (если есть выбор), чтобы важное устройство было подключено к земле, а окружающие аксессуары, такие как резисторы смещения, были на стороне питания.

    В цепях высокого напряжения выбор между нагрузкой со стороны питания или со стороны земли имеет значение с точки зрения безопасности. Например, следует ли поместить выключатель света на горячую сторону лампы или на нейтраль? Если вы подключаете выключатель так, чтобы свет выключался путем прерывания возврата нейтрали, это означает, что патрон лампочки постоянно подключен к горячему! Это означает, что если кто-то выключит выключатель перед заменой лампы, на самом деле это не безопаснее; главная панель должна использоваться для фактического разрыва горячего соединения с розеткой.В цепи батареи нет защитного заземления: минусовая клемма произвольно обозначена как общий возврат, а слово «земля» используется для этого общего.

    Является ли устройство нагрузки стороной заземления или стороной питания, также имеет значение, если напряжение от устройства передается в какую-либо другую цепь, где оно используется для какой-либо цели. Светодиод 1,2 В, анод которого подключен к 5 В, будет обеспечивать показание 3,8 В с катода, если течет ток. Если вместо этого катод заземлен, то анод будет обеспечивать 1.2В чтение. Таким образом, размещение резистора не имеет значения, только если такой ситуации не существует в схеме: нет третьего соединения с переходом между резистором и светодиодом, которое оказывает влияние на какую-либо другую схему.

    Основы

    : Подбор резисторов для светодиодов

    Итак ... вы просто хотите зажечь светодиод. Какой резистор использовать?

    Может быть, вы знаете ответ, или, может быть, все уже считают, что вы должны знать, как добраться до ответа.В любом случае, это вопрос, который вызывает больше вопросов, прежде чем вы действительно сможете получить ответ: какой тип светодиода вы используете? Какой блок питания? Батарея? Плагин? Часть более крупной схемы? Ряд? Параллельно?

    Игра со светодиодами должна доставлять удовольствие, и выяснение ответов на эти вопросы на самом деле является частью забавы. Есть простая формула, которую вы используете для выяснения этого - закон Ома. Эта формула: В = I × R , где В, - напряжение, I - ток, а R - сопротивление.Но как узнать, какие числа использовать в этой формуле, чтобы получить правильное значение резистора?

    Чтобы получить В в нашей формуле, нам нужно знать две вещи: напряжение нашего источника питания и напряжение наших светодиодов.

    Начнем с конкретного примера. Предположим, что мы используем держатель батареек 2 × AA (например, этот из нашего магазина), который обеспечит нас питанием 3 В (с двумя последовательно соединенными элементами AA 1,5 В; мы складываем напряжения), и мы планирую подключить желтый светодиод (как один из этих).

    Светодиоды

    имеют характеристику, называемую «прямое напряжение», которая часто обозначается в технических данных как Vf. Это прямое напряжение представляет собой величину напряжения, «потерянного» в светодиоде при работе с определенным опорным током, обычно определяемым как около 20 миллиампер (мА), то есть 0,020 ампер (А). Vf зависит в первую очередь от цвета светодиода, но на самом деле немного отличается от светодиода к светодиоду, иногда даже в пределах одного пакета светодиодов. Стандартные красные, оранжевые, желтые и желто-зеленые светодиоды имеют Vf около 1,8 В, тогда как чисто зеленые, синие, белые и УФ-светодиоды имеют Vf около 3.3 В. Итак, падение напряжения у нашего желтого светодиода будет около 1,8 В.

    В в нашей формуле находится путем вычитания прямого напряжения светодиода из напряжения источника питания.

    3 В (источник питания) - 1,8 В (падение напряжения на светодиодах) = 1,2 В

    В этом случае у нас осталось 1,2 В, которые мы подключим к нашей формуле V = I × R .

    Следующее, что нам нужно знать, это I , который является током, на котором мы хотим управлять светодиодом.Светодиоды имеют максимальный номинальный непрерывный ток (часто обозначается как If или Imax в таблицах данных). Часто это около 25 или 30 мА. На самом деле это означает, что типичное значение тока, к которому нужно стремиться со стандартным светодиодом, составляет от 20 мА до 25 мА, что немного ниже максимального тока.

    Помимо: Вы всегда можете дать светодиоду меньше тока . Работа светодиода, близкая к номинальному максимальному току, дает вам максимальную яркость за счет рассеиваемой мощности (тепла) и времени автономной работы (если, конечно, вы разряжены).) Если вы хотите, чтобы ваши батареи прослужили в десять раз дольше, вы можете просто выбрать ток, который составляет только одну десятую от номинального максимального тока.

    Итак, 25 мА - это «желаемый» ток - то, что мы надеемся получить, когда выбираем резистор, а также I , который мы подключим к нашей формуле V = I × R .

    1,2 В = 25 мА × R

    или перефразируя:

    1,2 В / 25 мА = R

    и когда мы решаем это, получаем:

    1.2 В / 25 мА = 1,2 В / 0,025 А = 48 Ом

    Где «48 Ом» - 48 Ом. (Единицы измерения таковы, что 1 В / 1 А = 1 Ом; один вольт, разделенный на один ампер, равен одному ому. Если вы имеете дело с током в мА, преобразуйте его в А, разделив на 1000.)

    Наша версия формулы теперь выглядит так:

    (напряжение источника питания - напряжение светодиода) / ток (в амперах) = требуемое значение резистора (в омах)

    Получаем сопротивление резистора 48 Ом. И это хорошее значение пускового резистора для использования с желтым светодиодом и источником 3 В.

    Давайте на мгновение посмотрим на номиналы резисторов. Резисторы обычно доступны в таких номиналах, как 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 51 Ом, 56 Ом, 68 Ом, 75 Ом и 82 Ом. (и их кратные 510 Ом, 5,1 кОм, 51 кОм и т. д.), и (если вы не укажете более высокую точность при совершении покупок) имеют значение допуска около ± 5%.

    Если вы занимаетесь большим количеством проектов в области электроники, у вас, скорее всего, будет валяться куча резисторов. Если вы только начинаете, возможно, вам захочется приобрести ассортимент, чтобы было что-нибудь под рукой.Резисторы также рассчитаны на работу с различной мощностью - резисторы, рассчитанные на большую мощность (больше ватт), могут безопасно рассеивать больше тепла, выделяемого внутри резистора. Резисторы на 1/4 ватта, вероятно, являются наиболее распространенными и обычно подходят для простых светодиодных схем, подобных тем, которые мы здесь рассматриваем. (Мы обсуждали рассеяние мощности ранее - обратите внимание на это, когда вы начнете выходить за рамки этих основ.)

    Итак, значение резистора, которое мы вычислили выше, было 48 Ом, что не является одним из наших обычных значений.Но это нормально, потому что мы будем использовать резистор с допуском ± 5%, так что в любом случае это значение не обязательно будет точно таким. На всякий случай мы обычно выбираем следующее более высокое значение, которое у нас есть; 51 Ом в этом примере.

    Давайте подключим:
    батарейный блок на 3 В, резистор 51 Ом и желтый светодиод.

    Это небольшая симпатичная светодиодная схема, но как мы можем сделать это с помощью большего количества светодиодов? Можем ли мы просто добавить еще один резистор и еще один светодиод? Ну да, в точку.Каждому светодиоду потребуется 25 мА, поэтому нам нужно выяснить, какой ток могут отдавать наши батареи.

    Помимо : Немного покопавшись, можно найти полезный технический справочник (pdf) по щелочным батареям от Energizer. Оказывается, чем сильнее вы их водите, тем быстрее вы их истощаете. Часть этого очевидна: если вы постоянно потребляете 1000 мА из батареи, вы ожидаете, что батарея прослужит 1/10 того времени, как если бы вы потребляли 100 мА. Но на самом деле есть второй эффект, заключающийся в том, что общая выходная энергия батареи (измеряемая в ватт-часах) уменьшается, когда вы приближаетесь к пределу того, какой ток может выдавать батарея.На практике, с щелочными батареями AA, если вы разрядите их при токе 1000 мА, они прослужат только около 1/20 того времени, как если бы вы разрядили их при 100 мА.

    Для нашего одиночного светодиода 25 мА элементы AA прослужат чертовски долго. Если мы запустим четыре светодиода параллельно, потребляя 100 мА, у нас все равно должно получиться довольно приличное время автономной работы. Если ток превышает 500 мА, следует подумать о подключении к розетке. Итак, мы можем добавить несколько наших желтых светодиодов, каждый с собственным резистором 51 Ом, и успешно управлять ими с помощью держателя батареи 2xAA.

    Хорошо, а как насчет батареи на 9 В? Давайте остановимся на желтых светодиодах. Если мы хотим отключить один светодиод от батареи 9 В, это означает, что мы должны потреблять колоссальные 7,2 В с нашим резистором, который должен быть 288 Ом (или ближайшее удобное значение: 330 Ом, в моей мастерской). .

    9 В (питание) - 1,8 В (желтый светодиод) = 7,2 В

    7,2 В / 25 мА = 288 Ом (округлить до 330 Ом)

    Использование резистора для падения напряжения любого размера рассеивает эту энергию в виде тепла.Это означает, что мы просто тратим эту энергию на тепло, вместо того, чтобы получать больше света от нашей светодиодной схемы. Итак, можем ли мы использовать несколько светодиодов, соединенных вместе? Да! Давайте соединим четыре светодиода 1,8 В последовательно, в сумме получим 7,2 В. Когда мы вычтем это из напряжения питания 9 В, у нас останется 1,8 В, для чего потребуется только резистор 72 Ом (или ближайшее значение. : 75 Ом).

    9 В - (1,8 В × 4) = 9 В - 7,2 В = 1,8 В

    1,8 В / 25 мА = 72 Ом (затем округляем до 75 Ом)

    Наша обобщенная версия формулы с несколькими последовательно включенными светодиодами:

    [Напряжение источника питания - (напряжение светодиода × количество светодиодов)] / ток = номинал резистора

    Мы даже можем подключить пару цепочек из четырех светодиодов плюс резистор параллельно, чтобы получить больше света, но чем больше мы добавляем, тем больше мы сокращаем срок службы батареи.

    А можно ли сделать пять последовательно с батареей 9 В? Ну, возможно. Значение 1,8 В, которое мы использовали, является всего лишь «типичным практическим правилом». Если вы уверены, что прямое напряжение равно 1,8 В, он будет работать. Но что, если это не совсем так? Если прямое напряжение ниже, вы можете перегрузить их при более высоком токе, что может сократить срок их службы (или полностью убить). Если прямое напряжение выше, светодиоды могут быть тусклыми или даже не гореть. В некоторых случаях вы можете последовательно подключить светодиоды без резистора, как в нашей схеме светодиодного обеденного стола, но в большинстве случаев предпочтительнее и безопаснее использовать резистор.

    Давайте сделаем еще один пример, на этот раз с белым светодиодом (вы можете найти его здесь) и батарейным отсеком 3xAA (например, этот). Напряжение источника питания составляет 4,5 В, а напряжение светодиода - 3,3 В. Мы по-прежнему стремимся к току 25 мА.

    4,5 В - 3,3 В = 1,2 В

    1,2 В / 25 мА = 48 Ом (округлить до 51 Ом)

    Итак, вот примеры, которые мы рассмотрели, и еще несколько примеров с некоторыми другими распространенными типами источников питания:

    902

    Ом

    Напряжение источника питания Цвет светодиода Светодиод Vf светодиодов в серии Желаемый ток Резистор (расчетный) Резистор (округлый)
    3 В Красный, желтый или желто-зеленый 1.8 1 25 мА 48 Ом 51 Ом
    4,5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 36 Ом 39 Ом
    4,5 В Синий, Зеленый, Белый или УФ 3,3 1 25 мА 48 Ом 51 Ом
    5 В Синий, Зеленый, Белый или УФ 3,3 1 25 мА 68 Ом 68 Ом
    5 В Красный, желтый или желто-зеленый 1.8 1 25 мА 128 Ом 150 Ом
    5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 56 Ом 56 Ом
    9 В Красный, желтый или желто-зеленый 1,8 4 25 мА 72 Ом 75 Ом
    9 В Синий, Зеленый, Белый или УФ 3,3 2 25 мА 96 Ом

    Все эти значения основаны на тех же предположениях о прямом напряжении и желаемом токе, которые мы использовали в первых примерах.Вы можете проработать их и проверить математику или просто использовать ее как удобную таблицу, если считаете, что наши предположения разумны. 😉

    Так вот, в какой-то момент кто-то мог сказать вам: «Просто воспользуйтесь онлайн-калькулятором светодиодных резисторов». И действительно, такие вещи есть - даже у нас есть одна (ну, версия для печати из бумаги) - так зачем вообще работать над всем этим? Во-первых, гораздо лучше понять, что и почему этот калькулятор делает то, что он делает. Но также почти невозможно использовать эти калькуляторы, если вы не знаете, какие переменные вам нужно будет ввести.Надеюсь, теперь вы сможете вычислить значения, которые вам понадобятся (напряжение источника питания, напряжение светодиода и ток) для использования светодиодного калькулятора. Но что еще более важно (1) он вам на самом деле не нужен: вы можете сделать это сами и (2) если вы его используете, вы можете подвергнуть сомнению основные предположения, которые он может сделать от вашего имени.

    Надеюсь, вы также увидели, что есть гораздо больше, чем просто один способ зажечь светодиод. И мы даже не дошли до таких вещей, как объединение светодиодов разного номинала в цепи! Теперь, можете ли вы вернуться к наклеиванию светодиодов на батареи CR2032, чтобы сделать светодиодные броски? Да, определенно можно.Но вы можете вернуться и прочитать о том, когда вам следует добавить резистор даже в эту маленькую схему!

    Наконец, отметим, что в этой статье мы говорили о вашем основном сквозном маломощном (хотя, возможно, очень ярком) светодиодах. Специализированные типы, такие как светодиоды высокой мощности, могут иметь несколько другие характеристики и требования.

    Обновление : исправлен список общих значений резисторов, чтобы включить более общие значения.

    Резистор до или после светодиода?

    Я только что опубликовал новое видео, где отвечаю на вопрос:

    «Резистор идет до или после светодиода?»

    Если вы не хотите смотреть видео, я прикрепил скрипт ниже, чтобы вы могли его прочитать:

    —————————-
    [СЦЕНАРИЙ ВИДЕО]:

    Это светодиод.

    Если через светодиод проходит слишком большой ток, он перегорает и умирает.

    Значит, для защиты всегда нужен резистор.

    Но в каком порядке?

    Вот в чем дело…

    Неважно!

    Резистор может быть установлен до или после светодиода, и он все равно будет его защищать.

    Вы видите…

    : ток, вытекающий из батареи, всегда равен току, который течет обратно в батарею.

    Итак, в такой схеме - только с одним путем для протекания тока - ток одинаков во всей цепи.

    Ток через резистор такой же, как ток через светодиод.

    Теперь вы можете задаться вопросом - а что же тогда управляет током?

    Светодиод имеет так называемое «прямое напряжение».

    Это падение напряжения на светодиодах при нормальных условиях.

    Типичное прямое напряжение составляет 2 В.

    В цепи с батареей 9 В, светодиодом и резистором у вас будет 2 В.

    Остальное напряжение - 7В - будет на резисторе.

    Закон

    Ома гласит, что ток равен напряжению, деленному на сопротивление.

    Итак, если у вас есть резистор на 1000 Ом, вы получите 7, разделенное на 1000, равное 0,007, что составляет 7 мА.

    Поскольку ток в цепи одинаков, вы также получите через светодиод 7 мА - независимо от того, находится ли резистор до или после светодиода.

    Важен только размер резистора.

    Продолжайте пайку!
    Oyvind @ build-electronic-circuits.com

    LED Circuit Design - Как разработать светодиодные схемы

    Светодиодная схема. Узнайте, как проектировать светодиодные схемы. Как рассчитать размер резистора, как защитить светодиод, сколько времени батарея будет питать цепь, как рассчитать номинальную мощность резистора, как подключить светодиод и многое другое.

    Прокрутите вниз, чтобы посмотреть руководство YouTube.

    LED

    Это светодиоды или светодиоды. Если мы пропустим ток через один, он будет светить. Но если мы превысим его предельное напряжение и ток, он будет немедленно уничтожен. У светодиода есть крошечный провод внутри, он может выдерживать только определенное количество тока, проходящего через него. Когда мы смотрим на разрушаемый светодиод под микроскопом, мы видим, как внутри взрывается крошечный провод. Итак, как нам подключить светодиоды, как уменьшить ток, чтобы светодиоды были в безопасности, и как долго батарея будет питать нашу схему.Об этом мы подробно расскажем в этой статье.

    Светодиодная защита

    Для защиты наших светодиодов мы используем резистор. Резистор затруднит прохождение электронов. Электроны столкнутся, и это приведет к выделению тепла. Резистор нагревается, и мы можем увидеть это с помощью тепловизора. Например, этот имеет температуру более 150 градусов по Цельсию всего при 12 В и токе 6 миллиампер, поэтому мы определенно не хотим этого касаться.

    Резистор можно разместить с любой стороны светодиода.Хотя мы традиционно устанавливаем это на положительную сторону. Причина, по которой его можно установить с любой стороны, заключается в том, что резистор ограничивает количество электронов, протекающих в этой простой последовательной цепи. Резистор действует как пробка, уменьшая количество протекающих электронов. Большинство людей ошибочно полагают, что это действует как лежачий полицейский, и что электроны должны замедляться непосредственно перед резистором, а затем снова ускоряться. Скорость электронов остается постоянной, количество протекающих электронов - вот что меняется.

    Чем выше номинал резистора, тем ниже будет ток, и, следовательно, тем меньше будет светиться светодиод.

    Нам нужно помнить, что светодиоды позволяют току течь только в одном направлении. Положительный полюс подключен к длинному проводу, а отрицательный - к короткому. Если мы подключим светодиод наоборот, он просто заблокирует ток, и светодиод не включится. Вы можете проверить схему самостоятельно, возьмите КРАСНЫЙ светодиод, батарею 9 В, резистор от 360 до 390 Ом, другой резистор более высокого номинала от 3 до 9 кОм.1 кОм и мультиметр.

    Подключите последовательно низкоомный резистор и светодиод к батарее, и светодиод загорится. Я использую для этого макетную плату, что позволяет очень быстро и легко тестировать электрические схемы, но вы также можете просто скрутить провода вместе, вы можете их припаять или использовать некоторые разъемы, и все это отлично подойдет для этого простого эксперимента. .

    Обратите внимание, что если мы повернем светодиод, мы увидим, что он блокирует ток, поэтому он не загорится. Это работает только в одном направлении.Если мы заменим резистор на резистор высокого сопротивления 9,1 кОм, мы увидим, что светодиод очень тусклый. Мы также можем соединить их параллельно, чтобы сравнить яркость. Итак, теперь, последовательно подключив резистор на 360 Ом и светодиод, мы можем подключить наш мультиметр к цепи, убедившись, что мультиметр переведен в режим считывания тока. Мы должны видеть где-то от 17 до 20 мА в зависимости от того, какой светодиод и резистор вы использовали. Мы можем переключить положение светодиода и резистора, он будет работать нормально и давать то же значение тока.

    Теперь отключите мультиметр от цепи и переведите мультиметр в режим постоянного напряжения.

    Измерьте на двух дальних концах цепи, и мы должны увидеть около 9 вольт. Это то, что батарея обеспечивает нашей цепи, и это также равно общему падению напряжения в цепи. Теперь измерьте напряжение на светодиоде, и мы должны увидеть около 2 вольт. Это падение напряжения светодиода, которое снимает два вольта с нашей схемы. Теперь измерьте сопротивление резистора, и мы должны увидеть падение напряжения на оставшихся 7 вольт.Итак, 2 вольта плюс 7 вольт - это 9 вольт, что соответствует нашей батарее. Вы могли заметить, что измеренные значения были не совсем 2, 7 или даже 9 вольт. Всегда будет разница между дизайном и фактическим размером. Например, этот резистор был рассчитан на 390 Ом, но когда мы его измерили, на самом деле он был 386 Ом. Каждый компонент, включая ваш мультиметр, будет иметь допуск на погрешность, он будет близок к расчетному значению, но никогда не будет точно таким же. Для большинства схем, подобных этим простым, это не имеет значения.Можно предположить, что расчетные значения верны. Просто помните, что значения, которые мы рассчитываем, всегда будут немного отличаться от наших фактических измерений.

    Нам также нужно знать о прямом напряжении. По сути, это просто падение напряжения, которое мы измерили ранее.

    Производитель предоставит диаграмму, подобную этой, которая показывает прямой ток при заданном прямом напряжении. Итак, если мы подключим источник напряжения к выводам и подадим 2 В, мы увидим ток в 20 миллиампер.Если мы подадим 1,6 В, то увидим 0 мА, потому что светодиод будет выключен. График для этого светодиода начинается примерно с 1,7 вольт, поэтому мы знаем, что нам нужно обеспечить минимум 1,7 вольт, чтобы светодиод начал светиться.

    Мы можем проверить минимальное напряжение открытия светодиода с помощью мультиметра. Если вы выберете диодный режим на своем мультиметре, а затем подключите красный провод к длинному аноду, а черный провод к короткому катоду красного светодиода, мы должны увидеть что-то вроде 1,7 В, так что это минимальное напряжение, необходимое для включения Светодиод горит.

    Большинство стандартных светодиодов рассчитаны на ток 20 миллиампер или 0,02 ампера. Мы хотим стараться придерживаться этого значения. Если мы опустимся ниже этого значения, светодиод будет тусклым, если мы перейдем слишком далеко, светодиод будет разрушен. Мы можем превысить 20 мА, но по мере того, как мы поднимаемся выше, срок службы светодиода сокращается. Мы увидим, как это вычислить, чуть позже в статье.

    КРАСНЫЙ светодиод обычно имеет падение напряжения или прямое напряжение 2 В, и это приведет к 20 миллиамперному току в нашей цепи.Мы можем проверить это с помощью источника питания постоянного тока, когда я установил напряжение на постоянное значение 2 вольта, мы увидим ток 20 миллиампер. Но не все светодиоды созданы одинаково, этот не достигает 20 миллиампер, пока не будет подано 2,1 вольт, а этот не достигает 20 миллиампер, пока не будет подано 3,7 вольт. Это различие связано с используемыми материалами, а также с производственным процессом. Таким образом, вам следует попробовать использовать светодиоды из одной партии, а также от надежных производителей.

    Светодиоды

    бывают разных цветов, и каждый цвет также имеет разное падение напряжения, поэтому вам нужно будет проверить это или вы можете просто посмотреть это на диаграмме типичных значений, подобных этой.

    Светодиоды

    также бывают разных цветов, и каждый цвет также имеет разное падение напряжения. Таким образом, вам нужно будет найти эти значения на основе данных производителей, или вы также можете проверить их самостоятельно, или вы можете использовать эти типичные значения из этих стандартных диаграмм, но они могут не совпадать с светодиодом, который у вас действительно есть.

    Хорошо, это основы, поэтому давайте продолжим и сделаем несколько примеров схем.

    Простые светодиодные схемы

    Допустим, у нас есть источник питания 3 В, и мы хотим подключить этот единственный КРАСНЫЙ светодиод.Какой резистор нам нужен? Что ж, мы знаем, что на этом проводе 3 Вольта, а на этом проводе заземления - 0 Вольт.

    На светодиоде падение напряжения составляет около 2 вольт. И поэтому нашему резистору нужно снять оставшееся напряжение. Итак, 3 вольта минус 2 вольта = 1 вольт. Мы знаем, что светодиоду требуется ток около 20 миллиампер, поэтому 1 вольт, разделенный на 0,02 ампера, равняется 50 Ом сопротивления. Убедитесь, что для этого расчета вы преобразовали миллиамперы в амперы. Чтобы упростить задачу, у нас есть калькулятор на нашем веб-сайте, где вы можете просто ввести свои значения, проверьте это ЗДЕСЬ .

    Хорошо, теперь ты попробуй решить эту проблему раньше меня. Допустим, у нас есть батарея на 9 вольт, и мы хотим подключить желтый светодиод, который имеет падение напряжения 2 вольта и требует 20 миллиампер тока. Итак, какой размер резистора требуется? Итак, у нас есть источник питания 9 вольт, поэтому вычтите 2 вольта для светодиода, и у нас останется падение на 7 вольт для резистора. Сила тока составляет 20 миллиампер, поэтому 7 разделенных на 0,02 ампер равняются сопротивлению 350 Ом.

    Проблема в том, что у нас нет резистора на 350 Ом.У нас есть только 330 Ом или 390 Ом, так какой из них мы должны использовать? Как мы видели ранее, нам нужно убедиться, что ток не превышает 20 миллиампер, поэтому мы должны рассчитать, какой резистор нам подходит лучше всего.

    Для этого мы просто разделим необходимое падение напряжения 7 В на значение резистора 330 Ом, чтобы получить 0,021 А, а затем, если мы сделаем то же самое для резистора 390 Ом, мы получим 0,018 А. Оба эти значения очень близки, и оба будут работать, но на всякий случай мы выбираем резистор на 390 Ом, так как поэтому наш светодиод прослужит дольше.Мы также можем комбинировать резисторы, чтобы получить точное значение, которое нам нужно, и я объясню это позже в статье.

    Нам также нужно будет выбрать номинальную мощность резистора. Мы можем рассчитать это по формуле: Мощность = ток в квадрате X на сопротивление - таким образом, 0,018 А в квадрате, умноженное на 390 Ом, дает нам 0,126 Вт, поэтому для этой схемы подойдет резистор номиналом Вт.

    Как долго батарея будет питать нашу схему? Допустим, эта батарея рассчитана на типичный 500 миллиампер-часов, мы просто делим это на наш общий ток цепи, который в данном случае составляет 18 миллиампер.Таким образом, разделение 500 миллиампер на 18 миллиампер даст нам около 27 часов. Хотя это тот самый максимум, на который он мог бы запитать нашу схему, на самом деле он, вероятно, этого не достигнет.

    Хорошо, а что, если нам нужно несколько светодиодов? Один из вариантов - соединить их последовательно.

    В этой конструкции падение напряжения каждого светодиода складывается. Таким образом, общее падение напряжения в цепи не должно превышать напряжение аккумулятора.

    Следовательно, батарея на 3 В может обеспечить достаточное питание только для 1 светодиода при токе 20 мА, а батарея на 9 В может обеспечить достаточное питание для 4 светодиодов.

    Если мы подключим 4 светодиода и подключим их к нашему настольному источнику питания постоянного тока, мы увидим, что они не включаются, пока их суммарное минимальное прямое напряжение не будет достигнуто на уровне около 6,3 вольт, однако оптимальные 20 миллиампер тока не будут достигнуты. пока около 8,6 вольт. При 9 В ток составляет около 35 мА, что явно слишком много, поэтому нам понадобится резистор.

    Если мы подключим 5 светодиодов, они не загорятся, пока не будет около 8,3 вольт. При напряжении 9 В все они включены, но ток очень низкий, поэтому светодиоды тусклые, потому что напряжения недостаточно для полного питания светодиодов.Оптимальные 20 миллиампер в этом примере достигаются только при напряжении 10,7 В.

    Таким образом, мы можем использовать этот метод, но мы ограничены напряжением батареи.

    Что, если нам нужно больше светодиодов? Что ж, нам нужно соединить их параллельно.

    Мы можем установить резистор на каждый светодиод или использовать один резистор для питания всех светодиодов. Начнем с первого примера.

    Индивидуальные резисторы параллельной цепи

    Такая конструкция позволяет использовать светодиоды разного цвета.Хотя легче рассчитать, все ли они одного цвета.

    Допустим, мы хотим подключить 6 светодиодов к этой 9-вольтовой батарее. Каждый светодиод имеет падение напряжения 2 вольта и требует 20 миллиампер. Вся эта шина составляет 9 вольт, а вся эта шина - 0 вольт. Таким образом, на каждый светодиод будет подаваться напряжение 9 В. Это явно слишком много, поэтому нам нужно поставить резистор напротив каждого светодиода. Итак, у нас есть 9 вольт за вычетом 2 вольт для светодиода, что оставляет нам 7 вольт. Значит нам нужно сбросить 7 вольт на ветку.Мы рассчитываем номинал резистора на 7 вольт, разделенных на 0,02 ампера, что равняется 350 Ом. Затем мы находим номинальную мощность: 0,02 ампера в квадрате, умноженное на 350 Ом, дает нам 0,14 Вт, поэтому будет использоваться резистор Вт.

    Затем нам нужно сложить все токи в каждой ветви. Таким образом, 0,02 ампера, умноженные на 6 светодиодов, дают нам 0,12 ампер.
    Емкость 9-вольтовой батареи составляет около 500 миллиампер-часов, а наша схема использует 120 миллиампер, поэтому 500, разделенное на 120, дает нам около 4 часов автономной работы.

    Мы видим, что на каждой ветви все еще достаточно напряжения для подключения дополнительных светодиодов. Допустим, мы размещаем по 3 светодиода на каждой ветви. Таким образом, каждая ветвь имеет снижение на 6 вольт, поэтому 9 вольт за вычетом 6 вольт равняются падению на резисторе 3 вольт. Таким образом, 3 вольта, разделенные на 0,02 ампер, дают резистор 150 Ом. Обратите внимание, что общий ток в каждой ветви не увеличился, поэтому мы можем добавить больше светодиодов, пока не будет достигнуто максимальное напряжение.

    Если мы хотим использовать светодиоды разного цвета, мы размещаем разные светодиоды на разных ветвях и находим подходящий резистор.Например, у нас могут быть красный, синий и зеленый светодиоды.
    Каждый светодиод имеет одинаковую потребность в токе 20 миллиампер, но красный светодиод имеет падение напряжения 2 вольта, синий - 3,4 вольт, а зеленый - 3 вольта. Следовательно, резистор для красного светодиода составляет 9 вольт, вычитая 2 вольта, что дает нам 7 вольт, 7 вольт, разделенные на 0,02 ампер, приведут нас к резистору на 350 Ом. На синем светодиоде 9 вольт вычитают 3,4 вольта, что оставляет нам 5,6 вольт, поэтому 5,6 вольт, разделенное на ток 0,02 ампер, оставляет нам резистор 280 Ом.И зеленый светодиод будет 9 вольт, вычесть 3 вольта, что оставляет нам 6 вольт, 6 вольт, разделенных на ток, дает нам резистор 300 Ом. Таким образом, общий ток составляет 60 мА. Таким образом, заряда батареи хватит примерно на 8 часов.

    Коммунальные резисторы параллельной цепи

    Другой способ подключения светодиодов - это их параллельное соединение, а затем использование одного резистора для ограничения общего тока. Для этого дизайна вы должны использовать только светодиоды того же цвета или того же рейтинга, мы увидим, почему это в ближайшее время, в этой статье.

    Допустим, у нас есть батарея на 9 вольт и 3 красных светодиода с падением напряжения 2 вольта, и каждому из них требуется ток 20 миллиампер. Итак, мы просто складываем токи вместе, чтобы получить 60 мА, этот ток должен протекать через этот резистор.

    Теперь, когда они подключены параллельно, все они будут иметь одинаковую разницу напряжений на них. Поэтому мы рассчитываем резистор на 9 Вольт, вычитаем 2 Вольта и получаем 7 Вольт. Затем, поскольку весь ток протекает через этот резистор, нам нужно будет разделить 7 вольт на 60 миллиампер, и мы получим резистор на 116 Ом.Расчет мощности составляет 0,49 Вт, поэтому будет использоваться резистор на половину Вт.

    Причина, по которой нам нужно использовать светодиоды с одинаковым номиналом, заключается в том, что разница напряжений здесь составляет всего 2 вольта. Таким образом, если мы используем одинаковые индикаторы рейтинга, они все загорятся. Но если мы поместим синий светодиод в схему, это потребует более высокого напряжения, которое он не сможет получить, поэтому этот светодиод не будет включаться.

    Резисторные хитрости

    Теперь, когда мы имеем дело с этими схемами, мы часто обнаруживаем, что рассчитанное нами значение резистора не существует или его просто нет в наличии.Итак, мы можем комбинировать резисторы, чтобы получить нужное нам значение. Например, если нам нужен резистор на 200 Ом, мы могли бы разместить два резистора на 100 Ом последовательно, или мы могли бы разместить 2 резистора по 50 Ом и резистор 100 Ом. Значения резисторов просто складываются последовательно, что позволяет очень легко увеличить номинал резистора.

    Чтобы уменьшить номинал резистора, мы просто помещаем их параллельно. Затем мы проводим математические вычисления, чтобы найти эквивалентное сопротивление.

    Допустим, у нас есть два резистора по 10 Ом, мы рассчитываем их по этой формуле.Это намного проще, чем кажется, просто введите это в свой калькулятор, и мы увидим, что он дает нам 5 Ом эквивалентного сопротивления.

    Два резистора по 5 Ом дадут нам общее сопротивление 2,5 Ом.

    Резистор на 200 Ом и 50 Ом даст нам сопротивление 40 Ом.

    Три резистора по 10 Ом дадут нам сопротивление 3,33 Ом.

    Считывание значений резистора

    Как определить номинал резистора? Эти цветные полосы на теле подскажут нам значение, но нам нужно найти его на диаграмме.Обычно мы можем получить 4- или 5-полосные резисторы, поэтому давайте рассмотрим их несколько примеров.

    Для 4-полосного типа первые 2 полосы - это цифры, которые мы объединяем, третья полоса - это множитель, а полоса 4 -ая полоса - это допуск.

    Например, этот 4-полосный резистор коричневый, черный, коричневый, золотой. Диапазон 1 равен 1, диапазон 2 равен 0, что дает нам 10. Диапазон 3 - это множитель, который равен 10, поэтому 10, умноженное на 10, дает 100 Ом. Тогда допуск золота составляет 5%.Таким образом, оно может быть от 95 Ом до 105 Ом. Когда мы измеряем это с помощью мультиметра, мы видим 98,2 Ом, что находится в пределах допуска. Итак, мы увидели, что предыдущий резистор был не очень точным.

    Если мы хотим большей точности, нам нужен меньший допуск, такой как этот допуск 1%, тип 5 полос. В этом типе первые 3 полосы - это цифры, 4 - множитель, а 5-й - допуск.

    Это оранжевый, оранжевый, черный, черный, коричневый.Итак, это 3, это 3, это 0 с множителем, равным единице, что дает нам 330 Ом и допуск 1%. Таким образом, это может быть от 327 Ом до 333 Ом. Когда я измеряю его мультиметром, мы видим, что он показывает 329,9 Ом, так что это идеально.


    Как рассчитать номинал резистора для светодиодов и цепей светодиодов

    Как найти номинал резистора для различных типов цепей светодиодов

    Следующее пошаговое руководство поможет вам найти правильное значение резистора (или резисторы) для одного или нескольких светодиодов и цепочек цепочек светодиодов для подключения к батарее и источнику питания.

    Если вы выберете эту тему, вы сможете:

    • Рассчитать номиналы резисторов для различных схем светодиодов
    • Рассчитать прямой ток светодиодов
    • Рассчитать прямое напряжение для разных светодиодов Цепи
    • Подключите светодиоды последовательно к батарее
    • Подключите светодиоды параллельно к батарее
    • Подключите светодиоды в последовательно-параллельном комбинированном контуре

    Обновление: Вы также можете использовать этот светодиод Вычислитель резисторов для этой цели

    Типичный светодиодный символ, конструкция и идентификация проводов.

    Щелкните изображение, чтобы увеличить

    Прежде чем мы углубимся в детали, мы попробуем прокатиться по простой схеме ниже, чтобы было легче понять другой расчет.

    Щелкните изображение, чтобы увеличить

    Это самая простая схема серии светодиодов .

    Здесь напряжение питания составляет 6 В, прямое напряжение светодиода (V F ) составляет 1,3 В, а прямой ток (I F ) составляет 10 мА.

    Теперь значение резистора (который мы будем последовательно соединять со светодиодом) для этой схемы будет:

    Значение резистора = (В питание - В F) / I F = (6 - 1,3) / 10 мА = 470 Ом

    Потребляемый ток = 20 мА

    Формула номинальной мощности резистора для этой схемы

    Номинальная мощность резистора = I F 2 x Номинал резистора = (10 мА) 2 x 470 Ом = 0,047 Вт = 47 мВт

    Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0.047 Вт x 2 = 0,094 Вт = резистор 94 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,094 Вт = (94 мВт)

    Также имейте в виду, что:

    • Слишком сложно найти точное номинальные резисторы, которые вы рассчитали. Обычно резисторы бывают 1/4, 1/2, 1, 2, 5 и т. Д. Поэтому выберите следующее более высокое значение номинальной мощности. Например, если вы рассчитали номинальную мощность резистора 0,789 Вт = 789 мВт, вы должны выбрать резистор 1 Вт.
    • Слишком сложно найти точное значение резисторов, которое вы рассчитали. Как правило, резисторы имеют стандартные значения. Если вы не можете найти точное значение резистора, которое вы рассчитали, а затем выберите следующее значение резистора, которое вы рассчитали, например, если рассчитанное значение составляет 313,5 Ом, вы должны использовать ближайшее стандартное значение, что составляет 330 Ом. если ближайшее значение недостаточно близко, то можно сделать это, подключив резисторы последовательно - параллельная конфигурация.
    • I F = Прямой ток светодиода: Это максимальный ток, который светодиод может принимать непрерывно. Рекомендуется обеспечить 80% номинального прямого тока светодиодов для длительного срока службы и стабильности. Например, если номинальный ток светодиода составляет 30 мА, вы должны включить этот светодиод на 24 мА. Значение тока, превышающее это значение, сократит срок службы светодиода или может начать дымиться и гореть.
    • Если вы все еще не можете обнаружить прямой ток светодиода, предположите, что он 20 мА, потому что типичный светодиод работает на 20 мА.
    • В F = прямое напряжение светодиода: Это прямое напряжение светодиода, то есть падение напряжения при подаче номинального прямого тока. Вы можете найти эти данные на пакетах светодиодов, но они находятся в диапазоне от 1,3 В до 3,5 В в зависимости от типа, цвета и яркости. Если вы все еще не можете найти прямое напряжение, просто подключите светодиод через 200 Ом с батареей 6 В. Теперь измерьте напряжение на светодиоде. Это будет 2 В, и это прямое напряжение.

    Формула для определения номинала резистора (ов) для последовательного подключения светодиодов:

    Ниже приведена еще одна простая схема светодиодов (светодиодов, подключенных последовательно).В этой схеме мы подключили последовательно 6 светодиодов. Напряжение питания составляет 18 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

    Щелкните изображение, чтобы увеличить

    Значение резистора (светодиоды в серии) = (В , питание - (В F x количество светодиодов)) / I F

    Здесь полное прямое напряжение (V F ) из 6 светодиодов = 2 x 6 = 12 В

    и прямой ток (I F ) такой же (т.е.е. 20 мА)

    ( Примечание: это последовательная цепь, поэтому ток в последовательной цепи в каждой точке одинаков, а напряжения складываются) .Теперь значение резистора (для последовательной цепи) будет:

    = (В питание - (V F x количество светодиодов)) / I F = (18 - (2 x 6)) / 20mA

    = (18-12) / 20mA = 300 Ω

    Общее потребление тока = 20 мА

    (Это последовательная цепь, поэтому токи одинаковы) Номинальная мощность резистора

    = I F 2 x Номинал резистора = (20 мА) 2 x 300 Ом = 0.12 = 120 мВт

    Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,12 Вт x 2 = 0,24 Вт = Резистор 240 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,24 Вт = (240 мВт)

    Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с общим резистором):

    Нажмите на изображение, чтобы увеличить

    В этой схеме мы подключили светодиоды параллельно с общим резистором.Напряжение питания составляет 18 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

    Значение резистора (светодиоды параллельно с общим резистором) = (В , питание - В F) / (I F x количество светодиодов)

    Здесь общий прямой ток (I F ) 4 светодиода = 20 мА x 4 = 0,08 А, и прямое напряжение (В F ) такое же (т.е. 2 В)

    ( Примечание: это параллельная цепь, поэтому напряжение параллельной цепи одинаково в каждой точке, а токи аддитивны).

    Теперь значение резистора (для параллельной цепи с общим резистором) будет:

    = (В , питание - В F) / (I F x количество светодиодов)

    = (18 - 2) / 0,08

    = 200 Ом

    Общий ток потребления = 20 мА x 4 = 80 мА

    (Это параллельная цепь, поэтому токи складываются)

    Номинальная мощность резистора = I F 2 x Значение резистора = (20 мА) 2 x 200 Ом = 0.08 Вт = 80 мВт

    Но Это минимальное необходимое значение резистора, чтобы резистор не перегревался, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 1,28 Вт x 2 = 2,56 Вт. резистор для этой схемы. Номинальная мощность резистора (значение удвоено) = 2,56 Вт (280 мВт)

    Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с отдельным резистором)

    Нажмите на изображение, чтобы увеличить

    Это еще один способ подключения светодиодов параллельно с отдельными резисторами.В этой схеме мы подключили 4 светодиода параллельно с отдельными резисторами. Напряжение питания составляет 9 В, прямое напряжение (V F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

    Значение резистора (светодиоды параллельно с отдельным резистором) = (В питание - В F ) / I F Здесь общее прямое напряжение (В F ) светодиодов = 2 и прямой ток ( I F ) 20 мА (т.е. 20 мА)

    ( Примечание: это параллельная цепь, но мы находим значение резистора для каждой секции, а не для всей цепи.Таким образом, в каждом разделе схема становится последовательной (обратитесь к формуле последовательной схемы или к простой схеме 1 st выше, вы обнаружите, что они такие же)

    Теперь значение резистора (для параллельной схемы с отдельным резисторы) будет:

    = (V питание - V F ) / I F = (9-2) / 20 мА = 350 Ом

    Общий ток потребления = 20 мА x 4 = 80 мА (Это является параллельной схемой, поэтому токи складываются)

    Номинальная мощность резистора = I F 2 x Номинал резистора = (20 мА) 2 x 350 Ом = 0.14 = 140 мВт

    Но это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,14 Вт x 2 = 0,28 Вт = резистор 280 мВт для этой схемы.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *