Подключение тэнов звезда – треугольник. Области применения
Разные типы трубчатых электронагревателей (ТЭНы) могут подключаться к однофазной и трехфазной сети. Проводить подключение электронагревателя к трехфазной сети можно по одной из двух основных схем — «звезда» или «треугольник». Для равномерного распределения нагрузки на каждой фазе число ТЭНов должно быть кратным числу три.
Для трехфазных сетей используют нагреватели, у которых рабочее напряжение рассчитано на 220 и 380 Вольт.
Электроприборы с рабочим напряжением 220 Вольт подключают по схеме «звезда», а нагреватели, у которых напряжение 380 Вольт подключают к сети по схеме «звезда» и «треугольник».
Подключения по схеме «звезда».Для примера представим схему «звезда», которая составлена из трех электронагревателей.
На второй вывод (2) каждого из нагревателей подана соответствующая фаза. Первые выводы (1) ТЭНов соединяются вместе с одновременным образованием общей точки, которую называют нулевая или нейтральная.
Подключение по трехпроводному типу целесообразно использовать при рабочем напряжении 380 Вольт. Ниже предлагаем рассмотреть монтажную схему трехпроводного подключения ТЭНов в трехфазную электросеть. В данном случае подача и отключение напряжения происходит благодаря трехполюсным автоматическим выключателям.
В представленной схеме видно, что выводы расположенные с правой стороны электронагревателей подключаются к фазам А, В и С, а выводы расположенные слева соединены в нулевой точке. Между выводами, которые находятся справа и нулевой точкой рабочее напряжение равняется 220 Вольт.
Кроме описанной схемы можно использовать и четырехпроводную. При подключении по типу четырехпроводной схемы предполагается включение в сеть трехфазного типа нагрузки с напряжение в 220 Вольт. В указанном случае включение нулевой точки нагрузки соединяют с нулевой точкой источника питания.
В схеме представленной выше правые выводы трубчатых электронагревателей соединены с соответствующими фазами, а левые замкнуты в одной точке, которую подключают к нулевой шине источника питания. Между точкой нуля и выводами электронагревателей напряжение будет равняться 220 Вольт.
При необходимости полного отключения нагрузки от электросети используются автоматические выключатели «3+N» или «3Р+N». Такие автоматы включают и отключают все имеющиеся силовые контакты.
Законы, действующие при подключении нагревателей по типу «звезда»:
Между каждой фазой и нулем напряжение всегда будет составлять 220 Вольт.
К каждой ветви «звезды» можно подключить несколько нагревательных устройств, которые будут между собой соединяться в последовательном либо параллельном порядке.
Суммарная мощность соединения вычисляется из суммы мощностей трех веток
Мощность каждой отдельной ветви должна быть такой же, как и у других ветвей.
Подключение по схеме «треугольник»При соединении по типу «треугольник» выводы электронагревателей соединяются друг с другом в последовательном порядке. По схеме включения трех трубчатых электронагревателей подключение проводится в следующем порядке: первый вывод нагревателя №1 соединяют с первым выводом ТЭНа №2; второй вывод устройства №2 подсоединяют ко второму выводу устройства №3; второй вывод нагревателя №1 присоединяют к первому выводу устройства №3. В итоге данного подключения должно получиться три плеча — «а», «б», «с».
Затем на каждое плечо подается соответствующая фаза: на плечо «а» фазу А, на плечо «в» фазу В, ну и на плечо «с» фазу С.
Законы, действующие при подключении нагревателей по типу « треугольник»:
Между любыми двумя фазами напряжение всегда равно 380 Вольт.
К каждой ветви можно подсоединить несколько трубчатых нагревателей, которые будут между собой соединяться в последовательном либо параллельном порядке.
Мощность каждой ветви должна иметь одинаковые значения.
Общая суммарная мощность складывается из показателей мощности всех трех ветвей.
Напряжение на всех схемах указано при включении в трехфазную сеть с напряжением 380 Вольт.
Компания Элемаг имеет большой опыт в производстве нагревательных систем. По всем вопросам, касающимся приобретения или подключения электронагревателей, обращайтесь к нам по телефону или по электронной почте. Наши специалисты могут проконсультировать Вас по выбору подходящего подключения ТЭНов. Подключение по типу ЗВЕЗДА и ТРЕУГОЛЬНИК используются у нас при производстве Сухих ТЭНов и традиционных электрических металлических блок ТЭНов.
Как выбрать правильное подключение ТЭНов?
Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева сосуда и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.
- 625 Вт
- 933 Вт
- 1,25 кВт
- 1,6 кВт
- 1,8 кВт
- 2,5 кВт
Такого диапазона вполне хватит для регулировки и поддержания нужной температуры. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.
Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.
Рассчитать можно по следующей формуле.
Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.
Сила тока = мощность, деленная на напряжение в сети.
Записывается она так: I = P / U.
Где I – сила тока в амперах.
P – мощность в ваттах.
U – напряжение в вольтах.
При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.
1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.
I = 1250Вт / 220 = 5,681 А
Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.
R = U / I, где
R – сопротивление в Омах
U – напряжение в вольтах
I – сила тока в амперах
Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.
R = 220 / 5.681 = 38,725 Ом.
Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов
Rобщ = R1+ R2 + R3 и т. д.
Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.
P = U2 / R где,
P – мощность в ваттах
U2 – напряжение в квадрате, в вольтах
R – общее сопротивление всех посл. соед. ТЭНов
P = 624,919 Вт, округляем до значения 625 Вт.
Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.
В таблице 1.1 приведены значения для последовательного соединения ТЭНов.
Таблица 1.1
Кол-во ТЭН |
Мощность (Вт) |
Сопротивление (Ом) |
Напряжение (В) |
Сила тока (А) |
1 |
1250,000 |
38,725 |
220 |
5,68 |
Последовательное соединение |
||||
2 |
625 |
2 ТЭН = 77,45 |
220 |
2,84 |
3 |
416 |
3 ТЭН =1 16,175 |
220 |
1,89 |
4 |
312 |
4 ТЭН=154,9 |
220 |
1,42 |
5 |
250 |
5 ТЭН=193,625 |
220 |
1,13 |
6 |
208 |
6 ТЭН=232,35 |
220 |
0,94 |
7 |
178 |
7 ТЭН=271,075 |
220 |
0,81 |
8 |
156 |
8 ТЭН=309,8 |
220 |
0,71 |
В таблице 1. 2 приведены значения для параллельного соединения ТЭНов.
Таблица 1.2
Кол-во ТЭН |
Мощность (Вт) |
Сопротивление (Ом) |
Напряжение (В) |
Сила тока (А) |
Параллельное соединение |
||||
2 |
2500 |
2 ТЭН=19,3625 |
220 |
11,36 |
3 |
3750 |
3 ТЭН=12,9083 |
220 |
17,04 |
4 |
5000 |
4 ТЭН=9,68125 |
220 |
22,72 |
5 |
6250 |
5 ТЭН=7,7450 |
220 |
28,40 |
6 |
7500 |
6 ТЭН=6,45415 |
220 |
34,08 |
7 |
8750 |
7 ТЭН=5,5321 |
220 |
39,76 |
8 |
10000 |
8 ТЭН=4,840 |
220 |
45,45 |
Подключение ТЭНа к электрической сети: схема подключения
Трубчатые электронагреватели или ТЭНы могут подсоединяться к однофазной или трехфазной электрической цепи. Они преобразуют электрическую энергию в тепловую для нагрева внешней среды, их используют в различных нагревательных приборах промышленного и бытового типа. Каждый электронагреватель рассчитывается под определенные значения напряжения и мощности, поэтому его подключение к сети должно соответствовать заданным параметрам. Подключение может проводиться по последовательной и параллельной схеме.
Параллельное подключение ТЭНов к источнику питания
Такой вариант соединения выгодный, так как при выходе одного нагревателя из строя все остальные будут продолжать стабильно работать. Параллельное соединение строится на следующих принципах:
- Напряжение каждого ТЭНа должно быть равно значению напряжения в сети. Например, если к источнику тока с напряжением 220 Вольт подключается три ТЭНа, то каждый из них должен быть рассчитан именно на такое значение.
- Суммарная мощность равняется общей мощности всех подключенных к системе нагревателей. Она рассчитывается по формуле Pобщ=U2/Rобщ, где Pобщ – это общая мощность, U – напряжение, а Rобщ – общее значение сопротивления в электрической цепи.
Такая схема подключения ТЭНа позволяет увеличить мощность нагрева, но суммарная величина не должна превышать допустимое значение.
Последовательное подключение ТЭНов
При последовательном варианте подключения вся цепь будет отключена, как только один из нагревателей перестанет работать. Сборка электрической цепи осуществляется в соответствии со следующими принципами:
- Сопротивление цепи представляет собой общее сопротивление всех подсоединенных нагревателей.
- Если сопротивление у нагревателей одинаковое, то напряжение представляет собой суммарное напряжение всех устройств, поделенное на их количество.
- Мощность сборки рассчитывается по формуле Pобщ=Uобщ2/Rобщ, где Pобщ – это общее суммарное значение мощности, U – напряжение, а Rобщ – общее значение сопротивления.
Последовательная схема подключения ТЭНа позволяет, например, подключить к розетке 2 нагревателя, рассчитанных на мощность 127В. В результате сопротивление двукратно возрастает, повышается интенсивность нагрева. Если по такой схеме к сети подключается 2 нагревателя мощностью 220В, то, ввиду увеличения общего сопротивления, каждый из них будет работать только с мощностью 110В.
Подключение с использованием выключателя
Для надежности работы ТЭНов в электросети дома или квартиры в домовом щитке лучше установить автомат – он может быть подключен непосредственно рядом с прибором. Наиболее оптимальным является вариант с установкой двухполюсного выключателя: при отклонении от рабочих параметров он сразу выключает фазу и ноль, в результате ТЭН полностью отсоединяется от электросети.
Если в доме предусмотрено заземление, то необходимо предотвратить поражение электротоком при повреждении изоляции. Для этого рекомендуется подключить ТЭН через УЗО или дифавтомат. Такая защита будет работать по следующей схеме: если изоляция нарушится, то на корпус подается фаза, которая по принципу наименьшего сопротивления пойдет по заземляющему проводнику. Дифавтомат среагирует и отключит подачу тока на устройство. Также при наличии короткого замыкания автомат отключится, чтобы не допустить возгорания.
Подключение для регулировки температуры
В автоматизированных схемах ТЭНы подключаются через реле, что позволяет регулировать нагрев и менять температурный режим среды. В систему устанавливается температурный датчик, который реагирует на изменения в рабочей среде. Когда температура достигает требуемого значения, реле включает нагреватель и обеспечивает повышение температуры. Автоматизированная схема позволяет не контролировать работу устройства и не включать его вручную.
Как рассчитать мощность нагревателя (расчет тэна)
Трубчатые электронагреватели (ТЭНы) широко распространены в системе отопления. Они представляют собой тонкостенные металлические трубки, в которые помещены спирали из материала с высоким сопротивлением. При подаче электрического тока спираль нагревается, тепло передается на корпус и используется для повышения температуры внешней среды.
Формула расчета мощности
Один из важных вопросов при выборе нагревателя для отопления – расчет мощности. От этого параметра во многом зависит энергоэффективность отопительной системы. Избыточная мощность приводит к повышенным затратам электроэнергии, а также к перегрузке электросети, что может стать причиной возгорания. Если же она будет недостаточной, то устройство окажется неэффективным для поддержания требуемого температурного режима.
Расчет ТЭНа ведется по формуле Рм=0.0011*м(Т2-Т1)/t, где Рм – значение расчетной мощности, Т1 – стартовый температурный уровень, Т2 – итоговая температура теплоносителя в системе, а t – время для нагрева до оптимального уровня.
Приведем пример расчета требуемой мощности для нагрева с помощью ТЭНов 6-секционного алюминиевого отопительного радиатора. Расчет будет вестись следующим образом:
- В паспорте модели радиатора нужно посмотреть объем теплоносителя. Допустим, он составляет 3 литра.
- Предполагается, что теплоноситель нужно прогреть от 20 до 80 градусов. Расчетное время прогрева – 10 минут.
- Проведем расчет по формуле с подстановкой значений Рм=0. 0066*3(80-20)/10 = 1,118.
То есть, для выполнения поставленных условий потребуется установить ТЭН, мощность которого составит примерно 1,2 кВт. Если меняются исходные условия, то изменится и требуемое значение мощности.
Расчет мощности ТЭНа по площади помещения
Расчет ТЭНа также можно проводить с учетом площади помещения. Так, для обогрева 10 квадратных метров пространства потребуется 1 кВт тепловой энергии. Соответственно, если нужно обогреть с помощью ТЭНа кухню площадью 6 квадратов, то потребуется нагреватель мощностью 0,6 кВт. Однако это только приблизительный расчет, в котором не учитываются факторы потери тепла. На показатели будут влиять следующие параметры:
- Количество и размер окон, тип установленных рам. Герметичные пластиковые окна дают минимум теплопотерь, а через деревянные рамы будет уходить большое количество тепла.
- Наличие теплоизоляции помещения. Теплоизоляционный слой позволяет значительно снизить расход электроэнергии для обогрева.
- Высота потолка. Чем выше помещение, тем больше энергии потребуется для его полноценного обогрева.
Если тщательно утеплить помещение, то можно будет установить нагревательные приборы меньшей мощности и ежегодно экономить на отоплении.
Преимущества использования ТЭНов для обогрева
ТЭНы для радиаторов могут использоваться для создания системы автономного обогрева, если дом не подключен к централизованному источнику теплоснабжения. Также его можно использовать в качестве дополнительного или аварийного обогревателя: он будет обеспечивать нагрев теплоносителя при перебоях с подачей тепла.
Трубчатые электронагреватели стали пользоваться популярностью по нескольким причинам:
- Высокая эффективность и экономичность – приборы передают тепловую энергию теплоносителю напрямую с минимумом потерь.
- Простота монтажа – ТЭНы доступны для подключения без специальных навыков.
- Компактные размеры – устройства занимают минимум места.
- Безопасность – можно подобрать прибор с датчиком контроля, а также подключить его в электрощитке через автомат. Если возникнет повреждение изоляции или короткое замыкание, то устройство автоматически отключит ТЭН от электросети.
- Возможность регулирования температуры теплоносителя – это дает возможность экономить электроэнергию и поддерживать комфортную температуру.
Однако если ТЭН является единственным источником тепла, то он потребляет много электроэнергии. При этом его использование более безопасно, чем применение газовых горелок и угольных печей в загородных домах. Если подключить его только как резервный источник тепла, то он защитит батареи от перемерзания при внезапных перебоях с подачами тепловой энергии. Точный расчет мощности позволит минимизировать энергозатраты.
Подключение ТЭНов электрокотла – RozetkaOnline.COM
В предыдущей статье, я рассказал о подключении блока управления электрокотла ZOTA – 12 к электросети дома, теперь, для завершения монтажа, осталось правильно подсоединить провода к ТЭН (трубчатым электронагревателям) котла, которые у этой модели расположены отдельно, в блоке нагревательных элементов – теплообменнике.
Как мы уже выяснили ранее, трубчатые электронагреватели здесь рассчитаны на напряжение 220 В, значит подключение к трехфазной сети выполняем по схеме «звезда». Другие возможные варианты подключения Тэн электрокотлов, а также информация о том, как определить какая схема подходит вам, представлены ЗДЕСЬ.
Так как мощность ТЭН достаточно высокая, очень важно, чтобы соединение питающих проводов с ними было максимально надежным. Поэтому советую строго придерживаться следующей схемы крепления проводов к выводам ТЭН, представленной в инструкции:
При подключении фазных проводов к выводам нагревателей, необходимо сперва накрутить гайку м4, затем кладется шайба, после чего одевается наконечник-кольцо питающего провода, затем снова идёт шайба, после чего пружинная шайба – гровер, и затем все зажимается гайкой М4.
Нулевой провод, затягивается болтом м8, в располагающемся в перемычке между контактами ТЭН отверстии, как показано на изображении ниже:
Теперь, когда к ТЭН электрокотла подключены фазные провода и ноль, осталось заземлить корпус подключённые провода к ТЭНам теплообменника. Для этих целей у котла ZOTA слева у блока нагревателей приварен болт, к которому и подключается заземляющий проводник.
Кстати, обязательно читайте нашу статью, где показано строение ТЭНов, их основные типы и области применения.
Защитное заземление можно взять с заземляющей клеммы блока управления, либо можно использовать отдельный проводник дополнительной системы уравнивания потенциалов (ДСУП).
На этом подключение ТЭН электрокотла завершено, осталось лишь установить защитный кожух на блок теплообменника.
Еще несколько слов стоит сказать о датчиках температуры воды и воздуха, их назначении и расположении.
На лицевой панели блока управления электрокотла, есть два регулятора с маркировкой– «воздух» и «вода».
Каждый из них имеет свою градуировку, цифры, обозначенные на ней это температура в градусах Цельсия.
Таким образом, вы можете выставлять требуемую температуру теплоносителя – регулятор «ВОДА» или температуру воздуха в помещении «ВОЗДУХ».
Принцип работы здесь следующий, как только будет достигнут хоть один из установленных этими регуляторами показателей, электрокотел отключится и включится вновь, когда показатели упадут.
Так автоматизируется работа котла, вам достаточно выставить нужные величины и включить его, дальше котел будет работать автономно, поддерживая тепло в доме не требуя при этом вашего участия.
Вот теперь я думаю понятно для чего необходимы датчики температуры. Так, например, датчик температуры воды, устанавливается непосредственно в теплообменник, в котором для такого случая предусмотрено посадочное место.
Либо, как вариант, можно просто прикрепить к трубе отопления:
Теперь температура теплоносителя контролируется с помощью датчика и котел будет работать, пока она не достигнет установленного уровня.
Аналогично работает и датчик температуры воздуха, он устанавливается в помещении и замеряет общую температуру в нем. Электрокотел, будет выполнять нагрев теплоносителя до тех пор, пока температура в помещении, где стоит датчик, не достигнет нужного уровня.
Электрокотлы различных типов, моделей и производителей зачастую отличаются по внутренней компоновке, наличию тех или иных элементов, систем автоматизации и т.д., но при этом общий принцип прокладки электропроводки, выбор типа и сечения кабеля, защитной автоматики, а также подключения остается неизменным.
Надеюсь, эта инструкция по подключению электрокотла к электросети, будет полезна не только при монтаже котлов ZOTA серии «econom», но и любых других.
Обязательно пишите свои вопросы, дополнения и замечания к статье, даже если вы столкнулись с проблемой при подключении к сети электрокотла другой фирмы. Нередко именно ваши комментарии позволяют дополнить статьи, исправить неточности, сделать их полезнее.
Подключение ТЭНов звездой и треугольником к 380v и 220v
Приветствую вас, мои читатели! Этот пост я решил написать для тех, кто пытается разобраться с подключением электрического котла к проводке.
Статья посвящена отопительным аппаратам, использующим ТЭНы в качестве нагревательных элементов.
Про электродные котлы я напишу отдельно. Есть несколько вариантов выполнения этой операции и о них я расскажу ниже по очереди. Начинаем, как вы уже могли привыкнуть, от простого к сложному.
Подключение ТЭНа к однофазной сети
Этот случай характерен для дач и деревенских домов старой постройки.
Для начала нужно вообще понять о чем идет речь и проще всего это сделать, смотря на следующий рисунок:
Подключение ТЭНов схемаИтак, у однофазной электрической сети имеется два проводника — ноль и фаза.
На самой же картинке изображено два способа включения нагрузки — параллельный и последовательный.
Разнятся эти способы тем, как делится исходное напряжение между элементами.
В большинстве случаев ТЭНы включают параллельно, чтобы не терять полезной мощности, последовательная схема подходит только для различных специфических случаев.
Блок, подготовленный для подключения к одной фазе будет выглядеть так:
Подключение блока ТЭНовПодключение электрических тэновЕще стоит обратить внимание на выбор кабеля, но этого момента мы коснемся чуть позже, а теперь давайте переходить к трем фазам.
Подключение трехфазного ТЭНа
«Трехфазка» раньше была чем-то не очень нужным и понятным для простого обывателя, но в наше время она стала необходимостью для частного дома. Нужна она прежде всего для отопления электричеством.
Поскольку электрический котел имеет большую мощность (в большинстве случаев больше 6 кВт), то при использовании одной фазы вам понадобится прокладывать проводку кабелем с большим сечением проводников.
А это будет дорого стоить, особенно если жилы кабеля сделаны из меди.
В трехфазной сети сечения проводников будут заметно меньше, по этой причине большинство современных электрических котлов подключаются к «трехфазке».
Теперь давайте поговорим про основные схемы подключения ТЭНов к такой сети.
Подключение ТЭНов звездой
Такой способ используется в том случае, если нагревательный элемент рассчитан на 220В.
Кроме этого, «звезда» требует, чтобы с щитка был заведен нулевой провод.
Для пояснения рассмотрим следующий рисунок:
Подключение ТЭНа к 220вВ данном случае, вместо двух перемычек будет одна.
И подключаться она будет к нулю, а три оставшихся свободных конца будут подключены к соответствующим фазам.
Если смотреть на гайку блока сверху, то выглядеть это все будет следующим образом:
Подключение ТЭНа 220вПодключение ТЭНов треугольником
Используется такой способ для подключения нагревательных элементов, рассчитанных на 380В.
Если вдруг вы решите ставить «треугольником» ТЭНы, рассчитанные на 220В, то они просто сгорят. Не упустите этот важный момент.
Главным отличием «треугольника» от «звезды» является отсутствие нулевого проводника.
Тут есть только 3 фазы и больше ничего. Чтобы лучше понимать о чем идет речь, смотрим ниже:
Подключение ТЭНов на 380вНа картинке все выглядит просто и понятно, а вот если начать соединять контакты на гайке блока, получится следующее:
Подключение ТЭНа 380 вольтВыглядит сложновато, но на самом деле не отличается ничем от верхнего рисунка.
Цветными линиями и цифрами здесь обозначены фазы, а буквами нагревательные элементы блока.
Итоги статьи
Подключение мощных электрических нагревательных приборов, таких как электрический котел, дело ответственное.
Ошибки могут привести к тяжелым последствиям. Вплоть до выгорания проводки или пожара.
Поэтому, если у вас нет соответствующих навыков, то вам лучше обратиться к электрику имеющему соответствующую группу допуска.
Все действия, которые вы собираетесь делать, вы делаете на свой страх и риск. Помните об этом. На этом все, пишите вопросы в комментариях.
Подключение тэнов через термореле и пускатель. Расчет мощности ТЭНов, пояснение подключения Тен схема подключения
2017-09-11 Евгений Фоменко
Подключение ТЭНов электрического котла
Первое, на что необходимо обратить внимание — это номинальная мощность ТЭНа. Установив устройство с низкой мощностью, вы будете недополучать тепловую энергию, расходуя при этом большое количество электричества. А установив недопустимо высокую мощность есть большая вероятность постоянного перегрева устройства, а возможен и взрыв.
Что касаемо его расположения, он должен быть полностью погружен в воду, а иначе он будет перегреваться, как правило, его устанавливают в нижней части радиатора. Это дает возможность изолировать его от мест, где скапливается воздух. Для того, чтобы он прослужил дольше и на нем скапливалось меньше налета, который приводит к значительной потери КПД, а также к коррозии, нужно использовать дистиллированную жидкость.
Очень важно, когда вы будете врезать ТЭН или блок ТЭНов в систему отопления, качественно выполнить герметизацию торцевых стыков, поскольку, если жидкость попадет на нагревательный элемент (спираль), возникнет угроза для жителей дома. Рассмотрим вариант подключения к электрическим сетям с различным количеством фаз.
Если у вас одна фаза, зачастую этот вариант наиболее характерен для дач или старых построек, необходимо установить предохранитель. Она характерна наличием двух проводников: фазы и ноля. Существует два метода подключения — параллельно или последовательно, разница состоит в делении исходного напряжения между составляющими.
Чаще подключение выполняют параллельным методом, чтобы минимизировать потери полезной энергии. Последовательная схема используется крайне редко, так как она предполагает потери энергии. Для любой из выбранных схем необходимо выбирать провод с большим сечением, поскольку на него будет большая нагрузка.
Подключение к трем фазам — первый метод это так называемая звезда, предполагает подпитку от сети в 220 В при наличии подведенного из щита нулевого провода. Используется одна перемычка, подключаемая к нулю, а остальные три свободных конца присоединяют к фазам.
Треугольное подключение, приходящее напряжение в данном случае 380 В. Подключив сюда ТЭНы, предусмотренные для использования на 220 В, рискуете их испортить, поскольку они сгорят. Разница между треугольником и звездой заключается в отсутствии нулевого проводника.
Врезка ТЭНов в систему отопления дома
Если вы хотите заменить или найти резервный источник тепла вашему твердотопливному котлу,такому как, например, Дон, Купер, Эван, Бренерам Акватэн либо Теплодар, подобный вариант подойдет отлично, поскольку он не очень трудоемкий и затратный в финансовом плане.
При проведении подобной процедуры соблюдайте меры безопасности, поскольку любые мероприятия с использованием электрической энергии крайне небезопасны.
Рассмотрим более детально, как подключить ТЭНы на котле. При использовании его, как резервного метода нагрева, помните об изменениях уровня напора, для его выравнивания рекомендуется использовать насос.
Рассмотрим поэтапно, как установить подобное устройство:
Воздушная пробка в радиаторе отопления
Затем заполните систему жидкостью, при помощи крана Маевского спустите скопившийся воздух. Используя тестер, проверьте, что ТЭН изолирован от батареи во избежание поражения электрическим током, если все же пробой присутствует, проверьте исправность нагревательного элемента. Если у него нарушена изоляция, нужно поменять ее. Затем выполните установку повторно.
Расчет мощности и разновидности ТЭНов
Существует общепринятая формула, при помощи которой можно правильно рассчитать необходимую мощность, вычисления выполняется оперируя тем, что на обогрев 10 м2 площади комнаты затрачивается 1 Квт энергии… Выглядит она следующим образом:
Р=0,0066*m*(T1-T2)/t, где
m — это объем нагреваемой жидкости,
t1 — конечная температура жидкости, градусы Цельсия,
t2 — начальная температура жидкости,
t — период за который нагревается жидкость, мин.
Р — мощность нагревательного элемента.
Попробуем произвести расчет для алюминиевой батареи из 6 секций, объем вмещаемой жидкости около 4 литров. Необходимо за 15 минут подогреть радиатор с 15 градусов до 60. Выполняем расчет:
Р=0,0066*4 (60-15)/15=0,792, таким образом мощность должна составлять 0,8 кВт.
Видео о подключении ТЭНа к одно- и трехфазной сети:
Поэтому, для такого “прожорливого” потребителя электроэнергии как электрокотел, от стабильной работы которого зимой зависит очень многое, важно сделать правильную электропроводку, подобрать надежную защитную автоматику и верно выполнить подключение.
Чтобы лучше понимать принцип подключения котла, необходимо знать из чего он обычно состоит и как работает. Речь пойдет о самых распространённых, ТЭНовых котлах, сердцем которых являются Трубчатые ЭлектроНагреватели (ТЭН) .
Проходящий через ТЭН электрический ток разогревает его, этим процессом управляет электронный блок, следящий за важными показателями работы котла, с помощью различных датчиков. Также электрокотел может включать циркуляционный насос, пульт управления и т.п.
В зависимости от потребляемой мощности, в быту обычно используются электрокотлы рассчитанные на питающее напряжение 220 В – однофазные или 380 В – трехфазные.
Разница между ними простая, котлы на 220В редко бывают мощнее 8 Квт , чаще всего в отопительных системах используются приборы не более чем на 2-5кВТ, это связано с ограничениями по выделенной мощности в однофазных питающих линиях домов.
Соответственно электрокотлы на 380В бывают более мощными и могут эффективно отапливать большие по площади дома .
Схемы подключения, правила выбора кабеля и защитной автоматики для котлов на 220В и 380В различаются, поэтому мы рассмотрим их раздельно, начнем с однофазных.
Схема подключения электрокотла к электросети 220 В (однофазного)
Как видите, питающую линию котла на 220 В защищает дифференциальный автоматический выключатель, совмещающий в себе функции автоматического выключателя (АВ) и . Так же, в обязательном порядке к корпусу устройства подключается заземление.
ТЭН или ТЭНы (если их несколько) в таком котле рассчитаны на напряжение 220В , соответственно к одному из концов трубчатого электрического нагревателя подключается фаза, а к другому ноль.
Для подключения котла требуется проложить трехжильный кабель (Фаза, Рабочий ноль, Защитный ноль – заземление).
Если же вам не удалось найти подходящий дифференциальный автоматический выключать или просто он слишком дорог в выбранной вами линейке защитной автоматики, его всегда можно заменить связкой Автоматический выключатель (АВ) + Устройство защитного отключения (УЗО), в таком случае схема подключения однофазного котла к электросети выглядит так:
Теперь осталось выбрать кабель нужной марки и сечения и номиналы защитной автоматики, для правильной электропроводки к электрокотлу.
В выборе необходимо отталкиваться от мощности будущего котла, а лучше всего рассчитывать с запасом, ведь в будущем, реши вы поменять котел, выбрать старшую модель (более мощную) вы уже не сможете, без серьезной переделки проводки.
Не буду загружать вас лишними формулами и расчетами, а просто выложу таблицу выбора кабеля и защитной автоматики в зависимости от мощности однофазного электрокотла 220 В. При этом в таблице будут учтены оба варианта подключения: через дифференциальный выключатель и через связку Автоматический выключатель + УЗО.
Для прокладки будут указаны характеристики медного кабеля марки ВВГнгLS, минимально допустимого ПУЭ (правилами устройства электроустановок) для использования в жилых зданиях, при этом расчеты сделаны для трассы от счетчика до электрокотла длинной 50 метров, если у вас это расстояние больше, возможно потребуется корректировка значений.
Таблица выбора защитной автоматики и сечения кабеля по мощности электрокотла 220 В
Устройство защитного отключения (узо) всегда выбирается на ступень выше стоящего с ним в паре автоматического выключателя, если же вам не удается найти УЗО необходимого номинала, можете взять защиту следующей ступени, главное не брать ниже положенного.
Особых сложностей и разночтений при подключении элекрокотла на 220В обычно не возникает, переходим к трехфазному варианту.
Общая электрическая схема подключения электрокотла 380 В, выглядит следующим образом:
Как видите, линия защищена трехфазным автоматическим выключателем дифференциального тока, к корпусу котла обязательно подключено заземление.
Как обычно, по традиции, выкладываю схему подключения трехфазного электрокотла со связкой автоматический выключатель (АВ) плюс устройство защитного отключения (УЗО) в цепи, которая нередко бывает дешевле и доступнее Диф. автомата.
Выбор номиналов защитной автоматики и сечения кабеля для трезфазных электрокотлов различной мощности удобно делать по следующей таблице:
В трехфазных электрокотлах обычно установлено сразу три ТЭНа, бывает и больше. При этом практически во всех бытовых котлах каждый из трубчатых электронагревателей рассчитан на напряжение 220 В и подключён следующим образом:
Это так называемое подключение «звезда» , для этого случая и подводится к котлу нулевой проводник.
Сами ТЭН подключаются к сети следующим образом: перемычкой соединены по одному из концов каждого из трубчатых электронагревателей, к оставшимся трем свободным поочередно подключаются фазы: L1, L2 и L3.
Если же в вашем котле стоят ТЭН, рассчитанные на напряжение 380 В, схема их соединения совершенно другая и выглядит она так:
Такое подключение ТЭН электрокотла называется «треугольник» и при одинаковом напряжении 380 В, как в предыдущем способе «Звезда», мощность котла значительно увеличивается. Нулевой проводник при этом не требуется, подключаются лишь фазные провода, электрическая схема подключения при этом соответственно выглядит вот так:
Не отступайте от схем подключения допустимых для вашего электрокотла , если там стоят ТЭН на 220В при трехфазном подключении, не переделывайте схему на «треугольник». Как вы понимаете, теоретически их можно переподключить и получить на ТЭН напряжение 380 В, соответственно и повышение их мощности, но при этом они у вас скорее всего просто сгорят.
Как определить правильную схему подключения ТЭН звездой или треугольником и, соответственно, на какое напряжение они рассчитаны?
Если утеряна инструкция по подключению вашего электрокотла или просто нет возможности к ней обратиться, определить правильную схему подключения в бытовых условиях можно так:
1. В первую очередь осмотрите клеммы ТЭН, скорее всего производителем контакты уже подготовлены под определенную схему. Так, например, для подключения «звездой» и ТЭНах на 220В, три клеммы будут объединены перемычкой.
2. Само наличие нулевой клеммы – «N», свидетельствует о том, что ТЭН на 220 В и подключать их требуется по схеме «Звезда». При этом её отсутствие, вовсе не означает, что ТЭН на 380 В.
3. Самый же надежный вариант узнать наряжение ТЭН – это посмотреть маркировку , указанную либо на фланце, к которому закреплены трубчатые электронагреватели
Либо на самом ТЭН в обязательном порядке выдавливаются его параметры:
Если же у вас не получается наверняка узнать напряжение, на которое расчитан ваш электрический котел и схему подключения его ТЭН, а подключить «очень надо», советую использовать схему «Звезда». При этом варианте, если Тэн окажутся расчитаны на 220 В, они будут работать в штатном режиме, а если на 380 В, то просто будут выдавать меньшую мощность, но главное не сгорят.
Вообще, случаи бывают разные, и все их охватить в формате одной статьи очень тяжело , поэтому обязательно пишите в комментариях свои вопросы, дополнения, истории из личного опыта и практики, это будет полезно многим!
Терморегулятор предназначен для поддержания заданной температуры путём управления нагревательными (охладительными) элементами.
Данные устройства бывают нескольких видов, начиная простыми механическими и заканчивая электронными многофункциональными и даже интеллектуальными устройствами.
Принцип работы состоит в том, что в устройстве есть выносной термодатчик, который сообщает устройству температуру окружающей среды. Для поддержания и регулировки заданного предела как раз и используется терморегулятор. Применяются для поддержания в различных устройствах, таких как: холодильник, тёплый пол, водяное отопление или нагреватели, инкубатор, теплицы и т. п.
Подключение ТЭНа с терморегулятором
Рассмотрим принцип работы и схему включения.
Они используются для бойлеров и котлов отопления. Берём универсальный на 220В и 2-4,5кВт, обычный, с чувствительным элементом в виде трубочки, помещается он внутрь ТЭНа, в котором есть специальное отверстие.
Тут видим 3 пары нагревательных элементов, итого шесть, подключать нужно следующим образом: на три садим ноль и на другие 3 – фазу. В разрыв цепи вставляем как раз наше устройство. Он имеет три контакта, на фото ниже видно один по центру сверху и два снизу. Верхний используется для включения к нулю, а какой из нижних к фазе надо проверить тестером.
Продолжаем знакомиться с трубчатыми электрическими нагревателями (ТЭН ). В первой части мы рассмотрели , а в этой части рассмотрим включение нагревателей в трехфазную сеть .
3. Схемы включения ТЭН в трехфазную сеть.
Для включения в трехфазную электрическую сеть применяют ТЭНы с рабочим напряжением 220 и 380 В. Нагреватели с рабочим напряжением 220 В включают по схеме «звезда », а нагреватели с напряжением 380 В включают по схеме «звезда » и «треугольник ».
3.1. Схемы соединения звездой.
Рассмотрим схему соединения звездой , составленную из трех нагревателей.
На вывод 2 каждого нагревателя подается соответствующая фаза. Выводы 1 соединены вместе и образуют общую точку, называемую нулевой или нейтральной , и такая схема соединения нагрузки называется трехпроводной .
Включение по трехпроводной схеме используется, когда нагреватели или любая другая нагрузка рассчитаны на рабочее напряжение 380 В. На рисунке ниже показана монтажная схема трехпроводного включения нагревателей в трехфазную электрическую сеть, где подача и отключение напряжения осуществляется трехполюсным автоматическим выключателем.
В этой схеме на правые выводы нагревателей подаются соответствующие фазы А , В и С , а левые выводы соединены в нулевую точку . Между нулевой точкой и правыми выводами нагревателей напряжение составляет 220 В.
Помимо трехпроводной схемы существует четырехпроводная , которая предполагает включение в трехфазную сеть нагрузки с рабочим напряжением 220 В. При таком включении нулевую точку нагрузки соединяют с нулевой точкой источника напряжения.
В этой схеме на правые выводы нагревателей подается соответствующая фаза, а левые выводы соединены в одну точку, которая подключена к нулевой шине источника напряжения. Между нулевой точкой и выводами нагревателей напряжение составляет 220 В.
Если необходимо, чтобы нагрузка полностью отключалась от электрической сети, то применяют автоматы «3+N » или «3Р+N », у которых включаются и отключаются все четыре силовых контакта.
3.2. Схемы соединения треугольником.
При соединении треугольником выводы нагревателей соединяют последовательно друг с другом. Рассмотрим схему включения трех нагревателей: вывод 1 нагревателя №1 соединяется с выводом 1 нагревателя №2 ; вывод 2 нагревателя №2 соединяется с выводом 2 нагревателя №3 ; вывод 2 нагревателя №1 соединяется с выводом 1 нагревателя №3 . В итоге получилось три плеча – «а », «б », «с ».
Теперь на каждое плечо подаем фазу: на плечо «а » фазу А , на плечо «в » фазу В , ну и на плечо «с » фазу С .
3.3. Схема «нагреватель — термореле — контактор».
Рассмотрим пример схемы регулирования температуры.
Данная схема составлена из трехполюсного автоматического выключателя, контактора, термореле и трех нагревателей, включенных звездой.
Фазы А , В и С от выходных клемм автомата поступают на вход силовых контактов контактора и постоянно дежурят на них. К выходным силовым контактам контактора подключены левые выводы ТЭНов, а правые выводы соединены вместе и образуют нулевую точку, подключенную к нулевой шине.
С выходной клеммы автомата фаза А поступает на клемму питания термореле А1 и перемычкой перебрасывается на левый вывод контакта К1 и постоянно дежурит на нем. Правый вывод контакта К1 соединен с выводом А1 катушки контактора.
Ноль N с нулевой шины поступает на вывод А2 катушки контактора и перемычкой перебрасывается на питающую клемму А2 термореле. Датчик температуры подключается к клеммам Т1 и Т2 термореле.
В исходном состоянии, когда температура окружающей среды выше заданного значения, контакт реле К1 разомкнут, контактор обесточен и его силовые контакты разомкнуты. При опускании температуры ниже заданного значения от датчика приходит сигнал и реле замыкает контакт К1 . Через замкнутый контакт К1 фаза А поступает на вывод А1 катушки контактора, контактор срабатывает и его силовые контакты замыкаются. Фазы А , В и С поступают на соответствующие выводы нагревателей и нагреватели начинают греться.
При достижении заданной температуры от датчика опять приходит сигнал и реле дает команду на размыкание контакта К1 . Контакт К1 размыкается и подача фазы А на вывод А1 катушки контактора прекращается. Силовые контакты размыкаются и подача напряжения на нагреватели прекращается.
Следующий вариант схемы включения нагревателей отличается лишь применением трехполюсного автомата с отключающимися тремя фазными и нулевым силовыми контактами.
Чтобы не нагружать силовую клемму автомата необходимо предусмотреть нулевую шинку, на которой будут собираться все нули. Шинку устанавливают рядом с элементами схемы, и уже от нее тянут нулевой проводник к четвертой клемме автоматического выключателя.
При подключении ТЭН в трехфазную сеть, для равномерного распределения нагрузки по фазам, необходимо учитывать общую мощность нагрузки по каждой фазе, которая должна быть одинаковой .
Вот мы и рассмотрели две основные схемы соединения нагревателей применяемых в трехфазной электрической сети.
Теперь нам только осталось рассмотреть возможные неисправности и способы проверки ТЭН .
На этом пока закончим.
Удачи!
Трубчатые электронагреватели (ТЭНы) широко используются для нагрева воды, воздуха и других жидкостей и газов в промышленности и в бытовом применении.
ТЭНы обычно подключают с помощью температурного реле для обеспечения автоматического отключения при достижении требуемой температуры.
Рассмотрим подключение трехфазного ТЭНа через магнитный пускатель и тепловое реле.
Рис. 1
ТЭН подключается через один трехфазный с нормально замкнутыми контактами МП(Рис. 1). Управляет пускателем термореле ТР, управляющие контакты которого разомкнуты при температуре на датчике ниже заданной. При подаче трехфазного напряжения контакты пускатели замкнуты и происходит нагрев ТЭНа, нагреватели которого включены по схеме «звезда».
Рис. 2
При достижении заданной температуры, тепловое реле отключает питание нагревателей. Таким образом, реализуется простейший регулятор температуры. Для такого регулятора можно применять термореле РТ2К (Рис. 2), а для пускателя – контактор третьей величины с тремя группами на размыкание.
РТ2К представляет собой двухпозиционное (работающие на включение/отключение) термореле с датчиком из медного провода с диапазоном установления температуры от -40 до +50°С. Конечно, использование одного теплового реле не позволяет достаточно точно поддерживать требуемую температуру. Включение каждый раз всех трех секций ТЭНа приводит к лишним энергопотерям.
Рис. 3
Если реализовать управление каждой секцией нагревателя через отдельный пускатель, связанный со своим термореле (Рис. 3), то можно осуществить более точное поддержание температуры. Итак, имеем три пускателя, которыми управляют три термореле ТР1, ТР2, ТР3. Температуры срабатывания выбраны, допустим как t1
Рис. 4
Реле-датчики температуры обеспечивают коммутацию исполнительной цепи до 6А, при напряжении 250В. Для управления магнитным пускателем таких величин более чем достаточно (Например, ток срабатывания контакторов ПМЕ составляет от 0,1 до 0,9 А при напряжении 127 В). При прохождении переменного тока через катушку якоря возможно низкое гудение промышленной частоты 50 Гц.
Существуют термореле, управляющие токовым выходом с величиной тока от 0 до 20 мА. Также часто тепловые реле питаются от постоянного тока низкого напряжения (24 В). Для согласования такого выходного тока с низковольтными (от 24 до 36 В) катушками якоря пускателя может применяться схема согласования уровней на транзисторе (Рис. 5)
Рис. 5
Данная схема работает в ключевом режиме. При подаче тока через контакты термореле ТР через резистор R1, на базу VT1 происходит усиление тока и включение пускателя МП.
Резистор R1 ограничивает токовый выход теплового реле для предотвращения перегрузки. Транзистор VT1 выбирают исходя из максимального тока коллектора, превышающего ток срабатывания контактора и напряжения на коллекторе.
Произведем расчет резистора R1 на примере.
Допустим для управления якорем пускателя достаточно постоянного тока в 200мА. Коэффициент усиления транзистора по току составляет 20, значит, управляющий ток базы IБ должен поддерживаться в пределах до 200/20 = 10 мА. Тепловое реле выдает максимум 24В при силе тока в 20мА, что вполне достаточно катушке якоря. Для открытия транзистора в ключевом режиме относительно эмиттера должно поддерживаться напряжение на базе в 0,6 В. Примем, что сопротивление перехода эмиттер-база открытого транзистора пренебрежительно мало.
Значит, напряжение на R1 составит 24 – 0,6В = 23,4 В. Исходя из полученного ранее тока базы получаем сопротивление: R1 = UR1/IБ=23,4/0,01 =2,340 Ком. Роль резистора R2 — не допускать включение транзистора от помех при отсутствии управляющего тока. Обычно его выбирают в 5-10 раз больше чем R1, т.е. для нашего примера будет составлять примерно 24 КОм.
Для промышленного использования выпускаются реле-регуляторы, реализующие температуры объекта.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.
Трубчатые электрические нагреватели – ТЭНы: устройство, выбор, эксплуатация, подключение ТЭНов / Публикации / Energoboard.ru
Разместить публикацию Мои публикации Написать25 мая 2012 в 10:00
Любой электрический нагреватель сопротивления представляет собой высокоомное сопротивление (нагревательный элемент), оборудованный вспомогательными устройствами для подвода тока, электроизоляции, защиты от механических повреждений, крепления.
Трубчатые электронагреватели (ТЭНы) являются наиболее распространенными электротермическими устройствами установок низко- и среднетемпературного нагрева. Они полностью защищены от внешних воздействий, в том числе от доступа воздуха.
Устройство ТЭНов
Обычно ТЭН состоит из тонкостенной (0,8 – 1,2 мм) металлической трубки (оболочки), в которой размещена спираль из проволоки большого удельного электрического сопротивления. Концы спирали соединены с контактным стержнем, наружные выводы которого служат для подключения нагревателя к питающей сети. Материалом трубки может быть углеродистая сталь, если температура поверхности ТЭНа в рабочем режиме не превышает 450 гр. С, и нержавеющая сталь при более высоких температурах или при работе ТЭНа в агрессивных средах.
Спираль изолируют от трубки наполнителем, имеющим высокие электроизоляционные свойства и хорошо проводящим теплоту. В качестве наполнителя, чаще всего, применяют периклаз (кристаллическая смесь магния). После заполнения наполнителя трубку ТЭНа опрессовывают. Под большим давлением периклаз превращается в монолит, надежно фиксирующий спираль по оси трубки ТЭНа. Опрессованный ТЭН может быть изогнут для придания необходимой формы. Контактные стержни ТЭНа изолируют от трубки изолятором, торцы герметизируют влагозащищенным кремнийограническим лаком.
Достоинства и недостатки ТЭНов
Преимущество ТЭНов – универсальность, надежность и безопасность обслуживания. Их можно использовать при контакте с газообразными и жидкими средами. ТЭны не боятся вибраций и ударов, но не являются взрывобезопасными. Рабочая температура ТЭНов может достигать 800 гр. С, что удовлетворяет использовать их не только в установках кондуктивного и конвекционного нагрева, но и в качестве излучателей в установках лучистого (инфракрасного) нагрева. Вследствие герметизации спиралей срок службы ТЭНов достигает 10 тысяч часов.
ТЭНы выпускают разнообразной конструкции, что позволяет встраивать их в самые разные установки, начиная от промышленных печей и до бытовых электронагревательных приборов. Помимо обычного исполнения выпускают одноконцевые ТЭНы патронного типа с диаметром от 6,5 до 20 мм, отличающиеся высокой удельной поверхностной мощностью, а также плоские ТЭНы с развитой теплоотдающей поверхностью.
К недостаткам ТЭНов следует отнести высокую металлоемкость и стоимость из-за использования дорогостоящих материалов (нихром, нержавеющая сталь), не очень высокий срок службы, невозможность ремонта при перегорании спирали.
Как выбрать ТЭН
При выборе ТЭНов необходимо учитывать: назначение ТЭНа, его мощность, питающее напряжение, условия эксплуатации (нагреваемая среда, характер нагрева, условия теплообмена, необходимую температуру).
ТЭНы выбирают из расчетной мощности необходимой для нагрева среды: Pрасч = (Кз х Рпол) / кпд, где Кз – коэффициент запаса (1,1 – 1,3), кпд – КПД, учитывающий потери мощности.
Из каталога находят ТЭН, соответствующий условиям эксплуатации по напряжению, мощности. температуре оболочки и нагреваемой среде, а аткже форме, возможности размещения ТЭНа в рабочем пространстве. Затем определяют число ТЭНов в зависимости от Ррасч и единичной мощности ТЭНов.
Эксплуатация ТЭНов
Основные причины отказы ТЭНов в процессе эксплуатации – нарушение герметизации выводных концов, коррозионное нарушение оболочки, разрыв спирали из-за перегрева. Эти причины вызваны чрезмерными усилиями на контактные стержни при подключении проводов к ТЭНам, образование слоя накипина поверхности трубки ТЭНа.
Надежность работы трубчатых электронагревателей можно увеличить при выполнении следующих рекомендаций:
- При подключении проводов к ТЭНам не следует прикладывать к гайкам контактных стержней излишнее усилие, в результате которого нарушается герметичность выводных концов ТЭНа.
- Необходимо исключить работу ТЭНов без воды.
- Необходимо очищать накипь с поверхности ТЭНов 1 раз в 2-3 месяца, не допуская отложений на ТЭНе толщиной более 2 мм.
4 июня 2012 в 11:00 187394
12 июля 2011 в 08:56 42463
28 ноября 2011 в 10:00 31838
21 июля 2011 в 10:00 19253
16 августа 2012 в 16:00 18774
29 февраля 2012 в 10:00 17351
24 мая 2017 в 10:00 15401
14 ноября 2012 в 10:00 13794
25 декабря 2012 в 10:00 11753
31 января 2012 в 10:00 10826
Работа с электрическими резистивными нагревательными элементами, запуск и техническое обслуживание
Наш опыт позволяет нам предлагать продукты, которые превосходят ожидания наших клиентов.От начала до конца мы координируем свои действия с нашими клиентами, чтобы производить идеальный продукт для их приложений. Это наш способ предоставить вам продукты, которые будут соответствовать вашим потребностям, по цене, основанной на этой стоимости.
Хотя нагревательные элементы электрического резистивного типа используются уже много лет, и ежедневно появляются новые применения, все еще существуют некоторые неправильно понятые аспекты использования и довольно часто неправильное использование элементов из-за предположений или отсутствия легкодоступной информации. .
В этом руководстве обсуждаются общие вопросы, касающиеся использования, ухода и обслуживания, связанные с продлением срока службы продуктов Thermcraft. Сложность вопросов, связанных с нагревателями резистивного типа, указывает на необходимость универсального руководства в качестве отправной точки.
Таким образом, данное руководство является всего лишь ориентировочным, а фактические технические характеристики нагревательных агрегатов следует делать только после консультации с инженерами Thermcraft.
- Свинец
- Типы выводов
- Радиус изгиба
- Хрупкость
- Окончания
- Защита от свинца
- Ремонтные работы
- Вибрация
- Сушка
- Велоспорт
- Предложения
ЭЛЕКТРИЧЕСКИЕ НАГРЕВАТЕЛИ
ОБЗОР ФАКТОРОВ ПО ПРИМЕНЕНИЮ И ОБСЛУЖИВАНИЮ
Компания Thermcraft предоставила следующую информацию только в качестве руководства и не дает никаких гарантий или гарантий.Должно быть очевидно, что количество переменных в типах приложений явно делает невозможным предоставление каких-либо абсолютных значений.
РАССМОТРЕНИЕ ЭЛЕКТРОПРОВОДОВ
Важно не только учитывать тип электрического нагревателя, его размещение и требования к мощности, но также необходимо учитывать типы используемых электрических выводов и способы их выхода и вывода из обогреваемой зоны. . Некоторые общие соображения при выборе различных типов отведений:
- Температура зоны вывода
- Требуется гибкость
- Относительная стоимость
- Загрязняющие вещества в свинцовой зоне
- Требуемая стойкость к истиранию
- Доступность элементов управления
ВЫВОДЫ НАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ И ПОДКЛЮЧЕНИЯ ПИТАНИЯ
Убедитесь, что сетевое напряжение соответствует номинальному напряжению нагревателя.Электропроводка к обогревателю должна быть проложена в соответствии с местными и национальными электротехническими правилами. Всегда ДОЛЖНА соблюдаться полярность. Соседние выводы всегда должны быть подключены с одинаковой полярностью. Несоблюдение полярности может вызвать преждевременный выход нагревателя из строя.
СТИЛИ ВЫВОДОВ
Выводы элементов доступны в широком диапазоне стилей, но обычно их можно сгруппировать в несколько категорий, например:
- Одножильный
- Витая пара
- Стержень
- Подушечка или стержень
Однопроводниковая концепция довольно распространена и обычно является стандартной формой поставки керамических и вакуумных волоконных нагревательных элементов.В этой форме проводник нагревательного элемента также служит проводником. При использовании этой формы необходимо проявлять осторожность, поскольку свинец может сильно нагреться, особенно когда пакет элементов работает с максимальным номиналом или близким к нему. Вырабатываемое тепло может создать проблемы с заделками, взаимодействием с изоляцией более низкого качества и возможным перегревом самого выводного провода (СМОТРИТЕ ТАКЖЕ РАЗДЕЛЫ ПО ЗАКЛЮЧЕНИЯМ И ЗАЩИТЕ ОТВОДА).
Витая пара – это провод, в котором элемент-проводник загнут на себя, а затем скручен определенным образом.В этом методе эффективная площадь поперечного сечения вывода фактически увеличена вдвое. Это позволяет свинцу работать при существенно пониженных температурах. Сама по себе эта функция значительно снижает вероятность отказов элементов, которые можно напрямую отследить до проблем с выводом или завершением. Этот тип проводов обычно имеет преимущество перед одножильными и обычно ограничивается использованием проводов BSA сечением от 9 до 10 или меньше. По возможности рекомендуется такая конфигурация отведений.
Стержневые выводы связаны с креплением провода с гораздо большей площадью поперечного сечения (обычно минимум два раза) к фактическому элементу. Опять же, это позволяет свинцу работать при гораздо более низких температурах, чем фактический элемент. Обычно стержень приваривается к проводнику нагревательного элемента. Хотя стержень тяжелее элемента, при обращении с ним необходимо соблюдать осторожность, поскольку в процессе сварки обычно образуется довольно хрупкая область в непосредственной близости от места сварки. Этот хрупкий участок подвержен растрескиванию или прямому механическому повреждению при неправильном обращении.Стержневой соединитель может использоваться как с проволочными, так и с ленточными нагревательными элементами. Материал, используемый для соединителя стержневого типа, может быть изготовлен из сплава с более низкой температурой, но схожего химического состава, который используется в фактическом нагревательном элементе.
Подушечка или стержень аналогичен по своей природе концепции стержня, за исключением того, что используется либо плоский стержень, либо, если в рассматриваемом элементе используется «полоса», а не проволока, полоса часто загибается на себя один или два раза для увеличения площадь поперечного сечения.Обычно на конце имеется отверстие для подключения болтовых соединений. Если прокладка была приварена к проводнику элемента, возникают те же опасения, которые высказывались на месте сварки по поводу хрупкости вывода стержня. Этот тип кабеля часто используется с нагревательными элементами на основе волокна, и если длина провода недостаточно велика, чтобы пройти через «резервную» изоляцию, клиент вынужден выполнять все свои силовые соединения на болтах в зоне, подверженной довольно высоким температурам окружающей среды. (СМ. РАЗДЕЛ ЗАЩИТЫ СВИНЦА И РАЗДЕЛ ПО РАЗРЕШЕНИЯМ).
РАДИУС ИЗГИБА
Подводящий провод, отходящий от нагревательных элементов, обычно можно согнуть в соответствии с вашими конкретными потребностями. Необходимо соблюдать осторожность, чтобы сохранить целостность внутреннего соединения, чтобы продлить срок службы нагревательного элемента. Чтобы избежать чрезмерной нагрузки на это соединение, используйте плоскогубцы с мягким носом, чтобы надежно закрепить выводной провод в месте выхода провода из нагревательного элемента, а затем согнуть его. Примечание. Некоторые плоскогубцы могут выдолбить провод, создав слабое место.
Минимальный радиус изгиба проволоки должен быть в 4-8 раз больше диаметра проволоки.Это работает как для никель-хромовых сплавов, так и для сплавов железо-хром-алюминий. Однако следует отметить, что в очень холодных условиях окружающей среды сплавы железо-хром-алюминий могут по-прежнему треснуть или сломаться при любом изгибе (т. Е .: см. Раздел о хрупкости).
BRITTLENESS
Многие из жаропрочных металлических сплавов, используемых для нагревательных элементов, страдают плохой пластичностью и хрупкостью, особенно после того, как они находились при рабочей температуре в течение длительного времени. Это особенно верно для материалов на основе железа, хрома и алюминия, которые часто используются при высоких температурах.Традиционные железо-хром-алюминиевые материалы станут очень хрупкими, когда они достигнут температуры 950 градусов. C, и эта хрупкость возникает почти мгновенно. Новые сплавы железа и хрома-алюминия на основе порошкового металла также становятся хрупкими после нагрева, но это более постепенный процесс, который строго зависит от времени и температуры. После охлаждения этих сплавов до комнатной температуры попытка их сдвинуть, скорее всего, приведет к поломке. Нагревание этих хрупких элементов до «цветной» температуры (выше 500 град.F) должен позволять их перемещать или перемещать без механических повреждений.
Как указано в других разделах, материалы железо-хром-алюминий также обладают фазой низкотемпературной хрупкости. Обычно это будет проблемой, если температура материала ниже 68 градусов. F и станет еще большей проблемой при понижении температуры. Обычно при попытке согнуть, скрутить или согнуть эти материалы ниже 40 град. F вызовет растрескивание и поломку. Таким образом, если блоки хранились в неотапливаемом помещении, дайте им нагреться как минимум до 70 градусов.F и желательно выше, так как чем выше температура, тем легче с ними работать.
При сварке этих сплавов непосредственная область сварного шва станет хрупкой (из-за высокой температуры сварки). При обращении с этими участками всегда следует обращаться с особым вниманием, поскольку чрезмерное усилие или изгиб, приложенное к этим соединениям, вызовут трещины и, возможно, поломку. Из-за этого потенциального риска часто бывает желательно поставлять системы элементов очень большого размера с отсоединенными стержневыми или контактными выводами.После того, как элементы были надежно закреплены, клеммы позиционируются и привариваются к элементам методом TIG.
ЗАВЕРШЕНИЯ
Правильные заделки имеют решающее значение для успешного применения нагревательного элемента, и, если не сделать его правильно, это отрицательно скажется на сроке службы элемента. Одна из основных целей – обеспечить, чтобы наибольшее количество «выводного провода» элемента находилось в тесном «жестком» физическом контакте с фактическим «выводом», насколько это практически возможно. В случаях, когда существует недостаточный контакт, либо из-за отсутствия материала, либо из-за слабого физического контакта, может развиться состояние, известное как «СОЕДИНЕНИЕ ВЫСОКОГО СОПРОТИВЛЕНИЯ».Это явление вызовет локальный нагрев в области заделки, что приведет к дальнейшему ухудшению качества соединения, что приведет к выходу из строя соединения. Обычно это требует замены того, что в остальном является совершенно хорошим нагревательным элементом. Дополнительным моментом для рассмотрения является тот факт, что процесс завершения требует соединения металлов из разных сплавов. Хотя этот процесс соединения может вызвать химические реакции на стыке, которые могут привести к преждевременному выходу из строя, его можно свести к минимуму, если поддерживать температуру ниже 1000 градусов.F.
При заделке проводов небольшого сечения, таких как те, которые обычно встречаются на керамических пластинах или панелях вакуумного формованного волокна, рекомендуется использовать процедуру механического сжатия. Это может быть болт (зажимной столб) с шайбами и контргайками, разрезной болт с шайбами и гайкой или специализированная клеммная колодка. Во всех случаях выводной провод следует тщательно очистить в области контакта с помощью стальной ваты или легкой шлифовки, чтобы обеспечить хорошее электрическое соединение.НАСТОЯТЕЛЬНО не рекомендуется использовать химические чистящие средства, так как они могут оставить остатки, которые могут вызвать коррозию и преждевременный выход из строя. Подводящий провод должен быть полностью намотан вокруг зажимного стержня и зажат между шайбами и контргайками или крепежом клеммной колодки. Вставки через разрезной болт и сжатия между шайбами обычно достаточно. Предпочтительным материалом клемм является латунь, хотя во многих случаях может использоваться нержавеющая сталь. Примечание. Чрезмерное и / или повторяющееся изгибание приведет к «деформационному упрочнению» материала, что приведет к трещинам / поломке.
Использование кольцевых соединителей НЕ рекомендуется из-за обычно недостаточной площади контакта между выводным проводом и кольцевой втулкой, а также из-за возможной деформации или повреждения выводного провода во время процесса обжима. Если необходимо использовать кольцевые соединители, они должны быть из нержавеющей стали и должны быть сварены TIG или припаяны серебром к подводящему проводу.
НЕ рекомендуется использовать герметики. Хотя это обычная практика для электрических соединений при работе с силовой проводкой, соединительный состав может отрицательно повлиять на целостность заделки (обычно вызывая коррозию и, следовательно, преждевременный выход из строя).
Во время этого процесса выводной провод можно согнуть в соответствии с вашей конкретной ситуацией. Необходимо соблюдать осторожность, чтобы обеспечить целостность внутреннего соединения. Чтобы избежать чрезмерной нагрузки на это соединение, рекомендуется использовать плоскогубцы с мягким носом, чтобы надежно удерживать выводной провод там, где он выходит из нагревательной панели или печи. Затем выводной провод можно при необходимости согнуть (СМ. РАЗДЕЛЫ ПО МИНИМАЛЬНОМУ РАДИУСУ ИЗГИБА И ПРОБЛЕМАМ ХРУПКОСТИ).
В выводах элемента должен быть обеспечен некоторый «провис», чтобы учесть расширение и сжатие во время циклов нагрева и охлаждения.Если этого не сделать, выводной провод может быть поврежден или сломан из-за механического напряжения. Это сложная проблема, потому что помимо расширения проволоки кожух печи, изоляция и внутренние опорные конструкции перемещаются во время термоциклирования. Однако только с точки зрения проволоки, провисания от 1/8 дюйма до 1/4 дюйма должно хватить для большинства размеров проволоки.
Для проволочных элементов большего сечения обычно поставляется стержневой вывод. В этом случае стержень обычно обрабатывают, чтобы можно было использовать схемы соединений, указанные на заводе-изготовителе.Обычной процедурой было бы снабдить конец стержня резьбой для использования с шайбами и контргайками. При затяжке этих соединений необходимо проявлять осторожность, чтобы не перекрутить или не согнуть стержень, так как это может вызвать растрескивание или полное разрушение любых сварных соединений, используемых для соединения стержня с фактическим элементом (СМ. РАЗДЕЛЫ, КАСАЮЩИЕСЯ СТИЛЕЙ СВИНЦА И ХРУПКОСТИ). Другие используемые концепции – это прорези и / или отверстия, которые позволяют клиенту приваривать другие выводы проводов с большим поперечным сечением непосредственно к элементу, используя утвержденные процедуры.Там, где это применимо, также могут использоваться специальные механические компрессионные соединители.
Рекомендуется проверять заделки на герметичность после первых восьми (8) часов работы, а затем периодически, чтобы гарантировать, что соединение с высоким сопротивлением не разовьется из-за ослабления. Продолжительность последующих обследований зависит от множества факторов, таких как частота цикла, условия окружающей среды, наведенные физические вибрации и т. Д., Но не должна превышать шести (6) месяцев.Следует отметить, что это обычная практика, которая должна применяться ко всем подключениям к электросети. ВХОДНОЕ ЭЛЕКТРОПИТАНИЕ ДОЛЖНО БЫТЬ ОТКЛЮЧЕНО И ЗАБЛОКИРОВАНО НА ИССЛЕДУЕМЫХ СИСТЕМАХ, В СООТВЕТСТВИИ С ПРИЗНАННЫМИ СТАНДАРТАМИ И КОДАМИ ОБСЛУЖИВАНИЯ ЭЛЕКТРОПИТАНИЯ
ЗАЩИТА ОТ ПРОВОДОВ
Часто желательно обеспечить защитное покрытие на выводах элемента. Это может потребоваться по электрическим или механическим причинам. Следует проявлять особую осторожность при выборе защитного экрана для проводов.Чаще всего проводят провод внутри высокотемпературной керамической трубки или кладут высокотемпературные керамические шарики на провод. Любой из этих методов также может иметь гибкий рукав (например, NEXTEL), расположенный сверху для дополнительной защиты. В общем, не следует использовать самоклеящиеся ленты, поскольку даже в высокотемпературных марках обычно используется мастика / клей на органической основе, которые могут распадаться на вещества на основе углерода. Они, в свою очередь, могут вступать в реакцию с проволокой, вызывая коррозию, просачивание углерода и охрупчивание.
Также следует внимательно изучить типы используемой изоляции. Многие из материалов с более низким рейтингом содержат значительное количество свободного диоксида кремния. Когда сплавы на основе железа, хрома и алюминия используются в качестве проводника нагревательного элемента (обычно при высоких температурах до 1300 ° C), защитное покрытие из оксида алюминия, сформированное на внешней стороне проводника, будет реагировать со свободным кремнеземом, начиная с температур около 1000 ° C. . Эта реакция приведет к явлению эвтектического плавления, происходящему в точке реакции.Чрезмерная изоляция выводов также может привести к перегреву как самого вывода, так и в области выводов.
Системы обогрева на основе волокна традиционно обрабатываются снаружи веществом, чтобы сделать волокно в некоторой степени жестким и самонесущим. Однако отменяющее давление вызовет необратимую деформацию поверхности волокна и / или растрескивание, что отрицательно скажется на изоляционных качествах прокладки из огнеупорного волокна. Попытка установить блоки с силой, скорее всего, приведет к растрескиванию или обрыву волокна.Провода или контактные площадки, предусмотренные на оптоволоконных площадках, должны иметь опоры, чтобы предотвратить скручивание или изгиб во время подключения силовых проводов. Это предотвратит повреждение волокна в зоне выхода вывода. Как и в случае со всеми материалами на основе тугоплавких волокон, при обращении с этими типами нагревателей необходимо надевать одобренный респиратор, особенно если нагреватель находился при температуре в течение любого времени и заменяется.
РЕМОНТ
В некоторых более крупных элементах (стержневой тип) и на некоторых узлах выводов можно устранить поломку (механическую по своей природе или в тех случаях, когда проводник не сильно расплавлен).Для этого в случае никель-хромовых сплавов необходимо удалить оксид, соединить проволоку и затем сварить утвержденными методами. Для сплавов железо-хром-алюминий используется аналогичная операция, за исключением того, что материал следует нагреть до «красной» цветовой температуры перед перемещением. Это позволит изгибать сегменты проводника без дополнительной поломки.
ОБРАЩЕНИЕ, ХРАНЕНИЕ, ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ
Одна из причин, по которой современные металлические нагревательные элементы могут работать при таких высоких температурах (до 1400 град.C) в течение продолжительных периодов времени, если они образуют защитный оксид на своей внешней поверхности. Загрязнение поверхности различными веществами будет мешать процессу образования оксида. (что происходит только при повышенных температурах) Это приведет к преждевременному выходу элемента из строя. Поскольку большинство элементов поставляются в «зеленом состоянии» (без оксида на поверхности), крайне важно, чтобы материал содержался как можно более чистым до тех пор, пока элемент не будет установлен и не будет нагрет до образования оксида.
Еще одна важная область рассмотрения – хранение элементов.Их необходимо защищать от непогоды и хранить в прохладном и сухом месте. В идеале это также должно быть место с низкой влажностью, но на практике это не всегда возможно. Многие из сплавов, используемых для обогрева, содержат высокий процент железа, и они подвержены ржавчине при воздействии высокой влажности. Ржавчина будет препятствовать образованию оксидов и привести к преждевременному выходу из строя. В случаях, когда используются волоконные элементы на основе керамики или вакуумного формования, керамика и волокно могут поглощать влагу либо непосредственно из воздуха, либо от прямого воздействия, такого как конденсация, протекающие верхние трубы или разливы.Эта характеристика поглощения может усугубить потенциал коррозии, поскольку во многих случаях сплав будет вкраплен и невидим для осмотра. (СМ. РАЗДЕЛ ОСУШЕНИЯ).
Еще одна область загрязнения – это масло для тела на руках. Для защиты открытых элементов рекомендуется надевать чистые хлопчатобумажные перчатки. Если это невозможно, тщательно вымойте руки водой с мылом, прежде чем обращаться с элементами. Следует отметить, что чем меньше материал элемента, тем более значительным становится это загрязнение, особенно для проводов сечением ниже BSA 18 и толщиной полосы 0.04 дюйм.
В целом, все продукты на нефтяной основе и большая часть «заводской грязи» будут отрицательно влиять на образование оксидов. Поэтому никогда не размещайте элементы прямо в цехе, не положив предварительно защитный барьер (например, чистую бумагу или картон). Если в атмосфере присутствует много масляных паров, не подвергайте элементы воздействию атмосферы дольше, чем это абсолютно необходимо.
Когда нагреватели снимаются с хранения, они должны быть нагреты минимум до 68 градусов. F перед попыткой установки.Многие из жаропрочных сплавов показывают возрастающие проблемы с пластичностью и хрупкостью при более низких температурах (ниже комнатной температуры или 68 ° F). Если выводы или элементы имеют температуру ниже этой температуры, попытка согнуть или придать им форму может привести к растрескиванию или поломке. Обратите внимание, что опасность этого резко возрастает по мере снижения температуры. Хотя 68 град. F – общепринятая минимальная температура для работы с этими сплавами, на практике очень желательно использовать более высокую температуру (до 100 град.F) если возможно. Причина этого в том, что небольшие отклонения в консистенции партии могут сместить критическую температуру на несколько градусов вверх или вниз.
Системы обогревателей на керамической основе по своей природе подвержены механическим повреждениям от механических ударов и нагрузок, поэтому не роняйте их и не устанавливайте с силой.
ВИБРАЦИЯ
В местах, подверженных чрезмерной вибрации, в первую очередь следует учитывать ударный монтаж с использованием стандартных промышленных методов крепления.Чрезмерная вибрация также может повлиять на соединения проводов. Убедитесь, что используемые разъемы выдерживают вибрацию и остаются герметичными.
НАГРУЗКА
Следует допустить снижение максимальной нагрузки на 20%, если вместо управления тиристором используется контактор. Пожалуйста, обратите внимание, что этот регулятор SCR представляет собой либо фазовый импульс, либо переменную временную развертку с переходом через ноль. Как правило, более желателен нулевой кроссовер, но фактическое применение будет определять практический выбор.
ПРОЦЕДУРА ВЫСУШИВАНИЯ: ВНУТРЕННИЕ ЭЛЕМЕНТЫ
Перед первым нагревом печи проверьте, не оторвался ли какой-либо цемент для заливки керамических нагревателей и виден ли провод нагревателя. При необходимости нанесите заливочный цемент, следуя инструкциям по ремонту нагревателей.
ПРОЦЕДУРА ВЫСУШИВАНИЯ: ОГНЕУПОРНЫЕ МАТЕРИАЛЫ
Настоятельно рекомендуется повышать температуру медленно, чтобы высушить влагу из огнеупорной футеровки.Предлагается, чтобы блок работал до 200 градусов. F от одного до двух часов, затем медленно до 500 градусов. F и выдерживали при этой температуре от четырех до шести часов на открытом воздухе. Затем увеличьте температуру на 150 градусов. F в час после этого, пока не будет достигнута нормальная рабочая температура. ВНИМАНИЕ: Если в любой момент во время разгона появится пар, не повышайте температуру до тех пор, пока пар не прекратится.
ВЕЛОСИПЕД
Примечание. Лучший способ продлить срок службы – использовать элемент с большой площадью поперечного сечения с умеренной нагрузкой в ваттах и никогда не отключать его.Проблема с цикличностью заключается в том, что оксид либо трескается, либо отслаивается, подвергая основной материал дальнейшему окислению и возможному разрушению.
ПОЛЕЗНЫЕ ПРЕДЛОЖЕНИЯ И ПРАКТИКИ
Хотя у нагревательных элементов нет прогнозируемого срока службы в большинстве приложений, следует учитывать возможность полного отказа. Следует предусмотреть возможность быстрой замены, если возможный простой будет дорогостоящим или критичным для производства или других операций. Запасные части следует хранить по мере необходимости, чтобы неисправный элемент можно было заменить за короткий период времени без полной остановки или прерывания процесса.
Поддерживайте чистоту оборудования, особенно вокруг клемм, корпуса электропроводки и самого нагревателя, с помощью регулярной программы технического обслуживания. В сильно загрязненной среде или в опасных атмосферных условиях особое внимание следует уделять клеммным коробкам и электрическим шкафам. Клеммные коробки нагревателя могут быть спроектированы со специальной арматурой для использования положительного давления инертного газа для предотвращения проникновения загрязняющих веществ или взрывоопасных газов. Очистка – это дешевое решение многих проблем терминала, когда местные нормы разрешают использовать непрерывную продувку.
Используйте внешнюю проводку, подходящую для соответствующих температур. Клеммные коробки и корпуса нагревателя обычно сильно нагреваются во время работы и могут потребовать особой техники подключения. Для полевых клеммных соединений внутри корпуса нагревателя рекомендуется использовать легированный провод с высокотемпературной изоляцией, если в инструкции не указано, что можно использовать медный или низкотемпературный изолированный провод. Никогда не используйте резину, пропитанный воском или термопластичный изолированный провод для высокотемпературных нагревателей, так как эти материалы очень быстро разрушаются при нагревании.Некоторые изоляционные материалы могут выделять пары, которые могут привести к травмам или повреждению нагревательного оборудования. Всегда проверяйте местные электротехнические правила на предмет надлежащей проводки.
По возможности используйте теплоизоляцию, чтобы снизить тепловые потери. Изоляция является относительно недорогой и окупается за короткое время за счет снижения тепловых потерь и эксплуатационных расходов. Это также желательно с точки зрения комфорта и безопасности персонала.
Мы, безусловно, надеемся, что эта информация будет полезной, и понимаем, что она не отвечает на все возникающие вопросы.Поэтому для получения дополнительной помощи свяжитесь с ближайшим к вам представителем Thermcraft или свяжитесь с нами напрямую.
705-КОНЕЦ
% PDF-1.6 % 39 0 объект > эндобдж 72 0 объект > поток 1999-03-05T13: 51: 42ZPageMaker 6.52009-01-21T09: 27: 19-06: 002009-01-21T09: 27: 19-06: 00application / pdf
r {/ gUNQ () M7J | 95JlEwcŕs / EpJc: eŮq05 ݑ | h ^ “ȬoȼpNvPZwN: Fv i] Z m ~ \ cU9Q8kbmgdZvhh = 0Fxy ֝ S @ 3P]) pE_Lcт].vҁ8f
Следует подключать нагреватели параллельно или последовательно?
Домой> Архив блога> Категория: Промышленное отопление> Следует ли подключать обогреватели параллельно или последовательно?
Следует подключать обогреватели параллельно или последовательно?
Итак, ваши обогреватели должны быть подключены параллельно или последовательно? Этот вопрос возникает, когда к источнику питания необходимо подключить более одного нагревателя. Обычно любое количество нагревателей может быть подключено параллельно, но обычно только два нагревателя подключаются последовательно.Последовательное подключение более двух нагревателей значительно усложняется. Если нагреватели подключены последовательно, отказ одного нагревателя может повлиять на другие нагреватели. При параллельном подключении нагревателей отказ одного нагревателя обычно не влияет на другие нагреватели.
Самая распространенная пара
Чаще всего используется двухкомпонентный нагреватель. В этом случае, если нагреватели подключены последовательно, напряжение каждого нагревателя должно быть равно половине общего доступного напряжения.Например, два нагревателя на 240 вольт, подключенные последовательно к источнику питания на 480 вольт. Также мощность каждого нагревателя должна быть одинаковой. (Если мощность и напряжение каждого нагревателя не равны, нагреватели не будут делить общее напряжение поровну.) Если два нагревателя подключены параллельно, напряжение каждого нагревателя должно быть таким же, как напряжение питания.
Итак, почему выбирают один путь вместо другого?
Одна из причин заключается в том, что некоторые нагреватели не могут быть надежно построены при одном напряжении.Это связано с физическими размерами нагревателя, а также с ваттами и вольтами. В основном вам нужен оптимальный размер провода элемента (провода, который нагревается докрасна) в нагревателе. В некоторых нагревателях из-за небольшого расстояния нагреватель не может быть построен на 480 вольт. Кроме того, если вы подключите последовательно, отказ одного нагревателя, скорее всего, повлияет на другой нагреватель.
Заключение
Помните, что при параллельном подключении каждый нагреватель имеет одинаковое напряжение, но последовательно, каждый нагреватель имеет одинаковый ток.По сути, вы подключаете последовательно только тогда, когда у вас есть два нагревателя одинаковой мощности и напряжения. В большинстве других случаев вы подключаете параллельно.
Ищете нашу продукцию? Щелкните здесь, чтобы просмотреть полную линейку промышленных обогревателей и аксессуаров для промышленного обогрева от Thermal Corporation.
Написано Джимом Диксоном
Отредактировано Шелби Рис
Дата публикации: 20.07.2014
Последнее обновление: 09.06.2019
Расчетный коэффициент нагревательного элемента
Проектирование нагревательных элементов
Нагревательные элементы кажутся очень простыми и понятными, но существует множество различных факторов, которые инженеры должны учитывать при их проектировании.Существует примерно 20-30 различных факторов, которые влияют на работу типичного нагревательного элемента, включая такие очевидные вещи, как напряжение и ток, длина и диаметр элемента, тип материала и рабочая температура. Есть также определенные факторы, которые необходимо учитывать для каждого типа элемента. Например, для спирального нагревательного элемента из круглой проволоки диаметр проволоки и форма витков (диаметр, длина, шаг, растяжение и т. Д.) Являются одними из факторов, которые критически влияют на характеристики.При использовании ленточного нагревательного элемента необходимо учитывать толщину и ширину ленты, площадь поверхности и вес.
И это только часть истории, потому что нагревательный элемент не работает изолированно: вы должны учитывать, как он впишется в более крупный прибор и как он будет себя вести во время использования, когда его используют по-разному. Как, например, ваш элемент будет поддерживаться изоляторами внутри устройства? Насколько они должны быть большими и толстыми, и повлияет ли это на размер изготавливаемого вами прибора? Например, подумайте о различных типах нагревательных элементов, которые вам понадобятся в паяльнике, о размере ручки и большом конвекторе.Если между опорными изоляторами есть элемент, «задрапированный», что с ним произойдет, когда он станет более горячим? Не будет ли он слишком сильно провисать, и это вызовет проблемы? Вам нужно больше изоляторов, чтобы это предотвратить, или вам нужно изменить материал или размеры элемента? Если вы разрабатываете что-то вроде электрического камина с несколькими близко расположенными нагревательными элементами, что произойдет, когда они будут использоваться по отдельности или в комбинации? Если вы разрабатываете нагревательный элемент, через который проходит воздух, как в конвекторном обогревателе или фене, сможете ли вы создать достаточный воздушный поток, чтобы остановить перегрев элемента и значительно сократить срок его службы? Все эти факторы должны быть сбалансированы друг с другом, чтобы продукт был эффективным, экономичным, долговечным и безопасным.
Конструкция нагревательного элемента
Следующие расчеты дают руководство по выбору электрического резистивного проволочного нагревательного элемента для вашего приложения
Расчет конструкции нагревательного элемента
Вот введение в электрическое сопротивление ленточных и проволочных нагревательных элементов, расчет элемента сопротивление и таблица термостойкости.
Для работы в качестве нагревательного элемента лента или проволока должны противостоять току электричества. Это сопротивление преобразует электрическую энергию в тепло, которое связано с удельным электрическим сопротивлением металла и определяется как сопротивление единицы длины единицы площади поперечного сечения.Линейное сопротивление отрезка ленты или провода можно рассчитать по его удельному электрическому сопротивлению.
Где:
- ρ = Удельное электрическое сопротивление (мкОм · см)
- R = Сопротивление элемента при 20 ° C (Ом)
- d = Диаметр проволоки (мм)
- t = Толщина ленты (мм)
- b = Лента ширина (мм)
- l = длина ленты или провода (м)
- a = площадь поперечного сечения ленты или провода (мм²)
Для круглой проволоки
a = π x d² / 4
Для ленты
a = tx (b – t) + (0.786 x t²)
R = (ρ xl / a) x 0,01
В качестве нагревательного элемента лента имеет большую площадь поверхности и, следовательно, более эффективное тепловое излучение в предпочтительном направлении, что делает ее идеальной для многих промышленных предприятий. например, ленточные нагреватели для литьевых форм.
Важной характеристикой этих сплавов с электрическим сопротивлением является их устойчивость к нагреванию и коррозии, которая связана с образованием поверхностных слоев оксида, которые замедляют дальнейшую реакцию с кислородом воздуха.При выборе рабочей температуры сплава необходимо учитывать материал и атмосферу, с которой он контактирует. Поскольку существует так много типов приложений, переменных в конструкции элемента и различных условий эксплуатации, следующие уравнения для конструкции элемента даны только в качестве руководства.
Электрическое сопротивление при рабочей температуре
За очень немногими исключениями сопротивление металла будет изменяться с температурой, что необходимо учитывать при проектировании элемента.Поскольку сопротивление элемента рассчитывается при рабочей температуре, необходимо определить сопротивление элемента при комнатной температуре. Чтобы получить сопротивление элементов при комнатной температуре, разделите сопротивление при рабочей температуре на коэффициент температурного сопротивления, указанный ниже:
Где:
- F = коэффициент температурного сопротивления
- R t = сопротивление элемента при рабочей температуре (Ом )
- R = Сопротивление элемента при 20 ° C (Ом)
R = R t / F
Нагрузка на площадь поверхности
Можно сконструировать нагревательный элемент различных размеров, каждый из которых Теоретически даст желаемую мощность нагрузки или удельную мощность, рассеиваемую на единицу площади.Однако важно, чтобы нагрузка на поверхность нагревательного элемента не была слишком высокой, поскольку передача тепла посредством теплопроводности, конвекции или излучения от элемента может быть недостаточно быстрой, чтобы предотвратить его перегрев и преждевременный выход из строя.
Предлагаемый диапазон поверхностной нагрузки для данного типа прибора и нагревательного элемента показан ниже, но он может быть ниже для нагревательного элемента, работающего с более частыми рабочими циклами, или при почти максимальной рабочей температуре, или в суровых условиях.
вот.
Устройство | Тип элемента | Рекомендуемая нагрузка на поверхность Диапазон (Вт / см²) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Огонь | Спиральный элемент на открытом воздухе | 4,5 – 6,0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Штанга огня | 6,0 – 9,5||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ленточный нагреватель | Элемент с слюдяной обмоткой | 4,0 – 5,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тостер | Элемент с слюдяной обмоткой | 3.0 – 4,0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Конвектор | Спиральный элемент | 3,5 – 4,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Накопительный нагреватель | Спиральный элемент | 1,5 – 2,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Нагреватель вентилятора | – | 9033 | Элемент печи | Трубчатый Элемент в оболочке | 8,0 – 12,0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Элемент решетки | 15.0 – 20,0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Нагревательная плита | 17,0 – 22,0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Водяной нагреватель | 25,0 – 35,0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Элемент чайника | 35,0 – 50,0 | 902 902 902 Круглый элемент 902
Вот как выполняются расчетные расчеты: 1.Рассчитайте необходимый диаметр и длину проволоки, работая при максимальной температуре C ° C, полное сопротивление элемента при рабочей температуре (R t ) будет:
2. Используя проволоку из сплава определенного нагревательного элемента, найдите коэффициент температурного сопротивления при рабочей температуре C ° C как F, таким образом, общее сопротивление элемента при 20 ° C (R) будет:
3.Зная размеры типа нагревательного элемента, можно оценить длину намотанного на него провода. Таким образом, сопротивление, необходимое на метр провода, будет:
4. Найдите провод нагревательного элемента стандартного диаметра, у которого сопротивление на метр ближе всего к A. 5. Чтобы проверить фактическую длину провода (L):
Изменение длины провода нагревательного элемента может означать добавление или вычитание шага провода для достижения требуемого общего значения сопротивления. 6. Чтобы проверить нагрузку на площадь поверхности (S):
Эта нагрузка на площадь должна находиться в пределах диапазона, указанного в таблице выше для типа нагревательного элемента, с учетом того, что более высокая value дает более горячий элемент. Нагрузка на площадь поверхности может быть выше или ниже, если считается, что теплопередача лучше или хуже, или в зависимости от важности срока службы нагревательных элементов. Если ваша расчетная нагрузка на площадь слишком велика или мала, вам следует пересчитать, изменив одно или несколько из следующего: Спиральные или спиральные элементыПроволочные нагревательные элементы, сформированные в виде змеевика, позволяют разместить провод подходящей длины в относительно небольшом пространстве, а также поглощают эффекты теплового расширения.При формировании катушки необходимо соблюдать осторожность, чтобы не повредить проволоку за счет надрезов или истирания. Также важна чистота нагревательного элемента. Максимальные и минимальные рекомендуемые отношения диаметра внутренней катушки к диаметру проволоки составляют 6: 1 и 3: 1. Длину катушки с закрытой намоткой можно найти с помощью уравнения, приведенного ниже. Где:
Когда эта катушка с закрытой намоткой растягивается, растяжение должно составлять примерно 3: 1, так как более тесная намотка приведет к более горячим виткам. Кроме случайного повреждения, срок службы нагревательного элемента может быть сокращен из-за локальных перегораний (горячих точек). Это может быть вызвано изменением поперечного сечения провода (например, зазубринами, растяжением, перегибами) или экранированием области, где нагревательный элемент не может свободно рассеивать тепло, или плохими точками опоры или заделками. Проектирование ленточного элементаМетод конструирования ленточного нагревательного элемента аналогичен методу, который использовался при проектировании нагревательного элемента с круглой проволокой. Где:
Вот как выполняются расчетные расчеты для ленточного нагревательного элемента: 1. Для расчета размера ленты и длина, необходимая для конкретного нагревательного элемента в нагревателе, работающего при максимальной температуре C ° C, полное сопротивление элемента при рабочей температуре (Rt) будет:
2 .Используя специальный провод из сплава нагревательного элемента, найдите коэффициент температурного сопротивления при рабочей температуре C ° C как F, таким образом, общее сопротивление элемента при 20 ° C (R) будет:
3. Зная размеры нагревателя, можно оценить длину ленты, которая может быть намотана на него. Таким образом, сопротивление, необходимое для каждого метра ленты, будет:
4. Найдите ленту нагревательного элемента стандартного размера b мм xt мм, имеющую стандартное сопротивление на метр запаса размера, близкое к до А Ом / м. 5. Проверка фактической длины ленты (L)
Изменение длины ленты может означать изменение шага ленты для достижения требуемого общего значения сопротивления. 6. Для проверки нагрузки на площадь поверхности (S):
Если расчетная нагрузка на площадь поверхности слишком высока или низка, как указано в таблице выше, вам следует пересчитать, изменив одно или несколько из следующего:
Практические соображения по проектированиюВ этой статье обсуждаются общие вопросы, касающиеся использования, ухода и технического обслуживания, связанных с продлением срока службы электрических устройств. обогреватели и печи.Сложность вопросов, связанных с нагревателями резистивного типа, указывает на необходимость универсального руководства в качестве отправной точки.
Рекомендации по электрическим выводамЭто не просто необходимо учитывать тип нагревателя с электронагревательным элементом, а также требования к размещению и мощности, но также необходимо учитывать различные типы используемых электрических выводов и методы, с помощью которых они выходят и завершают нагретую зону.Некоторые соображения при выборе выводов перечислены ниже:
Выводы нагревательного элемента и подключения питанияОпределенные нормы, которые необходимо соблюдать в отношении электрических подключений к электронагревательным элементам в нагревателях, перечислены ниже:
Типы выводовВыводы элементов для подключения нагревателей с электронагревательными элементами доступны в большом количестве стилей, но обычно их можно сгруппировать в определенные категории, которые включают следующее:
Однопроводниковые выводыОднопроводниковая концепция является наиболее распространенной и в основном является стандартной формой поставки керамических и вакуумных волоконных нагревательных элементов. Выводы для витой пары“Витая пара” – это вывод, в котором проводник элемента загибается на себя, а затем скручивается определенным образом. По возможности рекомендуется такая конфигурация отведений. Выводы для штангВыводы для штанг включают крепление более тяжелого провода к фактическому элементу. Обычно к проводнику нагревательного элемента приваривают стержень. Подушечка или стерженьПодушечка или стержень аналогичны по своей природе концепции стержня только в том, что используется либо плоский стержень, либо, если в элементе используется «полоса» вместо проволоки, полоса часто загибается на себя один раз. или два раза для увеличения площади поперечного сечения.Этот тип свинца используется с пакетами нагревательных элементов на основе волокна. Радиус изгибаДолжна быть предусмотрена возможность изгиба подводящего провода от нагревательных элементов в соответствии с требованиями заказчика. Минимальный радиус изгиба проволоки должен быть в четыре-восемь раз больше диаметра проволоки. Это правило применяется как к сплавам железо-хром-алюминий, так и к сплавам никель-хром. В очень холодных условиях сплавы железо-хром-алюминий могут сломаться или потрескаться при изгибе. ХрупкостьТрадиционные железо-хром-алюминиевые материалы становятся хрупкими при достижении температуры 950 ° C, и это происходит немедленно.Сплавы на основе металлических порошков также становятся хрупкими при нагревании, хотя это происходит более постепенно и зависит от температуры и времени. Важно охладить эти сплавы до цветовой температуры выше 500 ° F, чтобы их можно было перемещать без каких-либо механических повреждений. Они также хрупкие при низких температурах, поэтому, если с ними нужно работать, лучше иметь температуру около 70 ° F или выше. Также важно отметить, что при сварке этих сплавов близлежащие участки становятся хрупкими, поэтому с ними нужно обращаться осторожно. Концевые заделкиПравильные заделки имеют решающее значение для успешного применения нагревательного элемента, и если их не выполнить надлежащим образом, это существенно повлияет на срок службы элемента. Важно убедиться, что основная часть выводного провода элемента находится в тесном физическом контакте с фактическим заделкой. Защита выводовЧасто желательно обеспечить защитное покрытие на выводах элемента. Это может потребоваться по электрическим или механическим причинам.Выбор защитного экрана для проводов должен производиться с особой тщательностью. Как правило, следует избегать использования самоклеящихся лент, поскольку даже в высокотемпературных марках используется мастика / клей на органической основе, которые могут распадаться на вещества на основе углерода. Они могут вступить в реакцию с проволокой, вызывая охрупчивание, коррозию и проникновение углерода. Необходимо внимательно изучить степень изоляции. При обращении с материалами на основе тугоплавких волокон следует носить разрешенный респиратор, особенно если нагреватель долгое время находился при высокой температуре и его заменяют. Полезные методы и предложенияНекоторые полезные методы обращения с нагревательными элементами печи перечислены ниже:
Нагревательные элементы печи необходимо поддерживать в хорошем состоянии, чтобы они служили своему назначению и оставались полезными в течение всего срока службы. Статья предоставлена AZoM.com – Сайт AZoNetwork
Как подключить одноэлементный водонагреватель и термостат?Схема подключения одноэлементного термостата водонагревателяВ сезон дрожи и морозов нам нужна горячая вода вместо нее / него. Если это не ваш случай (не лгите), я предпочитаю говорить правду: «Я слишком люблю горячую воду в холодную и снежную погоду». Что ж, мы не рассказываем здесь историю любви, но хотим показать, как управлять горячей водой с помощью проводки гейзера горячей воды и электрического водонагревателя , обучающего по установке . В этой серии мы покажем, как подключить различные водонагреватели и термостаты, например, однофазный водонагреватель, трехфазный водонагреватель (сбалансированный и несбалансированный), непрерывную и непостоянную (одновременную и неодновременную) установку водонагревателя. , электрическая схема термостатов с выключателями и номиналом выключателя. В первом базовом руководстве мы покажем, как подключить и установить одноэлементный водонагреватель и термостат для однофазного 120 В переменного тока (США), однофазного 230 В переменного тока (ЕС / Великобритания) и двух линий 240 В переменного тока для США.А теперь приступим. Одноэлементный водонагреватель с проводкой термостатаОдноэлементный водонагреватель и один термостат обычно используются в небольших водонагревателях, предназначенных для однофазных 120 В или 230 В переменного тока. Термостат, используемый в одноэлементном электрическом водонагревателе, отличается от двухэлементного водонагревателя. Другими словами, есть два винта с правой стороны одноэлементного переключателя термостата, который крепится к нагревательному элементу, в то время как двухэлементный термостат имеет 3 винта с правой стороны. Давайте посмотрим различные схемы подключения одноэлементного термостата водонагревателя, как показано ниже. Однофазный одноэлементный термостат водонагревателя на 120 В переменного тока Подключение проводовВ этом соединении фазовая линия (L) подключается к винту L 1 на термостате, а затем выходит из клеммы T 2 , которая находится дальше подключен к единственному нагревательному элементу. С другой стороны, нейтраль (N) напрямую подключена ко второй клемме нагревательного элемента.Заземление «E» подключается к распределительной коробке водонагревателя. Мощность нагревательного элемента 3кВт. Поскольку напряжение питания составляет 120 В, он потребляет максимум 25 ампер тока (закон Ома: I = P / V). Таким образом, автоматический выключатель на 30 А и провод 8 калибра как для линии, так и для нейтрали подходят в соответствии с номиналом. Максимальный безопасный ток автоматического выключателя составляет 80%, т.е. 30A x 0,8 = 24A. Другими словами, автоматический выключатель должен быть рассчитан примерно на 125% от тока полной нагрузки i.е. Ток нагрузки 25 А x 125% = 31,25 А. Таким образом, можно использовать ближайший прерыватель на 30 А. Однофазный одноэлементный термостат переменного тока 240 В и 120 В Подключение проводкиОдин и тот же термостат может быть подключен как для 120 В переменного тока (линия и нейтраль), так и для 240 В переменного тока (две линии или фазные провода). На следующей схеме подключения водонагревателя показан одиночный нагревательный элемент мощностью 3000 Вт, подключенный к 120 В переменного тока, а также к 240 В переменного тока. Подключение проводов для однофазных 120 В и 240 В одинаково i.е. Линия подключается к клемме L 1 , а нейтраль или вторая линия подключается к клемме L 3 . Водонагревательный элемент подключен к термостату через T 2 как горячий и L 4 как нейтральный. Черный цвет – это «нейтраль», красный – «фаза или линия», а желто-зеленый провод используется для заземления. Цвета используются для обозначения целей подключения проводки и могут отличаться в зависимости от области и местоположения. Пожалуйста, следуйте своим собственным кодексам и правилам.Дополнительные сведения см. В примечании к нижнему колонтитулу, где указаны цветовые коды проводки и уровни напряжения NEC и IEC. При подключении 120 В нагревательный элемент мощностью 3000 Вт потребляет ток 25 А, поэтому для нейтрали и линии использовались провода 8 калибра с прерывателем или предохранителем на 30 А. При подключении 240 В нагревательный элемент мощностью 3 кВт потребляет ток 12,5 А, поэтому можно использовать провода 12 калибра для обеих линий и автоматические выключатели для защиты от перегрузки по току 15 А. Схема подключения одноэлементного термостата 230 В, 240 В и 120 В переменного токаНа следующей схеме водонагревателя показаны различные варианты подключения i.е. однофазный 120 В переменного тока и двухфазный 240 В в США (NEC), а однофазный 230 В переменного тока в Великобритании и ЕС (IEC). В первом случае одноэлементный водонагреватель мощностью 2,8 кВт подключается к сети переменного тока 120 В (линия и нейтраль), которая потребляет ток 23,33 А. в случае однофазного переменного тока 120 В (линия и нейтраль) используются провода 8 калибра с автоматическим выключателем на 30 ампер и односторонний (SPST = однополюсный однопозиционный) переключатель с номинальным током 30 А и безопасным пределом тока 24 А. (30А х 80%). Другими словами, 23А х 1.25 = 28,75. Ближайший номинал – выключатель 30А, который подходит для использования в водонагревателе на 120 В, 2800 Вт. В случае 240 В переменного тока (США) или 230 В переменного тока (ЕС / Великобритания) одноэлементный водонагреватель мощностью 5,5 кВт подключается к источнику питания через прерыватель на 30 А и односторонний выключатель, при этом элементная цепь потребляет 22,91 А при двух 240 В линии и 23,91 А в линии 230 В и нейтрали. Подключение проводки такое же, несмотря на то, что оба провода подключены к L 1 и L 3 – это две горячие линии в случае 240 В переменного тока, в то время как L 1 – в горячем состоянии, а L 3 – в нейтральном в случае 230 В. AC.Для 22,91 А или 23,91 А подходит провод 10 калибра с переключателем на 30 А и защитным автоматом, как показано на электрической схеме. Полезно знать:
Кроме того, переключатель, рассчитанный на:
Связанная проводка водонагревателя: Как подключить термостат одновременного водонагревателя на 240 В? Таблица размеров защиты автоматического выключателя и калибра проводов для водонагревателяВ следующей таблице показаны размеры автоматического выключателя в амперах и размер медных проводов для 120 В, 208 В и 240 В переменного тока.
Может быть подключено менее 1500 Вт 14 калибра с защитой 15 А.Следуйте местным нормам. Ниже приведена схема защиты от перегрузки по току автоматического выключателя или предохранителя в амперах и сечение провода, основанное на таблице 310-16 NEC с учетом температуры 75 ° C. o для элементов водонагревателя в диапазоне от 3 кВт до 12 кВт для 208 В, 240 В, 277 В. и 480 В переменного тока.
Цветовой код проводки 9003 9003 9000 Красный для Live или Phase , Black для Neutral и Green для заземляющего провода.Вы можете использовать коды конкретных регионов, например I EC – Международная электротехническая комиссия (Великобритания, ЕС и т. Д.) Или NEC (Национальный электротехнический кодекс [США и Канада], где:NEC: Черный = Фаза или Линия , Белый = Нейтраль и Зеленый / Желтый = Заземляющий провод
Черный = Фаза 1 или Линия 1 , Красный = Линия 2, Синий = Линия 3, Белый / Серый = Нейтраль и Зеленый / Желтый = Заземляющий провод IEC: Коричневый = Фаза или Линия , Синий = Нейтраль и Зеленый = Заземляющий провод
Серый = Фаза 1 или Линия 1 , Черный = Линия 2, Коричневый = Линия 3, Синий = Нейтраль и Зеленый = Заземляющий провод Калибр проводов и размер автоматического выключателя для таблиц водонагревателей приведены ниже в качестве справочной информации для загрузки для дальнейшего использования. Общие меры предосторожности
В этом базовом посте мы обсудили одноэлементный электрический водонагреватель и проводку термостата . В наших следующих публикациях мы покажем одновременную и неодновременную установку трехфазного водонагревателя и способы управления ими. Кроме того, дайте нам знать в поле для комментариев ниже с ценными предложениями или если вам нужна помощь с конкретным руководством по подключению. Оставайтесь на связи и поделитесь с друзьями. Сопутствующие руководства по монтажу проводки Зажигание> Электрооборудование> Сопротивление нагреваЗажигание> Электрооборудование> Сопротивление обогреваНагрев сопротивления Тепло создается за счет прохождения электрического тока в проводящем материале. По закону Ома:
А потому что
, если ток слишком велик для такого размера провода и / или слишком высокое сопротивление (например, из-за плохого соединения), может возникнуть нежелательный нагрев.Этот нагрев может вызвать возгорание близлежащих горючих материалов, включая изоляцию проводов, пары легковоспламеняющихся жидкостей или другие твердые вещества. Нити накаливания лампочек, обычно вольфрамовые, излучают свет за счет резистивного нагрева. Нити работают при температурах до 2550 градусов по Фаренгейту, находясь в герметичной вакуумированной стеклянной колбе [1]. Если стекло разбивается в результате столкновения, нить накала окисляется и обычно выходит из строя в течение короткого времени, хотя воздействие легковоспламеняющихся паров в течение этого времени может вызвать возгорание.Другие автомобильные электрические компоненты, включая определенные устройства управления скоростью двигателя вентилятора, используют в схемах резисторы, которые могут выделять достаточно тепла для воспламенения горючих веществ в случае их соприкосновения друг с другом. Автомобильные компоненты, которые с наибольшей вероятностью могут вызвать возгорание из-за резистивного нагрева, включают:
Список литературы 1. |