Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

ПРИНЦИП ДЕЙСТВИЯ ПОЛЕВОГО ТРАНЗИСТОРА

Транзисторы можно разделить на два класса – биполярные и униполярные. В биполярных транзисторах как положительные, так и отрицательные носители принимают участие в работе прибора, отсюда и термин «биполярный». Заряд избыточных неосновных носителей, инжектированных в базу, компенсируется равным по величине зарядом основных носителей, так что электрическая нейтральность в базе сохраняется. С другой стороны, в униполярных приборах ток обусловлен только свободными основными носителями в проводящем канале и влияние малого количества неосновных носителей несущественно, отсюда и термин «униполярный» [1].

Полевой транзистор (ПТ) является униполярным прибором, в котором количество носителей в токе через проводящую область определяется электрическим полем, приложенным к поверхности (или p-n-переходу) полупроводника. В полевом транзисторе поток электронов направлен от истока, представляющего омический контакт, через проводящий канал к стоку, также представляющему омический контакт (рис.

1). Канал имеет длину в направлении протекания тока и соответственно ширину в направлении, перпендикулярном току и поверхности.

В полевом транзисторе с p-n-переходом управляющим электродом (затвором) является слой полупроводника, тип проводимости которого (р-тип) противоположен типу проводимости канала (n-тип). Управляющий p-n-переход, обратно смещённый относительно канала, образует изолирующий обеднённый слой, который, распространяясь в проводящий канал, эффективно ограничивает его размеры. Увеличение отрицательного потенциала вызывает дальнейшее сужение канала, уменьшающее его проводимость, а уменьшение отрицательного потенциала наоборот, приводит к расширению канала, увеличивающему его проводимость. При определённом значении напряжения на затворе, называемом напряжением отсечки, проводимость канала в идеальном случае уменьшается до нуля.

Нормальная работа ПТ с каналом р-типа обеспечивается подачей положительного смещения на затвор.

Рис. 1. Схематичное изображение полевого транзистора с p-n-переходом.
1 – исток; 2 – затвор p-типа; 3 – сток; 4 – обеднённая область; 5 – канал n-типа; 6 – затвор p-типа.

Максимальный ток стока и максимальная крутизна у ПТ с управляющим р-n-переходом (как с каналом р-типа, так и с каналом n-типа) наблюдается при нулевом смещении на затворе. При подаче прямого смещения на затвор ПТ появляется прямой ток через участок затвор-исток и резко уменьшается входное сопротивление транзистора.

На сток полевого транзистора с каналом n-типа необходимо подавать напряжение положительной полярности, а с каналом p-типа – отрицательной полярности.

Рис. 2. Условные обозначения ПТ с р-n-переходом.
а – с каналом p-типа; б – с каналом n-типа.

Условные обозначения полевых транзисторов с управляющим p-n-переходом приведены на рис. 2.

CONTENTS NEXT

Полевой МОП транзистор – устройство и принцип работы

Содержание статьи

Устройство и основные характеристики МОП-транзисторов

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем). Другое название МОП-транзистора – униполярный. Основные области применения таких приборов – выполнение функций электронного переключателя и усилителя электронных сигналов в старой и современной системотехнике.

Практически все типы MOSFET имеют три вывода:

Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.

Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.

Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.

Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM.

 

Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:

управляющее напряжение;

в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;

в закрытом состоянии – максимально допустимое напряжение прямого типа.

Отличие униполярных транзисторов от биполярных

МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n). В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.

Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.

Типы МОП-транзисторов

Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:

Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.

Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.

Принцип работы МОП-транзисторов на примере прибора с n-проводимостью

В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:

Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.

Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.

В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.

Принцип работы:

  1. Между затвором и истоком прикладывается плюсовое напряжение к затвору.
  2. Между металлическим выводом затвора и подложкой появляется электрическое поле.
  3. Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
  4. В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
  5. Между выводами стока и истока появляется «мост», проводящий электрический ток.
  6. Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.

Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.

Преимущества и недостатки МОП-транзисторов

Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:

  • возможность мгновенного переключения;
  • отсутствие вторичного пробоя;
  • хорошая эффективность работы при низких напряжениях;
  • стабильность при температурных колебаниях;
  • низкий уровень шума при работе;
  • большой коэффициент усиления сигнала;
  • экономичность в плане энергопотребления;
  • меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.

Применение этих приборов ограничивают следующие недостатки:

Важнейший минус – повышенная чувствительность к статическому электричеству.

Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.

Появление нестабильности работы при напряжении перегрузки.

Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.

Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Полевой транзистор

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N+-типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N+-типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N+ находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Полевые транзисторы (Униполярные)- принцип работы и устройство, обозначение на схеме

Полевые транзисторы это отдельный тип полупроводников, которые оснащены одновременно тремя электродами. Их называют истоком, затвором и стоком. В оснащенном стоком/истоком пространстве, находится особый канал токопровождения. В нем и протекает электрический ток. Он изготовлен из материалов, обладающих полупроводниковыми свойствами с переходом либо p либо n.

Управление осуществляется изменением величины проводимости канала, которая находится в прямой зависимости от напряжения заряда, проходящего между затвором и истоком. В биполярных транзисторах ток течет к коллектору от эмиттера, проходя через переходы p-n. В статье рассмотрены все вопросы строения, особенности, сферы использования полевых транзисторов. В качестве дополнения, статья содержит в себе несколько видеоматериалов и одну подробную научную статью.

Различные модели полевых резисторов

Полевые транзисторы с изолированным затвором. Устройство и принцип действия

Полевой транзистор с изолированным затвором (МДП-транзистор, MOSFET) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. МДП-транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП – транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).

Полевые транзисторы  – это однополярные устройства, как и обычные полевые транзисторы. То есть управляемый ток не должен проходить через PN переход. В транзисторе имеется PN переход, но его единственное назначение – обеспечить непроводящую обедненную область, которая используется для ограничения тока через канал.

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.

Полевые транзисторы разных размеров

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.

Основные характеристики полевых транзисторов.

Основные параметры полевых транзисторов:

  1. Максимально допустимая постоянная рассеиваемая мощность;
  2. Максимально допустимая рабочая частота;
  3. Напряжение сток-исток;
  4. Напряжение затвор-сток;
  5. Напряжение затвор-исток;
  6. Максимально допустимый ток стока;
  7. Ток утечки затвора;
  8. Крутизна характеристики;
  9. Начальный ток стока;
  10. Емкость затвор-исток;
  11. Входная ёмкость;
  12. Выходная ёмкость;
  13. Проходная ёмкость;
  14. Выходная мощность;
  15. Коэффициент шума;
  16. Коэффициент усиления по мощности.

Полевые транзисторы разных размеров

Полевые транзисторы с управляющим р-n-переходом

В полевых транзисторах с управляющим р-n-переходом управление током транзистора достигается путем изменения сечения канала за счет изменения области, занимаемой этим переходом. Управляющий р-n-переход образуется между каналом и затвором, которые выполняются из полупроводников противоположных типов проводимости. Так, если канал образован полупроводником η-типа, то затвор – полупроводником p-типа. Напряжение между затвором и истоком всегда подается обратной полярности, т.е. запирающей р-n-персход. Напомним, что при подаче напряжения обратной полярности область, занимаемая р-n-переходом, расширяется. При этом расширяется и область, обедненная носителями заряда, а значит, сужается область канала, через которую может течь ток. Причем, чем больше значение запирающего напряжения, тем шире область, занимаемая р-n-переходом, и тем меньше сечение и проводимость канала.

Материал в тему: устройство подстроечного резистора.

Так же, как и для биполярных транзисторов, для описания работы полевых транзисторов используют выходные характеристики. Выходная характеристика нолевого транзистора – это зависимость тока стока Iс от напряжения между стоком и истоком при фиксированном напряжении между затвором и истоком. В отличие от биполярного, работа нолевого транзистора может также описываться непосредственной зависимостью выходного параметра – тока стока от входного – управляющего напряжения между затвором и истоком. В зависимости от температуры, эти характеристики несколько изменяются. Напряжение UЗИ, при котором канал полностью перекрывается (IС = 0), называется напряжением отсечки Uотc. Управляющее действие затвора характеризуют крутизной, которая может быть определена по выходным характеристикам (см. рис. 1.15, г):

S = ΔIс/ΔUЗИ, при UСИ = const.

Так как управляющий p-n-переход всегда заперт, у полевых транзисторов практически отсутствует входной ток. Благодаря этому они имеют очень высокое входное сопротивление и практически не потребляют мощности от источника управляющего сигнала. Это свойство относится не только к транзисторам с управляющим р-n-переходом, но и ко всем полевым транзисторам, что выгодно отличает их от биполярных.

Распространённые типы полевых транзисторов

В настоящее время в радиоаппаратуре применяются ПТ двух основных типов – с управляющим p-n-переходом и с изолированным затвором. Опишем подробнее каждую модификацию.

Управляющий p-n-переход

Эти полевые транзисторы представляют собой удлинённый полупроводниковый кристалл, противоположные концы которого с металлическими выводами играют роль стока и истока. Функцию затвора исполняет небольшая область с обратной проводимостью, внедрённая в центральную часть кристалла. Так же, как сток и исток, затвор комплектуется металлическим выводом.

Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок (в зависимости от типа проводимости основного кристалла).

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Изолированный затвор

Конструкция этих полевых транзисторов отличается от описанных выше ПТ с управляющим p-n-переходом. Здесь полупроводниковый кристалл играет роль подложки, в которую на некотором удалении друг от друга внедрены две области с обратной проводимостью. Это исток и сток соответственно. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.

Из-за того, что в конструкции этих полевых транзисторов используются три типа материалов – металл, диэлектрик и полупроводник, – данные радиокомпоненты часто именуют МДП-транзисторами. В элементах, которые формируются в кремниевых микросхемах планарно-эпитаксиальными методами, в качестве диэлектрического слоя используется оксид кремния, в связи с чем буква «Д» в аббревиатуре заменяется на «О», и такие компоненты получают название МОП-транзисторов.

Полевой транзистор на схеме.

Существует два вида этих полевых транзисторов – с индуцированным и встроенным каналом. В первых физический канал отсутствует и возникает только в результате воздействия электрического поля от затвора на подложку. Во-вторых канал между истоком и стоком физически внедрён в подложку, и напряжение на затворе требуется не для формирования канала, а лишь для управления его характеристиками. Схемотехническое преимущество ПТ с изолированным затвором перед транзисторами с управляющим p-n-переходом заключается в более высоком входном сопротивлении.

Это расширяет возможности применения данных элементов. К примеру, они используются в высокоточных устройствах и прочей аппаратуре, критичной к электрическим режимам. В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям. Это вынуждает соблюдать особые меры предосторожности при работе с этими радиодеталями. В частности, в процессе пайки необходимо использовать паяльную станцию с заземлением, а, кроме того, заземляться должен и человек, выполняющий пайку. Даже маломощное статическое электричество способно повредить полевой транзистор.

Классификация транзисторов.

Выходные характеристики

Семейство выходных характеристик транзистора с управляющим рп-переходом в схеме с общим истоком показано на рис. 26.4. Они ана­логичны выходным характеристикам биполярного транзистора. Эти ха­рактеристики показывают зависимость выходного тока ID от выходного напряжения VDS(напряжения между стоком и истоком) для заданных Значений напряжения на затворе VGS(напряжения между затвором и истоком).

Диапазон изменения смещающего напряжения затвор-исток доволь­но велик (несколько вольт) в отличие от биполярного транзистора, где напряжение база-эмиттер практически постоянно. Видно, что при увеличении (по абсолютной величине) напряжения на затворе ток стока уменьшается. Это уменьшение происходит до тех пор, пока расширяющийся обедненный слой перехода затвор-канал не пере­кроет весь канал, останавливая протекание тока. В этом случае говорят, что полевой транзистор находится в состоянии отсечки.

Схема полевого транзистора.

Напряжение отсечки

рассмотрим выходную характеристику для VGS= 0. При уве­личении напряжения VDS(от нулевого значения) ток стока постепенно увеличивается, пока не достигает точки Р, после которой величина тока практически не изменяется. Напряжение в точке Р называется напря­жением отсечки. При этом напряжении обедненный слой, связанный с обратносмещенным переходом затвор-канал, почти полностью перекры­вает канал. Однако протекание тока IDв этой точке не прекращается, поскольку благодаря этому току как раз и создается обедненный слой. Все кривые семейства выходных характеристик имеют свои точки отсеч­ки: P1P2 и т. д. Если соединить эти точки друг с другом линией, то правее ее лежит область отсечки, являющаяся рабочей областью полевого транзистора.

Полевой транзистор.

Усилитель на полевом транзисторе с общим истоком

Схема типичного усилителя ЗЧ на полевом транзисторе показана на рис. 26.5. В этой схеме через резистор утечки R1 отводится на шасси очень малый ток утечки затвора. Резистор R3 обеспечивает необходимое обратное смещение, поднимая потенциал истока выше потенциала затво­ра. Кроме того, этот резистор обеспечивает также стабильность режима усилителя по постоянному току. R2 – нагрузочный резистор, который может иметь очень большое сопротивление (до 1,5 МОм). Развязыва­ющий конденсатор С2 в цепи истока устраняет отрицательную обратную связь по переменному току через резистор R3. Следует отметить, что раз­делительный конденсатор С1 может иметь небольшую емкость (0,1 мкФ) благодаря высокому входному сопротивлению полевого транзистора.

При подаче сигнала на вход усилителя изменяется ток стока, вызы­вая, в свою очередь, изменение выходного напряжения на стоке транзи­стора. Во время положительного полупериода входного сигнала напря­жение на затворе увеличивается в положительном направлении, обратное напряжение смещения перехода затвор-исток уменьшается и, следовательно, увеличивается ток IDполевого транзистора. Увеличение ID приводит к уменьшению выходного (стокового) напряжения, и на выходе воспроизводится отрицательный полупериод усиленного сигнала. И на­оборот, отрицательному полупериоду входного сигнала соответствует по­ложительный полупериод выходного сигнала. Таким образом, входной и выходной сигналы усилителя с общим истоком находятся в противофазе.

Расчет статического режима

Одно из преимуществ полевого транзистора – очень малый ток утечки затвора, величина которого не превышает нескольких пикоампер (10-12 A). Поэтому в схеме усилителя па рис. 26.5 затвор находится практически при нулевом потенциале. Ток полевого транзистора протекает от стока к истоку и обычно отождествляется с током стока ID (который, очевидно, равен току истока IS).

Рассмотрим схему на рис. 26.5. Полагая ID = 0,2 мА, вычисляем потенциал истока:

VS = 0,2 мА · 5 кОм = 1 В. Это величина напряжения обратного смещения управляющего    pn-перехода.

Падение напряжения на резисторе R2 = 0,2 мА · 30 кОм = 6 В.

Потенциал стока VD = 15 – 6 = 9 В.

Линия нагрузки

Линию нагрузки можно начертить точно так же, как для биполярного транзистора. Если ID = 0, то VDS= VDD = 15 В. Это точка Х на линии нагрузки. Если VDS= 0, то почти все напряжение VDDисточника питания па­дает на резисторе R2. Следовательно, ID = VDD / R2= 15 В / 30 кОм = 0,5 мА. Это точка Y на линии нагрузки. Рабочая точка Q выбирается таким образом, чтобы транзистор работал в области отсечки. Выбранная рабочая точка Q точка покоя определяется величинами: ID = 0,2 мА, VGS= – 1 В, VDS= 9 В.

Полевой транзистор.

МОП-транзистор

В полевом транзисторе этого типа роль затвора играет металлический электрод, электрически изолированный от полупроводника тонкой пленкой диэлектрика, в данном случае оксида. Отсюда и название транзистора «МОП» – сокращение от «металл-оксид-полупроводник». Канал п-типа в МОП-транзисторе формируется за счет притяже­ния электронов из подложки р-типа диэлектрическим слоем затвора (рис. 26.7). Ширину канала можно изменять, подавая на затвор электрический потенциал. Подача положительного (относительно подложки)

Заключение

Более подробную информацию об устройстве полевых транзисторов можно узнать в статье Лекция о полевых транзисторах. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.bourabai.ru

www.studme.org

www.radiolubitel.net

www.radioprog.ru

www.eandc.ru

Предыдущая

ПолупроводникиЧто такое NTC термисторы

Следующая

ПолупроводникиЧто такое SMD светодиоды

Принцип работы полевого транзистора

Принцип работы полевого транзистора

Транзисторами  называют полупроводниковые триоды, у которых расположено три выхода.

Их основным свойством является возможность посредством сравнительно низких входных сигналов осуществлять управление высоким током на выходах цепи.

Для радиодеталей, которые используются в современных сложных электроприборах, применяются полевые транзисторы.

Благодаря свойствам этих элементов выполняется включение или выключение тока в электрических цепях печатных плат, или его усиление.

Что представляет собой полевой транзистор

Полевые транзисторы — это трех или четырех контактные устройства, в которых ток, идущий на два контакта, может регулироваться посредством напряжения электрополя  третьего контакта.  На двух контактах регулируется напряжением электрического поля на третьем. В результате этого подобные транзисторы называются полевыми.

Название расположенных на устройстве контактов и их функции:

  • Истоки – контакты с входящим электрическим током, которые находится на участке n;
  • Стоки – контакты с исходящим, обработанным током, которые находятся  на участке n;
  • Затворы – контакты, находящиеся на участке р, посредством изменения напряжения на котором, выполняется регулировка пропускной способности на устройстве.

Видео «Подробно о полевых транзисторах»

//www.youtube.com/embed/WKx_3fUtcSk?autohide=2&autoplay=0&mute=0&controls=1&fs=1&loop=0&modestbranding=0&playlist=&rel=1&showinfo=1&theme=dark&wmode=&playsinline=0

Виды полевых транзисторов

Полевой транзистор с n-р переходами подразделяется на несколько классов в зависимости:

  1. От типа каналов проводников: n или р. Каналы воздействую на знаки, полярности, сигналы управления. Они должны быть противоположны по знакам n-участку.
  2. От структуры приборов: диффузных, сплавных по р -n — переходам, с затворами Шоттки, тонкопленочными.
  3. От общего числа контактов: могут быть трех или четырех контактными. Для четырех контактных приборов, подложки также являются затворами.
  4. От используемых материалов: германия, кремния, арсенид галлия.

В свою очередь разделение классов происходит в зависимости от принципа работы транзистора:

  • устройства под управлениями р-n переходов;
  • устройства с изолированными затворами или с барьерами Шоттки.

Принцип работы полевого транзистора

Радиодетали состоят из двух участков: p-переходов и n-переходов.

По участку n проходит электроток.

Участок р является перекрывающей зоной, неким вентилем. 

Если оказывать определенное давление на нее, то она будет перекрывать участок и препятствовать прохождению тока.

Либо, же наоборот, при снижении давления количество проходящего тока возрастет.

В результате такого давления осуществляется увеличение напряжения на контактах затворов, находящихся на участке р.

Приборы с управляющими p-n канальными переходами — это полупроводниковые пластины, имеющие электропроводность с одним из данных типов. К торцевым сторонам пластин выполняется подсоединение контактов: стока и истока, в середину — контакты затвора.

Принцип работы прибора основан на изменении пространственных толщин p-n переходов. Так как в запирающих областях практически отсутствуют подвижные носители заряда, их проводимость равняется нулю. В полупроводниковых пластинах, на участках которых не воздействует запирающий слой, создаются проводящие ток каналы. Если подается отрицательное напряжение в отношении истока, на затворе образуется поток, через который протекают носителя заряда.

Для изолированных затворов, характерно расположение на них тонкого слоя диэлектрика. Такое устройство работает по принципу электрических полей.  Для его разрушения понадобится всего лишь небольшое электричество. В связи с этим, чтобы предотвратить статическое напряжение, которое может превышать 1000 В, необходимо создание специальных корпусов для приборов, которые минимизируют эффект от воздействия вирусных типов электричества.

Для чего нужен полевой транзистор

При рассмотрении работы сложных видов электротехники, стоит рассмотреть работу такого важного компонента интегральной схемы, как полевой транзистор.

Основная задача от использования данного элемента заключается в пяти ключевых направлениях, в связи с чем транзистор применяется для:

  1. Усиления высокой частоты.
  2. Усиления низкой частоты.
  3. Модуляции.
  4. Усиления постоянного тока.
  5. Ключевых устройств (выключателей).

В качестве простого примера работа транзистора-выключателя, может быть представлена как микрофон и лампочка в одной компановке.  Благодаря микрофону улавливаются звуковые колебания, что влияет на появление электрического тока, поступающего на участок запертого устройства. Присутствие тока влияет на включение устройства и включение электрической цепи, к которой подключаются лампочки. Последние загораются после того как микрофон уловил звук, но горят они за счет источников питания не связанных с микрофоном и более мощных.

Модуляцию применяют с целью управления информационными сигналами. Сигналы управляют частотами колебаний. Модуляцию применяют для качественных звуковых радиосигналов, для передачи звуковых частот в телевизионные передачи, для трансляции цветовых изображений и телевизионных сигналов с высоким качеством. Модуляцию применяют повсеместно, где нужно проводить работу с высококачественными материалами.

Как усилители полевые транзисторы в упрощенном виде работают по такому принципу: графически любые сигналы, в частности, звукового ряда, могут быть представлены как ломаная линия, где ее длиной является временной промежуток, а высотой изломов – звуковая частотность. Чтобы усилить звук к радиодетали подается поток мощного напряжения, приобретаемого нужную частотность, но с более большим значением, из-за подачи слабых сигналов на управляющие контакты. Иначе говоря, благодаря устройству происходит пропорциональная перерисовка изначальной линии, но с более высоким пиковым значением.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Условные обозначения полевых транзисторов

В электронике полевым транзистором называется электронный компонент, в котором ток проходящий через канал регулируется электрическим полем, образующимся в результате подачи напряжения между его истоком и затвором. Основным отличием полевого транзистора от транзистора биполярного является то, что выходное и входное сопротивление у него существенно выше.

Плевые транзисторы нередко именуют униполярными, поскольку основным принципом их действия является перемещение при помощи поля носителей зарядов одного и того же типа. Конструктивно эти приборы представляют собой изготовленные из полупроводниковых материалов пластинки одного типа проводимости, на противоположных сторонах которых способом диффузии создается область другого типа проводимости. На их границах образуется обладающий большим сопротивлением pn-переход.

В полевых транзисторах существуют области полупроводника которые называют каналами. Их поперечное сечение, а вместе с ним и ток носителей заряда изменяются под воздействием электрического поля.

Структура полевого транзистора
с управляющим pn-переходом и каналом n-типа

В случае, если между p-областью и n-областью приложить некоторое напряжение Uзи., как показано на рисунке выше, то pn-переход окажется включенным в обратном направлении, следовательно его толщина увеличится, а толщины канала уменьшается. При этом принято p-область называть затвором полевого транзистора, или же его управляющим электродом. Если к этому каналу подключить еще один источник напряжения U., то через него начнёт протекать ток в направлении от нижнего к верхнему участку n-области. Часть этой области, от которой основные носители зарядов начинают свое движение, называется истоком, а та часть, по направлению к которой они перемещаются – стоком.

Что касается величины тока, который протекает через канал, то определяющим для нее является сопротивление. Оно, в свою очередь, напрямую зависит от толщины канала. Таким образом, если изменяется величина приложенного к каналу напряжения, то вслед за этим происходит изменение величины тока.

В тех случаях, когда для производства этого электронного компонента в качестве основы берут полупроводник p-типа, то получается полевой транзистор, имеющий канал р-типа и управляющий pn-переход. Канал в нем образуется n-областью.

Структура и схема подключения МДП-транзистора
с индуцированным каналом

Полевые транзисторы с изолированным затвором

Помимо тех полевых транзисторов, которые имеют в своей конструкции управляющий затвор, имеются и такие, у которых он изолирован. В электронике для обозначения таких транзисторов используют аббревиатуры МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник). Соответственно, такие приборы называют МОП-транзисторами или МДП-транзисторами.

Для МДПтранзистора характерно то, что в нем между истоком и стоком располагается n-область, представляющая собой подложку. Поэтому образуется два pn-перехода, которые включены навстречу друг другу. При этом вне зависимости от того, какую именно полярность имеет питающее напряжение, один из этих переходов всегда закрыт, так что в в направлении «исток-сток» ток равен нулю.

Если на затвор подается отрицательное напряжение, то ток в цепи начинает течь. Дело в том, что на расположенные в подложке электроны действует электрическое поле, и они начинают передвигаться вглубь нее.

Существует некоторое пороговое значение напряжения, при котором количество дырок, расположенных у самой поверхности подложки, становится существенно больше, чем электронов. В результате этого происходит так называемая инверсия типа электроповодности: она обретает p-тип. В результате этого между стоком и истоком получается канал, связывающий их. Его толщина зависит от того, какое именно значение имеет приложенное напряжение. Если изменять его, то можно регулировать и толщину канала, поскольку сопротивление участка, располагающегося между истоком и стоком, также будет изменяться.

Обозначения полевых транзисторов на схеме

Полевой транзистор: виды, устройство, особенности

Полевой транзистор – электрический полупроводниковый прибор, выходной ток которого управляется полем, следовательно, напряжением, одного знака. Формирующий сигнал подается на затвор, регулирует проводимость канала n или p-типа. В отличие от биполярных транзисторов, где сигнал переменной полярности. Вторым признаком назовем формирование тока исключительно основными носителями (одного знака).

Классификация полевых транзисторов

Начнём классификацией. Разновидности полевых транзисторов многочисленны, каждая работает сообразно алгоритму:

  1. Тип проводимости канала: n или р. Фактор определяет полярность управляющего напряжения.
  2. По структуре. С р-n-переходом сплавные, диффузионные, МДП (МОП), с барьером Шоттки, тонкопленочные.
  3. Число электродов – 3 или 4. В последнем случае подложка рассматривается обособленным субъектом, позволяя управлять протеканием тока по каналу (помимо затвора).
  4. Материал проводника. Сегодня распространены кремний, германий, арсенид галлия. Материал полупроводника маркируется условным обозначением буквами (К, Г, А) или (в изделиях военной промышленности) цифрами (1, 2, 3).
  5. Класс применения не входит в маркировку, указывается справочниками, дающими сведения, что полевой транзистор часто входит в состав усилителей, радиоприемных устройств. В мировой практике встречается деление по применяемости на следующие 5 групп: усилители высокой, низкой частоты, постоянного тока, модуляторы, ключевые.

    Полупроводниковый транзистор

  6. Диапазон электрических параметров определяет набор значений, в которых полевой транзистор сохраняет работоспособность. Напряжение, ток, частота.
  7. По конструктивным особенностям различают унитроны, алкатроны, текнетроны, гридисторы. Каждый прибор наделен ключевыми признаками. Электроды алкатрона выполнены концентрическими кольцами, увеличивая объем пропускаемого тока.
  8. Числом конструктивных элементов, вмещенных одной подложкой выделяют сдвоенные, комплементарные.

Помимо общей классификации придумана специализированная, определяющая принципы работы. Различают:

  1. Полевые транзисторы с управляющим p-n-переходом.
  2. Полевые транзисторы с барьером Шоттки.
  3. Полевые транзисторы с изолированным затвором:
  • С встроенным каналом.
  • С индуцированным каналом.

В литературе дополнительно упорядочивают структуры следующим образом: применять обозначение МОП нецелесообразно, конструкции на оксидах считают частным случаем МДП (металл, диэлектрик, полупроводник). Барьер Шоттки (МеП) следует отдельно выделять, поскольку это иная структура. Напоминает свойствами p-n-переход. Добавим, что конструктивно в состав транзистора способны входить одновременно диэлектрик (нитрид кремния), оксид (четырехвалентный кремния), как это случилось с КП305. Такие технические решения используются людьми, ищущими методы получения уникальных свойств изделия, удешевления.

FET устройства

Среди зарубежных аббревиатур для полевых транзисторов зарезервировано сочетание FET, иногда обозначает тип управления – с p-n-переходом. В последнем случае наравне с этим встретим JFET. Слова-синонимы. За рубежом принято отделять оксидные (MOSFET, MOS, MOST – синонимы), нитридные (MNS, MNSFET) полевые транзисторы. Наличие барьера Шоттки маркируется SBGT. По-видимому, материал значение, отечественная литература значение факта замалчивает.

Электроды полевых транзисторов на схемах обозначаются: D (drain) – сток, S (source) – исток, G (gate) – затвор. Подложку принято именовать substrate.

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Конструкция транзистора

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки – арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

  1. Отсутствие негативных явлений на стыке с каналом, истоком, стоком: светочувствительность, паразитное управление по подложке, гистерезис параметров.
  2. Термостабильность в процессе технологических циклов изготовления изделия: устойчивость к отжигу, эпитаксии. Отсутствие диффузии примесей в активные слои, вызванной этим деградации.
  3. Минимум примесей. Требование тесно связано с предыдущим.
  4. Качественная кристаллическая решетка, минимум дефектов.

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Полевые транзисторы с управляющим p-n-переходом и МеП

В этом случае тип проводимости материала затвора отличается от используемого каналом. На практике встретите разные улучшения. Затвор составлен пятью областями, утопленными в канале. Меньшим напряжением удается управлять протеканием тока. Означая увеличение коэффициента усиления.

Биполярный транзистор

В схемах используется обратное смещение p-n-перехода, чем сильнее, тем уже канал для протекания тока. При некотором значении напряжения транзистор запирается. Прямое смещение опасно использовать по той причине, что мощная управляемая цепь может повлиять на контур затвора. Если переход открыт, потечет большой ток, либо приложится высокое напряжение. Нормальный режим обеспечивается правильным подбором полярности и других характеристик источника питания, выбором рабочей точки транзистора.

Однако в некоторых случаях намеренно используются прямые токи затвора. Примечательно, что этот режим могут использовать те МДП-транзисторы, где подложка образует с каналом p-n-переход. Движущийся заряд истока делится между затвором и стоком. Можно найти область, где получается значительный коэффициент усиления по току. Управляется режим затвором. При росте тока iз (до 100 мкА) параметры схемы резко ухудшаются.

Аналогичное включение используется схемой так называемого затворного частотного детектора. Конструкция эксплуатирует выпрямительные свойства p-n-перехода между затвором и каналом. Прямое смещение мало или вовсе нулевое. Прибор по-прежнему управляется током затвора. В цепи стока получается значительное усиление сигнала. Выпрямленное напряжение для затвора является запирающим, изменяется по входному закону. Одновременно с детектированием достигается усиление сигнала. Напряжение цепи стока содержит компоненты:

  • Постоянная составляющая. Никак не используется.
  • Сигнал с частотой несущей. Заводится на землю путем использования фильтрующих емкостей.
  • Сигнал с частотой модулирующего сигнала. Обрабатывается для извлечения заложенной информации.

Недостатком затворного частотного детектора считают большой коэффициент нелинейных искажений. Причем результаты одинаково плохи для слабых (квадратичная зависимость рабочей характеристики) и сильных (выход в режим отсечки) сигналов. Несколько лучшие демонстрирует фазовый детектор на двухзатворном транзисторе. На один управляющий электрод подают опорный сигнал, на стоке образуется информационная составляющая, усиленная полевым транзистором.

Несмотря на большие линейные искажения эффект находит применение. Например, в избирательных усилителях мощности, дозировано пропускающих узкий спектр частот. Гармоники фильтруются, не оказывают большого влияния на итоговое качество работы схемы.

Транзисторы металл-полупроводник (МеП) с барьером Шоттки почти не отличаются от имеющих p-n-переход. По крайней мере, когда дело касается принципов работы. Но благодаря особым качествам перехода металл-полупроводник, изделия способны работать на повышенной частоте (десятки ГГц, граничные частоты в районе 100 ГГц). Одновременно МеП структура проще в реализации, когда дело касается производства и технологических процессов. Частотные характеристики определяются временем заряда затвора и подвижностью носителей (для GaAs свыше 10000 кв. см/В с).

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).

Объемный положительный заряд в оксиде влияет на значение порогового напряжения, при котором отпирается канал. Параметр обусловливает скорость переключения и определяет ток утечки (ниже порога). Вдобавок, на срабатывание влияют материал затвора, толщина оксидного слоя, концентрация примесей. Таким образом, результат опять сводится к технологии. Чтобы получить заданный режим, подбирают материалы, геометрические размеры, процесс изготовления с пониженными температурами. Отдельные приемы позволят также уменьшить количество дефектов, что благоприятно сказывается на снижении паразитного заряда.

Полевой транзистор

– обзор

Входные каскады полевых транзисторов

Полевые транзисторы (FET) имеют гораздо более высокое входное сопротивление, чем биполярные переходные транзисторы (BJT), и поэтому кажутся идеальными устройствами для входных каскадов операционных усилителей. Однако они не могут быть изготовлены на всех процессах биполярных ИС, и когда процесс позволяет их производство, у них часто возникают собственные проблемы.

Полевые транзисторы

обладают высоким входным сопротивлением, низким током смещения и хорошими высокочастотными характеристиками.(В операционном усилителе более низкий g m полевых транзисторов допускает более высокие хвостовые токи, тем самым увеличивая максимальную скорость нарастания напряжения.) Полевые транзисторы также имеют гораздо более низкий токовый шум.

С другой стороны, входное напряжение смещения пар полевых транзисторов с длинными хвостами не так хорошо, как смещение соответствующих BJT, и подстройка для минимального смещения одновременно не минимизирует дрейф. Для дрейфа требуется отдельная подстройка, и в результате смещение и дрейф в операционном усилителе с полевым транзистором с полевыми транзисторами, хотя и хороши, но не так хороши, как лучшие биполярные транзисторы.Упрощенная процедура подстройки входного каскада операционного усилителя на полевых транзисторах показана на рисунке 1-26.

Рисунок 1-26. Входной каскад операционного усилителя с полевым транзистором (JFET) с подстройкой смещения и дрейфа

Операционные усилители с полевым транзистором на полевых транзисторах (JFET) можно сделать с очень низким шумом напряжения, но задействованные устройства очень большие и имеют довольно высокую входную емкость, которая зависит от входа. напряжение, и поэтому существует компромисс между шумом напряжения и входной емкостью.

Ток смещения операционного усилителя на полевом транзисторе – это ток утечки диффузионного затвора (или утечка защитного диода затвора, который имеет аналогичные характеристики для полевого МОП-транзистора).Такие токи утечки удваиваются при повышении температуры кристалла на каждые 10 ° C, так что ток смещения операционного усилителя на полевом транзисторе в раз больше при 125 ° C, чем при 25 ° C. Очевидно, это может быть важно при выборе между операционным усилителем с биполярным или полевым транзистором, особенно в высокотемпературных приложениях, где входной ток смещения биполярного операционного усилителя фактически уменьшается.

До сих пор мы говорили в основном обо всех типах полевых транзисторов, то есть о переходах (JFET) и MOS (MOSFETS). На практике операционные усилители с комбинированной биполярной / JFET-технологией (т.е.е., BiFET) обеспечивают лучшую производительность, чем операционные усилители, использующие чисто MOSFET или CMOS технологию. В то время как ADI и другие производят высокопроизводительные операционные усилители с входными каскадами MOS или CMOS, в целом эти операционные усилители имеют худшие смещение и дрейф, шум напряжения и высокочастотные характеристики, чем биполярные аналоги. Потребляемая мощность обычно несколько ниже, чем у биполярных операционных усилителей с сопоставимой или даже лучшей производительностью.

JFET-устройства требуют большего запаса по сравнению с BJT, поскольку их напряжение отсечки обычно больше, чем напряжение BJT-базой-эмиттером.Следовательно, их труднее работать при очень низких напряжениях питания (1-2 В). В этом отношении КМОП имеет то преимущество, что требует меньшего запаса по сравнению с полевыми транзисторами.

Что такое полевой МОП-транзистор? | Основы, принцип работы и применение

Полевой транзистор металл-оксид-полупроводник (MOSFET, MOS-FET или MOS FET) – это полевой транзистор (полевой транзистор с изолированным затвором), напряжение в котором определяет проводимость устройства. Он используется для переключения или усиления сигналов.Способность изменять проводимость в зависимости от приложенного напряжения может использоваться для усиления или переключения электронных сигналов. MOSFET теперь даже более распространены, чем BJT (биполярные переходные транзисторы) в цифровых и аналоговых схемах.

Структура полевого МОП-транзистора

МОП-транзистор на сегодняшний день является наиболее распространенным транзистором в цифровых схемах, поскольку сотни тысяч или миллионы из них могут быть включены в микросхему памяти или микропроцессор. Поскольку они могут быть изготовлены из полупроводников p-типа или n-типа, дополнительные пары МОП-транзисторов могут использоваться для создания схем переключения с очень низким энергопотреблением в форме логики КМОП.

Почему MOSFET?

Полевые МОП-транзисторы

особенно полезны в усилителях из-за того, что их входной импеданс почти бесконечен, что позволяет усилителю улавливать почти весь входящий сигнал. Основное преимущество заключается в том, что он почти не требует входного тока для управления током нагрузки по сравнению с биполярными транзисторами. МОП-транзисторы доступны в двух основных формах:

  • Тип истощения: Транзистору требуется напряжение затвор-исток (В GS ), чтобы выключить устройство.MOSFET в режиме истощения эквивалентен «нормально замкнутому» переключателю.
  • Тип расширения: Транзистору требуется напряжение затвор-исток (В GS ) для включения устройства. MOSFET режима улучшения эквивалентен «нормально разомкнутому» переключателю.

Структура MOSFET

Это четырехконтактное устройство с выводами истока (S), затвора (G), стока (D) и корпуса (B). Корпус часто подключается к клемме источника, что сокращает количество клемм до трех.Он работает, изменяя ширину канала, по которому текут носители заряда (электроны или дырки).

Носители заряда входят в канал у истока и выходят через сток. Ширина канала регулируется напряжением на электроде, называемом затвором, который расположен между истоком и стоком. Он изолирован от канала очень тонким слоем оксида металла. Полевой транзистор металл-изолятор-полупроводник или MISFET – это термин, почти синонимичный MOSFET. Другой синоним – IGFET для полевого транзистора с изолированным затвором.

Работа полевого МОП-транзистора

Работа полевого МОП-транзистора зависит от МОП-конденсатора. Конденсатор MOS является основной частью MOSFET. Поверхность полупроводника в нижнем оксидном слое, который расположен между выводами истока и стока. Его можно инвертировать из p-типа в n-тип, подав положительное или отрицательное напряжение затвора.

Когда мы прикладываем положительное напряжение затвора, дырки под оксидным слоем создают силу отталкивания, а дырки толкаются вниз вместе с подложкой.Область обеднения заселена связанными отрицательными зарядами, которые связаны с атомами акцептора. Электроны достигают сформированного канала. Положительное напряжение также притягивает электроны из n + областей истока и стока в канал. Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Если приложить отрицательное напряжение, под слоем оксида образуется дырочный канал.

МОП-транзистор с P-каналом

Сток и исток – это сильно легированная p + область, а подложка – n-типа. Ток течет из-за потока положительно заряженных дырок, также известных как MOSFET с p-каналом. Когда мы прикладываем отрицательное напряжение затвора, электроны, находящиеся под оксидным слоем, испытывают силу отталкивания, и они толкаются вниз к подложке, область обеднения заполняется связанными положительными зарядами, которые связаны с донорными атомами. Отрицательное напряжение затвора также притягивает дырки из области p + истока и стока в область канала.

N-канальный полевой МОП-транзистор

N-канальный полевой МОП-транзистор

Сток и исток имеют сильно легированную область n +, а подложка – p-типа. Ток протекает из-за потока отрицательно заряженных электронов, также известного как n-канальный MOSFET. Когда мы прикладываем положительное напряжение затвора, дырки, находящиеся под оксидным слоем, испытывают силу отталкивания, и дырки толкаются вниз к связанным отрицательным зарядам, которые связаны с атомами акцептора. Положительное напряжение затвора также притягивает электроны из n + области истока и стока в канал, таким образом, образуется канал доступа электронов.


Дополнительные основные статьи доступны в учебном уголке.

Статья была впервые опубликована 19 июля 2017 г. и обновлена ​​4 апреля 2019 г.

Его конструкция, работа и смещение

JFET представляет собой полевой транзистор с затворным затвором . Нормальный транзистор – это устройство, управляемое током, которому требуется ток для смещения, тогда как JFET – это устройство, управляемое напряжением. Как и MOSFET, как мы видели в нашем предыдущем руководстве, JFET имеет три терминала: Gate, Drain и Source .

JFET – важный компонент для точного управления уровнем напряжения в аналоговой электронике. Мы можем использовать JFET в качестве резисторов, управляемых напряжением, или в качестве переключателя, или даже сделать усилитель с использованием JFET. Это также энергоэффективная версия для замены BJT. JFET обеспечивает низкое энергопотребление и довольно низкое рассеивание мощности, тем самым улучшая общую эффективность схемы. Он также обеспечивает очень высокий входной импеданс, что является большим преимуществом по сравнению с BJT.

Существуют разные типы транзисторов, в семействе полевых транзисторов есть два подтипа: полевой транзистор и полевой МОП-транзистор.Мы уже обсуждали MOSFET в предыдущем руководстве, здесь мы узнаем о JFET.

Типы JFET

Как и MOSFET, он имеет два подтипа – JFET с N каналом и JFET с каналом P.

Схема

N-канального JFET и P-канального JFET показана на изображении выше. Стрелка обозначает типы JFET. Стрелка, указывающая на затвор, означает, что JFET является N-канальным, а с другой стороны, стрелка от затвора обозначает P-канальный JFET.Эта стрелка также указывает полярность P-N перехода, который образуется между каналом и затвором. Интересно, что английская мнемоника такова, что стрелка устройства N-Channel указывает «Points i n ».

Ток, протекающий через сток и источник, зависит от напряжения, приложенного к клемме затвора. Для полевого транзистора с N-каналом напряжение затвора отрицательное, а для полевого транзистора с каналом P напряжение затвора положительное.

Строительство JFET

На изображении выше мы видим базовую конструкцию полевого транзистора.N-канальный JFET состоит из материала P-типа в подложке N-типа, тогда как материалы N-типа используются в подложке p-типа для формирования JFET с P-каналом.

JFET построен с использованием длинного канала из полупроводникового материала. В зависимости от процесса построения, если JFET содержит большое количество положительных носителей заряда (называемых дырками), это JFET P-типа, а если он имеет большое количество отрицательных носителей заряда (называемых электронами), называется N-типом. JFET.

В длинном канале из полупроводникового материала на каждом конце создаются омические контакты для формирования соединений истока и стока.Переход P-N формируется на одной или обеих сторонах канала.

Работа JFET

Один из лучших примеров для понимания работы JFET – это представить садовый шланг. Предположим, через садовый шланг проходит вода. Если мы сжимаем шланг, поток воды будет меньше, и в определенный момент, если мы сожмем его полностью, поток воды будет нулевым. JFET работает именно так. Если мы поменяем местами шланг с полевым транзистором и поток воды с током, а затем построим токопроводящий канал, мы сможем управлять потоком тока.

Когда нет напряжения между затвором и истоком, канал становится гладким, широко открытым для прохождения электронов. Но обратное происходит, когда между затвором и истоком подается напряжение с обратной полярностью, что приводит к обратному смещению P-N-перехода и сужению канала за счет увеличения обедненного слоя и может поставить JFET в область отсечки или отсечки.

На изображении ниже мы видим режим насыщения и режим отсечки , и мы сможем понять, что слой истощения стал шире, а текущий поток стал меньше .

Если мы хотим выключить JFET, нам необходимо обеспечить отрицательное напряжение затвор-исток, обозначенное как V GS для JFET N-типа. Для JFET P-типа нам необходимо обеспечить положительный V GS .

JFET работает только в режиме истощения , тогда как полевые МОП-транзисторы имеют режим истощения и режим улучшения.

Кривая характеристик полевого транзистора

На приведенном выше изображении полевой транзистор смещается через переменный источник постоянного тока, который будет управлять V GS полевого транзистора.Мы также подали напряжение на сток и источник. Используя переменную V GS , мы можем построить кривую I-V JFET.

На приведенном выше изображении I-V мы видим три графика для трех различных значений напряжений V GS , 0 В, -2 В и -4 В. Есть три различных области: омическая область, область насыщения и область пробоя. Во время омической области JFET действует как резистор, управляемый напряжением, где ток регулируется приложенным к нему напряжением.После этого JFET попадает в область насыщения , где кривая почти прямая. Это означает, что ток достаточно стабилен, и V DS не будет мешать току. Но когда V DS намного превышает допуск, JFET переходит в режим пробоя , где ток не контролируется.

Эта ВАХ почти такая же, как и для полевого транзистора с каналом P, но есть несколько отличий. JFET перейдет в режим отсечки, когда V GS и напряжение Pinch или (V P ) одинаковы.Также, как на приведенной выше кривой, для N-канального JFET ток стока увеличивается при увеличении V GS . Но для P-канального JFET ток стока уменьшается при увеличении V GS .

Смещение JFET

Для правильного смещения JFET используются различные методы. Из различных методов широко используются три ниже:

  • Метод фиксированного смещения постоянного тока
  • Техника самосмещения
  • Смещение делителя потенциала

Техника смещения постоянного тока

В методе фиксированного смещения постоянного тока N-канального JFET затвор JFET подключается таким образом, что V GS JFET все время остается отрицательным.Поскольку входное сопротивление полевого транзистора JFET очень велико, во входном сигнале не наблюдается эффектов нагрузки. Ток, протекающий через резистор R1, остается нулевым. Когда мы подаем сигнал переменного тока на входной конденсатор C1, сигнал появляется на затворе. Теперь, если мы рассчитаем падение напряжения на R1, согласно закону Ома, это будет V = I x R или V падение = ток затвора x R1. Поскольку ток, протекающий к затвору, равен 0, падение напряжения на затворе остается нулевым. Таким образом, с помощью этой техники смещения мы можем управлять током стока JFET, просто изменяя фиксированное напряжение, тем самым изменяя V GS .

Техника самосмещения

В методе самосмещения к выводу истока добавляется единственный резистор. Падение напряжения на истоковом резисторе R2 создает V GS для смещения напряжения. В этом методе ток затвора снова равен нулю. Напряжение источника определяется тем же законом сопротивления V = I x R. Следовательно, напряжение источника = ток стока x резистор истока. Теперь напряжение затвор-исток можно определить по разнице между напряжением затвора и напряжением истока.

Поскольку напряжение затвора равно 0 (поскольку ток затвора равен 0, согласно V = IR, напряжение затвора = ток затвора x резистор затвора = 0), V GS = 0 – ток затвора x сопротивление истока. Таким образом, нет необходимости во внешнем источнике смещения. Смещение создается самим, используя падение напряжения на истоковом резисторе.

Смещение делителя потенциала

В этом методе используется дополнительный резистор, а схема немного изменена по сравнению с методом самосмещения, потенциальный делитель напряжения с использованием R1 и R2 обеспечивает необходимое смещение постоянного тока для JFET.Падение напряжения на истоковом резисторе должно быть больше, чем напряжение затвора резисторного делителя. Таким образом, V GS остается отрицательным.

Так устроен полевой транзистор и смещен .

Что такое полевой транзистор | Переходный полевой транзистор, работающий, смещение, приложение

Что такое полевой транзистор:

Полевой транзистор – устройство униполярное. Это означает, что проводимость тока происходит только за счет одного типа электронов-носителей или дырок.

Это основное различие между биполярным переходным транзистором и полевым транзистором.

BJT принимает проводимость в электронах и дырках.

Здесь мы увидим только полевой транзистор

.

Полевые транзисторы бывают двух типов: полевой транзистор с переходным эффектом и полевой транзистор на основе оксида металла.

Полевой транзистор

был впервые представлен Шокли в 1952 году. JFET – это четырехконтактное устройство: затвор, сток и четвертый вывод истока, называемый корпусным выводом, всегда подключенным к истоку.

JFET бывает двух типов: N-канальный и P-канальный. Таким образом, мы представляем в символе только три клеммы; JFET.

Конструкция N-канального JFET (переходного полевого транзистора)

Название N-канал означает, что электроны являются основными носителями заряда. Чтобы сформировать N-канальный JFET, возьмите полупроводник N-типа в качестве основы и легируйте его полупроводником P-типа с обоих концов. Обе эти P-области электрически соединены друг с другом, и только контакт в вынутом состоянии называется затвором (G).Еще две клеммы вынесены в подложку N и называются истоком и стоком.

JFET имеет три вывода: исток, сток и затвор, аналогично BJT. JFET также имеет два PN перехода.

Конструкция P-канала JFET

Возьмите P-тип в качестве подложки и легируйте его полупроводником N-типа с обоих концов, чтобы сформировать затвор.

Работа JFET и смещение JFET

С двумя источниками напряжения: один между затвором и истоком как Vgs, а второй между стоком и истоком как Vds, исток действует как общий вывод.Первоначально, когда напряжение не подается, истощение образуется на двух переходах. Являясь типом N, сток в канал истока содержит в качестве основных носителей заряда.

Применение к малому напряжению сток-исток заставляет электроны течь от истока к стоку, поскольку положительное напряжение на стоке атакует их. Таким образом, ток стока протекает через полевой транзистор от стока к истоку.

Давайте сохраним Vds постоянным и применим некоторое напряжение затвора к источнику, так как Vgs = 0.5 В.

Область

P содержит отрицательное напряжение, которое затвор вызывает обратное смещение PN перехода.

Ширина обедненной области увеличивается, и она глубоко проникает в канал. С уменьшением ширины канала ток стока уменьшается.

Теперь, если мы увеличиваем напряжение затвора в сторону более отрицательной стороны, область истощения увеличивается, а точечный канал истощается полностью, значение Vgs называется напряжением отсечки или пороговым напряжением, в этой точке ток прекращается.

Теперь давайте сохраним Vgs постоянным в диапазоне от нуля вольт, а значение пинча увеличивает напряжение Vds (0

А также напряжение обратного смещения Vgs самое высокое на стоке. Таким образом, область обеднения принимает форму ловушки около стока Vds = 10 В, и канал становится намного уже.

При этом Id остается постоянным, характеристики графика становятся нелинейными.

Почему Vgs не положительный?

Первичное напряжение затвора управляет протеканием тока стока. Если мы применим положительное значение Vgs, это сделает Vgs = положительным.

Прямое смещение PN перехода и ток управления затвором. Таким образом, мы никогда не подаем напряжение 0 В на клемму затвора Vgs <0.

Выходной ток полевого транзистора Id, управляемый входным током Vgs. Таким образом, полевой транзистор – это устройство, управляемое напряжением. BJT – это устройство, управляемое током.

Характеристики JFET (переходного полевого транзистора)

Применение полевого транзистора

  • Высокое входное сопротивление
  • Устройство, управляемое напряжением
  • Обеспечивает высокую степень изоляции между входом и выходом.
  • Менее шумный

Что такое униполярный / полевой транзистор?

Полевой транзистор (FET) – Также известный как униполярный транзистор , представляет собой трехконтактный (три электрода) электронный компонент , управляемый напряжением, полупроводник , который имеет способность усиливать электрический сигнал. Семейство полевых транзисторов состоит из группы из нескольких типов различных компонентов, общей чертой которых является косвенное влияние электрического поля на сопротивление полупроводника или сопротивление тонкого непроводящего слоя.Теоретически полевым транзистором можно управлять без потребления энергии. В работе компонента участвует только один тип носителей нагрузки, отсюда и название униполярного, а управление выходным током осуществляется с помощью электрического поля (полевые транзисторы).

FET – Внутреннее устройство и принцип действия Униполярный транзистор

имеет три электрода:

  • Слив «D» – электрод, до которого доходят носители груза.Ток стока – I D , напряжение сток-исток – В DS ,
  • Затвор «G» – электрод, управляющий потоком зарядов. Ток затвора – I G , напряжение затвор-исток – В GS ,
  • Источник «S» – электрод, с которого в канал стекают носители нагрузки. Ток источника обозначен как I S .

Это эквиваленты электродов в биполярных транзисторах .Два из них: Drain и Source подключены к правильно легированному полупроводниковому кристаллу. Между этими концами создается канал, по которому течет ток. Третий конец размещен вдоль канала: Gate , благодаря которому мы можем контролировать течение тока. В случае соединения нескольких МОП-транзисторов в интегральной схеме часто используется четвертый электрод: B – Body (или Bulk ) для смещения подложки. Но в целом эта цель связана с источником.


FET – Задания для студентов

Если вы студент или просто хотите научиться решать задачи с полевыми транзисторами, посетите этот раздел нашего веб-сайта, где вы можете найти широкий спектр электронных задач.


Отдел полевых транзисторов

В зависимости от принципов и законов работы можно выделить два основных типа полевых транзисторов, которые подразделяются, как показано на рисунке 1. ниже:

Рис.1. Деление полевых транзисторов

JFET – Конструкция и принцип работы

JFET-транзистор состоит из полупроводникового слоя n-типа в N-канальных JFET-транзисторах или полупроводника p-типа в P-канальных JFET-транзисторах. Эти слои образуют канал. Электроды подключаются к обоим концам канала. В JFET-транзисторах затвор изолирован от канала обратносмещенным переходом (с очень высоким входным сопротивлением).

Транзисторы

JFET должны быть поляризованы таким образом, чтобы носители перемещались от истока к стоку, а переход затвор-канал должен иметь обратное смещение.

Есть два варианта этой развязки:

  • P-N переход (PNFET),
  • Переход M-S (металл-полупроводник).

Канал, по которому будет течь ток, расположен между стоком и истоком. Регулировать ширину канала (его сопротивление) можно, изменяя напряжение затвор-исток (В GS ). Повышение напряжения V GS (которое вызывает обратное смещение перехода) вызывает сужение канала до его полного «закрытия» – ток не течет.К напряжению V GS добавляется падение напряжения между определенной точкой канала и источником (V DS ). Увеличение значения напряжения V DS в конечном итоге приведет к соединению обедненных слоев и блокированию канала путем насыщения транзистора. Значение тока стока I D не возрастет независимо от дальнейшего увеличения напряжения V DS , и транзистор становится очень хорошим элементом крутизны.

Рис. 2. Символы JFET

Рис.3. Внутренняя структура JFET с каналом «N» типа

MOSFET (Metal-Oxide Semiconductor FET) – Конструкция и принцип работы

В MOSFET-транзисторе затвор изолирован от канала диэлектрическим слоем. Область, обозначенная «N +», представляет собой сильно легированный полупроводник типа «N». В случае E MOS транзисторов с напряжением V GS = 0 канал блокируется (его сопротивление принимает значение МОм, а ток I D не течет).За счет увеличения напряжения V GS канал увеличивает его проводимость, и после достижения определенного значения, называемого пороговым напряжением V T , через канал становится возможным прохождение тока стока I D . Ток стока полевого МОП-транзистора регулируется сигналом напряжения затвора величиной до нескольких вольт, что обеспечивает совместимость со всеми системами МОП, особенно с КМОП. Мощность, необходимая для управления им, очень мала, а зона безопасной работы больше по сравнению с BJT-транзисторами .Кроме того, время переключения также короче по сравнению с BJT.

Минимальное значение сопротивления канала, указанное производителем, можно найти в технических данных как rds на (оно зависит от максимального напряжения транзистора V DS . Значение тока I D , которое будет протекать через Созданный канал зависит от напряжения V DS , но не является линейной зависимостью и описывается формулой:

β Коэффициент усиления тока
Этот ток влияет на состояние смещения затвора, изменяя его, что приводит к сужению канала около стока.В случае дальнейшего увеличения напряжения затвор-исток V GS , отсечка напряжения V GSoff будет превышена в какой-то момент, что приведет к потере созданного канала (V GS = V DS )

  • MOSFET в режиме истощения – D MOS (обычно включен):

Рис. 4. Символы D MOS

  • Режим расширения MOSFET – E MOS (обычно выключен):

Рис. 5. Символы E MOS

Рис. 6. Внутренняя структура E MOS с каналом типа «N»

FET – Режимы работы

Имеется три режима работы транзисторов:

  • Режим отключения: | V GS | > | V T | при любом | V DS |,
  • Активный режим (также известный как линейный или ненасыщенный): | V GS | <| V T | и | V DS | <= | V DSsat |,
  • Режим насыщения : | V GS | <| V T | и | V DS | => | V DSsat |.

Примечание: Во многих странах единица измерения напряжения и символ обозначаются буквой «V» вместо «U», как в этой статье.

FET – Основные параметры
  • В DS max – максимальное напряжение сток-исток,
  • I Dmax – максимальный ток стока,
  • В GSmax – максимальный ток затвор-исток,
  • P totmax – допустимая потеря мощности,
  • V T – пороговое напряжение, при котором начинает течь ток,
  • I DSS (V GS = 0) – ток насыщения при определенном V DS current,
  • г [S-Siemens] – крутизна,
  • rds (on) – минимальное значение сопротивления канала транзистора, работающего в режиме ненасыщения,
  • I Gmax – максимально допустимый ток затвора,
  • I D (OFF) – ток стока в режиме отсечки – при напряжении | В GS | > | V GS (ВЫКЛ) |.

FET – Вольт-амперные характеристики

Передаточные характеристики – они описывают зависимость тока стока I D от напряжения затвор-исток V GS с определенным напряжением сток-исток V GS .

Рис. 7. JFET «N»

Рис. 8. Д МОП «N»

Рис. 9. E MOS «N»

  • Характеристики стока (для полевого транзистора типа «N») – описывает соотношение стока I D ток от сток-исток В DS напряжение с определенным затвором-истоком В GS напряжение.Область характеристик была разделена на две части: активную и насыщенную область.

Рис. 10. Характеристики стока (для униполярного транзистора типа «N»)

Практическое применение – Униполярный MOSFET – NMOS-транзистор

В практических упражнениях действие транзистора NMOS в его простейшей форме показано в виде ключа транзистора. Такое использование в основном работает в приложениях микроконтроллеров, оно используется для управления сигналом от микроконтроллера к внешним приемникам.

Для этого упражнения нам понадобятся следующие вещи:

Схема подключения выглядит так:

Рис. 11. Схема подключения: V2: источник питания 9 В постоянного тока, D1: белый светодиод, R1: резистор 220 Ом, M1: транзистор BUZ11, R2: резистор 1 кОм, V1: батарея 3 В (в схеме используется синусоидальный источник для иллюстрации работы транзистора). Обратите внимание, что символы на схеме отличаются для транзистора, но имеют параметры, аналогичные параметрам BUZ11.

Готовая подключенная схема на макетной плате показана ниже на рис.12:

Рис. 12. Схема подключения макетной платы

Система после подключения питания 9 В не показывала никаких действий. После подключения АКБ в схему загорелся светодиод. Это самый простой способ проиллюстрировать принцип действия напряжения V T (напряжение пробоя) в униполярных транзисторах. В транзисторе BUZ11 диапазон напряжений VGSTh составляет от 2,1 до 4 В. При использовании батарей на 3 В мы получаем напряжение, достаточное для открытия канала между стоком и истоком в униполярном транзисторе.После этого светодиод начинает светиться.

Рис. 13. Еще одна иллюстрация подключения и работы макета

Кроме того, на диаграмме ниже мы можем видеть напряжения на батарее V (n005), которые варьируются от 3 до -3 В и прикладываются к затвору транзистора между током на светодиодах I (D1). Дополнительно на осциллограмме мы можем видеть напряжение VDS, вид сигнала зависит от времени включения транзистора.

Рис. 14. Схема подключения макетной платы

Символ, рабочие, типы и различные упаковки

Компоненты силовой электронной коммутации, такие как BJT, MOSFET, IGBT, SCR, TRIAC и т. Д.являются важными устройствами, используемыми при проектировании многих схем, от простой схемы драйвера до сложных выпрямителей мощности и инверторов. Самый простой из них – это БЮТ, и мы уже узнали, как работают БЮТ-транзисторы. Наряду с BJT широко используемыми переключателями питания являются полевые МОП-транзисторы. По сравнению с BJT, MOSFET может работать с высоким напряжением и большим током, поэтому он популярен среди приложений с высокой мощностью. В этой статье мы изучим основы MOSFET , его внутреннюю конструкцию, принципы работы и способы их использования в схемах.Если вы хотите пропустить теорию, вы можете ознакомиться со статьей о популярных полевых МОП-транзисторах и о том, где их использовать, чтобы ускорить процесс выбора и проектирования деталей.

Что такое полевой МОП-транзистор?

MOSFET означает Металлооксидный полевой транзистор. MOSFET был изобретен для преодоления недостатков полевых транзисторов, таких как высокое сопротивление стока, умеренный входной импеданс и более медленная работа. Таким образом, полевой МОП-транзистор можно назвать усовершенствованной формой полевого транзистора.В некоторых случаях полевые МОП-транзисторы также называются IGFET (полевой транзистор с изолированным затвором). На практике полевой МОП-транзистор – это устройство, управляемое напряжением, что означает, что при подаче номинального напряжения на вывод затвора полевой МОП-транзистор начинает проводить через выводы стока и истока. Подробности мы рассмотрим позже в этой статье.

Основное различие между полевым транзистором и полевым МОП-транзистором состоит в том, что полевой МОП-транзистор имеет металлооксидный электрод затвора, электрически изолированный от основного полупроводникового n-канала или p-канала тонким слоем диоксида кремния или стекла.Изоляция управляющего затвора увеличивает входное сопротивление полевого МОП-транзистора до чрезвычайно высокого значения в мегаом (МОм).

Символ полевого МОП-транзистора

В общем, полевой МОП-транзистор представляет собой четырехконтактное устройство с выводами слива (D), истока (S), затвора (G) и корпуса (B) / подложки. Вывод на корпусе всегда будет подключен к выводу источника, следовательно, полевой МОП-транзистор будет работать как трехконтактное устройство.На изображении ниже, символ N-канального MOSFET показан слева, а символ P-канального MOSFET показан справа.

Наиболее часто используемым корпусом для полевого МОП-транзистора является To-220, для лучшего понимания давайте взглянем на распиновку знаменитого полевого МОП-транзистора IRF540N (показано ниже). Как вы можете видеть, контакты Gate, Drain и Source перечислены ниже, помните, что порядок этих контактов будет меняться в зависимости от производителя.Другими популярными полевыми МОП-транзисторами являются IRFZ44N, BS170, IRF520, 2N7000 и т. Д.

.

MOSFET как переключатель

Наиболее распространенное применение MOSFET – это использование его в качестве переключателя. На приведенной ниже схеме показан полевой МОП-транзистор, работающий как переключающее устройство для включения и выключения лампы. Входное напряжение затвора В GS прикладывается с помощью источника входного напряжения.Когда приложенное напряжение положительное, двигатель будет во включенном состоянии, а если приложенное напряжение равно нулю или отрицательно, лампа будет в выключенном состоянии.

Когда вы включаете МОП-транзистор, подавая необходимое напряжение на вывод затвора, он останется включенным, если вы не подадите 0В на затвор. Чтобы избежать этой проблемы, мы всегда должны использовать понижающий резистор (R1), здесь я использовал значение 10 кОм. В таких приложениях, как управление скоростью двигателя или затемнение света, мы будем использовать сигнал ШИМ для быстрого переключения, во время этого сценария емкость затвора полевого МОП-транзистора будет создавать обратный ток из-за паразитного эффекта.Чтобы решить эту проблему, мы должны использовать токоограничивающий конденсатор, я использовал здесь значение 470.

Вышеуказанная нагрузка рассматривается как резистивная нагрузка, поэтому схема очень проста, и в случае, если нам нужно использовать индуктивную или емкостную нагрузку, нам нужно использовать какую-то защиту, чтобы предотвратить повреждение полевого МОП-транзистора. Например, если мы используем емкостную нагрузку без электрического заряда, это рассматривается как короткое замыкание, это приведет к высокому «пуску» тока , а когда приложенное напряжение снимается с индуктивной нагрузки, будет Большое количество обратного напряжения, нарастающего в цепи при схлопывании магнитного поля, приведет к наведенной обратной ЭДС в обмотке катушки индуктивности.

Классификация полевых МОП-транзисторов

MOSFET классифицируется на два типа в зависимости от типа операций, а именно MOSFET в режиме расширения (E-MOSFET) и MOSFET в режиме истощения (D-MOSFET), эти полевые МОП-транзисторы дополнительно классифицируются в зависимости от материала, используемого для конструкции. как n-канальный и p-канальный. Итак, в общем, существует 4 различных типа полевых МОП-транзисторов

.
  • MOSFET с N-канальным режимом истощения
  • МОП-транзистор в режиме истощения P-канала
  • MOSFET в режиме расширения с N-каналом
  • MOSFET режим расширения P-канала

N-канальные полевые МОП-транзисторы называются NMOS и представлены следующими символами.

В соответствии с внутренней конструкцией полевого МОП-транзистора, выводы затвора (G), стока (D) и истока (S) физически соединены в полевом МОП-транзисторе в режиме истощения, в то время как в режиме улучшения они физически разделены, по этой причине для полевого МОП-транзистора режима улучшения символ выглядит сломанным. МОП-транзисторы с P-каналом называются PMOS и представлены следующими символами.

Из доступных типов полевой МОП-транзистор с N-каналом расширения является наиболее часто используемым.Но ради познания попробуем вникнуть в разницу. Основное различие между N-канальным MOSFET и P-канальным MOSFET заключается в том, что в N-канале переключатель MOSFET будет оставаться открытым до тех пор, пока не будет подано напряжение затвора. Когда на вывод затвора поступает напряжение, переключатель (между стоком и источником) замыкается, а в P-канальном MOSFET переключатель остается закрытым до тех пор, пока не появится напряжение затвора.

Аналогичным образом, основное различие между MOSFET в режиме расширения и режиме истощения состоит в том, что напряжение затвора, приложенное к E-MOSFET, всегда должно быть положительным, и он имеет пороговое напряжение, выше которого он полностью включается.Для D-MOSFET напряжение затвора может быть как положительным, так и отрицательным, и он никогда не включается полностью. Также обратите внимание, что D-MOSFET может работать в режиме улучшения и истощения, в то время как E-MOSFET может работать только в режиме улучшения.

Конструкция полевого МОП-транзистора

На изображении ниже показана типичная внутренняя структура полевого МОП-транзистора . Хотя полевой МОП-транзистор является усовершенствованной формой полевого транзистора и работает с теми же тремя выводами, что и полевой транзистор, внутренняя структура полевого транзистора действительно отличается от общего полевого транзистора.

Если вы посмотрите на структуру, вы увидите, что вывод затвора закреплен на тонком металлическом слое, который изолирован слоем диоксида кремния (SiO2) от полупроводника, и вы сможете увидеть два полупроводника N-типа. фиксируется в области канала, где размещены выводы стока и истока. Канал между стоком и истоком полевого МОП-транзистора – N-типа, в противоположность этому, подложка выполнена как P-тип. Это помогает смещать полевой МОП-транзистор с обеих полярностей, положительной или отрицательной.Если вывод затвора полевого МОП-транзистора не смещен, он останется в непроводящем состоянии, поэтому полевой МОП-транзистор в основном используется при проектировании переключателей и логических вентилей.

Принцип работы полевого МОП-транзистора

В общем, полевой МОП-транзистор работает как переключатель, МОП-транзистор управляет напряжением и током, протекающим между истоком и стоком. Работа полевого МОП-транзистора зависит от МОП-конденсатора , который представляет собой поверхность полупроводника под оксидными слоями между выводами истока и стока.Его можно инвертировать с p-типа на n-тип, просто приложив положительное или отрицательное напряжение затвора соответственно. На изображении ниже показана блок-схема полевого МОП-транзистора.

Когда напряжение сток-исток (V DS ) подключено между стоком и истоком, положительное напряжение подается на сток, а отрицательное напряжение – на исток. Здесь PN-переход на стоке смещен в обратном направлении, а PN-переход на истоке смещен в прямом направлении.На этом этапе между стоком и истоком не будет протекания тока.

Если мы подадим положительное напряжение (V GG ) на вывод затвора, из-за электростатического притяжения неосновные носители заряда (электроны) в P-подложке начнут накапливаться на контакте затвора, который образует проводящий мост между двумя n + регионы. Количество свободных электронов, накопленных на контакте затвора, зависит от силы приложенного положительного напряжения.Чем выше приложенное напряжение, тем больше ширина n-канала, образованного из-за накопления электронов, это в конечном итоге увеличивает проводимость, и ток стока (I D ) начнет течь между Источником и Стоком.

Когда на вывод затвора не подается напряжение, не будет протекать какой-либо ток, кроме небольшого количества тока из-за неосновных носителей заряда. Минимальное напряжение, при котором МОП-транзистор начинает проводить, называется пороговым напряжением .

Работа полевого МОП-транзистора в режиме истощения:

Полевые МОП-транзисторы в режиме истощения обычно называют «включенными» устройствами, поскольку они обычно находятся в закрытом состоянии, когда на выводе затвора нет напряжения смещения. Когда мы увеличиваем приложенное к затвору напряжение в положительную сторону, ширина канала будет увеличиваться в режиме истощения. Это увеличит ток стока I D через канал. Если приложенное напряжение затвора сильно отрицательное, ширина канала будет меньше, и полевой МОП-транзистор может попасть в область отсечки.

VI характеристики:

Вольт-амперные характеристики MOSFET-транзистора в режиме истощения показаны между напряжением сток-исток (V DS ) и током стока (I D ). Небольшое напряжение на выводе затвора будет управлять током, протекающим через канал. Канал, образованный между стоком и истоком, будет действовать как хороший проводник с нулевым напряжением смещения на выводе затвора. Ширина канала и ток стока увеличиваются, если на затвор подается положительное напряжение, тогда как они уменьшаются, когда мы прикладываем отрицательное напряжение к затвору.

Работа полевого МОП-транзистора в режиме расширения:

Работа полевого МОП-транзистора в режиме расширения аналогична работе открытого переключателя, он начнет работать, только если положительное напряжение (+ V GS ) будет приложено к клемме затвора и ток стока начнет течь через устройство. Ширина канала и ток стока увеличиваются при увеличении напряжения смещения. Но если приложенное напряжение смещения равно нулю или отрицательно, транзистор сам останется в выключенном состоянии.

VI Характеристики:

ВИ-характеристики полевого МОП-транзистора расширенного режима отображаются между током стока (I D ) и напряжением сток-исток (V DS ). Характеристики VI разделены на три различные области: омическую область, область насыщения и область отсечки. Область отсечки – это область, в которой полевой МОП-транзистор будет находиться в выключенном состоянии, когда приложенное напряжение смещения равно нулю. При приложении напряжения смещения полевой МОП-транзистор медленно движется в сторону режима проводимости, и медленное увеличение проводимости происходит в омической области.Наконец, область насыщения – это место, где положительное напряжение прикладывается постоянно, и полевой МОП-транзистор будет оставаться в состоянии проводимости.

Пакеты MOSFET Полевые МОП-транзисторы

доступны в различных корпусах, размерах и названиях для использования в различных приложениях. В целом, полевые МОП-транзисторы поставляются в 4 различных корпусах, а именно: поверхностный монтаж, сквозное отверстие, PQFN и DirectFET

.

Полевые МОП-транзисторы доступны под разными именами в каждом типе пакетов, а именно:

Поверхностный монтаж: ТО-263, ТО-252, МО-187, СО-8, СОТ-223, СОТ-23, ЦОП-6 и т. Д.

Сквозное отверстие: TO-262, TO-251, TO-274, TO-220, TO-247 и т. Д.

PQFN: PQFN 2×2, PQFN 3×3, PQFN 3.3×3.3, PQFN 5×4, PQFN 5×6 и т. Д.

DirectFET: DirectFET M4, DirectFET MA, DirectFET MD, DirectFET ME, DirectFET S1, DirectFET SH и т. Д.

Полевые транзисторы металл-оксид-полупроводник

Полевые транзисторы металл-оксид-полупроводник

Полевой транзистор металл-оксид-полупроводник (MOSFET) имеет три вывода: источник, затвор и сток.В n-MOSFET (или p-MOSFET) исток S и сток D – это N-тип (или P-тип), а подложка между ними – P-тип (или N-тип). Затвор и подложка P-типа изолированы тонким слоем диоксида кремния. (). Благодаря этой изоляции отсутствует ток затвора ни к источнику, ни к источнику. осушать.

Обычно полярности напряжений, подаваемых на МОП-транзистор таковы, что

и (154)
N-MOSFET можно рассматривать как токовый канал, управляемый напряжением.Когда между затвором и истоком приложено достаточное напряжение, положительный потенциал на затворе вызовет достаточно электронов из Подложка P-типа (неосновные носители) для формирования электронного канала называется инверсионным слоем между истоком и стоком, а ток между истоком и стоком образуется.

МОП-транзистор может использоваться как в аналоговых схемах, так и в качестве переключателя. в двоичной логической схеме:

(155)

Более того, ток стока как функция напряжение затвора можно смоделировать с помощью

(156)
Когда входное напряжение ниже порогового напряжения , инверсионный слой не образуется, и ток через S и Д.Когда больше, ток пропорционально квадрату разницы.

Кроме того, ток зависит от напряжения, а также можно рассматривать как функцию обоих и, как показано ниже (аналогично биполярному транзистору ):

Эту функцию можно разделить на три различных области:

  • Область отсечения:
    и (157)
  • Область триода:
    и (158)
    Напряжения и на концах S и D инверсионный слой превышает, некоторые электроны в меньшинстве носители в подложке P-типа притягиваются к затвору, чтобы формируют инверсионный слой рядом с затвором, чтобы сформировать N-тип канал с определенным сопротивлением между S и D.линейно возрастает с увеличением с коэффициентом (Закон Ома) и нелинейно как увеличивается (притягивает больше электронов к затвору, чтобы увеличить проводимость n-канала). Обратите внимание, что как , то инверсионный слой на D-конце уже, чем на S-конце.
  • Область насыщенности:
    но (159)
    Напряжение на конце S превышает, но на D конец ниже чем. С одной стороны, повышенное напряжение имеет тенденцию к увеличению, с другой стороны, уменьшенное делает инверсионный слой на конце D более узким что она почти закрыта ( прищипка ).В результате выше напряжение не вызывает больше тока (насыщение), и на него влияет только.

На графике vs триодная область и насыщенность области разделены кривой .

Пример: Допустим.

Предполагать и, и оба полевых МОП-транзистора в следующих цепи находятся в области насыщения. Найдите и выведите напряжение.

. Поскольку оба полевых МОП-транзистора находятся в насыщении область с тем же, что определяется только но независимо от, они должны быть одинаковыми.Верхний транзистор должен иметь такой же, как и нижний, т.е. выходное напряжение должно быть. Для нижнего транзистора , т.е. транзистор действительно находится в область насыщения.

Сравнение BJT и FET

BJT и FET можно сравнить со старой технологией вакуумная труба на основе термоэлектронной эмиссии (нагретая нить накала). Хотя конкретная физика каждого из этих устройств сильно отличается от других, Принципы работы этих устройств по сути одинаковы.В целом три устройства, на вход подается небольшое входное напряжение переменного тока (сигнал) терминал устройства (базы, ворот или сетки) для управления током, который протекает через устройство (от коллектора, стока или анода к эмиттеру, источник или катод, соответственно), в результате чего сильно усиленное напряжение появляются на выходной клемме (коллектор, сток или анод) устройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *