Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.
Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).
При К>1 трансформатор является понижающим, а при К<1 — повышающим трансформатором.
U1/U2 ≈ E1/E2 = N1/N2 = К
где: U1, U2 — напряжение на первичной и вторичной обмотке; E1, E2-мгновенные значения ЭДС; N1, N2 — количество витков первичной и вторичной обмотки
повышающий трансформатор схемаПрименение повышающих трансформаторов
В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.
Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.
Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.
Повышающий тороидальный трансформатор
Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.
Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.
Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.
Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.
Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.
Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:
- во-первых, экономия материалов на производстве,
- во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
- в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.
Охлаждение обмоток — еще один важный фактор.
Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.
Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.
Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.
Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.
При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.
Для чего около электростанций устанавливают повышающий напряжение трансформатор?
Любой проводник имеет свое сопротивление и поэтому в ЛЭП неизбежно возникают тепловые потери на нагрев проводника. Величина нагрева пропорциональна квадрату тока в цепи, по этому повышая напряжение до сотен киловольт, мы, согласно закону Ома понижаем ток, а значит и снижает тепловые потери и размер проводников ЛЭП, экономия материалов и стоимости.
Видео: Повышающий трансформатор
Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники. Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора. Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.
Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током. Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию. В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.
Устройство и принцип работы
Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.
Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:
- П-образные.
- Ш-образные.
- Тороидальные.
Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.
Достоинства и недостатки сердечников
- Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
- Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
- Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.
В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.
Технические характеристики
Основными характеристиками при эксплуатации трансформатора считаются:
- Напряжение входное.
- Величина напряжения на выходе.
- Мощность прибора.
- Ток и напряжение холостого хода.
Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.
От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.
Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.
От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.
Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.
Типы устройств
В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:
- Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
- Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
- Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
- Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
- Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
- Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
- Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.
Обслуживание и ремонт
Желательно человеку, не знающему принцип действия электротехнических приборов, не заниматься ремонтными работами этого оборудования, из-за возможности поражения электрическим током. При ремонте и обслуживании трансформаторных устройств, единственное, что можно исправить, без недопустимых последствий, это перемотка трансформатора.
Перед началом любых ремонтных работ необходимо произвести проверку трансформатора:
- Первым делом необходимо оценить состояние прибора при помощи визуального осмотра, так как порой, потемневшие и вздувшиеся участки, прямо указывают на неисправность обмотки трансформатора.
- Определение правильности подключения устройства. Электрический контур, генерирующий магнитное поле обязательно должен быть подключён к первичной обмотке прибора. А вот вторая схема, потребляющая энергию трансформатора, должна быть включена в обмотку выходного напряжения.
- Фильтрация выходного сигнала фазы определяется как для диодов и конденсаторов на вторичной обмотке устройства.
- Следующим шагом нужно подготовить прибор к контрольному измерению параметров, т. е. снять защитные панели и крышки, чтобы получить свободный доступ к элементам схемы. С помощью тестера нужно в дальнейшем произвести измерение напряжения трансформатора.
- Для проведения измерений, нужно подать питание на схему устройства. Измерение параметров первичной обмотки проводится тестером в режиме переменного тока. Если полученное значение меньше чем на 80% от ожидаемого, то неисправность может быть как в самом трансформаторе, так и в схеме всего устройства.
- Проверку выходной обмотки осуществляют при помощи тестера. При этом проверяем обмотку как на возможность появления короткозамкнутых витков, так и на обрыв провода намотки катушки, по принципу измерения сопротивления (если сопротивление мало — то есть вероятность короткозамкнутых витков, а в случае когда сопротивление обмотки велико — обрыв).
После перемотки повышающего трансформатора напряжения, в случае неисправности обмотки, нужно собрать его в обратной последовательности, при этом особое внимание необходимо уделить наиболее плотному прилеганию пластин сердечника.
Самостоятельное изготовление или ремонт устройства предоставляется процессом очень сложным и трудоёмким. Для выполнения таких работ потребуется наличие необходимых материалов, а также умение производить некоторые специальные расчёты. В частности, нужно будет точно рассчитать количество витков в обмотке трансформатора, диаметр проводов для обмотки, а также сечение и тип сердечника устройства.
Поэтому лучше обратиться для проведения этих операций к квалифицированному человеку, знакомому с основными понятиями и свойствами электротехники и расчётами по необходимым формулам.
Любая сфера человеческой деятельность связана с определенными устройствами, предметами, символизирующими эту область. Судостроение, мореплавание – развивающиеся паруса, длинные яхты, корабли, морские волны. Авиация – крыло самолета, пропеллер. Автомобильная отрасль осталась бы смутной мечтой, не изобрети когда-то человек колесо. Многие вещи, которые сегодня кажутся нам привычными, естественными, были изобретены в творческих муках, трудах, но стали поворотным моментом развития не только отдельной сферы, но и всего человечества.
Повышающий трансформатор: история создания
Таким символом электротехники является повышающий трансформатор тока. Принцип, ставший основой его работы, был открыт Майклом Фарадеем еще в 1831 году. Открытое им явление электромагнитной индукции оказало несравнимое влияние на весь человеческий быт, способы производства продукции. Но использовано открытие было лишь спустя почти полвека – в 1876 году отечественным изобретателем Яблочковым П. Н., который стал владельцем патента на трансформатор.
Принцип работы и разновидности
Трансформатор – это электрический прибор, который преобразует ток входящей сети в ток с другими показателями напряжения. Работает прибор только с напряжение переменного тока, потому что лишь при изменении электромагнитного поля становится возможным использования эффекта индукции. Его устройство не отличается сложностью: пара обмоток размещается на незамкнутом сердечнике, что позволяет преобразовывать показатели напряжения тока. Передача энергии происходит посредством перевода электрической энергии в магнитное поле, а затем снова в ток с новыми показателями. Чтобы повысить параметры, необходимо иметь такую вторичную обмотку, количество оборотов которой больше чем у первичной. Чтобы понизить – наоборот. Трансформатор повышающий напряжение был первым изобретенным видом этого прибора.
По габаритам современные устройства отличаются как от первого изобретения, так и друг от друга. Сегодня используются повышенные трансформаторы размером менее одного сантиметра у небольших приборов, а также размером с двухэтажный дом для крупных промышленных комплексов. Их производство, продажа, обслуживание являются самостоятельной областью промышленности. Изобретение русского ученого используется электротехническими лабораториями, промышленностью, нефтегазовой отраслью и многими другими. Современные модели повышающих трансформаторов позволяют получать напряжение 220 В, подходящее подавляющему числу бытовых, профессиональных приборов, при минимальном входном питании сети.
Сделать самому или купить повышающий трансформатор?
Решением некоторых задач может стать преобразователь, собранный своими руками. Например, если для гаражных работ нужно подключить оборудование с питанием 220 В, а сеть имеет напряжение лишь 36 В, то собранный самостоятельно повышающий трансформатор позволит решить эту проблему.
Собираем повышающий трансформатор своими руками
- Первым делом определяем мощность первичной обмотки будущего преобразователя. Для этого нужно узнать мощность прибора, который мы будем подключать. Обычно эти данные указывают в паспорте устройства. Например, возьмем среднее значение 100 Вт. Следует учитывать, что потребуется некоторый запас, т.к. коэффициент полезного действия будет равен примерно 0,8 -0,9. Нам подойдет мощность 150 Вт.
- Нужно подобать магнитопровод. Если не прибегать к услугам специализированных магазинов, то можно взять сердечник по форме буквы «О» из, например, старого телевизора. Но придется рассчитать сечение по формуле: A1= C*C/1,44 , где A1 – мощность будущего преобразователя (Вт), а C – поперечное сечение (кв. см). У нас С должно быть равно 10,2 кв. см.
- Определяем число витков на 1 В. Рассчитываем по формуле: K=50/C, у нас это 50/10,2, т.е. 4,9 витков на 1 В. После мы легко рассчитаем количество оборотов первичной и вторичной обмоток. В первом случае умножаем имеющиеся напряжение питания сети на 4,9, получаем 176 витков. Во втором умножаем требуемое напряжение (220 В) на 4,9, получаем 1078.
- Следующий шаг – расчет тока каждой обвивки. За исходные показатели берем мощность равную 150 Вт. Тогда для первичной обвивки нужен ток в 4,2 А, вторичной – 0,7 А. Рабочий показатель равен мощности деленной на напряжение.
- Для правильной работы устройства важно не только количество оборотов, но и диаметр обмоток. Рассчитываем этот параметр по формуле: рабочий ток обмотки умноженный на коэффициент 0,8. У нас получается 1,64 мм и 0,67 мм для первичной и вторичной обмоток соответственно. Подбираем максимально похожие на наши диаметры из представленных магазином.
- Вырезаем два каркаса для магнитопровода. Берем половину первичной обмотки, плотно укладываем на каркасы. После укладки изолируем стеклотканью.
- Берем половину вторичной обмотки, также укладываем, изолируем.
- Собираем магнитопровод, стягиваем его отдельные части хомутом. Части устройства рекомендуем проклеить специальным клеем с содержанием ферропорошка, тогда оборудование не будет издавать лишних звуков во время эксплуатации. Устройство готово!
Если вы далеки от физики, самодеятельности или не обладаете свободным временем, рекомендуем просто купить готовый трансформатор в нашем интернет-магазине. Также стоит учесть, что промышленные, производственные задачи способен решить лишь прибор, собранный профессионалами. Использование самодельного устройства не всегда безопасно! Будьте осторожны.
Морозной зимой сельским жителям много хлопот доставляет обогрев своих жилищ. Тем же, кто отказался от печного отопления, проблему, как будто специально, создает заниженный уровень поступающей электроэнергии.
Да и в многоэтажных зданиях многочисленных городских поселков жители страдают от плохого электричества. Вот люди и задаются вопросом: Как повысить напряжение в сети до 220 в частном доме с наименьшими затратами и почему энергоснабжающие организации не качественно выполняют свои обязанности?
Предлагаю рассмотреть его объективно с точки зрения потребителя и поставщика. Решение проблем лучше искать совместными усилиями на основе компромисса.
Содержание статьи
Электрические районные сети: где искать потери напряжения
Рекомендую обратить внимание на три вопроса:
- Работу трансформаторной подстанции.
- Состояние линии электропередач.
- Равномерность распределения нагрузки по фазам.
Виды трансформаторных подстанций 10/0,4 кВ: простая оценка по внешнему виду
Электроэнергия от промышленных генераторов к нам в жилой дом поступает по линиям электропередач через трансформаторные подстанции. На них напряжение с 10 или 6 киловольт снижается до 0,4.
Конструкция ТП должна пройти реконструкцию с заменой изношенного оборудования, отвечать современным требованиям надежности и безопасности.
В этом случае вам просто уже повезло. Если воздушная ЛЭП 380 вольт идет от подобной модульной подстанции, то она обладает резервом мощности.
Однако довольно часто еще можно встретить старые конструкции ТП, введенные в работу в советское время.
Нельзя сказать, что они выработали свой ресурс и не пригодны к работе. Просто надо понять, что сейчас сильно изменились условия их эксплуатации. Они уже не справляются нормально с современными, сильно возросшими нагрузками.
Их резерв мощности был рассчитан на энергоснабжение групп потребителей в частных домах, подключенных к бытовой проводке, собранной алюминиевыми жилами 2,5 мм кв. Сила тока тогда практически никогда не превышала 16 ампер, что соответствовало примерно 3 киловаттам.
С тех пор многое изменилось. Даже простой электрочайник потребляет 2 кВт. А ведь еще есть различные отопители и нагреватели, стиральные машины, микроволновки, бытовой инструмент. У многих мастеров работают насосы, станки, сварка.
Все эти потребители вместе сильно нагружают старые трансформаторные подстанции: их мощности не хватает на обеспечение полноценного питания подключенных нагрузок.
Воздушная линия электропередач: влияние конструкции на качество электроснабжения
Закон Ома определяет, что падение напряжения на участке воздушной линии электропередач от трансформаторной подстанции до конечного потребителя зависит от силы тока и величины сопротивления проводов.
На последний параметр влияют протяженность токопроводящей магистрали и конструкция проводников:
- тип металлических жил;
- общее поперечное сечение провода;
- качество контактных соединений в местах стыковок — переходное сопротивление.
Чем длиннее магистраль от трансформаторной подстанции до последнего потребителя, тем больше проблем возникает у энергоснабжающей организации, да и жителей дальних домов.
Существующие нормативы ПУЭ определяют, что уровень напряжения в однофазной сети должен укладываться в предел 207÷253 вольта. Для обеспечения этого условия на ТП предусмотрена возможность его оперативного регулирования.
Обычно им пользуются для переключения режимов работы при смене сезонов: зимний период связан с большим энергопотреблением. Он требует завышать выходной уровень сети 0,4 на трансформаторной подстанции.
Длинные воздушные линии и возросшее количество мощных потребителей приводят к тому, что у владельцев домов, запитанных около ТП, напряжение находится на максимуме предела регулирования и поднимать его уже нельзя, а на самых удаленных потребителях падает ниже допустимого уровня вплоть до 180 вольт, а то и ниже.
В этой ситуации поставщик энергии быстро решить вопрос не сможет. Ему необходимо:
- полностью менять оборудование трансформаторной подстанции;
- или строить новые линии электроснабжения;
- либо решать одновременно все задачи.
Нам следует понимать, что они энергозатратны, не дешевы, требуют приложения больших усилий и материальных средств.
Как устроена старая ВЛ
За основу передачи энергии раньше массово использовали алюминиевые провода со стальным сердечником. Их так и называли: АС. Кстати, производство алюминиево-стальных проводов различных типов существует до сих пор.
В сельской местности применяется провод АС с сечением 16 мм квадратных, как наиболее бюджетный вариант. Его небольшой диаметр при значительной длине и наличии стальной жилы создает довольно высокое электрическое сопротивление.
Ухудшает его еще способ соединения раскатки провода на составляющие проволоки и скрутку их в единый узел. Хорошо, если он выполняется с обжатием в гильзе. А ведь его могут сделать и на скорую руку.
Косвенным признаком вины алюминиевых проводов является характерное снижение напряжения вечером и нормальная величина ночью, когда большая часть нагрузки снята.
Модернизация ВЛ кабелем СИП
Современная конструкция воздушного кабеля сделана для обеспечения минимальных потерь напряжения. У них используется улучшенная технология сборки и повышенная проводимость токопроводящих жил. Каждая из фаз покрыта слоем светостойкой ПВХ изоляции, что разрешает скручивать их единой магистралью.
Кабель СИП монтируется по специальной технологии, обеспечивающей минимальные потери напряжения при транспортировке по нему электрической энергии.
Переход воздушной линии с открытых алюминиевых проводов типа АС на кабель СИП повышает надежность и эксплуатационные характеристики ВЛ.
Распределение нагрузки по фазам: как просто определить дисбаланс
Идеальное трехфазное напряжение создается генераторами на холостом ходу.
Его схему и диаграмму удобно представлять векторной формой в виде равностороннего треугольника. Между вершинами A, B и C создается линейное напряжение 380, а относительно нуля и вершин — фазное.
Это напряжение 220 поступает к нам в жилой дом и ко всем потребителям. К нему каждый владелец по своему усмотрению подключает нагрузку. Процесс этот носит чисто случайный характер на всем протяжении питающей ЛЭП.
Если какая-то фаза станет перегруженной (течет больший ток), то на ней может произойти посадка напряжения. Точка рабочего нуля в треугольнике смещается из центра, меняются разности двух других фазных потенциалов.
На этот процесс снабжающая организация реагировать практически не может. Она влияет на него на стадии проекта и очень редко переключает потребителей при эксплуатации.
Электрические замеры под напряжением на ВЛ около дома способны дать объективную оценку качества напряжения. Но делать их могут только подготовленные бригады электриков с соблюдением ряда организационных и технических мероприятий.
Владелец дома может оценить роль снабжающей организации в подводе электричества в его жилище только визуально по внешнему виду подстанции, воздушной ЛЭП и опросе ближайших соседей о качестве электроэнергии в их зданиях.
Причина низкого напряжения довольно часто может быть создана по вине владельца здания.
Электропроводка в частном доме: скрытые ошибки монтажа, создающие проблемы
Внимание: зона ответственности снабжающей организации заканчивается на ответвительной опоре! Схема подключения к ней, кабель ввода в дом и весь внутренний монтаж лежат на совести частного владельца.
Поэтому вначале надо обращать внимание на состояние качества уличной проводки, а затем — внутридомовой.
Контакты на улице
Ввод в здание и подключение к счетчику делают бригады электриков от поставщика и энергосбыта. От качества их работы может пострадать хозяин дома. Ему следует контролировать состояние проводов и создаваемых контактов.
Обычная скрутка алюминиевых жил на воздухе покрывается слоем окислов и ухудшает переходное сопротивление. Это место начинает больше греться и сильнее окисляться. Процесс со временем нарастает, хотя визуально может быть не заметен.
Естественный обдув воздухом и длина открытого провода его маскируют, но не останавливают. Увеличенное переходное сопротивление такого контакта — причина потери напряжения на нем.
Подключение ответвления специальными зажимами с нарушениями технологии — тоже возможная причина плохого контакта.
Если на нем образовались трещины, сколы, потемнения и другие дефекты, то они явно свидетельствуют об увеличенном переходном сопротивлении, потерях энергии.
Контакты вводного автомата
Подключение силового провода к автоматическому выключателю на вводе часто требует использования специальных переходников с созданием надежного ужима. Халатная работа сразу может не сказаться, но со временем проявиться.
Переходное сопротивление контактов владелец может проверить созданием электропроводке режима максимальной нагрузки на некоторое время. Сразу потребуется проконтролировать их нагрев. Проводя визуальный осмотр, следует обращать внимание на потемнение корпуса защитного модуля, состояние изоляции.
Внутри дома возможны и другие причины, ведущие к снижению уровня электричества.
Общие организационные вопросы: что обсуждать с поставщиком электроэнергии
Приступать к обсуждению возникших проблем следует только после того, как окончательно стало ясно, что у владельца здания все выполнено надежно и его вины нет.
Это же должны подтвердить соседи, у которых не решены аналогичные вопросы. Действовать лучше сообща. Обращаться следует в различные инстанции власти с письменными заявлениями, но начать необходимо с поставщика. Он в первую очередь должен обеспечить качество подводимой электроэнергии.
Однако, как показано выше, этот процесс, скорее всего, растянется на длительный срок. Владельцу дома до его решения придется принимать самостоятельные меры.
Как повысить напряжение в сети: 2 подхода
Решить вопрос можно своими руками или приобрести специальное промышленное оборудование.
Как повысить напряжение: бюджетные варианты от бывалого
Способ №1: старый стабилизатор от черно-белого телевизора
Кинескопные ламповые модели телевизоров в советское время потребляли много электроэнергии, порядка 400 ватт. Им требовалось стабилизированное питание.
Для них многочисленные заводы массово выпускали различные модели стабилизаторов напряжения. Со временем необходимость в них пропала и они попали к мастерам в кладовки, а кто-то просто выбросил, хотя надежность и работоспособность этих устройств сохранилась и по сей день.
Использовать такой старый стабилизатор вполне допустимо, но, стоит обратить внимание на его выходную мощность. Питать через него лучше какой-то один бытовой прибор с электродвигателем.
Если имеются два одинаковых стабилизатора, то их можно объединить и подключить более высокую нагрузку.
Способ №2: понижающий трансформатор
Подойдет любая модель от старого ненужного зарядного устройства автомобильных аккумуляторов или самодельная конструкция. Показываю на примере трансформатора 220/12-36 вольт. Его номинальная мощность 315 вольт-ампер.
На правой части картинки показаны выходные цепи со снятым корпусом. Подобных зарядных было выпущено очень много. Из них можно выцепить схему электроники. Она не нужна.
Далее поступаем очень просто. Собираем схему увеличения напряжения, когда первичная обмотка работает, как обычно, а вторичка добавляет свои вольты к питанию прибора.
С научной точки зрения необходимо выполнять фазировку, а на ее основе ставить перемычку между обмотками, которая позволит сделать вольт-добавку. Предлагаю более простой вариант:
- Соединяем перемычкой произвольно одну клемму входной цепи с любой выходной, действуя по принципу: «мне повезет».
- Включаем трансформатор в сеть обмоткой 220 и замеряем сигнал на его выходе вольтметром.
- Если он увеличился, то удача нам улыбнулась и все получилось.
- Когда напряжение снизилось, то это значит, что мы собрали схему понижения и требуется переключить перемычку на одной из клемм входа или выхода.
Если отсутствует трансформатор заводского исполнения, то его не так уж сложно намотать своими руками на подходящем магнитопроводе. Можно использовать даже статор от сгоревшего асинхронного двигателя.
Методику расчета и сборки описывать не буду. Она довольно подробно изложена в этой статье про трансформаторный паяльник Момент. Что будет не понятно — спрашивайте. Я помог уже многим читателям в этом вопросе.
Подключать бытовой прибор к добавленному трансформатором напряжению следует с учетом мощности нагрузки. Первичная и вторичная обмотки могут перегреться от повышенных токов.
Чтобы не допустить перегрева добавочного ТН, достаточно правильно подобрать к нему предохранитель, контролировать и ограничивать время работы при максимальных нагрузках.
При скачках напряжения в сети на величину до 25-30 вольт необходимо в выходную цепь трансформатора включать реле РКН. Без него выходной уровень при броске может перевалить за 253 вольта, что создаст аварийную ситуацию.Способ №3: стабилизатор напряжения своими руками
Любителям мастерить предлагаю собрать относительно не сложную электронную схему на трансформаторе с тремя обмотками, работающими по принципу приведенной выше вольт-добавки понижающего трансформатора.
Предлагаемый стабилизатор напряжения своими руками нормально справляется со стабилизацией электроэнергии для нагрузок 1,5 кВт при уровне сети 200 вольт и 700 ватт при снижении до 180В. Работает он автоматически.
Компаратор имеет 4 ступени настройки порогов срабатывания. Переключение обмоток осуществляют контакты реле РП-21 постоянного тока с напряжением 24 вольта. Их можно заменить аналогами, но обращайте внимание на коммутационную способность контактов. Иначе они сгорят.
Марки и номиналы компонентов электронной базы показаны на схеме. Однако, проще купить такой прибор промышленного изготовления.
Стабилизатор напряжения для частного дома: на какие характеристики обращать внимание
Индуктивная нагрузка
Выбирать модель стабилизатора следует под конкретные нужды его эксплуатации. Необходимо учесть, что пусковые токи электродвигателей превышают в два-три раза номинальную величину нагрузки.
Мощность источника должна их надежно перекрывать. Особенно важно выполнять это требование для электродвигателей насосов различных жидкостей и компрессоров, начинающих свой запуск под нагрузкой рабочей среды, а не раскручивающихся на холостом режиме.
Способы регулирования
Стабилизаторы напряжения работают по принципу автотрансформатора и построены по одной из двух схем:
- ступенчатого переключения дополнительных обмоток релейными или полупроводниковыми ключами;
- плавного регулирования выходной величины за счет перемещения сервопривода по принципу работы ЛАТР.
В первом случае на автотрансформаторе создаются отпайки. Их количество влияет на величину ступени регулирования напряжения. Коммутации происходят по командам от электронного блока тиристорами или симисторами.
Стабилизатор с сервоприводом плавнее переключает напряжение движением угольных электродов по виткам автотрансформатора.
Сервоприводный механизм и щетки плохо переносят часто меняющиеся нагрузки и разрушаются от токов, которые возникают при работе от сварочных трансформаторов. Даже если кто-то из соседей пользуется сваркой, то он может повредить сервопривод.
Стабилизаторы напряжения изготавливают для работы с трехфазной и однофазной нагрузкой. Однако при их выборе надо хорошо представлять условия их эксплуатации.
Особенности трехфазного питания
В доме с таким электроснабжением на вводе лучше устанавливать 3 однофазных устройства на каждую фазу отдельно. Любой из них будет нормально выравнивать напряжение при разных нагрузках намного лучше, чем один общий.
Трехфазные электродвигатели и трансформаторы подключают через соответствующие 3-х фазные стабилизаторы. Они больше приспособлены к симметричным нагрузкам.
Режим Bypass
Полезной функцией прибора является возможность транзита электроэнергии, минуя орган стабилизации.
Режим байпас имеется не на всех стабилизаторах, а только на более дорогих. Он позволяет при номинальных уровнях напряжения экономить ресурс работы оборудования.
Видеоролик владельца Voltra BY «Как выбрать стабилизатор для дома» поможет вам определиться с поиском подходящей конструкции. Рекомендую посмотреть.
Если же у вас еще остались вопросы и не ясно, как повысить напряжение в сети до 220 в частном доме, то спрашивайте. Постараюсь помочь.
Трансформатор преобразовывает мощность в сетях и установках, предназначенных для приема электричества и работы с ним. Повышающий трансформатор — это статический агрегат, получающий питание от источника напряжения для трансформирования высокой мощности в низкие показатели. Его применяют для обособления логических защитных контуров и измерительных линий от высокого напряжения.
Понятие трансформатора
Электромагнитное устройство с двумя или больше обмотками, связанными индукцией на магнитопроводе, называется трансформатором. Оно разработано для изменения напряжения переменного тока с сохранением частоты и используется при производстве, трансляции на расстояние и приемке электроэнергии.
Агрегат, повышающий напряжение, содержит проволочную катушку, охваченную магнитными линиями, располагающуюся на сердечнике для проведения потока. Материалом стержня служат ферромагнитные сплавы. Агрегат работает с большими мощностями, его применение обусловлено разными показателями напряжений городских линий (около 6,2 кВ), потребительского контура (0,4 кВ) и мощности, необходимой для функционирования электроприборов и машин (от единичных показаний до нескольких сотен киловольт).
Применение в сетях
Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.
В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.
Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.
Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.
Магнитная система
Магнитопровод представляет собой комплекс пластин или других элементов из электротехнической стали, составленных в выбранной геометрической конфигурации. В конструкции сосредоточены поля агрегата. Магнитопровод в сборе вместе с узлами и соединительными элементами образует остов трансформатора. Деталь, на которую намотаны обмотки, является стержнем. Область системы, предназначенная для замыкания цепи и не несущая витков контура, называется ярмом. Расположение в пространстве стержней служит для разделения системы на следующие виды:
- плоская конструкция, в которой все сердечники располагаются на единой поверхности;
- пространственный способ — продольные стержни или сердечники и ярма находятся в различных плоскостях;
- симметричный порядок — стержни одной длины и формы располагаются так, что их пространственная установка одинаково относится ко всем элементам и сердечникам;
- несимметричный строй предполагает разные по виду и размерам стержни, расположенные отлично от аналогичных деталей.
Обмотки агрегата
Обмотка состоит из отдельных витков, являющихся проводниками, или комплекса таких передатчиков (жилы из нескольких проводов). Оборот однократно обходит стержень, ток которого совместно с токами других сердечников и систем воспроизводит магнитное поле. В результате возникает электродвижущая сила (ЭДС).
Обмотка представляет собой упорядоченный комплекс витков. Она образует цепь, в которой складываются силы, наведенные в оборотах. Обмотка трехфазного агрегата состоит из нескольких объединенных обвивок трех фаз с одинаковым напряжением.
Стержни обмоток понижающего и повышающего трансформатора делают квадратной конфигурации для наилучшего использования пространства (повышения коэффициента наполнения в окне стержня). Если требуется увеличить поперечное сечение сердечника, то его делят на несколько проводников. Это применяется для уменьшения вихревых токов в обвивке. Проводник квадратного поперечного сечения называется жилой. По функционированию обмотки делят на несколько типов:
- основные — обвивки, предназначенные для приема или отвода преобразуемой или трансформированной энергии переменного тока;
- регулирующие — те, что предусматривают выводы для изменения коэффициента преобразования напряжения при небольшом токе обмотки и маленьком диапазоне нормализации;
- вспомогательные витки обеспечивают питание собственных нужд, при этом используется малая мощность, гораздо меньшая, чем аналогичный номинальный показатель повышающего трансформатора.
Изоляцией жилы служит слой бумаги или эмалевый лак. Два параллельно проходящих защищенных провода, расположенные рядом, отгораживаются общей бумажной оберткой и называются транспонированным кабелем. Его отдельный вид составляет непрерывное продолжение, складывающееся при перемещении жилы одного слоя к следующему пласту с одинаковым шагом в единой изоляции. Бумажная защита делается из тонких полос шириной 2—4 см, нанесенных вокруг кабеля. Для получения требуемого пласта заданной толщины бумага накладывается в несколько слоёв. В зависимости от конструкции обмотка бывает:
- Рядовая. Обороты на сердечнике кладут в направлении оси по всей протяженности обвивки. Последующие витки располагают плотно один к другому, не допуская промежутка между ними.
- Винтовая. Является одним из вариантов многослойного нанесения. Между каждым заходом оборота оставляется расстояние.
- Дисковая. Последовательно объединяется ряд накопителей. В них обороты кладут в радиальном направлении по спиральной форме. На первичной прослойке обвивка ведется внутрь, а на соседних кругах делается наружу.
- Фольговая. Вместо прямоугольного кабеля ставят медные или алюминиевые пластины. Они широкие, их толщина составляет от 0,1 до 2,5 мм.
Охладительный резервуар
Является емкостью для масла и одновременно защищает активные компоненты агрегата от перегрева. В конструкции исполняет роль опоры для дополнительных и управляющих устройств. Перед наполнением из бака удаляют воздух, подвергающий разрушению изоляцию и уменьшающий ее защитные свойства. Из-за этого резервуар работает в условиях низкого атмосферного давления.
Для уменьшения шума от функционирования трансформатора должны совпадать звуковые частоты, воспроизводимые стержнем агрегата, и аналогичные показатели резонанса конструктивных элементов. Для сброса при увеличении объема жидкости в баке от нагревания устанавливается отдельно расположенная расширительная емкость.
Повышение номинальных значений мощности увеличивает скорость движения электронов снаружи и внутри трансформатора, что разрушает конструкцию. Аналогично действует рассеивающее магнитное течение в баке. Применяют вкладыши из материала, не подверженного намагничиванию. Их располагают вокруг изоляторов сильного потока, что уменьшает риск нагревания. Внутреннюю отделку бака выполняют так, чтобы она не пропускала магнитный поток через ограждения емкости. Материал с малым сопротивлением магнетизму поглощает течение перед его проникновением через наружные стенки.
Количество полуокружностей почти соответствует числу оборотов обвивки. С увеличением витков делается больше дуг, но строгая пропорциональность отсутствует. Возле выхода жирной точкой указывают начало обмоток (на двух катушках и больше). Ставят обозначения мгновенно возникающей ЭДС, они на выходах обычно одинаковы.
Такой подход используется при показе промежуточности агрегатов в преобразовательных цепочках для наметки синхронности или противофазности. Обозначение актуально и при нескольких катушках, если для их эффективного функционирования требуется соблюдать полярность. Отсутствие явного обозначения обвивок говорит о том, что они идут в одном направлении, то есть конец предыдущей соответствует началу последующей.
Особенности эксплуатации
Для определения времени службы используют понятие экономического и технического срока работы. Экономический отрезок заканчивается, когда цена трансформации мощности с помощью искомого трансформатора превышает удельную стоимость таких же услуг в соответствующей рыночной нише. Технический срок службы прекращается с выходом из строя большого числа элементов, требующих капитального ремонта агрегата.
Использование в параллельном режиме
Такой регламент применяется из-за того, что при небольшой нагрузке силовой понижающий агрегат допускает значительные потери на холостом ходу. Для исправления ситуации он заменяется группой устройств небольшой мощности, которые при необходимости отключают поодиночке. Требования к такому подсоединению:
- к параллельному использованию допускаются агрегаты с равной угловой погрешностью между вторичным и первичным показателем напряжения;
- параллельно связываются одинаково полярные полюса из областей низкой и высокой мощности;
- объединяемые устройства должны показывать аналогичный коэффициент передачи по напряжению;
- сопротивление при коротком замыкании должно отличаться в сторону уменьшения или увеличения не более 10%;
- соотношение мощности задействованных трансформаторов не должно превышать 1:3.
Агрегаты, входящие в группу, используют с одинаковыми техническими параметрами.
Частота и регулирование мощности
В случаях равного напряжения на первичных обмотках агрегаты с определенной частотой могут эксплуатироваться при увеличенных показателях сети с рекомендованной заменой навесного оборудования. При частоте меньше номинальной индукция повышает значения в магнитном приводе, что ведет к скачку тока при холостой работе и изменению его вида.
Регулирование напряжения трансформатора применяется в сети из-за того, что нормальная работа потребителей возможна только при мощности определенных параметров и минимальных от них отклонениях.
Изоляция и перенапряжение
Специалисты проводят регулярные испытания и ремонты защитного слоя трансформатора, так как он теряет свои свойства от высоких температур. Это касается агрегатного масла в охладительном баке и изоляции активных элементов. После проверки сведения о состоянии защитных материалов вписываются в паспорт агрегата.
Иногда устройства работают в условиях повышенной мощности. Перенапряжение подразделяется на два вида:
- кратковременное действие сильного фактора продолжается от одной секунды до 2—4 часов;
- переходное перенапряжение длится от 2—5 наносекунд до 3—5 миллисекунд, оно бывает колебательным или неколебательным, но всегда имеет одинаковое направление.
Иногда при перегрузке комбинируются оба вида перенапряжения. Причинами их возникновения могут быть грозовые разряды, при этом токовый показатель импульса зависит от расстояния между трансформатором и местом удара. Второй причиной являются изменения условий работы, сформированные внутри системы. Они заключаются в поломках, нарушениях проводимости, коротких замыканиях, возгораниях, частых подключениях и отключениях.
При контроле качества в заводских условиях агрегаты проверяют и выдают сведения о возможности бесперебойной работы в соответствии со стандартами.
Часто люди сталкиваются с такой проблемой, как в сети понижается напряжение, и уже не работают бытовые электрические приборы. Несведущие люди впадают в панику и звонят в разные инстанции, чтобы вызвать специалиста. Но чтобы приборы нормально работали, нужно знать, как самостоятельно это сделать.
Причины снижения напряжения
Если в электрической сети низкое напряжение, не выходящее за границы допустимых норм, то это вполне нормально, так как при транспортировке энергии на линии теряется ее некоторая часть. При обычных условиях уровень этих потерь должен иметь допустимые значения. Но со временем оборудование изнашивается, и потребление электричества увеличивается.
Повышение расхода энергии заметно в своих домах при увеличении количества электрических устройств. Постепенно возникает такая ситуация, когда сеть не может нормально функционировать и обеспечивать энергией потребителей. При увеличении нагрузки толщина проводов, кабелей и мощность оборудования не изменяется.
Многие электрические устройства должны функционировать при нормальном напряжении 220-230 В. Если эта величина уменьшается, и становится ниже, то эффект от приборов значительно уменьшается, и большинство из них совсем не работают, либо выходят из строя.
Как повысить напряжение в сети
Для увеличения напряжения можно использовать несколько вариантов. Для начала нужно купить стабилизатор напряжения, а другим вариантом является повышающий трансформатор, который способен увеличить низкое напряжение. Также существует много других методов, которые рассмотрим подробнее.
Стабилизатор напряжения
Это наиболее приемлемый метод. Стабилизатор может быть с ручным или автоматическим управлением. Стабилизатор с системой автоматики самостоятельно удерживает необходимую мощность, а ручной приходится настраивать своими руками. Раньше такие приборы были во многих домах, так как электричество в сети имело большие перепады, да и в настоящее время подача электроэнергии часто изменяется. Когда люди на работе, то напряжение нормальное, а вечером, когда все дома, и работают многие устройства, то напряжение может давать сбои.
В таких случаях стабилизатор выполняет две задачи – во-первых, он увеличивает неожиданно уменьшившееся напряжение, позволяя приборам непрерывно функционировать, а во-вторых, он создает безопасность, и предотвращает появление замыканий из-за перепадов питания. Стабилизатор является необходимым устройством, но достаточно дорогостоящим, поэтому если у вас нет в доме старого стабилизатора, то лучше его не приобретать, а воспользоваться другим методом.
Чаще всего стабилизатор постоянно находится в подключенном состоянии, защищая устройства. Многие из них имеют световую индикацию, указывающую на уровень напряжения и режима работы.
Принцип работы стабилизатора
Действие этого прибора основывается на изменении числа витков трансформатора, при помощи тиристоров, реле или щеток. Защитная схема от пониженного напряжения очень простая. При нормальной величине напряжения, указанного в руководстве к прибору, стабилизатор может сгладить перепады, выдавая на выходе 220 вольт с допуском не более 8%. При снижении напряжения за допустимые границы, стабилизатор отключает питание, и выдает звуковой и световой сигнал.
Необходимо выяснить, как работает алгоритм действия стабилизатора при низком напряжении. При значительном падении напряжения менее 150 вольт напряжение на выходе может достигать 130% от значения питающей величины. При уменьшении U на выходе стабилизатора до 180 вольт он обесточивает сеть, делая напряжение равным нулю.
При увеличении наибольшего напряжения сети более 260 вольт устройство может поддерживать выходную величину около 90% от значения питания. При увеличении напряжения до 255 вольт, нагрузка также отключается от электрической сети.
Восстановление характеристик напряжения питания дает возможность возобновить подключение питания на нагрузку, однако происходит это при условии, позволяющем предотвратить вредное для потребителя внезапное изменение питания.
Также, стабилизатор обладает определенной заданной эксплуатационной температурой (до 120 градусов). Если этот параметр отклоняется более, чем на 10 градусов, то питание также может отключиться. Когда температура понизится, то допустимой величины (около 85 градусов), то питание автоматически восстановится. Многие регуляторы напряжения сети имеют автоматические системы, производящие аварийное выключение питания, если напряжение превысило допустимую величину тока. Это достигается путем применения регулятора для подсоединения нагрузки, больше разрешенной величины.
Отсюда можно сделать вывод, что увеличить напряжение в сети не настолько трудно, необходимо лишь вникнуть в эту проблему более глубоко.
Повышающий трансформатор
Вторым методом является покупка трансформатора, который способен увеличить напряжение. Но для правильного выбора трансформатора, необходимо ознакомиться с определенными расчетами. Первичная обмотка должна быть рассчитана на 220 вольт, а вторичная – должна выдавать недостающую часть напряжения.
Для определения нужного числа витков следует пользоваться формулами:
Iн = Рн / Uн и Р = U2 x I2
В первом выражении можно определить ток вторичной обмотки. Далее, используя второе выражение, можно определить мощность Р. По таким данным можно узнать, какие параметры трансформатора необходимы. Основными характеристиками при подборе трансформатора являются мощность и напряжение на выходе.
Перед повышением напряжения и монтажа трансформатора, нужно спланировать место установки. Обычно их устанавливаю в подвалах. Если вы живете в квартире, то лучше установить его в кладовке или подсобном помещении, где нет людей.
Электрический генератор
Другим вариантом решения задачи стало применение электрогенератора. Но при этом есть вопросы частых остановок и запусков, так как автоматические системы, когда низкое напряжение, сразу обесточивают сеть и включают в работу генератор. Далее напряжение восстанавливается, так как сеть разгружается, и генератор снова выключается. В момент запуска генератора дом на какое-то время остается без питания, электрические устройства также отключаются, а затем включаются вместе с генератором.
Другие способы повышения напряжения
Для того, чтобы увеличить низкое напряжение, существует много разных способов, которыми пользуются многие жильцы квартир и загородных домов.
- Применение автотрансформаторов. Их устройство дает возможность увеличить напряжение на 50 вольт. Они применяются чаще всего в электрических сетях с низким напряжением, в деревне, где напряжение падает часто, и считается обычным явлением. Используя автотрансформатор можно также и уменьшать напряжение. При их выборе следует учитывать мощность, в противном случае они будут сильно нагреваться.
- Низкое напряжение можно привести в норму путем использования умножителя, который является особым устройством, собранным из конденсаторов и диодов. Такие умножители используются для питания кинескопов, увеличивая напряжение до 27 тысяч вольт.
- С помощью электродвижущей силы. Если в источнике энергии можно настраивать ЭДС специальным регулятором, то можно увеличить значение ЭДС этого источника. Повышение напряжения произойдет на столько, на сколько повысится ЭДС.
- Низкое напряжение можно повысить, изменяя сопротивление. Зависимость напряжения от сопротивления, следующая: во сколько уменьшится сопротивление, во столько и увеличится напряжение.
- Если нельзя повысить напряжение одним из этих способов, то можно использовать их совместно. Например, для увеличения напряжения в цепи в 12 раз, нужно повысить ЭДС источника в два раза, снизить длину проводов в два раза, и повысить площадь их сечения в три раза.
Трансформатор напряжения — это одна из разновидностей трансформаторов, который нужен для:
- преобразования электрической мощности и питания различных устройств,
- гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
- измерения напряжения на подстанциях и питания всевозможных реле защиты
Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.
Трансформатор напряжения принцип работы
Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.
Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.
Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.
Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.
В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.
измерительный трансформатор напряженияПринципы работы трансформатора напряжения
Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:
- первичной;
- вторичной.
Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.
Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.
Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.
Устройство однофазного трансформатора напряжения
устройство однофазного трансформатора напряженияУстройство однофазного трансформатора напряжения:
- а — общий вид трансформатора напряжения;
- б — выемная часть;
- 1,5 — проходные изоляторы;
- 2 — болт для заземления;
- 3 — сливная пробка;
- 4 — бак;
- 6 — обмотка;
- 7 — сердечник;
- 8 — винтовая пробка;
- 9 — контакт высоковольтного ввода
Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.
Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.
Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).
Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.
У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).
Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ
Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.
Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.
схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗСхемы включения трансформаторов напряжения
Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:
- проводами линии с целью контроля линейных напряжений;
- шиной или проводом и землей, чтобы снимать фазное значение.
Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.
На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.
Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.
Трансформатор напряжения при напряжении до 35 кВ
Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.
рис. 2.1 Схема включения однофазного трансформатора напряженияТрансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.
В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).
Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.
По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.
Обозначение трансформатора напряжения на схеме
Обозначение трансформатора напряжения на схемеПредохранители трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.
Трёхфазный трансформатор
Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему. При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени. Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.
В соединении обмоток устройства можно использовать схемы трёх типов:
- Соединение в виде звезды может осуществляться с выводом от общих точек или же без него. Здесь каждую обмотку соединяют с нейтральной точкой.
- По треугольной схеме фазы соединяются последовательно.
- Зигзаг-это схема, которая чаще всего применяется во время отвода от общей точки. В ней соединяются три обмотки, расположенные на разных стержнях магнитопроводов.
Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные.
При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ, НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.
Измерительные трансформаторы напряжения
Измерительные трансформаторы напряжения предназначены для уменьшения первичных напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Видео: Трансформаторы напряжения
Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.
повышающий трансформатор
Трансформатор, в котором выходное (вторичное) напряжение больше, чем его входное (первичное) напряжение, называется повышающим трансформатором. Повышающий трансформатор уменьшает выходной ток для поддержания равной входной и выходной мощности системы.
Рассмотрен повышающий трансформатор, показанный на рисунке ниже. E 1 и E 2 – это напряжения, а T 1 и T 2 – это число витков первичной и вторичной обмоток трансформатора.
Число витков вторичной обмотки трансформатора больше, чем у первичной, т. Е. T 2 > T 1 . Таким образом, коэффициент поворота повышающего трансформатора составляет 1: 2. Первичная обмотка повышающего трансформатора составлена из толстого изолированного медного провода, потому что через него протекает ток малой величины.
Применения – Повышающий трансформатор используется в линиях передачи для преобразования высокого напряжения, генерируемого генератором переменного тока.Потери мощности линии электропередачи прямо пропорциональны квадрату тока, протекающего через нее.
Мощность = I 2 R
Выходной ток повышающего трансформатора меньше, и, следовательно, он используется для снижения потерь мощности. Повышающий трансформатор также используется для запуска электродвигателя, в микроволновой печи, рентгеновских аппаратах и т. Д.
понижающий трансформатор
Трансформатор, в котором выходное (вторичное) напряжение меньше, чем его входное (первичное) напряжение, называется понижающим трансформатором.Число витков на первичной обмотке трансформатора больше, чем число оборотов вторичной обмотки трансформатора, т. Е. T 2
Коэффициент разворота понижающего трансформатора составляет 2: 1. Коэффициент поворота напряжения определяет величину преобразования напряжения от первичной обмотки к вторичной обмотке трансформатора.
Понижающий трансформатор состоит из двух или более катушек, намотанных на железный сердечник трансформатора.Работает по принципу магнитной индукции между катушками. Напряжение, приложенное к первичной обмотке, намагничивает железный сердечник, который наводит вторичные обмотки трансформатора. Таким образом, напряжение преобразуется из первичной обмотки во вторичную обмотку трансформатора.
Применения – Используется для электрической изоляции, в распределительной сети, для управления бытовыми приборами, в дверном звонке и т. Д.
,Трансформатор – это статическое устройство, которое передает электрическую мощность от одной цепи в другую на той же частоте, но уровень напряжения обычно изменяется. По экономическим причинам электроэнергия должна передаваться при высоком напряжении, тогда как она должна использоваться при низком напряжении с точки зрения безопасности. Это увеличение напряжения для передачи и снижение напряжения для использования может быть достигнуто только при использовании повышающего и понижающего трансформатора.
Основное различие между повышающим и понижающим трансформатором заключается в том, что повышающий трансформатор повышает выходное напряжение, тогда как понижающий трансформатор снижает выходное напряжение. Некоторые другие различия объяснены ниже, в форме сравнительной таблицы, с учетом факторов: напряжение, обмотка, количество витков, толщина проводника и применение.
Содержание: Повышающий против понижающего трансформатора
- Сравнительная таблица
- Определение
- Ключевые различия
- Точка, чтобы Помнить
Сравнительная таблица
ОСНОВАНИЯ ДЛЯ СРАВНЕНИЯ | ШАГОВЫЙ ТРАНСФОРМАТОР | ШАГОВЫЙ ТРАНСФОРМАТОР |
---|---|---|
Определение | Повышающий трансформатор увеличивает выходное напряжение. | Понижающий трансформатор снижает выходное напряжение. |
Напряжение | Входное напряжение низкое, а выходное напряжение высокое. | Входное напряжение высокое, а выходное напряжение низкое. |
Обмотка | Обмотка высокого напряжения является вторичной обмоткой. | Обмотка высокого напряжения является первичной обмоткой. |
Ток | Ток на вторичной обмотке низкий. | Ток высокий на вторичной обмотке. |
Номинальное выходное напряжение | 11000 В или выше | 110 В, 24 В, 20 В, 10 В и т. Д. |
Размер проводника | Первичная обмотка состоит из толстого изолированного медного провода. | Вторичная обмотка состоит из толстого изолированного медного провода |
Применение | Электростанция, рентгеновский аппарат, микроволновые печи и т. Д. | Дверной звонок, преобразователь напряжения и т. Д. |
Определение повышающего трансформатора:
Когда напряжение повышается на выходной стороне, трансформатор называется повышающим трансформатором.В этом трансформаторе число витков во вторичной обмотке всегда больше, чем витков в первичной обмотке, поскольку на вторичной стороне трансформатора возникает высокое напряжение.
В таких странах, как Индия, обычно выработка электроэнергии составляет 11 кВ. По экономическим причинам мощность переменного тока передается при очень высоких напряжениях (220-440 В) на большие расстояния. Поэтому на генераторной станции применяется повышающий трансформатор.
Определение понижающего трансформатора:
Понижающий трансформатор снижает выходное напряжение или, другими словами, он преобразует высокое напряжение, низковольтную мощность в низковольтную, сильноточную.Например, наша силовая цепь несет 230-110 В, но дверной звонок требует только 16 В. Таким образом, следует использовать понижающий трансформатор для снижения напряжения с 110 В или 220 В до 16 В.
В целях обеспечения питания в различных областях напряжение понижается до 440 В / 230 В в целях безопасности. Таким образом, число витков на вторичной обмотке меньше, чем на первичной обмотке; меньшее напряжение на выходе (вторичном) конце трансформатора.
Ключевые отличия повышающего трансформатора от понижающего
- Когда выходное (вторичное) напряжение больше, чем его входное (первичное) напряжение, оно называется повышающим трансформатором, тогда как в выходном (вторичном) понижающем трансформаторе напряжение меньше.
- В повышающем трансформаторе обмотка низкого напряжения является первичной обмоткой, а обмотка высокого напряжения – вторичной обмоткой, тогда как в понижающем трансформаторе обмотка низкого напряжения является вторичной обмоткой.
- В повышающем трансформаторе ток и магнитное поле менее развиты во вторичной обмотке, и он сильно развит в первичной обмотке, тогда как в понижающем трансформаторе напряжение на вторичном конце низкое. Таким образом, ток и магнитное поле сильное.
- Примечание 1 : ток прямо пропорционален магнитному полю.
- Примечание 2 : Согласно законам Ома, напряжение прямо пропорционально току. Если мы увеличиваем напряжение, то ток также будет увеличиваться. Но в трансформаторе для передачи того же количества энергии, если мы увеличиваем напряжение, ток будет уменьшаться и наоборот. Таким образом, мощность остается неизменной на передающем и принимающем концах трансформатора.
- В повышающем трансформаторе первичная обмотка состоит из толстого изолированного медного провода, а вторичная – из тонкого изолированного медного провода, тогда как в понижающем трансформаторе выходной ток велик, поэтому толстая изолированная медь Проволока используется для изготовления вторичной обмотки.
% PDF-1,7 % 378 0 объектов > endobj Xref 378 71 0000000016 00000 n 0000003085 00000 n 0000003275 00000 n 0000003311 00000 n 0000003934 00000 n 0000003969 00000 n 0000004108 00000 n 0000004247 00000 n 0000004467 00000 n 0000005268 00000 n 0000005399 00000 n 0000005736 00000 n 0000006130 00000 n 0000006820 00000 n 0000007164 00000 n 0000007479 00000 n 0000007506 00000 n 0000007876 00000 n 0000007913 00000 n 0000008236 00000 n 0000008644 00000 n 0000008988 00000 n 0000009102 00000 n 0000009214 00000 n 0000009750 00000 n 0000010375 00000 n 0000010459 00000 n 0000010726 00000 n 0000011073 00000 n 0000011773 00000 n 0000011886 00000 n 0000012168 00000 n 0000013861 00000 n 0000014402 00000 n 0000015283 00000 n 0000016682 00000 n 0000016849 00000 n 0000017222 00000 n 0000018277 00000 n 0000018806 00000 n 0000019508 00000 n 0000020862 00000 n 0000021883 00000 n 0000023103 00000 n 0000024899 00000 n 0000025311 00000 n 0000026346 00000 n 0000028996 00000 n 0000030988 00000 n 0000037181 00000 n 0000041945 00000 n 0000045041 00000 n 0000050248 00000 n 0000050318 00000 n 0000051917 00000 n 0000052150 00000 n 0000054267 00000 n 0000054665 00000 n 0000054928 00000 n 0000055026 00000 n 0000055369 00000 n 0000055642 00000 n 0000055971 00000 n 0000056304 00000 n 0000056695 00000 n 0000058382 00000 n 0000058421 00000 n 0000060097 00000 n 0000060136 00000 n 0000060213 00000 n 0000001716 00000 n прицеп ] >> startxref 0 %% EOF 448 0 объектов > поток х ڔ Umluc] {[f9rV; п URX + \ не @ : PP0B & a0 & J & # / 1s] zOgAur; FȈςo72N / A9o / P7″ J q6dB_> әѫy Q8> ~ фФ ȣ75, K’Đ ܶ} UkP) zzoXGf`EPv $ | -rGPT $ -pe # r ᢙ FN9ucB.J: H7,8cǟ & dGCTF1rWi
.