Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Повышающий DC-DC преобразователь. Принцип работы.

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Фаза 1

Заслонка открывается и мощный поток жидкости начинает сливаться в никуда. Смысл лишь в том, чтобы этим потоком как следует разогнать турбину. Накачать ее энергией, передав энергию источника в кинетическую энергию турбины.

Фаза 2

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Фаза 3

Скорость турбины на излете, энергия перешла в давление в аккумуляторе. Сил продавить клапан, подпертный с той стороны набитым давлением уже не хватает. Вот вот и все встанет. Но в этот момент вновь открывается заслонка и турбина вновь разгоняется, набирает энергию из источника, превращая энергию потока в энергию вращающихся масса металла. Потребитель, тем временем, потихоньку жрет из аккумулятора.

Фаза 4

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Фаза 1

Ключ замкнут. Ток от источника начинает, фактически, работать на катушку. Накачивая ее энергией.

Фаза 2

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Фаза 3

Ключ тем временем замыкается и катушка снова начинает нажирать энергию. В то же время нагрузка питается из конденсатора, а диод не дает току уйти из него обратно в источник.

Фаза 4

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

Uист*Iист = Uпотр*Iпотр

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере понижающего DC-DC преобразователя.

Работа
Питание через токовый шунт Rsc идет в дроссель L1 оттуда через ключ (SWC/SWE) на землю и через диод D1 на накопительный конденсатор C2. C него на нагрузку. Прям как в схеме приведенной выше. Остальные элементы для задания режима работы микросхемы.

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Конденсатор С1 призван оградить питающую цепь от бросков. Потому и взят побольше. Резистор R1 у меня взят на 1.5кОм, а R2 на 13кОм, что дает нам напряжение выхода в 12 вольт. В качестве диода надо выбирать диод Шоттки. Например 1N5819. У диодов Шоттки заметно ниже падение напряженияна pn переходе, а еще ниже паразитная емкость этого перехода, что позволяет ему работать с меньшими потерями на больших частотах. Микросхема может работать на входном напряжении от 3 вольт.

Опыт
Для примера по быстрому развел микромодульчик, забирающий 5 вольт и выдающий 12 вольт. Схема уже приведена выше, а печатка получилась такой:

Вытравил, спаял…

Запитал от 5 вольт и нагрузил на 12ти вольтовую светодиодную линейку. КПД у моего преобразователя, кстати, получился так себе — не выше 50% т.к. слишком маленькая индуктивность дросселя и большая емкость конденсатора С3, но иного под рукой не оказалось.

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

easyelectronics.ru

Мощный повышающий регулируемый преобразователь напряжения 150Вт 12-35В

Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п

Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл.
Продавец хорошо замотал устройство.

В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись.

Монтаж довольно качественный, плата отмыта.
Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы.
Дроссель намотан в 3 провода — правильное решение на таких частотах и токах.
Единственное — дроссель не закреплён и висит на самих проводах.

Реальная схема устройства:

Наличие стабилизатора питания микросхемы порадовало — это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В).
Выходное напряжение естественно не может быть меньше входного.
Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В
Красный светодиодный индикатор горит при наличии напряжения на выходе.
Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN

pdf.datasheet.su/texas%20instruments/uc3843an.pdf
Схема подключения — стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике.
Рабочая частота 120кГц

Если-бы Китайцы и тут не накосячили, я-бы сильно удивился 🙂
— При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки.
Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм.
Шипение пропало, стабильность работы возросла.

— Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником.

— Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику.

Защита от перегрузки имеется, защиты от КЗ нет.
Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке.

Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку

Осциллограмма на ключе при входном напряжении 12В

При небольшой нагрузке наблюдается колебательный процесс дросселя

Вот что удалось выжать в максимуме при входном напряжении 12В
Вход 12В / 9A Выход 20В / 4,5А (90 Вт)
При этом оба радиатора прилично разогрелись, но перегрева не было
Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики

Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается

На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт

Выводы делайте сами 🙂

mysku.ru

Повышающий/понижающий DC-DC преобразователь своими руками

Приветствую, Самоделкины!
Если вы искали схему универсального dc-dc преобразователя, то эта статья для вас. Сегодня мы, вместе с Романом (автором YouTube канала «Open Frime TV»), соберем преобразователь по топологии Sepic.

Если воспользоваться поиском, то думаю первым в списке будет ролик известного видеоблогера-самодельщика АКА КАСЬЯНА (YouTube канал «AKA KASYAN») по сборке повышающего/понижающего dc-dc преобразователя.

Только там схема с одним дросселем и нет регулировки тока. Версия же Романа собрана по топологии Sepic, более детально ознакомимся чуть позже. А сейчас давайте разберемся для чего нужен такой преобразователь.

Начнем с характеристик:
Входное напряжение от 10В до 25В;
Выходное напряжение от 0 до 30В;
Выходной ток до 2А (тут есть некоторые особенности, их затронем при расчете дросселя).

Как видим из характеристик, такой преобразователь можно использовать в автомобиле для повышения или понижения напряжения 12В. Также можно подключить такой самодельный dc-dc преобразователь на выход компьютерного блока питания и без переделки получать с него разные напряжения.


Ну или же можно взять блок питания от ноутбука и опять же получать на выходе любое напряжение. Это очень удобно, не нужно заботиться о питающем напряжении.

Теперь переходим непосредственно к схеме устройства.

Тут у нас всеми знакомая tl494, ей уже много лет, но она до сих пор не сдает свои позиции.

С самого начала автор хотел делать dc-dc преобразователь на UС3843, но толи они оказались бракованные, толи еще что-то, но нормальной работы автору добиться не удалось.

Плюс если делать регулировку по току, то нужно ставить второй шунт, а это снижает итоговый КПД устройства.

Роман (автор сегодняшней самоделки) пришел к данной схеме не сразу, а после общения с автором YouTube канала «RED Shade», который подсказал в каком направлении думать. И вот перед вами итоговая схема устройства:

В ней есть регулировка напряжения, тока, а также установлен драйвер полевика. С ним немного уменьшился нагрев.

Также можно увидеть, что ограничена максимальная ширина выходного импульса, так как при максимальном заполнении схема уходила в непонятный режим, жрала много тока, но на выходе напряжение падало.

Максимальное выходное напряжение равняется 30В.

Если нужно больше, то придется пересчитать номинал вот этих резисторов:

Причем с таким расчетом, чтобы при нужном выходном напряжении в точке делителя было 5В.

Также у нас ограничен ток, он составляет 2А. Если нужно больше, то необходимо пересчитать вот этот резистор:

Тут уже немного сложнее. Для начала необходимо выяснить сколько вольт упадет на шунте.

К примеру, нам нужен ток 4А. Тогда смотрим, при таком токе на резисторе упадет 0,4В.

Хорошо, теперь пересчитываем резистор. Нам нужно чтобы в точке деления переменного резистора и постоянного, напряжение было 0,4В.

Для этого идем в онлайн калькулятор и начинаем подбирать резистор.

Как видим, это несложно. Теперь давайте поговорим о том, как же это все работает. Точка отсчета - устройство выключено.

Итак, подаем питание. Ключ разомкнут, а значит ток течет через катушку индуктивности, конденсатор и диод прямо в нагрузку и выходной конденсатор.

Дальше происходит замыкание ключа.


В этот момент в катушке L1 накапливается энергия. Проходной конденсатор был заряжен напряжением питания, и так как после замыкания ключа он оказывается включенным параллельно индуктивности L2, то он ее заряжает.
Напряжение с L2 не может уйти в нагрузку, так как там стоит диод и у него на катоде напряжение выше, чем на аноде.

Теперь ключ снова размыкаем, и напряжение на L1 складывается с напряжением самоиндукции.

Таким образом, на проходной конденсатор и нагрузку идет уже повышенное напряжение.

Изменяя коэффициент заполнения ШИМ, мы изменяем выходное напряжение.

Если ширина импульса достаточно маленькая, то и величина самоиндукции меньше, а, следовательно, и выходное напряжение уменьшается. Преимущество такой схемы перед обыкновенным повышающим dc-dc преобразователем в том, что здесь установлен проходной конденсатор, который в случае короткого замыкания не даст выйти из строя схеме.

Теперь идем дальше. Как уже говорилось выше, некоторые компоненты схемы необходимо рассчитать, благо уже есть сайт с готовым онлайн калькулятором, он нереально облегчает жизнь.

Как видим, сюда необходимо ввести свои данные.

Автор же попытался рассчитать в максимально широком диапазоне и вот что получилось:

В расчете мы получили некоторые индуктивности катушек.

Но как же в реальной жизни их намотать с нужной индуктивностью? Обладатели ESR метра скажут, что тут нет ничего сложного, мотаешь и смотришь параметры.

Но этот ESR метр показывает с очень большой погрешностью, поэтому автор предлагает воспользоваться программой Старичка.

В ней вводим все необходимые параметры, а также указываем какой у нас сердечник. Если никаких нет под рукой, то достаем 2 одинаковых желтых кольца из компьютерного блока питания.


Ну и осталось намотать наши дроссели, это уже не составит особого труда.

Получилось довольно-таки неплохо. Казалось бы, все сложности уже позади, но нет, впереди еще разводка печатной платы. На нее автор потратил ни один вечер, чтобы максимально компактно расположить все элементы.

Для крепления можно сделать плату немного больше и добавить по бокам отверстия, но это уже на ваше усмотрение.

Плата готова, просверлены отверстия, настала очередь запайки. Тут есть один важный момент, необходимо поднять силовые элементы выше над платой, так как потом невозможно будет достать отверткой.

Теперь необходимо установить транзистор и диод на радиатор. Автор будет использовать вот такой алюминиевый профиль, он имеет неплохие габариты и сможет нормально охлаждать схему.


Ну и в конце традиционно у нас тесты. Подаём на схему сначала напряжение равное 12В. На выход подключена нагрузка в виде лампы накаливания мощностью 100Вт, рассчитанная на напряжение 36В. Мультиметр следит за выходным напряжением.


Как видим, мы спокойно можем выставить любое напряжение начиная от 0 и заканчивая практически 30 вольтами, тут сказывается большая индуктивность, которую, по словам автора, ему лень было перематывать.
Теперь посмотрим ограничение тока.

Как видим, наша схема отлично справляется. Теперь произведем короткое замыкание.

Это вообще без проблем, идёт просто ограничение заранее выставленного тока. Ну и самый важный тест - выставляем на выходе среднее значение в 15В и начинаем изменять входное напряжение.


Как видим, сначала мы его уменьшали, а теперь начали увеличивать, но выходное напряжение держится на заданном уровне.
Ну вот и все, надеюсь вам понравилось. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Обзор DC-DC повышающего конвертера с регулировкой тока и напряжения / Kvazis House / iXBT Live

Здравствуйте друзья. 

Со времени моего знакомства с DC-DC конвертером Jtron, кому интересно, обзор можно прочитать здесь, меня не оставляла мысль найти подобное решение с регулировкой не только по напряжению, но и по току. Например для создания недорогого зарядного для аккумуляторных батарей (под термином батарея — понимается 2 и более соединенных вместе аккумулятора). Вот про один из вариантов такого конвертера я сегодня и расскажу. 

Сразу скажу — обзор носит больше исследовательский чем прикладной характер, в некотором роде это творческий поиск, поэтому буду благодарен за конструктивные комментарии и предложения. 

Почему мое внимание привлек именно данный конвертер? Кроме того что он имеет регулировку по току и по напряжению, он является  повышающим - Step — Up Boost Converter, что для меня весьма интересно, так как на хозяйстве имеется довольно много 12 В блоков питания (да и не забываем про бортовую сеть автомобиля), а для заряда например 4х элементной LiOn батареи с последовательно соединенными элементами, нужно напряжение в 16.8 В. Так же понравилась невысокая цена, и возможность скинуть часть ее поинтами — в моем случае свободных поинтов было на 2 с небольшим доллара, что дало цену примерно в 5.5 доллара. 

Узнать актуальную цену на странице товара в магазине Gearbest можно — здесь

Характеристики:

● Входное напряжение / ток: DC 11-35V/10A (Max)
● Выходное напряжение / ток: DC 11-35V/10A (Max)
● Выходное напряжение: 100W (Max, 150W кратковременно), если позволяет источник питания 
● Может работать как источник питания для ноутбуков 65W — 90W 
● При использовании 12V источника для питания 19V 3.42A ноутбука, температура модуля — около 45 С градусов 
● Эффективность преобразования: 94% (вход 16V выход 19V 2.5A) 
● Рабочая температура: от -40 до +85 градусов, если температура окружающей среды превышает 40 градусов, необходимо использование активного охлаждения
● Температура при полной нагрузке: 45 градусов

Так же на странице товара имеется полезная информация о назначении элементов управления

 

Внешний осмотр, элементная база

Поставляется в антистатическом пакете

Размеры модуля — ширина чуть менее 6 см

Длина — чуть более 6,5 см

Максимальная габаритная высота, на уровне электролитов — около 2,5 см

На одной из сторон конвертера находится два подстроечника, для регулировки тока и напряжения, за ними находится массивный, относительно размеров конвертера дроссель

между подстроечниками находится ШИМ контролер 3843b

По бокам находятся два радиатора, которые рассеивают тепло от MOSFET транзистора IRF2807 с одной стороны

И сдвоенного диода Шотки MBR2060CT с другой стороны

С другой стороны находится контактная колодка на 4 винтовых разъема, соответственно входное и выходное напряжение, за ними два 35 В электролита на 1000 мкФ

Нижняя часть конвертера:

Испытания

В качестве источника питания, я использовал 12 В блок питания, про который рассказывал в одном из своих предыдущих обзоров. В качестве нагрузки для первого включения — 24 В автомобильная лампочка. Первое включение — «из коробки» без проведения каких-либо настроек. В данном случае, разницы с прямым подключением к блоку питания нет

При помощи подстроечника напряжения поднимаю напряжение до 24 В, максимума для лампочки, ограничения по току нет. Потребляемая лампочкой мощность в этом случае — более 60 Ватт. Так что рассматривать данный конвертер в качестве источника питания для ноутбуков от, например, бортовой сети автомобиля — вполне вероятно. 

«Прикрутить» напряжение удалось до 11.76 В. При использовании этой лампочки в качестве нагрузки с этим блоком питания — это минимальные показатели 

Цель моего эксперимента — зарядить аккумуляторную батарею из 4х 18650 последовательно соединенных аккумуляторов. Рабочее напряжение выставляю 4,2 * 4 = 16,8 В.

После этого прикручиваю ток до 2 А. 

Проверяю на холстом ходу — напряжение 16,8, индикатор напряжения без нагрузки светит зеленым.

Собираю стенд из 4х NCR1860B — напряжение на батарее, источник питания отключен

А теперь включаю блок питания. Зарядный ток выставлен в ходе предыдущего теста на 2А

При желании ток можно ограничить и на 1 А

и на 0,5 А

Я зафиксировал ток на 1,5 А, весь дальнейший тест будет проходить с этим ограничением

В ходе всего теста я делал замеры температуры, максимум который мне удалось зафиксировать на самом горячем элементе конвертера - MOSFET транзисторе IRF2807 — около 40 С

Максимальная температура зафиксированная на аккумуляторах — 32С

Когда напряжение на аккумуляторной батарее приблизилось к отметке 16.7 В, потребляемый ток стал существенно падать

В районе 0.3 А — изменения практически прекратились и я завершил заряд

После заряда — напряжение на батарее без нагрузки

Напряжение на единичном элементе

Вывод 

С одной стороны — аккумуляторы я зарядил. С другой стороны — каким образом отслеживать момент, когда следует прекращать заряд? Применять дополнительные индикаторы? Вопрос пока открыт, жду комментариев. Может быть этот конвертер вообще нельзя применять как зарядное, я ошибся с выбором ? 

www.ixbt.com

Очень хилый повышающий преобразователь напряжения на 5В USB

Представляю обзор микромощного преобразователя напряжения, который мало на что сгодится.

Собран довольно неплохо, размер компактный 34х15х10мм


Заявлено:
Входное напряжение: 0.9-5В
С одной батареи АА выходной ток до 200мА
С двух батарей АА выходной ток 500 ~ 600мA
КПД до 96%
Реальная схема преобразователя

В глаза сразу бросается очень малая ёмкость входного конденсатора — всего-то 0.15мкФ. Обычно ставят больше раз в 100, видимо наивно рассчитывают на низкое внутреннее сопротивление батареек 🙂 Ну поставили такой и бог с ним, при необходимости можно и поменять — себе сразу поставил 10мкФ. Снизу на фото валяется родной конденсатор.

Габариты дросселя также весьма невелики, что заставляет призадуматься насчёт правдивости заявленных характеристик
На входе преобразователя подключен красный светодиод, который начинает светиться при входном напряжении более 1,8В

Проверку проводил для следующих стабилизированных входных напряжений:
1,25В — напряжение Ni-Cd и Ni-MH аккумулятора
1,5В — напряжение одного гальванического элемента
3,0В — напряжение двух гальванических элементов
3,7В — напряжение Li-Ion аккумулятора
При этом нагружал преобразователь до падения напряжения до разумных 4,66В

Напряжение холостого хода 5,02В
— 0,70В — минимальное напряжение, при котором преобразователь начинает работать на холостом ходу. Светодиод при этом естественно не светится — напряжения не хватает.
— 1,25В ток холостого хода 0,025мА, максимальный выходной ток всего 60мА при напряжении 4,66В. Входной ток при этом 330мА, КПД около 68%. Светодиод при таком напряжении естественно не светится.

— 1,5В ток холостого хода 0,018мА, максимальный выходной ток 90мА при напряжении 4,66В. Входной ток при этом 360мА, КПД около 77%. Светодиод при таком напряжении естественно не светится

— 3,0В ток холостого хода 1,2мА (потребляет в основном светодиод), максимальный выходной ток 220мА при напряжении 4,66В. Входной ток при этом 465мА, КПД около 74%. Светодиод при таком напряжении светится нормально.

— 3,7В ток холостого хода 1,9мА (потребляет в основном светодиод), максимальный выходной ток 480мА при напряжении 4,66В. Входной ток при этом 840мА, КПД около 72%. Светодиод при таком напряжении светится нормально. Преобразователь начинает незначительно греться.

Для наглядности, свёл результаты в таблицу.

Дополнительно при входном напряжении 3,7В проверил зависимость КПД преобразования от тока нагрузки
50мА — КПД 85%
100мА — КПД 83%
150мА — КПД 82%
200мA — КПД 80%
300мA — КПД 75%
480мА — КПД 72%
Как несложно заметить, чем меньше нагрузка, тем выше КПД
До заявленных 96% сильно не дотягивает

Пульсации выходного напряжения при нагрузке 0,2А

Пульсации выходного напряжения при нагрузке 0,48А

Как нетрудно заметить, на максимальном токе амплитуда пульсаций очень велика и превышает 0,4В.
Скорее всего это происходит из-за выходного конденсатора небольшой ёмкости с высоким ESR (измерил 1,74Ом)
Рабочая частота преобразования около 80кГц
Запаял дополнительно керамику 20мкФ на выход преобразователя и получил снижение пульсаций при максимальном токе в 5 раз!


Вывод: преобразователь является весьма маломощным — это обязательно следует учитывать, выбирая его для питания Ваших устройств

mysku.ru

Повышающий DC преобразователь MT3608 или переделываем питание РУ игрушек на литий

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о переделке питания древненькой радиоуправляемой машины с никеля на литий с помощью повышающего преобразователя MT3608, а также встраивание «народного» зарядного модуля прямо в машинку. Кому интересно, милости прошу под кат…

Преимущества литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd/NiMH):
— высокая плотность энергии. У типичной никелевой батареи 5S 6V 700mah запасенная энергия 6*0,7=4,2Wh, а у литиевого аккумулятора 3,7V 3300mah — 3,7*3,3=12,2Wh. Как мы видим и напряжение выше, и емкость больше. И это притом, что в расчет взята сборка никеля, а не один аккумулятор
— отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда (в сравнении с NiCd)
— меньшие габариты при одинаковых параметрах с NiCd/NiMH
— быстрое время заряда (не боятся больших токов заряда) и понятная индикация
— низкий саморазряд (в сравнении с NiCd и обычным никелем)

В общем, причины переделки были следующими:
— большая емкость аккумулятора и как следствие более длительное время работы без подзаряда
— встроенный зарядный модуль со сравнительно небольшим временем заряда и понятными сигналами этапов процесса (заряд/заряжено)
— отсутствие эффекта памяти, т.е. можно заряжать в любой момент, не дожидаясь разряда аккумулятора
— наличие корректной защиты от переразряда
— перевод на встроенное универсальное ЗУ с питанием от адаптера/БП смартфона/планшета (USB/micro USB)

Итак, о переводе зарядки квадрокоптера Bayang под разъем USB я уже писал. Теперь очередь за машинкой. Переделывать будем стандартную ментовскую «линейку», купленную в оффлайне. Вот та самая машинка:

Питание стандартное для такого рода устройств – батарея NiCd аккумуляторов 5S 6V 700mah (пять последовательно соединенных пальчиков по 1,2V 700mah). Обычный никель в данном случае, похоже, такую нагрузку вытянуть не может, поэтому разработчики поставили кадмиевые аккумуляторы, способные отдавать большие токи.
Мне, можно сказать, повезло – батарейный отсек довольно большой, туда с легкостью можно впихнуть два Li-Ion аккумулятора ф/ф 18650:

Аккумулятор крупным планом:

Адаптер самый простой, рассчитанный на 6V 250ma, хотя тут бы не помешал на 500-600ma, ибо стоковым ЗУ аккум заряжается достаточно долго.

При заряде комплектным зарядным устройством нет индикации окончания заряда, да и вкупе с паразитным эффектом памяти использовать стоковые акки и ЗУ очень неудобно, а иногда и опасно, особенно детям. Никакой защиты от перезаряда нет:

Питание пульта ДУ от 9V кроны, т.е. 6S АААА – 6 минибаночек по 1,5V каждая. Возможно, руки дойдут и до пульта, но вроде как кроны пока хватает надолго, особой необходимости в переделке нет:

Итак, с описанием основных элементов и их недостатков разобрались, плавно переходим к доработке.

Два способа реализации перехода под литиевое питание:
1) Два последовательно соединенных защищенных Li-Ion аккумулятора напрямую к плате управления:

+ самый простой способ
+ высокое рабочее напряжение, а также сохранение работоспособности при практически полном разряде аккумуляторов, т.е. вся их емкость будет использоваться, даже при варианте аккумов с низким порогом разряда (2,5V)
+ отсутствие необходимости в повышающем преобразователе

– не все платы управления работают от 8,4V (две свежезаряженные банки), в некоторых случаях придется гасить вольт-полтора
– необходимо не менее двух защищенных аккумуляторов и холдеров, аккумуляторы желательны с одинаковыми параметрами (защищенные дороже незащищенных и нужны две штуки).
– невозможность/проблематичность установки встроенного модуля заряда (нужны две платки или более дорогие платы с балансировкой)
– при отсутствии модуля заряда необходимо вынимать аккумуляторы для зарядки в стороннем ЗУ (для ребенка не вариант)

Как видим, минусы довольно существенные…

2) Один или два параллельно соединенных Li-Ion аккумулятора, повышающий преобразователь MT3608 и «народная» сверхдешевая плата заряда на TP4056

+ возможность работы от одного аккумулятора
+ отсутствие необходимости в защищенных аккумуляторах (при условии использовании платы зарядки с защитой)
+ возможность встраивания платы зарядки в готовое устройство
+ возможность применять несколько разноемкостных аккумуляторов (можно запараллелить все отбраковки, которые есть в наличии)
+ полный разряд аккумулятора до конечного напряжения, т.е. использование всей полезной емкости

– более сложный способ
– дополнительные потери в преобразователе и необходимость небольшого допила повышайки для более надежной работы
– невозможность снятия больших токов с преобразователя (для мощных РУ моделек не годится)

В моем случае мне необходима была простота эксплуатации, без телодвижений с выемкой/установкой аккумуляторов, ибо это литий, поэтому я выбрал второй способ, его и рассмотрим ниже.

Необходимые компоненты для доработки и некоторый «допил»:

1) «народная» плата зарядки лития с защитой от переразряда/КЗ на основе TP4056

Плата зарядки лития с защитой от переразряда/КЗ доработки практически не требует. Объяснять принцип работы не буду, т.к. она уже обозревалась вдоль и поперек. Напомню лишь, что заряжает по стандартному алгоритму CC/CV (сначала постоянным током, затем «добивает» постоянным напряжением) током 1А (реально около 0,93А). Отключается при снижении тока до 1/10 от начального. При заряде горит красный светодиод, по окончании – синий. Зарядка отключается в районе 4,19V. Защита пропускает до 3-4А, срабатывает при снижении напряжения на банке до 2,4V. При необходимости стабильной работы на более высоких токах – необходима допайка еще одного ключа/мосфетной сборки в параллель. При использовании платы зарядки лития с защитой TP4056 мы убиваем сразу двух зайцев, ибо не нужно лезть в батарейный отсек и в отдельном специализированном ЗУ заряжать аккумулятор, а также не нужно контролировать переразряд банки.

2) один или два Li-Ion аккумулятора 3,7V

Cгодятся любые, т.к. потребление данной машинки в среднем около 1,5А, т.е. применение высокотоковых аккумуляторов здесь не обязательно. Желательно использовать аккумуляторы с заниженным порогом разряда в 2,5V – современные высокоемкие банки Sanyo/Panasonic/Samsung/LG. Народные Sanyo/Samsung 2600mah не очень подходят к данной платке, т.к. имеют несколько «завышенный» порог разряда. Я использовал банку Sanyo NCR18650BF 3350mah из ПБ Xiaomi 10000mah, о нетипичном применении которого писал в этой статье. Небольшая трудность – подпайка питающих проводов к контактам платы. Если заморачиваться не хочется, то можно приделать одно/двухслотовый холдер/бокс 1х18650:

Тогда при наличии специализированного ЗУ можно колхозить и без платы заряда, т.к. с легкостью можно достать аккумуляторы. Но если использовать будет ребенок – лучше посмотреть вариант со встроенным модулем заряда.
Если приобретать холдеры нет желания или места для них недостаточно, то придется подпаивать провода к клеммам аккумулятора, это очень просто. Желательно иметь паяльник 60-80Вт и активный флюс – паяльная или ортофосфорная кислота, которая покупается в магазинах электрики. Достаточно немного капнуть флюса на контакты, набрать жалом паяльника припой и прижать к контактам (не перегреваем!). Желательно протереть место пайки спиртиком, чтобы остатки флюса ничего не разъедали в дальнейшем. Далее просто припаиваем провода и все. В итоге получается что-то типа этого:

3) повышающий преобразователь MT3608

Уже достаточно широко расписан и вдоль, и поперек. Отмечу только, что из-за неправильной разводки платы (тонкая длинная дорожка), на выходе присутствуют большие высокочастотные пульсации, хотя со стоковым вариантом машинка работает без проблем. Благодаря уважаемым электронщикам, было найдено очень простое решение проблемы – подпайка на выходе сглаживающих керамических конденсаторов, емкостью 10-22 мкф рассчитанных на напряжение не менее 16V. Т.к. в закромах я нашел только кондеры по 1мкф, то припаял 3 штуки в параллель. Для этого сначала сдираем покрытие дорожек, лудим получившуюся полоску и затем просто подпаиваем кондеры:

По желанию можно подпаять еще электролитический конденсатор 100-220 мкф на напряжение не менее 16V.
Теперь, когда все компоненты в наличии и при желании доработаны, собираем все воедино по следующей схеме:

Получается что-то вроде этого:

Как видим, повышающий преобразователь с легкостью поднимает напряжение с 3,36V до 6,14V. С таким низким входным максимум можно выжать около 20V, хотя при большем входном, на выходе можно получить до 28V:

Отрегулировав нужное среднее выходное напряжение на уровне 7V, можно приступать к сборке. Для начала взглянем на внутренности машинки:

Внутри типичный «Китай» – все провода тонкие и всё держится на соплях. Питающие провода от аккумулятора и преобразователя лучше заменить на более качественные большего сечения – будет меньшая просадка напряжения под нагрузкой (в идеале МГТФ). Плату зарядки пристраиваем так, чтобы к ней был легкий доступ: либо под днищем машинки, либо как я – за боковой дверцей, тем более там в корпусе есть подходящий фигурный вырез для лучшего удержания платки. Не забываем вырезать рядом небольшое отверстие для индикации – прямо напротив светодиодов. Преобразователь ставим рядом:

Более детально:

Для большей надежности обе платы, а также некоторые «сопли» клеим термопистолетом, который покупается в фикспрайсе за полтинник:

Получается довольно аккуратно:

Сам аккумулятор оставляем в батарейном отсеке. Для предотвращения бултыхания аккумулятора кладем рядом пупырку или изолон:

Собираем машинку и проверяем работоспособность. При зарядке красный цвет – заряд, синий заряжен:


Запускаем – все летает. Работы на пару часов, даже появилась «пробуксовка» колес на линолеуме, :-)…

Итого: при небольших телодвижениях мы имеем увеличенное в несколько раз время работы машинки, более простые условия обслуживания и некоторую стандартизацию, ибо стоковый зарядник отправлен на покой, а его заменит универсальный адаптер/БП от смартфона/планшета. Данные комплектующие стоят копейки, особенно если заказывать по 5-10 шт, имеют хорошие ТТХ, поэтому рекомендую!

Киса:


Кому интересно, еще обзоры:

mysku.ru

Универсальный преобразователь напряжения или пару слов от том, что такое SEPIC

В сегодняшнем обзоре я хочу рассказать о довольно полезной вещи, универсальном преобразователе напряжения.
Что это такое, как работает и что может, как всегда под катом.

Некоторое время назад, в одном из моих обзоров я уже упоминал о таком типе преобразователей, и даже собрал для примера один из них, сегодня пришла очередь обзора готового преобразователя такого типа.

Для начала буквально пара слов о том, что же это за преобразователь такой хитрый.
Обычно преобразователи бывают трех типов.
1. Повышающий
2. Понижающий
3. Инвертирующий

Но все они не могут выдавать напряжение выше/ниже чем напряжение источника.
Например понижающий из 10 никогда не сделает 12, а повышающий из 20 не сделает 5.
Но иногда бывают ситуации, когда входное напряжение в процессе работы может плавать как выше, так и ниже необходимого выходного.
Например надо 12 Вольт (к примеру питание жесткого диска или монитора), а питается это все от бортовой сети автомобиля, где может быть и 10 и 14.5.
Такую задачу чаще всего решают двумя способами.
1. Повышают до 15-20, а потом понижают до необходимого.
2. Ставят повышающе-понижающий преобразователь, он же Buck-Boost, он же SEPIC.

Первый тип уже обозревал коллега Ksiman.
Я же расскажу о втором.

Сначала немного общей информации.
Пришел преобразователь вместе с другим товаром и был упакован просто в пакетик с защелкой.

На сайте магазина заявлено

Входное напряжение — 4V-35V
Выходное напряжение — 1.23V-32V
Выходной ток — 3A максимум
Максимальная мощность — 25 Ватт
Размеры 50 x 25 x 12мм

Что означают данные характеристики.
Выходной ток не может быть более 3 Ампер при условии что выходная мощность не может быть более 25 Ватт.
Т.е. ограничивать надо то, во что раньше «упремся».
Можно получить на выходе 10 Вольт 2.5 Ампера (25 Ватт), или 5 Вольт 15 Ватт (3 Ампера).
На самом деле характеристики отличаются от заявленных, но об этом немного позже.

Выглядит платка вполне аккуратно, видно подстроечный резистор для регулировки выходного напряжения (ток не регулируется и не ограничивается).

Также на плате видно два дросселя, один из признаков SEPIC преобразователя, хотя и необязательный. иногда делают один дроссель с двумя обмотками, но он тоже на вид отличается.

Ну и печатная платка вид сверху 🙂

Снизу пусто. Видны межслойные переходы, позволяющие отводить тепло на нижнюю сторону платы, но как то расположены они нелогично, скорее всего они больше играют роль именно электрического соединения.
А жаль, можно было улучшить тепловой режим, но лучше так, чем никак.

Думаю что размеры платы проще понять по такому фото 🙂

Так, с внешним видом закончили, теперь попробуем разобраться подробнее, что же это такое.
Мне конечно очень хотелось бы расписать подробно что это и как оно работает. Но все дело в том, что описать совсем просто такой тип преобразователей тяжело, мало того, я даже когда подготавливал материалы к обзору, то натыкался на противоречивые описания.

Для начала блок схема собственно этого типа преобразователя. Стоит отметить, что существует два варианта топологии данного типа преобразователя, я приведу ту, к которой относится обозреваемая плата.

Дальше я попробую «дать слово» специалистам с большим опытом.
В процессе поисков я наткнулся на описание, которое на мой взгляд наиболее точное. Ссылка на оригинал статьи, а ниже я процитирую краткое описание принципа работы.

На схеме силовой ключ в состоянии — замкнут. Когда ключ замкнут, входная индуктивность заряжается от источника, а вторая индуктивность заряжается от конденсатора, выходной конденсатор в это время обеспечивает ток нагрузки.
В это время энергия в нагрузку не поступает, полярности токов в катушках и напряжений на конденсаторах обозначены на схеме. Тот факт, что обе индуктивности, L1 и L2, при замкнутом ключе отключены от нагрузки, усложняет регулировочные характеристики, как мы увидим далее.

После размыкания ключа схема приобретает несколько другой «вид».
Когда ключ разомкнут, первая индуктивность заряжает конденсатор С1, а также поддерживает ток в нагрузке, как показано на схеме. Вторая индуктивность в это время также подключена к нагрузке.

Если простыми словами, то схема работает за счет взаимной перекачки энергии между компонентами, позволяет как повышать напряжение, так и понижать его.
Для лучшего понимания я покажу где на плате все эти элементы.
Кстати, один из признаков SEPIC преобразователя — один ключевой элемент (не важно, транзистор или силовой ШИМ) и один диод.

Я начертил схему данной платы. номиналы пары компонентов могут немного отличаться от реальных, но в основном все соответствует.
Из минусов сразу отмечу то, что подстроечный резистор подключен к выходу, а не к общему проводу. Такое подключение крайне не рекомендуется, так как в случае пропадания контакта при регулировке на выход будет подано максимальное выходное напряжение.

Основой данной платы является небольшой ШИМ контроллер, который уже управляет мощным полевым транзистором и контролирует выходное напряжение.
В качестве ШИМ контроллера применен FP5139, ссылка на даташит.
Данный ШИМ контроллер работает на частоте 500КГц, что весьма неплохо. Диапазон входного напряжения 1.8-15 Вольт, что также приятно, особенно нижний порог в 1.8 Вольта. Думаю прикупить себе отдельно этих микрух.
Управляет контроллер полевым транзистором 088N04L, это 40 Вольт, 50 Ампер, 8.8мОм транзистор который может управляться сигналом логического уровня (обычно это 5 Вольт).

Также отличительным признаком SEPIC преобразователя является емкий керамический конденсатор.
Вообще, SEPIC отличается от других преобразователей тем, что содержит больше компонентов.
У классических повышающих, понижающих, инвертирующих преобразователей три основных элемента, но включенных в разной комбинации — дроссель, транзистор, диод.
Здесь к этой связке добавлен еще один дроссель и конденсатор.
Выходной диод на плате — SK86, весьма неплохой диод, заявлен максимальный ток до 8 Ампер.

Дальше я перешел к тестам.
Когда собрал такой «стенд», то мне даже жалко стало преобразователь.
Порвут ведь как Тузик грелку, подумал я, и как показала практика, не сильно был далек от истины.

Первое включение.
Сразу расскажу что вообще означает куча цифр на экранах.
Слева блок питания.
Верхний ряд — Выходное напряжение, выходной ток.
Нижний ряд — Выходная мощность, отданное количество мАч в нагрузку (но нам это неважно в данном случае)

Справа электронная нагрузка.
1. Установленный ток, Напряжение отключения (в данном случае неважно)
2. Измеренный ток нагрузки, измеренное входное напряжение (выходное напряжение преобразователя).
3. Принятая емкость (неважно в данном случае), мощность нагрузки (ток х напряжение).
4. Неважно.

Дальше я погонял преобразователь в разных режимах. Режимы выбирались отчасти спонтанно, параллельно измерял температуру основных компонентов и записывал в табличку.

Входное напряжение я не поднимал выше 14 Вольт, ниже расскажу почему так.

Судя по результатам измерений температуры я могу сказать, что плата не выдает заявленных характеристик.
Но небольшой нюанс. Не выдает она их из-за перегрева, мощности силовых элементов хватает чтобы выдавать их в течении короткого времени, но при длительном перегревается.
Можно конечно сделать радиатор, но охлаждать надо транзистор, два дросселя и диод, это сложно 🙁
Кроме того было замечено небольшое снижение выходного напряжения по мере прогрева преобразователя, обусловлено это часто тем, что применены не прецизионные резисторы и их сопротивление«плывет» от нагрева, но изменение не очень большое и им можно пренебречь.

Так как данный тип преобразователей отличается от других решения более высоким КПД, то я решил проверить и его.
В качестве демонстрации я сделал небольшой эксперимент. Для более наглядной демонстрации я выставлял такой режим работы, чтобы входная мощность была всегда равна 10 Ватт (ну или около того). в таком режиме выходная мощность будет равна КПД преобразователя.
На самом деле КПД будет выше, так как в таком варианте не учтены потери на проводах. Но так как они короткие, то врядли погрешность превысит пару процентов.

Еще несколько фото в разных режимах, повышение, понижение и с разным значением напряжений.
Кстати, по предыдущим фотографиям можно также посчитать КПД. Для этого надо измеренную мощность нагрузки (справа) разделить на измеренную мощность источника (слева).
Например на БП 15.45, на нагрузке 12.3. 12.3 / 15.45 = 0.796
Но уже даже так можно сказать, что КПД выше чем у комбинации повышающий + понижающий преобразователь.

Выше я писал что ограничил входное напряжение на уровне в 14 Вольт.
Сделано это было не просто так. Дело в том, что я сначала начал тестировать, а только потом перерисовал схему.
Изначально я думал что производитель просто сделал все по схеме из даташита и транзистор на плате для управления включением/выключением (кстати, преимущество SEPIC в том, что выход можно отключить, например step-up отключить нельзя) и входное напряжение не должно превышать 15 Вольт (из даташита на контроллер). Хотел еще ругаться что указали диапазон входного 35 Вольт.
Но начав разбираться со схемой я понял, что производитель поступил хитрее, он поставил на плате стабилизатор питания на примерно 9.5 В. Я допускаю что так сделано не на всех платах, будьте внимательны.
Сбил меня с толку именно регулирующий транзистор стабилизатора так как в схеме из даташита тоже есть транзистор.
Кстати, джампер на плате управляет включением/выключением преобразователя.

Разобравшись со схемой я решил продолжить тесты, но не успев даже начать я спалил плату.
Мощный транзистор ушел в КЗ, я даже не понял как это произошло.
Порывшись в загашниках нашел какую то материнскую плату, откуда выпаял полевой транзистор в таком же корпусе. Разница в том, что он только до 30 Вольт 🙁
Быстро перепаял, благо ничего больше из строя не вышло.
Кстати. Данный преобразователь в какой то степени является «безопасным», так как при выходе из строя силового транзистора он не подаст на выход полное напряжение питания как в случае с step-down.
Как еще один нюанс, данный тип преобразователей имеет выше пульсации на выходе (в сравнении с другими типами), но гораздо меньшие по входу, что дает преимущество при работе от аккумуляторов.

А вот дальше я захотел не только продолжить тесты, но и попробовать разобраться, почему вышел из строя транзистор.
В процессе тестов было замечено, что чем выше входное напряжение, тем ниже КПД.
Например при выходном 15 Вольт КПД составил для входного 20 Вольт 80%, а для 26 Вольт всего 62%.
Причем чем выше выходное, тем КПД еще меньше. При 20 Вольт выходного я легко получал входной ток более 2 Ампер и КПД ниже 40%.
После этого я вспомнил, что около транзистора была небольшая капелька припоя, которой до пробоя не было, а выходное напряжение после последнего эксперимента составляло 25 Вольт, а я и на входе накрутил почти 30, он даже пискнуть не успел.
Т.е. получается что транзистор буквально «спекся». Вызвано это скорее всего тем, что индуктивности начали входить в режим насыщения.
SEPIC конечно может работать в широком диапазоне напряжений, но оптимальный диапазон все таки привязан к примененным компонентам и нельзя охватить все.

Эксперименты показали, что чем ниже выходное напряжение, тем выше я могу поднять входное.
При 10 Вольт на выходе я легко накрутил 27 Вольт на входе, выше поднимать не стал так как максимальное напряжение транзистора всего 30.
Вообще это нормально и просто надо учитывать при использовании. Т.е. это скорее особенность чем неисправность.

Расписывать плюсы и минусы не буду, думаю все понятно просто из обзора, но немного сведу полученную информацию вместе.
1. Преобразователь работает и обеспечивает КПД выше чем у комбинации повышающий + понижающий преобразователь.
2. Характеристики платы завышены, но при желании можно получить и 3 Ампера, и 25 Ватт, все зависит от комбинации входного и выходного напряжения.
3. Компоненты применены очень неплохие. Но дроссели должны быть рассчитаны на больший ток, а транзистор надо дополнительно охлаждать.
4. Плата содержит стабилизатор питания ШИМ контроллера, благодаря чему входное напряжение может быть увеличено выше 15 Вольт.
5. При определенной комбинации входного и выходного напряжения происходит пробой силового транзистора. 🙁

В общем плата вполне работоспособна, но с некоторыми ограничениями о которых написано выше.
Подходит для питания устройств с небольшим потребляемым током в широком диапазоне входного напряжения, но для мощных устройств не пойдет из-за перегрева.
В интернете видел небольшой обзор этой платы, там результат немного другой, но скорее непонятно было то, что там указано насчет защиты. У меня она сработала один раз, напряжения на выходе не было пока не отключил питание платы, но как она определяет перегрузку я не понимаю, так как датчиков тока нет, хотя в даташите защита от КЗ заявлена и она срабатывала…

Надеюсь что обзор был интересен и полезен, если интересно, могу проверить работу в других комбинациях напряжений.

Небольшая скидка

Магазин дал еще купонов на скидку в 8%, может будет полезно
WSKD89, WS9H7T, WSNHZR, WSYZK7, WS3X3L

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о