Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Включение человека в однофазную и двухфазную сеть электрического тока.

⇐ ПредыдущаяСтр 3 из 18Следующая ⇒

Поражения электрическим током возникают при прикосновении человека не менее чем к двум точкам цепи, между которыми существует искрение. Анализ опасности такого прикосновения сводится к определению значения цепи тела человека, зависящей от схемы его включения в сеть, схемы сети, режима работы, качества изоляции токоведущих частей и условий эксплуатации электроустановки.

· Основные схемы включения: однофазное (однополюсное), когда человек имеет электрическую связь с землей и касается одной фазы электроустановки;

· двухфазное (двухполюсное), когда человек касается двух неизолированных фаз (полюсов) электроустановки;

· прикосновение к нетоковедущим частям электроустановки, оказавшихся под напряжением в результате повреждения изоляции (равноценно однофазному включению) ;

· включение между двумя точками земли в поле растекания тока, находящимися под разными потенциалами (включение под напряжением шага).

В промышленности в основном применяются трехфазные сети трехпроводные с изолированной нейтралью и четырехпроводная с глухозаземленной нейтралью.
Нейтралью или нейтральная точка обмотки источника или потребителя энергии, — это точка, Напряжение которой относительно всех внешних выводов обмотки одинаково по абсолютному значению. Сети с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддерживать высокий уровень изоляции проводов, а емкость сети относительно земли незначительна. К ним относятся малоразветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором персонала. Сеть с заземленной нейтралью следует применять там, где невозможно обеспечить хорошую изоляцию проводов (из-за высокой влажности, агрессивной среды и пр.), когда нельзя быстро найти или устранить повреждение изоляции, либо когда емкостные токи сети из-за значительной ее разветвленности достигают больших значений, опасных для человека.

Наибольшее число элсктротравм связано с однофазным включением, при котором на протекающий через человека ток влияют режим нейтрали сети, качество изоляции проводов сети, ее протяженности и ряд других параметров.

Рис. 17. Однофазное включение человека в сеть трехфазного тока:
а — с изолированной нейтралью; 6 — с глухозаземленной нейтралью


При прикосновении к одной фазе в трехпроводной сети с изолированной нейтралью сила тока {рис. 17, а), протекающего через человека, будет определяться величиной действующего на него напряжения, сопротивления изоляции проводов (гиз), а также электрическим сопротивлением цепи человека (Rч), состоящих из последовательно соединенных сопротивлений тела человека (гтч), обуви (г) и опорной поверхности ног (гоп):

При однофазном включении человека в четырехпроводную сеть с глухозаземленной нейтралью (рис. 17, б) проходящий через него ток определяется величиной фазного напряжения установки (Uф), электрическим сопротивлением цепи человека (Rч) и сопротивлением заземления нейтрали (Rо) источника тока:

Наибольшую опасность представляет двухфазное включение (рис. 18), так как в этом случае человек сказывается иод рабочим напряжением сети и проходящий через него ток будет равен в однофазной сети (в А):

где Uраб — рабочее напряжение сети, гтч — электрическое сопротивление тела человека.
В трехфазной сети

где Uп — линейное напряжение сети, В, Uф— фазное напряжение сети, В.
Из сопоставления формул для расчета силы тока при одно- и двухфазном включении видно, что в последнем случае величина тока, действующего на человека, значительно выше, чем в первом, так как числитель в формулах для двухфазного включения возрастает, а знаменатель резко уменьшается, потому что сопротивления изоляции обуви и пола не оказывают защитного действия.

Рис. 18. Двухфазное включение человека в сеть;
а — однофазную; б — трехфазную


Величина такого тока является смертельно опасной для человека.
Случаи двухфазного включения сравнительно редки. Они наиболее вероятны при работах под напряжением, когда токоведущие части различных фаз расположены на незначительном расстоянии друг от друга.




infopedia.su

Подключение приборов к сети

Мы живем в век электроники, и практически каждый дом оснащен не одним десятком электротехники, слабой и достаточно мощной. К ней относится – стиральная и посудомоечная машины, бойлер, электрический обогреватель

и пр. Особенность этой бытовой техники в высоком токе нагрузки при подключении к сети, поэтому о них стоит поговорить подробно.
Если производить подключение неправильно, электрическая проводка будет чрезмерно нагреваться и испортится в считанные дни.  Риск возникновения пожара будет повышен, к тому же, сам прибор выйдет из строя. Как же правильно подключать бытовую технику чтобы избежать таких неприятностей?

Стоит учесть возможности бытовой электропроводки

Чтобы избежать неприятных последствий важно ознакомиться с возможностями домашней электропроводки. Например, советские розетки на нагрузку больше 6 ампер не рассчитаны. Если у вас установлены такие розетки, особо ничего не подключишь. Современные розетки европейского типа рассчитаны на 10 или 16 ампер. Замена советской розетки на современную возможна, если сечение кабеля сможет выдержать подобную нагрузку. Все электрические приборы потребляют от сети определенную мощность. Это очень важный параметр и требует первостепенного внимания. Потребляемая мощность прибора указывается в техническом паспорте или на корпусе. Мощными считаются приборы потребляющие свыше 100 ватт. Они и представляют интерес для нас.

Какая связь между мощностью прибора и током?

Мощность – это сумма тока и напряжения. Значит, чтобы узнать какую мощность в ваттах способна выдержать розетка, если максимальные показатели указаны в амперах, нужно умножить напряжение на соответствующий ток.
Возьмем напряжение в сети 220 вольт, и максимальную мощность розеток 6, 10 и 16 ампер.
Получаем следующие показатели:

  • розетка на 6 ампер выдержит нагрузку 1320 Ватт;
  • розетка на 10 ампер нагрузку – 2200 Ватт;
  • розетка на 16 ампер – 3520 Ватт.
Если знать эти показатели, проблем с подключением мощных приборов не возникнет.

Распространенные ошибки потребителей

Первая ошибка – это подключение к розетке 10 ампер удлинителя на более слабый ток (6 ампер). Потребитель, совершая такой манёвр ожидает, что напряжение в удлинителе станет как в розетке 2200 Вт, но в результате удлинитель приходит в негодность.

Вот еще пример. К розетке на 6 ампер подключают удлинитель на 10 ампер с уверенностью, что получен запас мощности на 2200 ватт.
Что же происходит в действительности?
Полученная мощность будет такой, на какую рассчитана розетка – 6 ампер, но сама розетка выйдет из строя, да и вилка удлинителя из-за превышенного нагревания тоже пострадает.
Случается и такое, что к розетке на 6 ампер присоединяет соответствующий удлинитель. Максимальная нагрузка составляет 1320 Вт, и подключает к примеру электрический обогреватель на 1000 Ватт и пылесос на 800 Ватт одновременно, общая мощность возрастает до размеров не рассчитанных на данную розетку.


К подключению к сети электроприборов высокой мощности стоит отнестись очень серьезно. Тогда ни проводка, ни приборы, ни потребитель не пострадают. 


Замена электропроводки в доме или квартире


Если в доме планируется замена электропроводки, мощные приборы учитываются в первую очередь. Это значит, что для них следует провести отдельную линию электропроводки прямо из распределительного щитка. Розетки для слабых приборов можно подключать от одной линии шлейфом (от первой ко второй, от второй к третьей и т.д)

Выбираем кабель


Кабель и его сечение выбирается с учетом нагрузки от электроприборов, которые будут к нему подключаться. Обычно в домашней электропроводке используют ВВГнг кабель или гибкий кабель ПВС.


www.elektro.ru

популярные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры. Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы. Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные — более 750-ти кВ. Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ)Протяженность (км)
0,401,0
10,025,0
35,0100,0
110,0300,0
220,0700,0
500,02300,0
1150,0*4500,0*

* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс  полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

www.asutpp.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *