Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

как организовано освещение улиц, дорог и витрин

Уличное освещение играет огромную роль в жизни человека. Благодаря фонарям передвижение людей и машин в темноте становится более безопасным и комфортным. Условием эффективной работы уличных светильников является наличие особого устройства, включающего и выключающего их в соответствии с заданным режимом. Чаще всего роль такого устройства выполняет фотореле ФР-601 или аналогичные модели.

Уличное освещение

Для организации освещения на улицах городов используются лампы, закреплённые на опорах. Они приводятся в действие двумя способами: ручным и автоматическим. Ручное управление осуществляется специалистами, которые постоянно дежурят в диспетчерском пункте.

Автоматическая регулировка более удобна, поскольку позволяет контролировать уровень освещённости с помощью таймеров или датчиков. Постоянное участие человека в таком случае необязательно.

К установленным на улицах светильникам предъявляются очень серьёзные требования.

Они должны быть качественными, надёжными и безопасными для окружающих. Срок службы таких приборов должен быть довольно долгим. Этим условиям полностью отвечают LED-лампы. Достойной альтернативой им могут служить галогенные, люминесцентные светильники и лампы накаливания.

Наружное освещение, установленное в разных местах, имеет определённые особенности. Фонари используют, чтобы осветить:

  • Крупные автодороги и магистрали. Для этого приборы оснащаются рефлектором, концентрирующим световые пучки в одном направлении. С целью экономичности осветительные конструкции монтируют на большой высоте и значительном удалении друг от друга.
  • Дороги второстепенного значения. Для увеличения видимости применяются лампы с рефлекторами или фонари рассеянного света. Прозрачное покрытие плафона способствует рассеиванию лучей на большие расстояния.
  • Тротуары для пешеходов, велосипедные дорожки и парки. Они освещаются только рассеянным светом. Фонари имеют плафоны в виде цилиндра либо шара с прозрачными рельефными кольцами. Мощность определяется дистанцией, на которой располагаются опоры.

При монтаже разных информационных объектов (вывесок, баннеров, рекламных щитов и пр.) также применяется искусственное освещение с помощью прожекторов и ламп специального назначения. Таким же методом подсвечиваются дорожные знаки и номера домов.

Источники света

Свет, которым освещаются улицы, дороги и дома, должен обладать высокой яркостью и степенью рассеивания. Существует несколько вариантов светильников с такими характеристиками:

  • Масляные. Применялись довольно давно, работали за счёт горящего масла.
  • Керосиновые. В них используется принцип сжигания керосина. Присутствующий в фонаре фитиль одним концом помещен в ёмкость с топливом, другим — зажат механизмом горелки.
  • Газовые. Дают свет в процессе горения светильного газа, а также водорода, метана, пропана и др. Раньше часто применялись для освещения улиц, сейчас их используют туристы в качестве переносных светильников.
  • Лампы накаливания. Свечение исходит от тела накала, нагревающегося до очень высокой температуры за счёт электричества. Частью такой лампы является вольфрамовая спираль, защищённая от внешнего воздействия стеклянной колбой. Ранее использовались вакуумные колбы, сейчас для минимизации тепловых потерь их заполняют инертным газом.
  • Дуговые. Освещение в них возникает благодаря электрической дуге, занимающей место между двумя электродами. Ёмкость дуговой лампы может быть заполнена инертным газом, металлическими или соляными парами. В зависимости от свойств наполнителя световой спектр бывает разным.
  • Индукционные. Источником светового излучения в них служит плазма. Её образование происходит за счёт ионизации газа под действием высокочастотного магнитного поля. Лампы индукционного типа могут работать от 60 до 150 тысяч часов, количество включений/выключений в них неограниченно. Они показывают высокую степень светопередачи даже после длительной эксплуатации, включаются и выключаются молниеносно. После завершения срока службы их обязательно нужно утилизировать.

Самым современным источником уличного света являются приборы нового поколения — LED-лампы. С их помощью удаётся добиться ощутимой экономии, сократив объёмы потребляемого электричества от 2 до 10 раз. Такие светильники компактны, устойчивы к механическим повреждениям и изменениям погоды, долговечны.

В конструкции осветительного уличного прибора важная роль отводится опоре. Она выполняется в виде бетонного, металлического (реже — деревянного) столба, мачты, троса или крепёжного кабеля.

Устройство фотореле

В конструкции современных уличных фонарей предусмотрено устройство, позволяющее автоматически регулировать их работу. Такие приборы называются фотореле. В их основе лежит встроенный в электрощиток или выносной датчик. Последний располагается в отдельном герметичном корпусе, характеризующемся повышенной защищённостью от неблагоприятного действия внешних факторов.

Большинство реле имеет функцию программирования. Она позволяет отключать и включать светильники в разное время в зависимости от сезона. Благодаря установленным программам летом освещение автоматически выключается раньше, чем зимой.

Кроме автоматического режима работы, аппараты имеют ручной способ управления. С помощью встроенного выключателя специалист, обслуживающий оборудование, может самостоятельно управлять им при возникновении нештатных ситуаций либо в целях профилактической проверки.

Разные фотореле имеют неодинаковую чувствительность, которая при подключении регулируется с помощью разных сопротивлений. Регулирование порога отключения происходит с помощью резистора, управляющего начальным напряжением.

Область применения аппаратов на основе фотодатчиков очень широка. В разных сферах используются фотореле с определёнными свойствами.

Устройство, содержащее фоточувствительный элемент внутри корпуса, автоматически включает освещение при наступлении сумерек и отключает его на рассвете. Имеет прозрачный и прочный корпус, который позволяет реагировать на солнечный свет и одновременно предохраняет от повреждений.

Некоторые реле такого типа дополнительно комплектуются таймером. На нём можно зафиксировать конкретный временной промежуток, по истечении которого механизм будет срабатывать, включая либо выключая освещение. Таймеры могут иметь разные запрограммированные промежутки. В одних моделях — час или день, в других — неделя, в третьих — год. Это позволяет выделять разные периоды (не только день или ночь, но также праздничные и выходные дни).

В отдельных приборах предусмотрено регулирование порога срабатывания с помощью специального переключателя.

Когда он установлен на плюс, фотоэлемент сработает от малейшего затемнения (в грозу, пасмурную погоду). При переключении на минус он активируется только в ночное время.

Характеристики разных моделей IEK

Производители устройств, предназначающихся для регулирования освещения, выпускают различные модели фотореле, отличающиеся техническими характеристиками и свойствами. Широкое распространение получил прибор марки ФР-601 диаметром 63 мм и высотой 77 мм. Он предназначается для использования в однофазной электросети переменного тока с напряжением 230 В и частотой 50 Гц, потребляет 0,45 Вт. Освещённость в нём регулируется в диапазоне от 5 до 50 лк.

По отзывам пользователей, ФР 601, также называемый сумеречным выключателем, прост в установке и эксплуатации, стоит недорого, подходит для управления внутренним освещением, а также подсветки витрин, рекламы и пр.

Другая разновидность фотореле для уличного освещения — IEK ФР-602 — имеет аналогичный принцип действия.

Его корпус, изготовленный из негорючего пластика, содержит плату с функциональными элементами — переменным резистором, диодом, реле управления, фоторезистором и двумя транзисторами. Оболочка прибора с выносным датчиком отличается герметичностью и повышенной прочностью. ФР-602 применяется для освещения подъездов многоэтажных домов, общественных зданий, предприятий, входов на частную территорию.

Фотореле все о фотореле | vserele.ru

Фотореле — это устройство, снабженное выносным или встроенным фотодатчиком (фоторезистором), реагирующим на освещение, при показателе освещенности ниже или выше установленнго порога подается сигнал на схему реле, который замыкет или размыкает встроенное промежуточное реле для управления приборами освещения и другими электроустановками.
Применение фотореле.

Фотореле предназначено для автоматического управления уличным освещением, освещением мест общего пользования или индивидуальных рабочих мест в зависимости от уровня освещённости, а также может служить элементом управления различными устройствами. В каталоге представлены все основные типы фотореле уличного и щитового исполнения с возможностью установки на din-рейку с встроенным и выносным датчиком освещенности – фотоэлементом.
Принцип действия фотоэлектрического реле.
Его область применения довольно большая. С его помощью можно автоматически освещать фасады зданий/сооружений, улицы и другие места в темное время суток, зону видимости видеокамер в ночное время, освещения автостоянок, дворов и другие места в темное время суток.
При наступлении темноты они включают светильники наружного освещения. Порог срабатывания таких реле можно регулировать в зависимости от уровня освещённости. Оно содержит управляющий контакт, который позволяет управлять светильником непосредственно с реле, а при больших нагрузках, через дополнительное силовое реле (контактор/пускатель).
Все эти задачи решаются с помощью электрической схемы освещения, в которую кроме обычных ламп света и выключателей добавляется фотоэлемент и фотореле. Фотоэлемент и фотореле могут быть как в одном корпусе, так и в разных. Однокорпусные модели довольно дешевы, но не очень удобные с точки зрения настройки. Сама эта модель обычно располагают на стене. А настройки у некоторых моделей фиксированные либо приходится снимать крышку корпуса для настройки уровня освещенности. Когда он достигается, реле срабатывает и свет включается или выключается. Подобные модели обычно ставятся в загородных домах и дачах.
Примером фотореле являются: ФР-10Т, ФР-12Т,ФР-16В,LXP-02,type 10.32 (finder),ФР-602,ФР-601,ORBIS VEGA, ORBIFOT
У моделей, где фотоэлемент и фотореле находятся в разных корпусах, возможности настройки гораздо шире: настройка уровня освещенности, временной задержки срабатывания. Фотореле устанавливается в электрическом щите вместе с другими автоматами на DIN-рейке. И для его настройки нужно только открыть щит. В отличии от однокорпусных моделей, размеры такого фотореле и фотоэлемента постоянны, то есть не зависят от мощности. Эти модели обычно применяются в больших зданиях для освещения фасадов, автостоянок, зоны видимости видеокамер в ночное время и др.
Примером фотореле являются:ФР-11М, ФР-7Е, ФР-9М, ФР-М01-1-15, ФР-М02, AZ-112, SOU-1
Также существуют комбинированне фотореле (фотореле + таймер) для управления освещением на основе уровня освещенности интенсивности окружающего освещения и реального времени.
Примером фотореле с таймером являются: ФР-20М – снято с производства, полный аналог: SOU-2
Практически все фотореле имеют функцию реле управления с контактной группой номинальным током от 5 до10А, (ФР-М01-1-15 – 16А) и производители рекомендуют использовать промежуточные реле рассчитанные на определенную нагрузку, тоесть при больших нагрузках необходимо дополнительное силовое реле (промежуточное реле/ контактор/пускатель)
Пускатели типа:КМИ, КМН и другие.

Как подключить фотореле для уличного освещения? Схемы подключения.

Что такое фотореле?

Фотореле — это устройство, снабженное с выносным или встроенным сумеречным датчиком, которое встроено в электрическую цепь для осветительых приборов. Датчик, реагирующий на освещение, подает сигнал на схему реле, замыкая – включая освещение в сумерки и размыкая — выключая освещение в светлое время суток.

Как правильно выбрать фотореле?

Для правильного выбора фотореле, нужно знать какой вид датчика будет удобней использовать в конкретных условиях, выносной или встроенный и обязательно учесть токовые характеристики фотореле. Они, как и во всяком электрическом приборе, имеют ограничение по коммутации тока в амперах.

сумеречный выключатель 10Асумеречный выключатель (таблица)сумеречный выключатель 20Асумеречный выключатель (таблица)

Принцип работы фотореле

Светочувствительное устройство, постоянно подключенное к электрическому питанию, замеряет уровень естественной освещенности контролируемого пространства. Датчик, реагирующий на освещение, подает сигнал на схему реле, замыкая – включая освещение в сумерки и размыкая — выключая освещение в светлое время суток.

замер уровня освещенности контролируемого пространства

Структурная схема фотореле

устройство датчика фотореле

В состав сумеречного выключателя могут входить:

  • светочувствительный элемент, реагирующий на колебания освещенности;
  • датчик фотоэлемента, воспринимающий изменения тока;
  • усилитель электрического тока;
  • коммутирующий прибор в виде реле.

Схемы фотореле (сумеречный выключатель)

Сумеречный выключатель (фотореле)сумеречный выключатель (день-ночь)

Схема фотореле с выносным датчиком

Особенности конструкций сумеречных выключателей

Современные простые фотореле для небольших светильников выпускаются в едином пластмассовом корпусе с возможностью крепления на стену или непосредственно на фонарь тыльной стороны.

В случае превышаемой мощности подключаемых через фотореле осветительных приборов коммутировать его в цепь следует через магнитный пускатель или контактор соответствующей нагрузки.

 

Сложные приборы сумеречного освещения выпускаются двумя составляющими (внешнего датчика фотоэлемента и измерительно-коммутационного устройства), расположенных в щитовой и соединяемых проводами.

Монтаж фотодатчика,  реагирующего на движение, выполняется с учетом обеспечения обзора контролируемой территории.

Подключение нескольких осветительных приборов на одну выходную группу сумеречного выключателя проводится по параллельной схеме.

Большинство фотореле, защищены системой помехозащитой (выдержка времени) от ложных срабатываний. Но, все равно, датчики устройства нужно располагать в дали от возможных попаданий посторонних источников света, чтобы исключить эффект мигания ламп.

Фотодатчик замеряет естественную освещенность по одному из принципов

  • фоторезистора;
  • фотодиода;
  • фототранзистора;
  • фототиристора;
  • фотосимистора.

Чувствительным элементом, воспринимающим световой поток во всех этих конструкциях работает p-n переход, созданный на стыке двух различных полупроводниковых металлов с р- и n- проводимостью, который .способен вырабатывать электрический заряд при облучении светом.

Электрическое сопротивление фоторезистора зависит от интенсивности падающего светового потока.

Фотодиод формирует электрический заряд, соответствующий интенсивности света за счет фотовольтаического эффекта.

Фототранзистор устроен как оптоэлектронный полупроводник, является аналогом обычного биполярного транзистора, в котором область базы облучается светом для регулирования электрического сигнала.

Фототиристор предназначен для работы в цепях постоянного тока, сконструирован оптоэлектронным полупроводником со структурой обыкновенного тиристора, включаемого в работу током от потока света, направленного на светочувствительную матрицу,.

Фотосимистор сконструирован для работы с переменным током. Его можно представить упрощенной конструкцией из двух фототиристоров. Каждый из них реагирует на положительную или отрицательную составляющую полупериода гармоники. Синхронизацией тока для подачи на управляющий электрод занимается специальная схема.

Технические характеристики фотореле

К основным параметрам, влияющим на выбор сумеречного выключателя, относят:

  • номинальное напряжение питания.

Внимание! Электронные приборы, выпускаемые за рубежом, предназначены для работы с напряжениями, стандартизированными в чужих странах. Они могут составлять величину 127 или 110 вольт, что не обеспечит их стабильную работу в электросети 220 вольт.

  • мощность потребления электроэнергии и тепловую нагрузку светильников, которую должны надежно выдерживать выходные контакты сумеречного выключателя;
  • условия эксплуатации прибора, влияющие на конструкцию и выбор степени защиты корпуса:
    • работа при атмосферных осадках;
    • возможность засорения пылью и посторонними предметами;
    • поддержание температурного режима;
    • светочувствительность датчика и настройки порога срабатывания по освещенности;
    • типы коммутируемых светильников. Простые сумеречные выключатели предназначены для работы с активными нагрузками, создаваемыми разогревом нити накаливания обычных ламп Ильича и галогенных конструкций. Все остальные виды, включая люминесцентные и энергосберегающие, создают реактивную составляющую нагрузки.

У метало-галогенных, натриевых и ртутных ламп при запуске создается бросок пускового тока, который может выжечь контакты.

Конструкция фотореле

Элементная база

Первые фотоэлементы создавались исключительно на аналоговых элементах с электромеханическими реле. Такие устройства успешно работают со 2-й половины 20-го века до настоящего времени.

По мере развития науки, послужившей бурному производству робототехники, стали массово выпускаться полупроводниковые устройства, на базе которых создавались конструкции статических фотореле.

Освоение микропроцессорной техники позволило управлять сложными осветительными установками посредством контроллеров, учитывающих специфические условия местности, включать датчики, реагирующие на движение или другие факторы.

 

Фотореле с выносным датчиком

Оцените качество статьи:

Что такое фотореле и схема его подключения

Содержание статьи:

Фотореле является таким устройством, которое имеет выносной или встроенный сумеречный датчик, который можно подключить в цепи любых осветительных приборов. Он реагирует на степень освещения и подает сигналы в релейную схему. Когда реле замыкается освещение будет включаться, а когда размыкается – освещение будет отключаться днем. В этой статье разберем, что такое фото реле и для чего оно необходимо, принцип действия фотореле, а также какова схема подключения фотореле.

Как выбрать?

Для того, чтобы правильно подобрать и подключить устройство своими руками, например, к прожектору, необходимо знать какой вам тип датчика необходим и какой будет наиболее удобным. Они бывают встроенные и выносные. При выборе обязательно нужно будет учитывать токовые характеристики устройства. Они обладают своими ограничениями в коммутации по току, выраженные в амперах.

Как оно работает?

Устройство обладает светочувствительным элементом, который является постоянно включен в схему осветительного прибора и имеет питание. Этот элемент постоянно проводит измерение уровня освещенности (день – ночь) там, где это необходимо. Установка фотореле предполагает, что реагирующий на уровень освещения прибор будет подавать сигналы на реле: при замыкании – будет включать осветительный прибор, а во время размыкания контактов – отключать.

Структурная схема

Чтобы понять принцип работы фотореле необходимо разобраться с его составными частями. Среди конструктивных элементов могут быть следующие элементы:

  • Датчик (светочувствительный) – реагирует на изменения степени освещенности;
  • Датчик (фотоэлемента) – реагирует на изменения силы тока;
  • Усилитель для электрического тока;
  • Реле – коммутирующий элемент в устройстве.

Особенности конструкции

Обычные устройства, предназначенные для малых светильников, чаще всего производятся одним блоком в пластиковом корпусе. Они имеют возможность закрепления на стенах или подключения к светодиодному светильнику с задней стороны.

Если подключить светильники, мощность которых превышает мощность фотореле своими силами установленного, то цепь должна коммутироваться через магнитный пускатель или современные контакторы на соответствующую нагрузку.

Более сложные варианты производятся из двух составляющих – измерительно-коммутационного устройства и выносного фотоэлемента. Измерительный блок располагается непосредственно в электрическом щите.

Установка фотореле, снабженного реакцией на движение, то необходимо учитывать требуемый обзор контролируемой территории. Несколько светильников на одну выходную группу прибора можно подключить по параллельной схеме.

Основная масса моделей снабжены помехозащитой от ложных срабатываний, т.е. выдержкой времени. Однако, не смотря на это, подключение фотореле для уличного освещения следует производить подальше от других искусственных источников света во избежание эффекта мигания ламп.

Принцип работы

Простая схема фотореле проводит замеры освещенности при помощи одного из элементов:

  • Фототранзистора;
  • Фоторезистора;
  • Фотосимистора;
  • Фотодиода;
  • Фототиристора.

Схема фотореле для уличного освещения в качестве чувствительного элемента, воспринимающего силу света, предполагает наличие p-n переход, создаваемый на стыках разных полупроводниковых металлов, обладающих p- и n – проходимостями. Этот переход, в свою очередь, и вырабатывает электрический импульс во время попадания на него света.

Сопротивление фоторезисторов будет зависеть от силы светового потока.

Фотодиоды будут формировать электрические импульсы, которые станут соответствовать интенсивности светового потока за счет действия фотовольтаического эффекта.

Фототранзисторы являются аналогами обычных биполярных транзисторов и выполнен как оптоэлектронный полупроводник. В подобном устройстве часть базы подвергается воздействию света для осуществления регулирования выходного электрического сигнала.

Фототиристоры предназначаются для деятельности в цепях постоянного тока. Изготовлен оптоэлектронным полупроводником, который обладает структурой обычного тиристора. Включается в работу от появления тока от светового потока, направляемого на светочувствительную матрицу элемента.

Фотосимистор предназначен для работы в цепях переменного тока. Он упрощенно может быть представлен как конструкция из 2 фототиристоров, каждый из которых будет реагировать на отрицательную или положительную составляющую полупериода гармоники. У него специальная схема будет заниматься синхронизацией тока для передачи на управляющий электрод.

Технические данные, влияющие на выбор

Ниже приведены основные параметры, которые будут оказывать влияние на выбор и подключение фотореле для уличного освещения:

  • Номинальное напряжение устройства.

Обращаем внимание! Импортные устройства могут быть предназначенными для работы с другими уровнями напряжения. Так они могут быть рассчитаны на 110 или 127 Вольт, а это может не позволить нормально работать в нашей сети 220 Вольт.

  • Потребляемая мощность и тепловая нагрузка светильников. Эти нагрузки выходные контакты устройства должны с уверенностью выдерживать.
  • Условия работы устройства, которые будут влиять на выбор конструкции и степени защиты:
  • Атмосферные осадки;
  • Попадание пыли и инородных предметов;
  • Перепады температур;
  • Уровень светочувствительности и степень настройки момента срабатывания;
  • Типы подходящих светильников. Здесь стоит сказать, что обычные модели, смонтированные своими руками, предназначаются для подключения и работы с активной нагрузкой, которая создается галогенными лампами и лампами накаливания. А вот, например, энергосберегающие и люминесцентные, а также другие подобные типы ламп, вырабатывают реактивную часть нагрузки. У подобных видов ламп во время запуска происходит бросок пускового тока, а это может пожечь контакты устройства.

Схема подключения

Чтобы разобраться, как подключить фотореле к освещению необходимо внимательно изучить само изделие или упаковку. На них собственно и должна быть приведена схема подключения фотореле для уличного освещения. Выводы из устройства снабжены проводами с различным цветом изоляции. Это необходимо для исключения ошибок при подключениях. Сделать вывод о их назначении просто, если знать информацию о цветовой маркировке. Из прибора выведено 3 провода:

  • Черный – обозначает фазу;
  • Зеленый – нулевой провод;
  • Красный – коммутируемая фаза, идущая к светильнику.

Итак, как подключить фотореле к освещению? До начала выполнению работ по подключению необходимо изучить прилагаемую инструкцию. Для того, чтобы соединить провода следует использовать распределительную коробку, которую можно установить рядом на стенке.

Нагрузка коммутируется путем прерывания фазного провода. За счет этого происходит подача и исчезновение напряжения. Зеленый провод (ноль) подключается для обеспечения работоспособности.

Будем надеяться, что статья полностью помогла разобраться в том, что это фотореле и как подключить датчик света для уличного фонаря. Если еще останутся вопросы, то смело задавайте в комментариях.



 

 

 

Фотореле для уличного освещения: принцип действия, схема

Категория: Уличное освещение

Световое реле для уличного освещения – это удобное приспособление для автоматизации осветительного оборудования. Оно постоянно измеряет уровень освещённости на улице и включает лампу при падении этого показателя ниже запрограммированной величины. Выгода от установки фотореле обусловлена не только комфортом, но и экономическими соображениями – электроэнергия на освещение тратится только тогда, когда это действительно необходимо.

Принцип действия и функциональное назначение

Реле, которые работают в зависимости от освещённости, имеют несколько названий. Среди специалистов их называют просто датчиками света, фотодатчиками, сумеречными и т. п. В литературе встречаются определения светочувствительные автомат или выключатель. Все эти названия синонимичны и не зависят даже от конструкции приборов.

Принцип действия фотореле основывается на работе фототранзистора или фоторезистора, параметры которого изменяются при изменении освещённости. Проще говоря, цепь микроприбора находится в разомкнутом положении, пока не него поступает достаточный объём света. При определённом уровне сумерек или темноты цепь замыкается, и подключённый в схему осветительный прибор получает питание. Соответственно, когда начинает светать, происходит обратное – цепь размыкается и отключает подачу тока.

Технические характеристики и отличия моделей

Классифицировать реле данного назначения можно по разным признакам. Одним из ключевых для выбора является принцип размещения датчика. Его либо встраивают внутрь устройства, либо выносят наружу. Второй вариант удобнее тем, что сам фотодатчик имеет небольшие размеры и без проблем устанавливается наружу, а переключатель ставится внутри помещения. В магазинах электротехники сейчас продают модели для крепления на DIN-рейку в распределительном щите. Такая установка отвечает принципам безопасности и лёгкого доступа к оборудованию.

Реле освещённости со встроенным датчиком удобно тем, что располагается в непосредственной близости от источника света. В этом случае важно установить его так, чтобы на него падал только естественный свет. Такие устройства актуальны в системах освещения на солнечных батареях.

Ключевые эксплуатационные характеристики:

  1. Номинальное рабочее напряжение. Выпускаются модели на 220 В и 12 В. Выбор зависит от того, под каким напряжением работает осветительная схема. Реле освещённости на 12 вольт запитываются от аккумуляторов. Существуют также модели на 380 В, которые в бытовых условиях применяются редко. Их установка целесообразна на крупных промышленных объектах.
  2. Номинальная сила тока. Этот параметр тоже зависит от характеристик тока в сети освещения. Сегодня выпускаются модели, рассчитанные на 6-63 А.
  3. Порог регулировки срабатывания – одна из самых важных характеристик, определяющая возможности по настройке реле. Чаще всего, диапазон регулирования равен 2-100 люкс, но встречаются и модели для объектов с особыми требованиями.
  4. Степень защиты. Эта характеристика наиболее важна для фотореле наружной установки, которые необходимо защитить от попадания влаги, мусора, пыли. Для устройств, устанавливаемых внутри помещений, достаточно защиты IP40, а для наружных – не ниже IP.
  5. Наличие таймера включения. Благодаря этому модулю, можно более тонко отрегулировать режим работы реле. Например, установив задержку в 20 секунд для уличного датчика освещения, можно избежать ситуаций ложного срабатывания, когда на него, например, упал свет от фар проезжающего мимо автомобиля.
  6. Потребляемая мощность. У любого датчика есть предел потребляемой мощности. Приборы, работу которых он контролирует, не должно превышать эту цифру. Желательно подбирать устройства с запасом в 15-20%, чтобы защитить его от возможных скачков параметров тока.

Возможности настройки устройства

Современные фотореле для уличного освещения имеют функционал, позволяющий предельно точно настроить режим работы в конкретных условиях. Заданные настройки можно менять своими руками, не прибегая к помощи специалистов. Для этого достаточно повернуть регулятор до нужного положения. В основном, применяются следующие регулировки:

  1. Изменение порога срабатывания через подстройку чувствительности. Необходимость данной функции обусловлена тем, что на улице наблюдается разная освещённость в зависимости от времени года. Так, например, зимой света больше за счёт его отражения от снега, поэтому надо выставлять меньшую чувствительность датчика. Кроме того, пониженный порог срабатывания настраивается на фотореле, которые стоят в городах, на относительно близком расстоянии от крупных источников света.
  2. Задержка отключения и включения. Как уже было сказано, это защищает устройство от отключения при падении света от посторонних источников. Задержка включения важна, чтобы реле не включало свет, когда попадает в тень от проходящей по небу тучи или пролетающей птицы.
  3. Диапазон освещённости определяет условия, в которых фотодатчик сохраняет цепь питания разомкнутой. Нижняя граница может устанавливаться от 2 люкс, соответствующих полной темноте, до 20-80 люксов, которые наблюдаются при сумерках.

Особым вариантом реле для уличного освещения является астротаймер. Это более дорогое и сложное устройство, которое не требует постоянной подстройки и защиты датчиков от стороннего света. Астротаймер настраивается по GPS-координатам места, в котором располагается, времени и дате. Далее устройство автоматически вычисляет соответствующие местности время восхода и заката солнца. Преимущества такого устройства заключается в независимости от погоды, места установки, наличия посторонних источников света. Для дополнительно удобства можно сдвинуть время включения/выключения на конкретный шаг. Например, отключать свет за 1 час до рассвета и включать на 2 часа позже заката.

Порядок подключения

Производители светочувствительного оборудования не пользуются общим стандартом конструирования, поэтому небольшие отличия можно найти не только в самих устройствах, но и в схемах их подключения. Тем не менее, общие принципы одинаковы, поэтому мы рассмотрим две типовые схемы – для устройств с выносным и встроенным фотоэлементом.

Установка фотореле со встроенным датчиком:

  1. Это простые устройства типа all-in-box, для подключения которых в цепь нужно правильно подключиться к трём выводам. Два из них – это фаза, а один – ноль. Защитные провода, как правило, не используются в этих приборах.
  2. Перед началом установки нужно снять напряжение с того участка цепи, в который встраивается фотореле.
  3. Фазные выводы обозначаются символом L (некоторые производители используют другую букву) и цифрами 1 и 2. К первой фазе нужно подсоединить провод питания, идущий от распределительного щита.
  4. На вторую фазу «сажается» система освещения, работу которой должно контролировать реле.
  5. Нулевой провод, соответственно, подсоединяется к выводу с нейтральным обозначением – N. Подключение этого контакта обязательно для правильной работы фотоэлемента.
  6. После изоляции мест соединения можно подавать на цепь напряжение, проверять работу прибора.

Ввиду раздельного расположения компонентов схема включения реле с выносным датчиком чуть сложнее:

  1. Сначала к основному силовому блоку подключаются провода питания. Данная процедура аналогична той, что описана выше, однако можно столкнуться с одним нюансом. Дело в том, что переключатели с выносным фотоэлементом часто поддерживают возможность контроля нескольких осветительных групп. По этой причине от них выходят не 2, а 4 и больше фазных выводов. Если такое устройство приобретено для контроля одной группы освещения, то нужно воспользоваться только одной парой фазных выводов: один провод – для входного тока, другой – для питания приборов.
  2. После подключения силового блока к сети нужно подсоединить к нему датчик. Маркировка двух соответствующих выводов сильно различается у производителей, но, как правило, эти парные контакты обозначают пиктограммой датчика.
  3. После подключения датчика, потребителей и источника тока можно проводить тест работоспособности под напряжением.

Обратите внимание, что для большинства моделей фотореле справедливы следующие правила подключения проводов: красный – на лампы, синий или зелёный – нейтраль (ноль), коричневые и чёрные – фазы питания.

Если в схеме фотореле используется не только фотоэлемент, но и датчик движения или таймер, то все эти компоненты устанавливаются последовательно. Так, фазный провод питания проходит через фотореле, датчик движения, таймер, а после этого попадает на лампу.

Особенности выбора места для размещения реле

Нередко выбор правильного месторасположения фотореле для уличного освещения представляет собой сложный квест, потому что нужно учитывать специальные требования:

  • необходимо, чтобы на фотоэлемент падал только дневной свет;
  • рекламные щиты, фонари уличного освещения, многоквартирные дома и другие посторонние источники света должны находиться на максимальном удалении от датчика, чтобы не вызывать ложных срабатываний;
  • важно минимизировать вероятность падения света от автомобильных фар;
  • рекомендуемая высота установки датчика – 180-250 см над землёй, чтобы можно было проводить его настройку с земли, табуретки или лестницы.

Поскольку в условиях современного населённого пункта найти подходящее место сложно, приходится прибегать к одной хитрости. Для ограждения фотоэлемента от постороннего света для него конструируют заслон в виде кулька или прислонённого к стене цилиндра. Для изготовления подходит отрезок чёрной пластиковой трубы с большим диаметром и длиной около 20 см. Нижняя сторона вырезается под углом в 45-30˚, благодаря чему верхний остаётся ровным и обеспечивает беспрепятственное поступление естественного света.

принцип действия и инструкция по установке своими руками (135 фото + видео)

В последние годы при оборудовании уличного освещения часто используется фотореле. Использование этого элемента позволяет значительно экономить электроенергию. Оно применяется при освещении общественных мест и частных подворий. Польза в его использовании заключается в том, что оно регулирует работу осветительных элементов ночью в автоматическом режиме. Прибор определяет наиболее удобный момент включения или выключения светоосветительных устройств и интенсивность светового потока.

Для обустройства автоматического освещения в настоящее время также используются астротаймеры. Разница между этими устройствами заключается как в техническом исполнении, так и в стоимости. Фотореле значительно дешевле и проще своего собрата по назначению.

В разделах статьи приведены фото фотореле в различных местах применения и отличающихся друг от друга по внешнему виду и техническим характеристикам.

Краткое содержимое статьи:

Устройство и использование прибора

Основу конструкции фотореле составляет фотоэлемент, который может размещаться в корпусе прибора или за его пределами. При использовании прибора по первому варианту он устанавливается на улице, во втором случае фотодатчик устанавливают на улице, а блок управления в электрощитке постройки.

Часто в конструкции приборов на его корпусе устанавливаются выключатель прибора и регулятор степени освещенности для определения момента включения света.

В схемах прибора встраиваются электронные датчики, предотвращающие не преднамеренные срабатывания. Отдельные реле обустраиваются устройствами, регулирующими их время включения и отключения.

Виды фотореле

  • фотореле с таймером — позволяет произвести временную настройку;
  • с датчиком движения – осуществляет работу только в движении;
  • программируемые устройства – используют различные варианты настроек;
  • сочетающие фотореле с временными настройками и работе в движении.

Принцип работы основан на возможностях фотоэлемента по контролю освещенности в районе действия. При недостаточной освещенности соответствующие реле замыкают электроцепь осветительного прибора, как результат он включается. При наступлении дня прибор отключается.

Подключение реле

До того как подключить реле предварительно необходимо произвести выбор места установки прибора для чего необходимо учесть ниже причисленные условия:

  • на фотореле должен падать солнечный свет;
  • источники искусственного освещения должны находиться на наибольшем удалении;
  • прибор должен быть скрыт от освещения фарами автомобилей;
  • высота размещения прибора должна позволять производить минимальные работы по его текущему техническому обслуживанию.

Зачастую если световой датчик используется для подключения уличного фонаря размещенного на столбе, то и реле устанавливают возле него, но это очень неудобно. Гораздо удобнее фотореле разместить на стене дома, а к фонарю подключить кабель электропитания.

Подключение прибора самостоятельно

Для того, чтобы разобраться как подключить устройство в необходимо первую очередь ознакомиться со схемой подключения которая выполнена на его упаковочной коробке.

Для лучшего восприятия все электрические проводники на выходе реле исполнены в различной цветовой гамме. Из реле выходят электропровода:

  • черный или коричневый — фазовый;
  • зеленый или синий — «0-ль»;
  • красный – соединяющий на осветительный элемент.

Схема подключения фотореле своими руками очень проста. Главное помнить, что фазовый провод подключается на разрыв. Фазовый и «0-ль» провода поступают на вход фотореле, а с его выхода фаза подключается к осветительному прибору, а «0-ль» провод поступает с автомата.

При подключении мощного фонаря в схему подключения добавляется контактор. Для включения на момент движения в реле встраивают датчик движения.

Все коммутации проводов проводятся только через распредкоробку.

Подготовка к работе

Настраивается реле после выполнения процедур установки и подключения к электроцепи. Для установки пределов включения и выключения прибора на его корпусе устанавливается поворотный потенциометр.

Степень поворота, которого определяет чувствительность прибора. На корпусе прибора, выше поворотного потенциометра нанесена градуировка увеличения или уменьшения чувствительности реле.

Начинать настройку необходимо с минимальных порогов чувствительности для чего потенциометр устанавливается в крайне правое положение. В сумерки, когда освещенность улицы будет низкой, регулятор освещенности аккуратно поворачивают в левую сторону, пока не включится осветительный прибор. Настройка фотореле окончена.

Необходимо помнить

Уровень наибольшей нагрузки фотореле зависит от подключенных к нему устройств. Наибольшая нагрузка на реле находится в пределах 1000 -2300 ватт, Uраб= 220 вольт, а граница срабатывания соответствует 2-2000 люксам.

При освещенности в 5 люкс наступают сумерки, но предметы еще различимы. При сумерках равных 2 люксах полная темнота наступает через 10 минут.

Установка фотореле не только сэкономит денежные средства владельцу, но и поможет обеспечить сохранность материального имущества.

Фото фотореле для уличного освещения

принцип действия и инструкция по установке своими руками (135 фото + видео)

В последние годы при оборудовании уличного освещения часто используется фотореле. Использование этого элемента позволяет значительно экономить электроенергию. Оно применяется при освещении общественных мест и частных подворий. Польза в его использовании заключается в том, что оно регулирует работу осветительных элементов ночью в автоматическом режиме. Прибор определяет наиболее удобный момент включения или выключения светоосветительных устройств и интенсивность светового потока.

Для обустройства автоматического освещения в настоящее время также используются астротаймеры. Разница между этими устройствами заключается как в техническом исполнении, так и в стоимости. Фотореле значительно дешевле и проще своего собрата по назначению.

В разделах статьи приведены фото фотореле в различных местах применения и отличающихся друг от друга по внешнему виду и техническим характеристикам.

Краткое содержимое статьи:

Устройство и использование прибора

Основу конструкции фотореле составляет фотоэлемент, который может размещаться в корпусе прибора или за его пределами. При использовании прибора по первому варианту он устанавливается на улице, во втором случае фотодатчик устанавливают на улице, а блок управления в электрощитке постройки.

Часто в конструкции приборов на его корпусе устанавливаются выключатель прибора и регулятор степени освещенности для определения момента включения света.

В схемах прибора встраиваются электронные датчики, предотвращающие не преднамеренные срабатывания. Отдельные реле обустраиваются устройствами, регулирующими их время включения и отключения.

Виды фотореле

  • фотореле с таймером — позволяет произвести временную настройку;
  • с датчиком движения – осуществляет работу только в движении;
  • программируемые устройства – используют различные варианты настроек;
  • сочетающие фотореле с временными настройками и работе в движении.

Принцип работы основан на возможностях фотоэлемента по контролю освещенности в районе действия. При недостаточной освещенности соответствующие реле замыкают электроцепь осветительного прибора, как результат он включается. При наступлении дня прибор отключается.

Подключение реле

До того как подключить реле предварительно необходимо произвести выбор места установки прибора для чего необходимо учесть ниже причисленные условия:

  • на фотореле должен падать солнечный свет;
  • источники искусственного освещения должны находиться на наибольшем удалении;
  • прибор должен быть скрыт от освещения фарами автомобилей;
  • высота размещения прибора должна позволять производить минимальные работы по его текущему техническому обслуживанию.

Зачастую если световой датчик используется для подключения уличного фонаря размещенного на столбе, то и реле устанавливают возле него, но это очень неудобно. Гораздо удобнее фотореле разместить на стене дома, а к фонарю подключить кабель электропитания.

Подключение прибора самостоятельно

Для того, чтобы разобраться как подключить устройство в необходимо первую очередь ознакомиться со схемой подключения которая выполнена на его упаковочной коробке.

Для лучшего восприятия все электрические проводники на выходе реле исполнены в различной цветовой гамме. Из реле выходят электропровода:

  • черный или коричневый — фазовый;
  • зеленый или синий — «0-ль»;
  • красный – соединяющий на осветительный элемент.

Схема подключения фотореле своими руками очень проста. Главное помнить, что фазовый провод подключается на разрыв. Фазовый и «0-ль» провода поступают на вход фотореле, а с его выхода фаза подключается к осветительному прибору, а «0-ль» провод поступает с автомата.

При подключении мощного фонаря в схему подключения добавляется контактор. Для включения на момент движения в реле встраивают датчик движения.

Все коммутации проводов проводятся только через распредкоробку.

Подготовка к работе

Настраивается реле после выполнения процедур установки и подключения к электроцепи. Для установки пределов включения и выключения прибора на его корпусе устанавливается поворотный потенциометр.

Степень поворота, которого определяет чувствительность прибора. На корпусе прибора, выше поворотного потенциометра нанесена градуировка увеличения или уменьшения чувствительности реле.

Начинать настройку необходимо с минимальных порогов чувствительности для чего потенциометр устанавливается в крайне правое положение. В сумерки, когда освещенность улицы будет низкой, регулятор освещенности аккуратно поворачивают в левую сторону, пока не включится осветительный прибор. Настройка фотореле окончена.

Необходимо помнить

Уровень наибольшей нагрузки фотореле зависит от подключенных к нему устройств. Наибольшая нагрузка на реле находится в пределах 1000 -2300 ватт, Uраб= 220 вольт, а граница срабатывания соответствует 2-2000 люксам.

При освещенности в 5 люкс наступают сумерки, но предметы еще различимы. При сумерках равных 2 люксах полная темнота наступает через 10 минут.

Установка фотореле не только сэкономит денежные средства владельцу, но и поможет обеспечить сохранность материального имущества.

Фото фотореле для уличного освещения

Вам понравилась статья? Поделитесь 😉  

Датчик освещенности, виды, устройство, принцип работы

 

В темное время суток необходимо освещение улиц. Ежедневно включать и выключать уличный свет довольно обременительно. Кроме того, постоянная непрерывная работа осветительных приборов расходует немало электроэнергии. От плохой или хорошей погоды, сезона сумерки наступают в разное время. Для рационального расхода электроэнергии и практичности пользования созданы датчики автоматизированного освещения.

Содержание статьи

Назначение и принцип действия

Названий фотодатчиков существует немало. Но едиными остаются принцип работы и устройство датчиков: с наступлением ночи лампа включается и с рассветом выключается. Как это работает: на устройстве установлены фототранзисторы, фотодиоды и фототиристоры. Чувствительные к свету элементы взаимосвязаны с работой реле. Когда естественное освещение меняется и наступает определенный уровень темноты, срабатывает детектор, контакты реле замыкаются, свет включается, с рассветом происходит обратная реакция.

Основное назначение фотодатчика — это контроль освещенности улиц, дворов, частных владений. Такая система позволяет экономить средства и не беспокоиться о безопасности даже во время отсутствия хозяина. Ведь главный показатель наличия жильца в доме — это свет, и при автоматическом регулировании эффект присутствия будет постоянно.

Виды фотореле

По принципу действия фотореле разделяются на три группы:

  • запрограммированное включение;
  • оснащенное датчиком срабатывание на движение;
  • с таймером.

Разберем отличия

Запрограммированное включение. Наиболее удобная и экономная система. Программируется на определенное время суток, сезон, месяц. Может оснащаться датчиком движения с фотореле. Датчик света будет срабатывать в соответствии с условиями естественного освещения и нахождения в области действия человека, мощность регулируется настройками.

Оснащенное датчиком реакции на движение. Применяется при установке над подъездами, в частных домах, в парках. Лампа включается при приближении человека, что позволяет значительно экономить электроэнергию и продлевает срок эксплуатации ламп.

С таймером. Лампа будет загораться в определенное время суток или с заданной периодичностью.

Система подключения фотореле для уличного освещения бывает внешней или встроенной. При выборе типа важно учитывать множество моментов. На датчики лампы не должен попадать искусственный свет, это спровоцирует некорректную работу устройства. При креплении датчиков на улице важно обеспечить подход для очистки от снега и загрязнений. Кроме автоматического срабатывания, на блоках устанавливаются тумблеры для ручного управления выключением и включением света.

Характеристики и выбор

Нужно учитывать класс защиты и напряжение. Класс защиты лучше выбирать не меньше IP44, это обеспечит надежную защиту устройства от попадания загрязнений меньше 1 мм, плюс в датчик не попадают дождь и снег.

По максимальному напряжению датчики могут быть 220 В или 12 В. Зависит от исходного напряжения тока в сети. Рекомендуется устанавливать с запасом. Также важен температурный режим: фотоэлемент рассчитан на работу при определенных температурах. На коробке указан максимальный режим, в соответствии с регионом и климатическими особенностями подбирается устройство. Также нужно приобретать с запасом, от самой низкой до максимально высокой допустимой температуры, чтобы работающий аппарат не замкнуло.

В некоторых фотореле есть функция настройки для уличного освещения. Таким образом, интенсивность освещения можно настраивать в соответствии с уровнем естественного освещения. Это выгодно для экономии электроэнергии, когда от снега отражается свет и не нужна яркая лампа. Настройки таймера позволяют избегать лишнего включения или отключения, при настройке задержки на несколько секунд датчик не будет срабатывать на проезжающие автомобили.

Обзор популярных моделей

В борьбе за покупателя разные компании выпускают модели датчиков, способные экономить электроэнергию, обеспечивать нужный уровень освещенности и обладать длительным сроком эксплуатации.

Топ-5 популярных моделей

1. «IEK ФР-601». Производитель — Китай. Мощность — 2.2 кВт. Работает от сети 220 В. Уровень защиты — IP 44. Доступная цена.

2. «IEK ФР-602». Производство — Китай. Мощность — 4.4 кВт. Напряжение — 220 В. Уровень защиты — IP 44. Приемлемая стоимость.

3. «Реле и автоматика ФР-7М». Производитель — Россия. Нагрузка — 10 А. Напряжение — 220 В. Уровень защиты — IP 40. Цена выше средней.

4. «Zamel WZM-01/S1». Производство — Польша. Нагрузка — 4 кВт. Напряжение — 220 В. Уровень защиты — IP 20. Высокая цена.

5. «Elektrostandard SNS L 07». Производство — Россия. Нагрузка — 3.5 кВт. Напряжение — 220 В. Уровень защиты — IP 44. Средняя ценовая категория.

Как подключить датчик света для уличного освещения

Схема установки довольно проста. В аппарате находится три провода, у всех производителей разные цвета, но один обязательно красный. Провода: фаза, ноль, питание. Соединяются провода в герметичном распределительном блоке, его можно расположить недалеко от реле, если не планируется подключение более одного устройства. Подробная информация от том, как подключить фотореле, указана в руководстве пользования.

Чтобы экономить электроэнергию, рекомендуется приобрести модель с датчиком движения, лампа будет включена только в момент нахождения рядом человека в темное время суток. Чтобы датчик не срабатывал на все подряд (птицы, собаки, ветки), устанавливается задержка включения на несколько секунд.

Красный провод соединяет светильник и датчик движения. Два других отвечают за фазу и ноль, это указано в инструкции. Светочувствительность настраивается вручную, регулировка расположена на нижней части реле. Настраивать лучше в темное время суток, так можно отрегулировать оптимальный уровень освещения и чувствительность датчиков.

Выбор места установки датчика освещенности

Один из самых важных моментов при установке фотореле для уличного освещения. При выборе места для установки датчика освещенности нужно учитывать несколько фактов: освещение, надежность крепления, доступность. Определиться, где будет находиться короб: в помещении или снаружи.

Для рациональной работы устройства на датчики не должен попадать искусственный свет (окна, фары машин, свет других фонарей). Естественный свет должен попадать беспрепятственно.

Оптимальная высота для установки — 180—200 см. Может быть и выше, но при профилактических работах, уборке, ручном включении потребуется лестница.

Крепление не должно соприкасаться с другими узлами, обязано быть прочным, надежным.

Нередко приходится перемещать устройство по нескольку раз, поэтому сразу не рекомендуется крепить «намертво».

Монтажные работы

Для того чтобы установить датчик освещенности на улице, нужно следовать инструкции. Важно правильно подключить устройство, и для этого:

  1. обесточить щиток;
  2. протянуть провод питания к фотореле;
  3. зачистить провода под клеммы;
  4. для подключения фотореле в корпусе создать подходящие отверстия;
  5. все отверстия в корпусе нужно герметизировать, это защитит устройство от попадания влаги и грязи;
  6. подсоединить устройство согласно инструкции;
  7. отмерить нужную длину провода для соединения со светильником, зачистить их и присоединить к соответствующим клеммам;
  8. настроить фотореле вручную;
  9. закрыть крышку корпуса, включить ток и протестировать работу.

В зависимости от вида устройства схема подключения датчика освещенности может различаться. Монтаж и подключение через выключатель не требуют особых навыков, нужно лишь соблюдать правила безопасности и следовать инструкции.

Настройка датчика освещенности

После завершения всех монтажных работ наступает время настройки. Для этого нужно дождаться того уровня темноты, при котором нужно включение наружного света. Регулировка фотореле для уличного освещения осуществляется вручную. На нижней части реле находится небольшой диск, который отвечает за включение света при определенных условиях. Его нужно покрутить с наступлением темноты, подождать, пока свет включится. Возможно, придется не один раз отрегулировать фотоэлемент и найти оптимальное световое воздействие на него.

Заключение

Выбрать и купить датчик освещенности для включения света на улице — дело непростое. Но современные производители позаботились о создании моделей, подходящих для разных нужд. Для установки освещения в частном доме не нужно, чтобы свет горел всю ночь, достаточно срабатывания от датчика движения. Для освещения городских улиц можно установить освещение, которое будет работать всю ночь. Для охраны объектов подойдет прожектор с датчиком движения.

Основы фототранзистора

В этом уроке мы узнаем о фототранзисторах, характеристиках фототранзисторов, о том, что следует учитывать при выборе фототранзистора, и нескольких примерах схем, использующих фототранзистор в качестве датчика освещенности.

Введение

Прежде чем вдаваться в подробности фототранзисторов, позвольте нам освежить наше понимание датчиков и, в частности, оптических датчиков.

С точки зрения инженеров-электронщиков датчик – это устройство, которое реагирует на физическое явление или свойство электрическим сигналом.Входом датчика может быть физическая величина, такая как свет, звук, температура и т. Д., Но на выходе – электрический сигнал, такой как напряжение, ток или даже заряд, который может обрабатываться, усиливаться, передаваться и изменяться электронными схемами и устройствами.

Приведенное выше определение датчика может привести к другой интерпретации датчика, то есть датчик – это преобразователь энергии, поскольку независимо от измеряемой величины входная энергия преобразуется в электрическую.

Существует множество разновидностей и типов датчиков, таких как датчик температуры, датчик давления, датчик влажности и т. Д.но датчик, представляющий интерес для этого обсуждения, – это оптические датчики.

Что такое оптические датчики (датчики света)?

Оптические датчики

также называются датчиками света или фотодатчиками. Оптический датчик – это устройство, которое измеряет интенсивность света, обычно электромагнитного излучения в диапазоне длин волн от ультрафиолетового до дальнего инфракрасного.

Поскольку атипичный датчик освещенности связан с поглощением фотона чувствительным материалом, почти все датчики света делятся на два типа.Это:

  • Квантовые датчики
  • Тепловые датчики

Оптические датчики, подпадающие под категорию квантовых детекторов, обычно работают в ультрафиолетовом и среднем инфракрасном диапазоне электромагнитного спектра, а те, которые подпадают под тепловые детекторы, работают в среднем и дальнем инфракрасном диапазоне. диапазон ЭМ Спектра.

Фотоэлектрические и фотопроводящие устройства, такие как фотодиоды, фоторезисторы (также известные как светозависимые резисторы или LDR), фототранзисторы и т. Д. Являются примерами твердотельных i.е. полупроводниковые датчики света типа квантовых детекторов.

Что такое фототранзистор?

Прежде чем разбираться в фототранзисторах, давайте сначала вкратце разберемся, что такое фотодиод. Проще говоря, фотодиод – это оптический чувствительный диод с PN переходом, но в состоянии обратного смещения, так что ток очень низкий.

Когда фотон с достаточной энергией (следовательно, зависит от длины волны света) попадает в фотодиод, электрон освобождается с энергией, чтобы пройти через барьер i.е. при обратном смещении, когда свет попадает на переход, происходит увеличение тока.

Имея это в виду, фототранзистор – это устройство фотоперехода (то есть фотодиод), которое похоже на обычный транзистор, за исключением того, что у него есть светочувствительный базовый терминал (или, если быть точным, коллектор – базовый переход).

Другими словами, фототранзистор можно рассматривать как фотодиод с усилителем тока. Фототранзистор преобразует фотоны в заряд напрямую, как фотодиод, и в дополнение к этому фототранзистор также обеспечивает усиление по току.

Символ фототранзистора показан ниже.

Как и обычные транзисторы, фототранзисторы также имеют большой коэффициент усиления, но главное отличие заключается в размере перехода база-коллектор. В фототранзисторах размер перехода база-коллектор больше, поскольку это светочувствительная область датчика.

Больший размер перехода приводит к значительно большей емкости перехода, и в результате фототранзисторы имеют более низкую частотную характеристику, чем фотодиоды, несмотря на высокое усиление.

Принцип работы

Принцип работы фототранзистора аналогичен фотодиоду в сочетании с усилительным транзистором. Свет, падающий на базу фототранзистора, вызывает небольшой ток.

Этот ток затем усиливается нормальным действием транзистора, что приводит к значительному увеличению. Обычно по сравнению с аналогичным фотодиодом фототранзистор может обеспечивать ток, в 50-100 раз превышающий ток фотодиода.

Характеристики фототранзистора

Поскольку фототранзисторы в основном представляют собой биполярные NPN-транзисторы с большим переходом база-коллектор, характеристики фототранзистора аналогичны характеристикам простого биполярного транзистора.

Фототранзисторы бывают двух- или трехвыводными. В двухпроводном фототранзисторе клемма базы электрически недоступна, и устройство полностью зависит от света.

Клемма коллектора обычно имеет более высокий потенциал, чем эмиттер, чтобы вызвать обратное смещение на переходе база-коллектор. Когда на фототранзистор не попадает свет, от коллектора к эмиттеру течет небольшой ток утечки, известный как темновой ток.

Когда на клемму базы падает достаточно света, создается базовый ток, который пропорционален интенсивности света.

Базовый ток запускает процесс усиления, и течет ток коллектора с высоким коэффициентом усиления. На следующем изображении показана кривая токовых характеристик коллектора.

Из приведенной выше кривой видно, что по мере увеличения интенсивности света ток коллектора также увеличивается.

Как упоминалось ранее, фототранзисторы также доступны в виде трехполюсников. В этом случае использование базового терминала необязательно.При использовании он действует как обычный BJT, а когда не используется, он действует как фототранзистор.

Свойства фототранзисторов

При выборе фототранзистора необходимо учитывать несколько факторов или свойств, чтобы фототранзистор мог использоваться наилучшим образом.

Вот некоторые из важных свойств:

  • Длина волны
  • Линейность
  • Чувствительность
  • Время отклика
  • Размер
  • Стоимость

Давайте немного обсудим эти соображения.

Как упоминалось ранее, только фотон определенной энергии может возбуждать электроны, а это означает, что длина волны света является важным фактором. Фототранзисторы обычно имеют определенный диапазон длин волн, который они могут воспринимать.

Еще одним важным свойством фототранзистора является линейность выхода. Насколько линейно мощность изменяется в зависимости от интенсивности света, является важным соображением.

Чувствительность фототранзистора – это отношение выходного сигнала к входной интенсивности падающего света.Кроме того, время отклика будет зависеть от того, насколько быстро выходной сигнал реагирует на изменения интенсивности света.

Следует учитывать еще две вещи, которые не имеют ничего общего с характеристиками фототранзистора, то есть его размер и стоимость.

Примеры схем с использованием фототранзисторов

Реле со световым управлением с использованием фототранзистора

Когда на фототранзистор Q1 попадает достаточно света, он включается и подает базовый ток на транзистор Q2.В результате Q2 включается, а реле находится под напряжением.

Реле, управляемое темнотой, с использованием фототранзистора

С небольшими изменениями в схеме реле, управляемой светом, вы можете реализовать реле, управляемое темнотой. Когда темно или интенсивность света меньше, фототранзистор выключен, и это позволяет правильно смещать транзистор Q2. В результате он включается и включает реле.

Сигнализация прерывания света

Используя фототранзисторы, вы можете реализовать простую систему сигнализации, как показано выше.Когда свет падает на фототранзистор, что является обычным случаем, он включается, и затвор SCR находится в НИЗКОМ состоянии. Следовательно, SCR остается выключенным.

Когда свет прерывается, в случае проникновения фототранзистор выключается, и это обеспечивает достаточный потенциал на затворе SCR, чтобы включить его. В результате активируется аварийный сигнал, и его можно сбросить с помощью переключателя.

Применение фототранзисторов

  • Управление освещением
  • Системы сигнализации
  • Индикаторы уровня
  • Датчики приближения
  • Считыватели перфокарт
  • Энкодеры

Принцип работы оптопар – Inst Tools

Что такое оптопара?

Оптрон – это оптический канал связи, который соединяет две цепи через этот канал.

Оптический канал находится внутри микросхемы. Светоизлучающий диод внутри микросхемы светит на фотодиод, фототранзистор или другое фотоустройство.

Когда фотоустройство видит засветку, сопротивление между его выводами уменьшается. Это уменьшенное сопротивление может активировать другую цепь.

Анимация работы оптопары

В оптроне используется светодиод, оптически связанный с фотодиодом или фототранзистором в одном корпусе.

Два основных типа – это светодиод на фотодиод и светодиод на фототранзистор, как показано на рисунке.

Принцип оптопары

Оптопары

используются для изоляции участков цепи, несовместимых с точки зрения требуемых уровней напряжения или токов.

Например, они используются для защиты пациентов больниц от электрического шока, когда они подключены к приборам для мониторинга или другим устройствам.

Они также используются для изоляции слаботочных цепей управления или сигнальных цепей от цепей питания с шумом или цепей двигателей и машин с более высоким током.

Примеры типовых упаковок показаны на рисунке.

Различные пакеты оптопар

Анимация работы оптопары

OptoCoupler Анимация

Светодиод требует от 1 мА до 15 мА.

Что это значит?

Если токоограничивающий резистор, подключенный к светодиоду, имеет высокое значение, через светодиод будет протекать только небольшой ток, и он не будет светиться очень ярко. (Светодиод находится внутри микросхемы – его не видно).

Транзистор не будет сильно включаться, и сопротивление между выводами коллектор-эмиттер будет достаточно ВЫСОКИМ.Выходное напряжение останется достаточно ВЫСОКИМ.

По мере увеличения тока через светодиод (ток ограничивающего резистора уменьшается), светодиод будет светиться ярче, а транзистор будет включаться сильнее. Выходное напряжение на диаграмме выше уменьшится.

Если ток через светодиод может возрастать и падать, выходное напряжение схемы выше будет падать и расти.

Если ток через светодиод мгновенно изменится с нуля до, скажем, 15 мА, выходной сигнал изменится с ВЫСОКИЙ на НИЗКИЙ.Это принцип ПЕРЕКЛЮЧЕНИЯ или передачи ЦИФРОВОГО СИГНАЛА.

Основы фоторезистора: типы, принципы и применение

В статье представлены основные характеристики и принципы фоторезистора, включая принцип работы и принцип конструкции. Есть три типа фоторезисторов: ультрафиолетовые фоторезисторы, инфракрасные фоторезисторы, фоторезисторы видимого света. Схема регулирования яркости и выключатель света – два применения фоторезистора.

Аннотации

Существует три типа фоторезисторов: ультрафиолетовые фоторезисторы, инфракрасные фоторезисторы, фоторезисторы видимого света.Обычно используемые материалы – сульфид кадмия, селен, сульфид алюминия, сульфид свинца и сульфид висмута. Принцип работы фоторезистора основан на внутреннем фотоэффекте. Фоточувствительные резисторы формируются путем установки электродных выводов на обоих концах полупроводникового светочувствительного материала и их заключения в кожух трубки с прозрачным окном. Схема регулирования яркости и выключатель света – два применения фоторезистора.

Каталог

I.Введение

Рис. 1. Фоторезистор

Фоторезистор также известен как светозависимый резистор (сокращенно LDR) или фотопроводник. Обычно используемые материалы – сульфид кадмия, селен, сульфид алюминия, сульфид свинца и сульфид висмута. Эти производственные материалы имеют особенность, заключающуюся в том, что значение сопротивления быстро уменьшается при облучении светом определенной длины волны. Это связано с тем, что все носители, генерируемые светом, участвуют в проводимости и совершают дрейфовое движение под действием внешнего электрического поля.Электроны перемещаются к положительному полюсу источника питания, а отверстия перемещаются к отрицательному полюсу источника питания, так что сопротивление фоторезистора быстро уменьшается.

Фоторезистор – это специальный резистор, изготовленный из полупроводниковых материалов, таких как сернистые или селенизированные прокладки, принцип работы которого основан на внутреннем фотоэлектрическом эффекте. Чем сильнее свет, тем ниже значение сопротивления. По мере увеличения интенсивности света значение сопротивления быстро уменьшается, а значение яркого сопротивления может составлять всего 1 кОм или меньше.Фоторезистор очень чувствителен к свету. Когда нет света, фоторезистор находится в состоянии высокого сопротивления, а сопротивление в темноте обычно составляет до 1,5 МОм.

Фоторезистор – это тип резистора, в котором используется фотопроводящий эффект полупроводника для изменения значения сопротивления в зависимости от интенсивности падающего света. Его еще называют фотопроводящим детектором; уменьшается интенсивность падающего света, затем уменьшается сопротивление; падающий свет слабый, а сопротивление возрастает.Есть еще фоторезистор. Когда падающий свет слабый, сопротивление уменьшается; падающий свет сильный, сопротивление увеличивается.

Фоторезисторы обычно используются для измерения освещенности, управления освещением и фотоэлектрического преобразования (преобразования изменений света в изменения электричества). Обычно используемый фоторезистор представляет собой фоторезистор из сульфида кадмия, который изготовлен из полупроводникового материала. Чувствительность фоторезистора к свету (то есть его спектральные характеристики) очень близка к реакции человеческого глаза на видимый свет (0.4 ~ 0,76) мкм. При проектировании схемы управления светом в качестве источника управляющего света используется свет ламп накаливания (маленькие электрические шарики) или естественный свет, что значительно упрощает конструкцию.

II. Технические характеристики

Как правило, фоторезистор выполнен в виде листа для поглощения большего количества световой энергии. Когда он облучается светом, электронно-дырочная пара возбуждается в полупроводниковой пластине (светочувствительный слой), чтобы участвовать в проводимости и увеличивать ток в цепи.Чтобы получить высокую чувствительность, электрод фоторезистора часто использует гребенчатый рисунок, который формируется путем осаждения из паровой фазы металла, такого как золото или индий, на фотопроводящую пленку под определенной маской. Структура обычного фоторезистора показана ниже.

Рисунок 2. Структура обычного фоторезистора

Фоторезистор обычно состоит из светочувствительного слоя, стеклянной подложки (или полимерной влагостойкой пленки) и электродов. Фоторезисторы обозначаются на схеме буквами «R» или «RL», «RG».

Фоторезистор изготовлен из сульфида кадмия (CdS). Он разделен на корпус из эпоксидной смолы и металлический корпус, оба типа проволоки (тип DIP). Фоторезисторы в эпоксидной упаковке делятся на Ø3 мм, Ø4 мм, Ø5 мм, Ø7 мм, Ø11 мм, Ø12 мм, Ø20 мм, Ø25 мм в зависимости от диаметра керамической подложки.

III. Параметры и характеристики

По спектральным характеристикам фоторезистор можно разделить на три типа фоторезисторов: ультрафиолетовые фоторезисторы, инфракрасные фоторезисторы и фоторезисторы видимого света.

1. Основные параметры

(1) Фототок и яркое сопротивление. При определенном приложенном напряжении протекающий ток называется фототоком при облучении светом, а отношение приложенного напряжения к фототоку называется ярким сопротивлением, которое обычно выражается как «100LX».

(2) Темновой ток и темновое сопротивление. При определенном приложенном напряжении фоторезистор называется темновым током, когда нет света. Отношение приложенного напряжения к темновому току называется темновым сопротивлением и обычно выражается как «0LX» (интенсивность света измеряется с помощью измерителя освещенности, и его единица измерения – lax lx).

(3) Чувствительность. Чувствительность относится к относительному изменению значения сопротивления (темновое сопротивление), когда фоторезистор не освещается светом, и значения сопротивления (яркого сопротивления) при освещении светом.

(4) Спектральный отклик. Спектральный отклик также называется спектральной чувствительностью, которая относится к чувствительности фоторезистора при облучении монохроматическим светом с разными длинами волн. Если вы построите график чувствительности на разных длинах волн, вы можете получить кривую спектрального отклика.

(5) Характеристики освещения. Характеристики освещения относятся к характеристикам выходного электрического сигнала фоторезистора в зависимости от освещения. Из кривой световой характеристики фоторезистора видно, что с увеличением интенсивности света значение сопротивления фоторезистора начинает быстро уменьшаться. При дальнейшем увеличении интенсивности света изменение значения сопротивления уменьшается, а затем постепенно становится плавным. В большинстве случаев эта характеристика нелинейна.

(6) Вольт-амперная характеристика. При определенном освещении соотношение между напряжением и током, приложенным к фоторезистору, называется вольт-амперной характеристикой. При заданном смещении, чем больше интенсивность света, тем больше фототок. При определенной интенсивности света, чем больше приложенное напряжение, тем больше фототок. Однако напряжение нельзя увеличивать бесконечно, потому что любой фоторезистор ограничен номинальной мощностью, максимальным рабочим напряжением и номинальным током.Превышение максимального рабочего напряжения и максимального номинального тока может привести к необратимому повреждению фоторезистора.

(7) Температурный коэффициент. На фотоэлектрический эффект фоторезистора сильно влияет температура. Некоторые фоторезисторы имеют более высокую фотоэлектрическую чувствительность при низких температурах, но более низкую чувствительность при высоких температурах.

(8) Номинальная мощность. Номинальная мощность относится к мощности, которую фоторезистор может потреблять в определенной линии. При повышении температуры потребляемая мощность уменьшается.

2. Частотные характеристики

Когда фоторезистор облучается импульсным светом, фототоку требуется время для достижения стабильного значения. После выключения света фототок не сразу становится нулевым, что является характеристикой задержки фоторезистора. Из-за разной светочувствительности и характеристик задержки сопротивления разных материалов их частотные характеристики также различаются. Частота использования сульфида свинца намного выше, чем у сульфида кадмия, но задержка большинства фоторезисторов относительно велика, поэтому его нельзя использовать в приложениях, требующих быстрого отклика.

IV. Как работает фоторезистор?

1. Принцип работы

Принцип работы фоторезистора основан на внутреннем фотоэлектрическом эффекте. Фоточувствительные резисторы формируются путем установки электродных выводов на обоих концах полупроводникового светочувствительного материала и их заключения в кожух трубки с прозрачным окном. Чтобы повысить чувствительность, два электрода часто имеют форму гребешка. Материалы, используемые для изготовления фоторезисторов, в основном представляют собой полупроводники, такие как сульфиды, селениды и теллуриды металлов.Покрытие, напыление, спекание и другие методы используются для изготовления очень тонкого фоторезистора и омического электрода в форме гребешка на изолирующей подложке. Выводы соединены и запломбированы в герметичном корпусе со светопропускающим зеркалом, чтобы влага не влияла на его чувствительность. После того, как падающий свет исчезнет, ​​пары электрон-дырка, генерируемые фотонным возбуждением, рекомбинируют, и сопротивление фоторезистора вернется к исходному значению. Когда напряжение подается на металлические электроды на обоих концах фоторезистора, через него проходит ток.Когда фоторезистор облучается светом с определенной длиной волны, ток будет увеличиваться с увеличением интенсивности света, тем самым достигая фотоэлектрического преобразования. Фоторезистор не имеет полярности и представляет собой чисто резистивное устройство. Его можно использовать как с постоянным, так и с переменным напряжением. Проводимость полупроводника зависит от количества носителей в зоне проводимости полупроводника.

Рисунок 3. Схема фоторезистора

2. Принцип конструкции

Фоторезисторы – это специальные резисторы, изготовленные из вулканизированных или полупроводниковых материалов.Поверхность также покрыта влагостойкой смолой, обладающей фотопроводящим эффектом. Принцип работы фоторезистора основан на внутреннем фотоэлектрическом эффекте, то есть выводы электродов установлены на обоих концах полупроводникового светочувствительного материала, а фоторезистор сформирован путем его упаковки в корпус трубки с прозрачным окном. Для повышения чувствительности два электрода часто имеют гребенчатую форму.

Проводимость полупроводника зависит от количества носителей в зоне проводимости полупроводника.Когда фоторезистор освещен, электроны в валентной зоне поглощают энергию фотонов, а затем переходят в зону проводимости и становятся свободными электронами. При этом образуются дыры. Появление электронно-дырочной пары снижает удельное сопротивление. Чем сильнее свет, тем больше фотогенизированных электронно-дырочных пар и тем ниже значение сопротивления. Когда на фоторезистор подается напряжение, ток, протекающий через фоторезистор, увеличивается с увеличением освещенности.Падающий свет исчезает, пара электрон-дырка постепенно рекомбинирует, сопротивление постепенно возвращается к исходному значению, а ток постепенно уменьшается.

Фоторезистор очень чувствителен к свету. Когда нет света, фоторезистор находится в состоянии высокого сопротивления, а сопротивление в темноте обычно составляет до 1,5 МОм. Когда есть свет, в материале возбуждаются свободные электроны и дырки, и величина его сопротивления уменьшается. По мере увеличения интенсивности света значение сопротивления быстро уменьшается, а значение яркого сопротивления может составлять всего 1 кОм или меньше.

Световые характеристики фоторезистора в большинстве случаев нелинейны, линейны только в небольшом диапазоне, а значение сопротивления фоторезистора имеет большой разброс (изменение сопротивления, неравномерность большого диапазона).

Чувствительность фоторезистора относится к относительному изменению значения сопротивления (темновое сопротивление) фоторезистора, когда он не подвергается воздействию света, и значения сопротивления (яркого сопротивления), когда он подвергается воздействию света. Отношение темнового сопротивления к световому сопротивлению фоторезистора составляет около 1500: 1.Чем больше сопротивление темноте, тем лучше. Подайте на фоторезистор напряжение смещения постоянного или переменного тока. Фоторезистор MG подходит для видимого света. Он в основном используется в различных схемах автоматического управления, фотоэлектрическом подсчете, фотоэлектрическом слежении, электрических лампах управления освещением, автоматическом экспонировании камер и схемах автоматического управления яркостью цветных телевизоров.

В. Классификация

Разделенные по полупроводниковому материалу: собственный фоторезистор, фоторезистор с примесью.Последний имеет стабильную работу и хорошие характеристики, поэтому используется чаще всего.

По спектральным характеристикам фоторезистор можно разделить на три типа фоторезисторов:

1. Ультрафиолетовый фоторезистор: более чувствительный к ультрафиолетовому свету, в том числе сульфид кадмия, фоторезисторы из селенида кадмия и т. Д.

2. Инфракрасный фоторезистор : в основном сульфид свинца, теллурид свинца, селенид свинца. Фоточувствительные резисторы, такие как антимонид индия, широко используются в наведении ракет, астрономическом обнаружении, бесконтактном измерении, обнаружении повреждений человека, инфракрасной спектроскопии, инфракрасной связи и другой защите, научных исследованиях, промышленном и сельскохозяйственном производстве.

3. Фоторезистор видимого света: включая фоторезисторы на основе селена, сульфида кадмия, селенида кадмия, теллурида кадмия, арсенида галлия, кремния, германия и сульфида цинка. Он в основном используется в различных фотоэлектрических системах управления, таких как фотоэлектрическое автоматическое открытие и закрытие порталов, автоматическое включение и выключение навигационных огней, уличные фонари и другие системы освещения, устройства автоматического водоснабжения и автоматической остановки воды, механические устройства автоматической защиты, и «детекторы положения», устройство автоматического экспонирования камеры, фотоэлектрический счетчик, дымовая сигнализация, фотоэлектрическая система слежения и т. д.

VI. Заявка

Фоторезистор представляет собой полупроводниковый светочувствительный прибор. Помимо высокой чувствительности, быстрой скорости отклика, хороших спектральных характеристик и хорошей стабильности значения r, он может поддерживать высокую стабильность и надежность в суровых условиях с высокой температурой и влажностью, что может широко использоваться в камерах, солнечных садовых светильниках, фонари для газонов, детекторы валют, кварцевые часы, музыкальные чашки, подарочные коробки, мини-ночные светильники, светоакустические переключатели управления, автоматические переключатели уличных фонарей и различные игрушки для управления светом, управление освещением, лампы и другие автоматические переключатели света Поле управления.Ниже приведены несколько типичных схем применения.

1. Схема диммирования

Рис. 4. Типичная схема регулирования яркости

На рис. 4 представлена ​​типичная схема регулирования яркости. Его принцип работы: когда окружающий свет становится слабым, сопротивление фоторезистора увеличивается, так что разделенное напряжение, приложенное к конденсатору C, увеличивается, а затем достигается цель увеличения напряжения на лампе.И наоборот, если окружающий свет становится ярче, значение сопротивления RG будет уменьшаться, что приведет к уменьшению угла проводимости тиристора, и одновременно уменьшится напряжение на лампе.

Выпрямительный мост, указанный в приведенной выше схеме, должен представлять собой пульсирующее напряжение постоянного тока, которое не может быть отфильтровано конденсатором в плавное постоянное напряжение.

2. Переключатель света

Существует множество форм схем переключателей с управлением по свету и выходом с релейным управлением, в которых в качестве основных компонентов используются фоторезисторы, такие как самоблокирующееся яркое возбуждение, темновое возбуждение, прецизионное световое возбуждение и темное возбуждение.Ниже приведены несколько типовых схем.

Рисунок 5. Простая схема переключения реле с возбуждением в темноте

На рисунке 5 показана простая схема переключения реле с возбуждением в темноте. Его принцип работы: когда освещенность падает до заданного значения, VT1 включается из-за повышения сопротивления фоторезистора, ток возбуждения VT2 заставляет реле работать, нормально открытый контакт замыкается, а нормально закрытый контакт открывается для управления внешней цепью.

Рис. 6. Прецизионная схема реле с выдержкой времени с выдержкой времени при возбуждении в темноте

На рис. 6 показана схема реле с прецизионным реле с выдержкой времени при возбуждении в темноте. Его принцип работы: когда освещенность падает до установленного значения, потенциал инвертирующего вывода микросхемы операционного усилителя увеличивается из-за увеличения сопротивления фоторезистора, и его выход возбуждает VT для включения. Ток возбуждения ТН заставляет реле работать, а нормально открытый контакт замыкается.Нормально замкнутый контакт размыкается для управления внешней цепью.

VII. Преимущества и недостатки

1. Преимущество

(1) Внутренний фотоэлектрический эффект не имеет ничего общего с электродом (связан только с фотодиодом), то есть можно использовать источник питания постоянного тока;

(2) Чувствительность зависит от материала полупроводника и длины волны падающего света;

(3) с эпоксидным покрытием, хорошая надежность, малый объем, малая чувствительность, быстрый отклик, хорошие спектральные характеристики.

2. Недостаток

(1) Плохая линейность фотоэлектрического преобразования при сильном освещении;

(2) Процесс фотоэлектрической релаксации длится дольше. То есть после облучения светом фотопроводимость полупроводников постепенно увеличивается со временем освещения и достигает установившегося значения через некоторый период времени. После того, как свет погаснет, фотопроводимость постепенно снижается;

(2) Частотная характеристика (способность устройства обнаруживать световые сигналы, которые быстро меняются) очень низкая;

(2) На него сильно влияет температура, и скорость отклика невысока.Между мс и с на время задержки влияет сила падающего света (фотодиод не имеет этого недостатка, фотодиод имеет более высокую чувствительность, чем фоторезистор).

Ⅷ. Заключение

Фоторезистор является важным элементом фотоэлектрического преобразования. С быстрым развитием электронных информационных технологий и постоянным повышением требований к рабочим характеристикам электронных компонентов автоматизация производства фоторезисторов значительно ускорит развитие индустриализации.

Рекомендуемый артикул:

Что такое переменный резистор?

Как работают реле? – Объясни это!

Как работают реле? – Объясни это! Рекламное объявление

Вы можете этого не осознавать, но вы постоянно начеку, остерегаетесь угроз, готовы действовать в любой момент. Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию.Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока – достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех машинах и электрических приборы, где датчики готовы включить или за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет намного большему току проходить через пружинные контакты для питания элемента, который нагревает горячую воду.

Что такое реле?

Рисунок: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака слышал шум, он начинал лаять и будил большую собаку, которая могла атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле – это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле – электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только небольшие электрические токи. Но часто они нужны нам для управления более крупными устройствами, которые используют большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность течет через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что по умолчанию через них протекает ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Наиболее распространены нормально разомкнутые реле.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, но немного по-другому. Слева – входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический выключатель и активирует вторую, выходную цепь (с правой стороны).Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи течет небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. Выходная цепь управляет сильноточным прибором, например лампой или электродвигатель.
Рекламные ссылки

Реле на практике

Фото: Еще один взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа.Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от температуры в помещении изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но он будет производить только небольшие электрические токи – слишком малы, чтобы приводить в действие электродвигатель в большой большой поклонник. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают. В Например, для оборудования электростанций и линий электропередачи вы найдете защитных реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но существует довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или снабжения).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в колледже Нью-Джерси, Генри использовал небольшой электромагнит, чтобы включать и выключать более крупный, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым он работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Соединенные Штаты. Позднее реле использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле.Транзисторы – это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов стимулировала компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле – и такие пионеры, как Джозеф Генри – тоже заслуживают похвалы!

Рекламные ссылки

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткое описание того, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофт Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о вещах, которые я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле – отличное практическое введение. Вы можете открыть реле и поэкспериментировать с его внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После открытия краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В последующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • «Телефонные проекты для злого гения» Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Работа, преимущества и их применение

Разработка реле была начата в период 1809 года. Как часть изобретения электрохимического телеграфа, электролитическое реле было обнаружено Самуэлем в 1809 году. Впоследствии это изобретение было утверждено ученым Генри в 1835 году, чтобы изготовил импровизированный вариант телеграфа, а затем разработал его в 1831 году.В то время как в 1835 году Дэви полностью открыл реле, но первоначальные патентные права были даны Самуэлем в 1840 году на первое изобретение электрического реле. Подход этого устройства выглядел так же, как цифровой усилитель, таким образом воспроизводя телеграфный сигнал и позволяя распространяться на большие расстояния. И эта статья дает четкое объяснение того, что такое реле, различные типы реле, работа и многие другие связанные концепции.


Что такое реле?

Реле

обычно используются там, где требуется регулировать цепь с помощью отдельного сигнала минимальной мощности, или там, где необходимо регулировать несколько цепей с помощью одного сигнала.Первоначально реле использовались в телеграфных цепях увеличенной длины, таких как ретрансляторы сигналов, поскольку они усиливают волну, которая принимается и передается в другие цепи. Основное применение реле было в телефонных станциях и первых версиях компьютеров.

Реле являются первичной защитой, а также переключающими устройствами в большинстве процессов управления или оборудования. Все реле реагируют на одну или несколько электрических величин, таких как напряжение или ток, так что они размыкают или замыкают контакты или цепи.Реле – это переключающее устройство, поскольку оно работает, чтобы изолировать или изменить состояние электрической цепи из одного состояния в другое.

Поскольку реле обеспечивает защиту цепи от повреждений. Каждое реле состоит из трех важнейших компонентов, которые рассчитываются, сравниваются и управляются. Вычисляемому компоненту известно изменение фактического измерения, а компонент сравнения оценивает фактическое значение с таким же значением заранее выбранного реле.А управляющий компонент обрабатывает быстрое изменение измеренной емкости, например, замыкание текущей функциональной цепи.

Реле повторного включения

используются для подключения различных компонентов и устройств в сети системы, таких как процесс синхронизации, и для восстановления различных устройств вскоре после исчезновения любой электрической неисправности, а затем для подключения трансформаторов и фидеров к линейной сети. Регулирующие реле – это переключатели, которые контактируют таким образом, что напряжение повышается, как в случае трансформаторов с переключением ответвлений.Вспомогательные контакты используются в автоматических выключателях и другом защитном оборудовании для увеличения числа контактов. Реле контроля контролируют состояние системы, например, направление питания, и соответственно генерируют аварийный сигнал. Их также называют реле направления.

В реле общего типа используется электромагнит для размыкания и замыкания контактов, тогда как в других типах подходов, таких как твердотельные реле, они используют свойства полупроводника для управления, независимо от подвижных компонентов. .Реле с калиброванными свойствами и, в некоторых случаях, различные функциональные катушки используются для защиты систем электрических цепей от токов перегрузки. В современных энергосистемах эти операции выполняются цифровыми устройствами, которые называются реле защитного типа.

Твердотельные реле

Различные типы реле

В зависимости от принципа действия и конструктивных особенностей реле бывают разных типов, например, электромагнитные реле, тепловые реле, реле переменной мощности, многомерные реле и т. Д., С различными номинальными характеристиками, размерами и областями применения.Классификация или типы реле зависят от функции, для которой они используются.

Некоторые категории включают реле защиты, повторного включения, регулирования, вспомогательные реле и реле контроля. Защитные реле постоянно контролируют следующие параметры: напряжение, ток и мощность; и если эти параметры нарушают установленные пределы, они генерируют сигнал тревоги или изолируют эту конкретную цепь. Эти типы реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.

Различные типы реле

В общем, классификация реле зависит от электрической мощности, которая активируется током, мощностью, напряжением и многими другими величинами.Классификация основана на механической мощности, активируемой скоростью истечения газа или жидкости, давлением. Тогда как на основе теплоемкости, активируемой мощностью нагрева, а другие величины – акустические, оптические и другие.

Электромагнитные реле различных типов

Эти реле состоят из электрических, механических и магнитных компонентов и имеют рабочую катушку и механические контакты. Следовательно, когда катушка активируется системой питания, эти механические контакты размыкаются или замыкаются.Тип питания может быть переменным или постоянным током. Эти электромагнитные реле далее классифицируются как

.
  • Реле постоянного и переменного тока
  • Тип аттракциона
  • Индукционный тип
Реле постоянного и переменного тока

Реле переменного и постоянного тока работают по тому же принципу, что и электромагнитная индукция, но конструкция несколько отличается и также зависит от области применения, для которой выбраны эти реле. Реле постоянного тока используются с диодом свободного хода для обесточивания катушки, а реле переменного тока используют многослойные сердечники для предотвращения потерь на вихревые токи.

Очень интересный аспект переменного тока состоит в том, что за каждый полупериод направление подачи тока меняется; следовательно, для каждого цикла катушка теряет свой магнетизм, поскольку нулевой ток в каждом полупериоде заставляет реле непрерывно замыкать и размыкать цепь. Итак, чтобы предотвратить это – дополнительно, одна заштрихованная катушка или другая электронная схема помещается в реле переменного тока, чтобы обеспечить магнетизм в положении нулевого тока.

Электромагнитные реле аттракционного типа

Эти реле могут работать как с переменным, так и с постоянным током и притягивать металлический стержень или кусок металла, когда на катушку подается питание.Это может быть плунжер, притягиваемый к соленоиду, или якорь, притягиваемый к полюсам электромагнита, как показано на рисунке. У этих реле нет временных задержек, поэтому они используются для мгновенного срабатывания. Существует еще несколько разновидностей аттракциона электромагнитного реле , а именно:

  • Сбалансированная стопка – Здесь две измеряемые величины связаны из-за того, что генерируемое электромагнитное давление изменяется вдвое по сравнению с количеством ампер-витков.Доля функционального тока для этого типа реле очень минимальна. Реле имеет тенденцию выходить за пределы допустимого диапазона, когда устройство настроено на работу в быстром режиме.
  • Шарнирный якорь – Здесь можно повысить чувствительность реле для работы с постоянным током, вставив постоянный магнит. Это также называется реле поляризованного движения.

Это различных типов электромагнитных реле .

Реле индукционного типа

Они используются только в качестве защитных реле в системах переменного тока и могут использоваться с системами постоянного тока.Приводная сила для движения контакта создается движущимся проводником, который может быть диском или чашей, за счет взаимодействия электромагнитных потоков из-за токов короткого замыкания.

Индукционное реле

Они бывают нескольких типов, например, с экранированным полюсом, ватт-часами и индукционными чашками, и в основном используются в качестве направленных реле в защите энергосистемы, а также для высокоскоростных коммутационных устройств. В зависимости от конструкции индукционные реле классифицируются как:

.
  • Затененный полюс – Структурированный полюс обычно активируется потоком тока в единственной катушке, которая намотана на магнитную структуру с воздушным зазором.Нестабильности воздушного зазора, создаваемые регулирующим током, разделяются на два потока, смещаемые заштрихованным полюсом и во времени-пространстве. Это затемненное кольцо изготовлено из медного материала, окружающего каждую часть мачты.
  • Двойная обмотка, также называемая ваттметром. – Этот тип реле включает в себя электромагнит E и U-образной формы, имеющий бездисковый вращающийся между электромагнитами. Фазовый сдвиг, который находится между потоками, генерируемыми электромагнитом, достигается за счет развиваемого потока двух электромагнитов, которые имеют различные значения индуктивности сопротивления для обеих систем контуров.
  • Индукционная чашка – Это основано на теории электромагнитной индукции и так называемое реле индукционной чашки. Устройство состоит из двух или более электромагнитов, которые активируются катушкой реле. Катушка, которая окружает электромагнит, создает вращающееся магнитное поле. Из-за этого вращающегося магнитного поля в чашке будет индукция тока, и чашка сможет вращаться. Текущее направление вращения аналогично направлению вращения чашки.
Магнитные фиксирующие реле

В этих реле используется постоянный магнит или детали с высоким коэффициентом передачи, чтобы якорь оставался в той же точке, в которой наэлектризована катушка, когда источник питания катушки убирается. Реле с защелкой состоит из минимальной металлической полосы, которая входит между двумя краями.

Блокировочные реле

Переключатель либо прикреплен, либо намагничен на одном конце небольшого магнита. Другая сторона прикреплена к небольшому проводу, который называется соленоидами.Переключатель снабжен одним входом и двумя выходными секциями по краям. Это можно использовать для переключения схемы в положения ВКЛ и ВЫКЛ. Обозначение реле с фиксацией показано следующим образом:

Символ фиксирующего реле

Твердотельные реле

Solid State использует твердотельные компоненты для выполнения операции переключения без перемещения каких-либо частей. Поскольку требуемая энергия управления намного ниже по сравнению с выходной мощностью, которая должна регулироваться этим реле, это приводит к увеличению мощности по сравнению с электромагнитными реле.Они бывают разных типов: ТТР с трансформаторной связью, ТТР с фотосвязью и так далее.

Твердотельные реле

На приведенном выше рисунке показан SSR с фотосвязью, в котором сигнал управления подается светодиодом и обнаруживается светочувствительным полупроводниковым устройством. Выходной сигнал этого фотодетектора используется для запуска затвора TRIAC или SCR, который переключает нагрузку.

В твердотельных реле с трансформаторной связью минимальное количество постоянного тока подается на первичную обмотку трансформатора с использованием преобразователя постоянного тока в переменный.Затем подаваемый ток преобразуется в переменный ток и повышается, чтобы SSR работал вместе со схемой запуска. Степень изоляции между выходной и входной секциями зависит от конструкции трансформатора.

В то время как в сценарии твердотельного устройства с фотосвязью используется светочувствительное SC-устройство для выполнения функции переключения. На светодиод подается регулируемый сигнал, который заставляет светочувствительный компонент переходить в режим проводимости за счет обнаружения света, излучаемого светодиодом.Изоляция, создаваемая SSR, сравнительно больше по сравнению с изоляцией трансформаторного типа из-за теории фотодетектирования.

В основном, реле SSR имеют более высокую скорость переключения, чем реле электромеханического типа. Кроме того, отсутствуют подвижные компоненты, срок их службы больше, а уровень шума минимален.

Гибридное реле

Эти реле состоят из электромагнитных реле и электронных компонентов. Обычно входная часть содержит электронную схему, которая выполняет выпрямление и другие функции управления, а выходная часть включает электромагнитное реле.

Было известно, что в реле твердотельного типа больше мощности тратится в виде теплового фена, электромагнитное реле имеет проблему сгибания контактов. Чтобы избавиться от этих недостатков в твердотельных и электромагнитных реле, используется гибридное реле. В гибридном реле одновременно работают реле EMR и SST.

Твердотельное устройство принимает ток нагрузки, что устраняет проблему дуги. Затем система управления включает катушку в ЭМИ и контакт замыкается.Когда контакт в электромагнитном реле установлен, то регулирующий вход твердотельного реле вынимается. Это реле также снижает проблему перегрева.

Тепловое реле

Эти реле основаны на тепловом воздействии, что означает – повышение температуры окружающей среды от предельного значения заставляет контакты переключаться из одного положения в другое. Они в основном используются для защиты двигателей и состоят из биметаллических элементов, таких как датчики температуры, а также элементов управления.Реле тепловой перегрузки являются лучшими примерами таких реле.

Геркон

Герконовые реле

состоят из пары магнитных полосок (также называемых язычковыми), помещенных в стеклянную трубку. Этот язычок действует как якорь и как контактный нож. Магнитное поле, приложенное к катушке, наматывается на эту трубку, заставляя эти язычки двигаться так, что выполняется операция переключения.

Герконовые реле

По размерам реле подразделяются на микроминиатюрные, сверхминиатюрные и миниатюрные.Также по конструкции эти реле классифицируются как герметичные, герметичные и реле открытого типа. Кроме того, в зависимости от рабочего диапазона нагрузки, реле бывают микро-, малой, средней и высокой мощности.

Реле

также доступны с различными конфигурациями контактов, такими как реле с 3, 4 и 5 контактами. Способы работы этих реле показаны на рисунке ниже. Переключающие контакты могут быть типа SPST, SPDT, DPST и DPDT. Некоторые из реле являются нормально разомкнутыми (NO), а другие – нормально замкнутыми (NC).

Конфигурация контактов реле

Дифференциальное реле

Эти реле работают, когда изменение вектора между двумя или более одинаковыми электрическими величинами превышает указанный диапазон. В случае токового дифференциального реле оно функционирует, когда существует выходное соотношение между величиной и изменением фазы токов, принимаемых и выходящих из системы, которое необходимо защитить.

В общих функциональных условиях токи, принимаемые и выходящие из системы, будут иметь одинаковую фазу и величину, так что реле не будет работать.Принимая во внимание, что когда в системе возникает проблема, эти токи не будут иметь одинаковых величин и фаз.

Дифференциальное реле

Это реле будет иметь такое соединение, при котором колебания между входящими и выходящими токами протекают через функциональную катушку реле. Следовательно, катушка в реле активируется в состоянии неисправности из-за изменения величины тока. Таким образом, срабатывает реле и автоматический выключатель, и происходит отключение.

В дифференциальном реле один ТТ соединен с первичной обмоткой трансформатора, а другой ТТ – с вторичной обмоткой трансформатора. Реле связывает текущие значения с обеих сторон, и когда есть какая-либо дестабилизация в значении, реле будет работать.

Существуют дифференциальные реле тока, напряжения и смещения.

Различные типы реле в автомобильной промышленности

Это общий вид электрохимических реле, используемых в различных автомобилях, таких как легковые автомобили, фургоны, прицепы и грузовики.Они допускают минимальный ток для регулирования и обеспечивают работу большего количества токовых цепей в транспортных средствах. Они доступны во многих типах и размерах, некоторые из них:

Реле переключения

Это наиболее часто используемое автомобильное реле, имеющее пять контактов, которые имеют следующие электрические соединения:

  • Нормально открытый через 30 и 87 контактов
  • Нормально замкнутый через контакты 30 и 87a
  • Переключение через 30 и (87 и 87a)

Когда реле работает в режиме переключения, оно переключается с одной цепи на другую и возвращается в исходное состояние в зависимости от состояния катушки (ВЫКЛ. Или ВКЛ.).

Нормально разомкнутые реле

В качестве переключающего реле может быть подключение проводки как нормально разомкнутое, тогда как в этом типе оно имеет только четыре контакта, которые позволяют подключать проводку только одним способом, который является нормально разомкнутым.

Реле указателей поворота

Реле любого общего типа имеет 4 или 5 контактов, но в этом реле с мигалкой будет 2 или 3 контакта.

В двухконтактном реле указателя поворота один вывод подключается к цепи освещения, а другой – к питанию.В трехконтактном реле мигалки два контакта подключены к источнику питания и свету, а третий – к светодиодному индикатору, который указывает, что мигалка находится в состоянии ВКЛ. Несмотря на то, что название указывает на то, что это тип реле, некоторые из них ведут себя как выключатели.

Электромеханический указатель поворота

Этот тип автомобильного реле содержит печатную плату с конденсатором, парой диодов и одной катушкой для генерации вспышки такой же формы, как и у стандартного мигающего устройства.Эти реле обладают способностью управлять увеличенными нагрузками, обеспечивая более высокую производительность, чем у тепловых мигалок. Несмотря на то, что в этом типе подключено больше источников света, это оказывает минимальное влияние на результат.

Терморегулирующие аппараты

Большинство реле мигающих сигналов имеют терморегуляцию, например автоматические выключатели. Протекание тока через катушку мигающего устройства генерирует тепло, когда есть необходимое количество тепла, это вызывает отклонение контактов, тем самым вызывая размыкание контактов и прерывая прохождение тока.Когда имеется необходимое количество теплоотдачи, то отклонение контактов меняется на исходное, и снова будет протекать ток.

Этот процесс непрерывного размыкания и замыкания контактов генерирует мигающую диаграмму сигналов. Общее количество источников света, подключенных к термопробегающему устройству, показывает влияние на выходную мощность.

Светодиодные мигалки

Они полностью электронные по регулировке и функциональности. Они управляются минимальными твердотельными платами IC.Общее количество источников света, которые связаны со светодиодной мигалкой, не влияет на выход. Эти реле в основном предназначены для работы с минимальным током с использованием светодиодов без каких-либо проблем.

В дополнение к этому существует еще больше различных типов автомобильных реле , а именно:

  • В горшке
  • Парик-вагон
  • с юбкой
  • Время задержки
  • Двойной открытый контакт

Ртутное реле

Это подпадает под классификацию герконовых реле, в которых используется ртутный переключатель, а контакты в этом реле увлажняются ртутью.Этот металл снижает значение контактного сопротивления и снижает соответствующее падение напряжения. Повреждение оболочки может снизить характеристики проводимости для сигналов с минимальным значением тока.

Принимая во внимание, что для увеличения скорости нанесения ртуть устраняет функцию отскока контактов и предлагает почти быстрое замыкание цепи. Эти реле полностью зависят от положения и должны быть установлены в соответствии с требованиями проектировщика. Но с учетом вредных свойств жидкой ртути и ее стоимости, реле, контактирующие с ртутью, минимально используются в этих приложениях.

Повышенная скорость переключения в этих реле является дополнительным преимуществом. Капли ртути, присутствующие на каждом краю, объединяются, и приращение текущего значения по краям обычно учитывается как пикосекунды. Но в практических схемах это может регулироваться индуктивностью проводки и контактов.

Реле защиты от перегрузки

Электродвигатели

широко используются в различных приложениях, например, в двигателях с вращающимися инструментами.Поскольку двигатели немного дороги, более важно следить за тем, чтобы двигатели не подвергались повреждениям.

Для предотвращения повреждений необходимо использовать реле защиты от перегрузки. Реле защиты от перегрузки предотвращают выход из строя двигателя, наблюдая за величиной тока в двигателе, и, таким образом, разрывают цепь, когда происходит электрическая перегрузка или обнаруживается какое-либо повреждение фазы. Поскольку реле не дороже двигателей, они предлагают недорогой подход к защите двигателей.

Существуют различные типы реле защиты от перегрузки, и немногие из них включают электромеханические реле, электронные реле, предохранители и тепловые реле.Предохранители широко применяются для защиты устройств с минимальным током, например, в домашних условиях. В то время как электронные, тепловые и электромеханические реле используются для защиты повышенных значений тока в устройствах, таких как инженерные двигатели. Важнейшими преимуществами использования реле защиты от перегрузки являются:

  • Простое управление
  • Соответствующие горные комплекты будут доступны для нескольких типов реле защиты от перегрузки
  • Точная синхронизация с контрагентами
  • Надежная защита

Статические реле

Реле

, не имеющие подвижных компонентов, называются статическими реле.В этих статических реле результат достигается за счет статических частей, таких как электронные и магнитные цепи и другие статические устройства. Реле, которое входит в состав электромагнитного и статического реле, даже называется статическим реле по той причине, что статические секции получают обратную связь, тогда как электромагнитное реле используется для целей переключения. Немногочисленные преимущества статических реле:

.
  • Минимальное время сброса
  • Использует минимальную мощность, что снижает нагрузку на измерительные устройства и повышает точность.
  • Обеспечивает быстрый выход, увеличенный срок службы, повышенную надежность и высокую точность
  • Ненужное отключение минимально, и благодаря этому эффективность будет увеличена
  • Эти реле не будут иметь проблем с накоплением тепла
  • Усиление входного сигнала осуществляется в самом реле, что увеличивает чувствительность.
  • Эти устройства могут работать и в сейсмоопасных местах, что также показывает их ударопрочность.

Существует различных типов статических реле . Вот несколько из них:

Электронное статическое реле

Эти электронные статические реле были первыми в классификации статических реле. Ученый по имени Фитцджеральд в 1928 году продемонстрировал испытание на несущем токе, которое демонстрирует безопасность линий электропередачи. Вследствие этого была обнаружена последовательность электронных систем для большинства основных типов реле предохранительного механизма.Устройства, которые используются для измерения, представляют собой электронные клапаны.

Статические реле преобразователя

Это устройство в основном состоит из магнитопровода, который состоит из двух секций обмоток, обычно называемых функциональной и регулирующей обмотками. Каждая секция может состоять из одной обмотки или, если имеется более одной обмотки, будет магнитная связь всех подобных типов обмоток. Когда существуют обмотки разных групп, они не будут связаны магнитным способом.

В то время как обмотки регулирования активируются постоянным током, а функциональные обмотки питаются переменным током. Это реле работает, чтобы отображать изменяющиеся значения импеданса для токов, протекающих через функциональные обмотки.

Статические реле выпрямительного моста

Реле приобрели большую популярность благодаря усовершенствованию полупроводниковых диодов. Он включает в себя два выпрямительных моста и подвижную катушку или реле типа подвижного железа с поляризацией. Тогда общий тип – это релейные компараторы, которые зависят от выпрямительных мостов, где они могут быть скомпонованы в виде фазовых или амплитудных компараторов.

Транзисторные реле

Это обычно используемые типы статических реле. Транзистор, который функционирует как триод, может преодолеть большинство недостатков, создаваемых электронными лампами, поэтому это наиболее развитый тип электронных реле, так называемых статических реле.

Реальность, что транзистор может использоваться как усилительный инструмент, а также как переключающий инструмент, что позволяет ему подходить для выполнения любых рабочих функций.Транзисторные схемы не только выполняют важные функции реле (например, сравнение входов, вычисление и их усвоение), но и обладают существенной эластичностью, позволяющей удовлетворить потребности нескольких реле.

В дополнение к этим другим типам статических реле относятся:

  • Реле на эффекте Холла
  • Реле максимального тока с обратнозависимой выдержкой времени
  • Направленное статическое реле максимального тока
  • Статическое дифференциальное реле
  • Статическое дистанционное реле

Применение различных типов реле

Поскольку существует множество типов реле, эти устройства найдут применение в различных отраслях промышленности, включая электрическую, авиационную, медицинскую, космическую и другие.Количество заявлений:

  • Используется для регулирования различных цепей
  • Защищает устройства от перегрузки по напряжению и току и снижает воздействие электрического повреждения на цепи
  • Реализовано как автоматическое изменение по сравнению с
  • Используется для изоляции цепи минимального напряжения
  • Автоматические стабилизаторы – одна из его реализаций, в которых реализовано реле. Когда уровень питающего напряжения отличается от номинального напряжения, тогда набор реле анализирует изменения напряжения и регулирует цепь нагрузки, интегрируя автоматические выключатели.
  • Используется для управления переключателями электродвигателя. Чтобы включить электродвигатель, нам обычно требуется источник переменного тока 230 В, но в некоторых ситуациях / приложениях может потребоваться включение двигателя с использованием напряжения питания постоянного тока. В таких случаях может использоваться реле.

Это некоторые из различных типов реле, которые используются в большинстве электронных и электрических цепей. Информация о различных типах реле служит целям читателей, и мы надеемся, что они сочтут эту основную информацию очень полезной.Учитывая огромное значение реле с zvs в схемах, эта конкретная статья о них заслуживает отзывов, запросов, предложений и комментариев читателей. Еще более важно знать о других темах, связанных с реле, таких как реле против контактора , реле и переключатель , и многие другие.

Отсутствует

Код 404 страница не найдена. К сожалению, страница отсутствует или перемещена.

Ниже приведены основные подразделы этого сайта.


  • Главная страница General Electronics
  • Мой канал YouTube Electronics
  • Проекты микроконтроллеров Arduino
  • Raspberry Pi и Linux
  • Возвращение к регистрам порта Arduino
  • Digispark ATtiny85 с расширителем GPIO MCP23016
  • Программа безопасной сборки H-моста
  • Построить управление двигателем с H-мостом без фейерверков
  • MOSFET H-мост для Arduino 2
  • Гистерезис компаратора и триггеры Шмитта
  • Учебное пособие по теории компараторов
  • Принцип работы и использования фотодиодных схем
  • Оптопара MOSFET реле постоянного тока с фотоэлектрическими драйверами
  • Подключение твердотельных реле Crydom MOSFET
  • Учебное пособие по схемам операционного усилителя с фотодиодом
  • Входные цепи оптопары для ПЛК
  • h21L1, 6N137A, FED8183, TLP2662 Оптопары с цифровым выходом
  • Цепи постоянного тока с LM334
  • LM334 Цепи CCS с термисторами, фотоэлементами
  • LM317 Цепи источника постоянного тока
  • TA8050P Управление двигателем с Н-мостом
  • Оптическая развязка управления двигателем с Н-мостом
  • Управление двигателем с Н-мостом на всех NPN-транзисторах
  • Базовые симисторы и тиристоры
  • Твердотельные реле переменного тока с симисторами
  • Светоактивированный кремниевый управляемый выпрямитель (LASCR)
  • Базовые схемы транзисторных драйверов для микроконтроллеров
  • ULN2003A Транзисторная матрица Дарлингтона с примерами схем
  • Учебное пособие по
  • с использованием силовых транзисторов Дарлингтона TIP120 и TIP125
  • Управление силовыми транзисторами 2N3055-MJ2955 с транзисторами Дарлингтона
  • Общие сведения о биполярных транзисторных переключателях
  • Учебное пособие по переключению N-канального силового МОП-транзистора
  • Учебное пособие по переключателю P-Channel Power MOSFET
  • Построение транзисторного управления двигателем с H-мостом
  • Управление двигателем с Н-мостом и силовыми МОП-транзисторами
  • Другие примеры цепей с двутавровым мостом силового полевого МОП-транзистора
  • Создание мощного транзисторного управления двигателем с H-мостом
  • Теория и работа конденсаторов
  • Построить вакуумную трубку 12AV6 AM-радио
  • Катушки
  • для высокоселективного кристаллического радио
  • Добавление двухтактного выходного каскада к усилителю звука Lm386
  • Исправление источника питания
  • Основные силовые трансформаторы
  • Схема транзисторно-стабилитронного стабилизатора
  • Уловки и подсказки для регуляторов напряжения серии LM78XX
  • Биполярные источники питания
  • Создайте регулируемый источник питания 0-34 В с Lm317
  • Использование датчиков Холла с переменным током
  • Использование переключателей и датчиков на эффекте Холла
  • Использование ратиометрических датчиков на эффекте Холла
  • Использование датчиков Холла с Arduino-ATMEGA168
  • Простой преобразователь от 12-14 В постоянного тока до 120 В переменного тока
  • Глядя на схемы оконного компаратора
  • Автоматическое открытие и закрытие окна теплицы
  • La4224 Усилитель звука мощностью 1 Вт
  • Управление двигателем H-Bridge с силовыми МОП-транзисторами Обновлено
  • Обновлено в сентябре 2017 г .:
  • Веб-мастер
  • Раскрытие
  • Бристоль, Юго-Западная Вирджиния
  • Наука и технологии
  • 2017 Обновления и удаления веб-сайта
  • Электроника для хобби
  • Конституция США
  • Христианство 101
  • Религиозные темы
  • Электронная почта

»Главная ” Эл. адрес »Пожертвовать ” Преступление »Хобби Электроника
» Защита окружающей среды »Расизм »Религия »Бристоль VA / TN

»Архив 1 »Архив 2 »Архив 3 »Архив 4 »Архив 5
» Архив 6 »Архив 7 »Архив 8 »Архив 9


Веб-сайт Авторские права Льюис Лофлин, Все права защищены.

Различные типы реле, их конструкция, работа и применение

Введение в реле и различные типы реле | Его клеммы, работа и приложения

Реле являются важным компонентом для защиты и переключения ряда цепей управления и других электрических компонентов. Все реле реагируют на напряжение или ток с конечной целью, чтобы они размыкали или замыкали контакты или цепи.В этой статье кратко обсуждаются основы реле и различные типы реле, которые используются для различных приложений.

Что такое реле?

Выключатель – это компонент, который размыкает (выключает) и замыкает (включает) электрическую цепь. тогда как реле представляет собой электрический переключатель , который управляет (включает и выключает переключатель ) высоковольтной цепью с использованием источника низкого напряжения. Реле полностью изолирует цепь низкого напряжения от цепи высокого напряжения.

Конструкция реле

Чтобы узнать базовую конструкцию и внутренние части реле , на следующем рисунке ясно показан вид внутри реле . Давайте обсудим их все по порядку.

Клеммы реле

Вообще говоря, в реле есть четыре типа клемм.

Управляющие входные клеммы или клеммы катушки:

Управляющие входные клеммы – это две входные клеммы реле, которое управляет его механизмом переключения.

К этим клеммам подключен маломощный источник, активирует и деактивирует реле. Источник может быть переменного или постоянного тока в зависимости от типа реле.

COM или общая клемма:

COM относится к общей клемме реле.

Это выходная клемма реле, к которой подключен один конец цепи нагрузки.

Эта клемма внутренне связана с любой из двух других клемм в зависимости от состояния реле.

НО Терминал:

НО или Нормально открытый Клемма также является клеммой нагрузки реле, которое остается разомкнутым , когда реле неактивно .

Клемма NO замыкается на клемму COM при срабатывании реле.

NC клемма:

NC или нормально закрытая клемма является другой клеммой нагрузки реле. Эта клемма обычно соединяется с клеммой COM реле, когда нет управляющего входа.

При срабатывании реле клемма NC отключается от клеммы COM и остается разомкнутой до тех пор, пока реле не будет деактивировано.

Poles & Throw:

Полюсы относятся к переключателям внутри реле.

Номера переключателей внутри реле называются полюсами реле.

Количество управляемых цепей , на полюс , называется ходом реле.

Одноходовое реле может управлять только одним контуром i.е. либо ВЫКЛ. , либо ВКЛ. , в то время как реле двойного хода может управлять двумя цепями, то есть переключаться от одной цепи к другой, размыкая одну цепь и замыкая другую во время переключения (ВКЛ и ВЫКЛ).

Реле Работа :

Предположим, что реле SPDT (однополюсный, двойной ход)

Когда нет источника питания, реле неактивно и положение его полюса остается на клемме NC , которая в вышеупомянутом случае является верхней клеммой.Это приводит к короткому электрическому пути между клеммой COM и клеммой NC . Таким образом, он позволяет протекать току через цепь, подключенную к клеммам COM и NC.

Когда реле включается от источника низкого напряжения, полюс реле смещается на клемму NO . Таким образом, NC клемма становится разомкнутой, а клемма COM замыкается или электрически замыкается на клемму NO . Затем разрешается протекание тока через цепь, подключенную к клемме COM и NO .

Типы реле:

Существует различных типов реле , и они классифицируются по различным категориям в зависимости от их свойств. Каждый из этих типов реле используется для определенного приложения, и перед использованием в любой цепи необходимо выбрать соответствующее реле.

На основе полюсов и направления:

Эти следующие типы реле классифицируются по количеству полюсов и внутри реле.

Реле SPST

SPST относится к однополюсному однопозиционному реле .

Однополюсный означает, что он может управлять только одной цепью, в то время как одиночный бросок означает, что его полюс имеет только одно положение, в котором он может проводить. Диаграмма SPST приведена ниже.

Реле SPST , два состояния, т. Е. либо разомкнутая, либо замкнутая цепь.

Реле SPDT

SPDT относится к однополюсному реле двойного направления.

Однополюсный означает, что одновременно можно управлять только одной цепью. Двойной бросок означает, что его шест имеет два положения, в которых он может вести.

Реле SPDT имеет два состояния, и в каждом состоянии его одна цепь остается замкнутой, а другая остается разомкнутой и наоборот.

Связанное сообщение: Что такое датчик? Различные типы датчиков с областями применения

Реле DPST

DPST означает двухполюсный одинарный ход.

Двойной полюс означает, что он может управлять двумя полностью изолированными отдельными цепями.Одиночный бросок означает, что у каждого шеста есть одно положение, в котором он может вести.

Реле DPST может переключать две цепи одновременно, т.е. обеспечивать замыкание или размыкание цепи.

Реле DPDT

DPDT относится к двухполюсному двойному ходу.

Двойной полюс означает, что он может управлять двумя цепями, в то время как двойной бросок означает, что каждый полюс может проводить в двух отдельных положениях.

Реле DPDT можно интерпретировать как два реле SPDT, но их переключение происходит одновременно.

Реле может иметь до 12 полюсов.

Формы реле

Типы реле также классифицируются на основе их конфигурации, известной как « Forms ».

Реле «Форма A»

« Форма A » – это реле SPST с нормально разомкнутым ( NO ) состоянием по умолчанию.

Он имеет клемму NO, которая подключает цепь, когда реле активировано, и отключает цепь, когда реле деактивируется.

Реле «Форма B»

Реле формы B является реле SPST с нормально замкнутым ( NC ) состоянием по умолчанию.

Клемма NC соединяет цепь, когда реле неактивно, и отключает цепь, когда реле активируется.

Реле «Форма C»

Реле формы C – это реле SPDT с двойными контактными клеммами, известное как NC & NO .

Управляет двумя контурами i.е. одна цепь остается разомкнутой, а другая – замкнутой. Это реле также известно как реле «, прерывание перед замыканием, », потому что оно размыкает одну цепь перед замыканием другой цепи.

Реле «формы D»

Реле формы D также является реле SPDT и работает по тому же принципу, что и реле формы C, но это контактное реле « замыкает перед размыканием, ».

Замыкает следующую цепь перед разрывом (размыканием) первой цепи.Он используется, чтобы не нарушать целостность цепи.

На основе принципов работы:

Эти следующие типы реле классифицируются в зависимости от их различных принципов работы.

EMR (электромеханическое реле)

Этот тип реле имеет электромагнитную катушку и механический подвижный контакт .

Когда катушка находится под напряжением, она создает магнитное поле. Это магнитное поле притягивает якорь (подвижный контакт).Когда катушка обесточена, катушка ослабляет магнитное поле, и пружина возвращает якорь в нормальное положение.

Реле EMR предназначено для источника переменного или постоянного тока в зависимости от области применения. Конструкция реле ЭМИ переменного и постоянного тока отличается друг от друга небольшой разницей в конструкции катушки . Катушка постоянного тока имеет свободно вращающийся диод для защиты от обратной ЭДС и обесточивания катушки.

Полярность источника в реле ЭМИ не имеет значения, он питает катушку в любом случае, но если установлен диод обратной ЭДС, следует учитывать полярность.

Главный недостаток реле ЭМИ заключается в том, что его контакты создают дугу при размыкании, что приводит к увеличению его сопротивления со временем и сокращению срока службы реле.

SSR (твердотельное реле)

SSR реле состоит из полупроводников, а не механических частей, и работает для изоляции цепи низкого напряжения от цепи высокого напряжения с помощью оптрона.

Когда управляющий вход применяется к твердотельному реле, загорается светодиод , излучающий инфракрасный свет. Этот свет принимается светочувствительным полупроводниковым устройством, которое преобразует световой сигнал в электрический сигнал и переключает цепь.

SSR работает на относительно высокой скорости и имеет очень низкое энергопотребление по сравнению с реле EMR. У более длительный срок службы , потому что нет физических контактов, которые могли бы сгореть.

Основным недостатком реле SSR является его номинальное падение напряжения на полупроводнике, которое тратит энергию в виде тепла .

Гибридное реле:

Гибридные реле изготавливаются с использованием как реле SSR, так и реле EMR .

Как мы знаем, SSR тратит энергию в виде тепла и EMR имеет контакт , вызывающий дугу . Гибридное реле использует как SSR, так и EMR, чтобы преодолеть их недостатки.

В гибридном реле SSR и EMR используются в параллельно . Реле , цепь управления , , используется для переключения SSR в первую очередь. SSR принимает ток нагрузки. Таким образом, это устраняет проблему изгиба. Затем схема управления подает питание на катушку ЭМИ, и ее контакт замыкается, но дуги не происходит, так как SSR принимает нагрузку параллельно. Через некоторое время, когда контакт ЭМИ успокоится, управляющий вход ТТР снимается. ЭМИ проводит весь ток нагрузки без потерь.Поскольку SSR не протекает по току, а EMR принимает на себя всю нагрузку, потери мощности в виде тепла отсутствуют. Таким образом, устраняется и проблема нагрева.

Связанный пост: Типы микросхем. Классификация интегральных схем и их ограничения

Герконовое реле

Герконовое реле состоит из герконового переключателя и электромагнитной катушки с диодом для обратной ЭДС.

Геркон состоит из двух металлических лезвий, сделанных из ферромагнитного материала, герметично запечатанных в стеклянной трубке, которая также поддерживает металлические лезвия.Стакан заполнен инертным газом.

Когда катушка находится под напряжением, лезвия из ферромагнитного металла притягиваются друг к другу и образуют замкнутый путь. Поскольку нет подвижного якоря, нет проблемы износа контактов. Стеклянная трубка также заполнена инертным газом, что также продлевает срок ее службы.

Электротермическое реле (тепловое реле):

Электротермическое реле состоит из биметаллической ленты (состоящей из двух металлов с разными коэффициентами теплового расширения).

Когда ток течет по проводнику, он выделяет тепло. За счет чего температура биметаллической полосы повышается и расширяется. Металл с высоким коэффициентом теплового расширения расширяется больше, чем другой металл. Из-за чего полоса изгибается и замыкает контакты, обычно активируя схему отключения.

Тепловые реле обычно используются для защиты электродвигателей.

Поляризованное и неполяризованное реле

Поляризованное реле использует постоянный магнит с электромагнитом.Постоянный магнит обеспечивает фиксированное положение якоря. Электромагнитная катушка изменяет положение якоря относительно неподвижного стержня. Положение якоря зависит от полярности управляющего входа.

В неполяризованном реле не используются постоянные магниты, и их катушка может быть запитана обоими способами, не влияя на его работу. Некоторые реле с диодами противо-ЭДС имеют полярность, поскольку диод будет обходить катушку, если соединение поменять местами.

Применение реле
  • Реле используются для изоляции цепи низкого напряжения от цепи высокого напряжения.
  • Они используются для управления несколькими контурами .
  • Они также используются в качестве автоматического переключения вместо .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *