Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

принцип работы устройства, реактивная электроэнергия

Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

  • Принцип работы
  • Описание конденсатора постоянного тока
  • Особенности устройства с переменным электротоком

Принцип работы

Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.

У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения.

Благодаря этому притяжению заряженное устройство не разряжается.

Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

Описание конденсатора постоянного тока

Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление.

Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Конденсатора.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

как работает и зачем нужен в цепи переменного и постоянного тока

Практически во всех электронных устройствах, от самых простых до высокотехнологичных, таких как материнские платы компьютеров, можно встретить один неизменно присутствующий элемент, являющийся пассивным компонентом. Но к сожалению, мало кто знает как устроен и для чего нужен конденсатор, и какие виды этого накопителя бывают.

  • Просто о сложном
  • Устройство и принцип работы
  • Основные виды
  • Сферы применения

Просто о сложном

Итак, это небольшое устройство для накопления электрического поля или заряда похоже на обычную банку, ту, в которой маринуют помидоры или хранят муку. Она точно так же в себе накапливает сухое вещество или жидкость, которую в неё поместят. Аналогия проста: по цепи бегут электроны, а на своей дороге встречают проводников, которые ведут их в «банку», где они и накапливаются, усиливая заряд.

Для того чтобы выяснить, много ли элекрончиков так можно собрать, и в какой момент накопление прекратится (банка лопнет), электрический процесс обычно сравнивают с водопроводом. Если представить трубу, в которой течёт вода, закачиваемая туда насосом, то где-то в центре трубопровода нужно вообразить мягкую мембрану, растягивающуюся под давлением жидкости.

Очевидно, что она будет растягиваться до определённого предела, пока не разорвётся или, если попалась очень крепкая, не уравновесит силу насоса.

Такой пример показывает, как работает конденсатор, только мембрана заменяется электрическим полем, которое увеличивается по мере зарядки накопителя (работы насоса), уравновешивая напряжение источника питания. Очевидно, что этот процесс не бесконечный, и предельный заряд существует, по достижении которого «банка» выйдет из строя и перестанет выполнять свои функции.

Устройство и принцип работы

Конденсатор — устройство, состоящее из двух пластин (обкладок), имеющих между собой пустоту. Напряжение к нему подаётся через проводки, подсоединённые к пластинкам. Современные приборы, по сути, не сильно отличаются от макетов на уроках физики, они также состоят из диэлектрика и обкладок. Следует отметить, что именно вещество или его отсутствие (вакуум), плохо проводящее электричество, изменяет характеристики накопителя.

Суть принципа работы конденсатора проста: дали напряжение, и заряд начал накапливаться. Для примера следует рассмотреть как ведёт себя накопитель в двух вариантах электрической цепи:

  • Постоянный ток. Если в цепь с подключённым к ней конденсатором подать ток, то можно увидеть, что стрелка на амперметре начнёт двигаться, а потом быстро вернётся в исходное положение. Это объясняется просто: устройство быстро зарядилось, то есть источник питания был уравновешен обкладками накопителя, и тока не стало. Поэтому часто говорят, что в условиях постоянного тока конденсатор не работает. Такое утверждение неправильное, всё функционирует, но очень непродолжительное время.
  • Переменный ток — это когда электроны двигаются сначала в одну, а затем в другую сторону. Если представить такую цепь с подключённым к ней накопителем, то на обеих обкладках конденсатора будут попеременно накапливаться положительные и отрицательные заряды. Это говорит о том, что переменный ток свободно протекает через устройство.

Поскольку конденсатор задерживает постоянный ток, но пропускает переменный, отсюда формируются и сферы его назначения, например, для устройств, в которых нужно убрать постоянную составляющую в сигнале. Вполне очевидно, что накопитель обладает сопротивлением, а вот мощность на нём не выделяется, поэтому он не греется.

Основные виды

Рядовой пользователь не всегда знает о том, каким конденсатором снабжено его устройство. А ведь каждый вид имеет свои недостатки и преимущества, а также эксплуатационные особенности. Существуют две большие группы этих устройств, предназначенные для электрической цепи с переменным и постоянным током. Но всё-таки основная классификация ведётся по типу диэлектрика, который находится между облатками конденсатора. Основные виды:

  • Керамические. Имеют маленький размер, малый ток утечки и небольшую индуктивность. Отлично работают в условиях высоких частот, в цепях пульсирующего, постоянного и переменного тока. Представлены в различном диапазоне напряжений и ёмкостей, в зависимости от того, для чего конденсатор предназначен.
  • Слюдяные. В настоящее время почти не используются и не выпускаются. В накопителях такого типа диэлектриком служит слюда. Рабочее напряжение таких конденсаторов в диапазоне — 200−1500 В.
  • Бумажные. В алюминиевых облатках заключена конденсаторная бумага. Выдерживают напряжение 160−1500 В.
  • Полиэстеровые. Максимальная ёмкость не превышает 15 мФ, рабочее напряжение — 50−1500 В.
  • Полипропиленовые. Выгодно выделяются на фоне остальных собратьев двумя преимуществами. Первое — маленький допуск ёмкости (+/- 1%), второе — до 3 кВ рабочего напряжения.

Отдельно стоит отметить электролитические конденсаторы. Главное их отличие от других видов — подключения только к цепи постоянного или пульсирующего тока. Такие накопители имеют полярность — это особенность их конструкции, поэтому неправильное подключение ведёт к вздутию или взрыву устройства. Они обладают большой ёмкостью, что делает конденсатор электролитический пригодным для применения в выпрямительных цепях.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

  • телефонии;
  • в производстве счётных и запоминающих устройств;
  • автоматике;
  • при создании измерительных приборов и многих других.

Электрические накопители можно встретить как в телевизорах, так и в приборах радиолокации, где необходимо формировать импульс большой мощности, для чего и служит конденсатор. Невозможно встретить блок питания без этих устройств или сетевой фильтр.

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.

Принцип работы конденсатора — StudiousGuy

Конденсатор — это электронное устройство, которое используется для хранения электрического заряда. Это одно из самых важных электронных устройств в схемотехнике. Конденсатор — это пассивный компонент, способный накапливать как отрицательные, так и положительные заряды. По этой причине он может временно вести себя как батарея. В зависимости от дизайна, конструкции, размера и емкости конденсатора его можно использовать в различных приложениях. Свойство хранения зарядов, связанных с конденсаторами, известно как емкость. Емкость определяется как отношение электрических зарядов, накопленных на проводящих пластинах конденсатора, к существующей между ними разности потенциалов. Емкость измеряется в фарадах, названных в честь английского физика Майкла Фарадея.

Указатель статьи (Щелкните, чтобы перейти)

Конструкция конденсатора

Конденсатор с плоскими пластинами имеет самую простую конструкцию из всех конденсаторов. Он состоит из двух проводящих пластин, расположенных параллельно друг другу и разделенных диэлектриком. Диэлектрический материал, присутствующий между двумя пластинами, действует как изолятор, препятствующий прохождению тока между пластинами. Размер и форма пластин конденсатора варьируются в зависимости от применения. Диэлектрическая среда, используемая между двумя пластинами конденсатора, может быть воздухом, керамикой, полимером, бумагой и т. д.

Работа конденсатора

Первоначально проводящие пластины конденсатора состоят из равного количества положительных и отрицательных зарядов; поэтому пластины считаются электрически нейтральными. Когда батарея подключена через конденсатор, пластина, подключенная к положительной клемме батареи, накапливает на себе положительный заряд, а равное количество отрицательного заряда осаждается на другой пластине, подключенной к отрицательной клемме батареи. Диэлектрический материал, присутствующий между двумя пластинами, действует как барьер, препятствующий дальнейшему прохождению зарядов. Из-за наличия зарядов на обеих пластинах вокруг конденсатора создается электрическое поле, прямо пропорциональное разности потенциалов и обратно пропорциональное расстоянию между двумя пластинами. Когда конденсатор развивает потенциал, равный потенциалу, развиваемому подключенной к нему батареей, он считается полностью заряженным. Время, необходимое конденсатору для накопления максимального количества заряда на своих пластинах, называется временем зарядки. Когда батарея удалена, конденсатор действует как источник энергии. После подключения заряженного конденсатора к нагрузке заряды покидают пластины конденсатора, вызывая протекание тока в цепи. Этот процесс продолжается до тех пор, пока пластины конденсатора не приобретут электрически нейтральное состояние, и называется разрядкой конденсатора.

Конденсатор Символ

В каждой стране есть свой способ символического обозначения конденсаторов. Некоторые из стандартных обозначений конденсаторов:

Конденсатор Типы

1. Фиксированный конденсатор

емкости. Это означает, что он способен хранить в себе только заданное количество зарядов. Другие фиксированные конденсаторы можно классифицировать по диэлектрическому материалу, используемому между проводящими пластинами, например, бумажный конденсатор, пластиковый конденсатор, керамический конденсатор и т. д.

1. Поляризованные конденсаторы

Поляризованные конденсаторы — это конденсаторы с предопределенной полярностью контактов. Перед подключением полярного конденсатора к цепи важно помнить о полярности контактов конденсатора. Наиболее распространенными поляризованными конденсаторами являются электролитические конденсаторы.

2. Неполярные конденсаторы

Неполярные или неполярные конденсаторы — это конденсаторы, которые можно подключать в цепь независимо от полярности контактов. Это означает, что неполярные конденсаторы не имеют предполагаемой полярности контактов. Они также известны как биполярные конденсаторы.

2. Переменные конденсаторы

Конденсаторы, емкость которых может изменяться электронным или механическим способом, называются переменными конденсаторами. Переменный конденсатор состоит из неподвижной пластины и переменной пластины. Изменяя расстояние между двумя пластинами, можно изменять емкость. Эти конденсаторы используются в антеннах для согласования импеданса.

1. Подстроечный Конденсаторы

Подстроечный конденсатор или подстроечный конденсатор состоит из статора, ротора и корпуса. Статор является неподвижной частью, а ротор движется с помощью подвижного вала. Когда лопасти ротора входят в паз статора, они действуют как пластины конденсатора. Значение емкости максимально, когда лопасти ротора входят в пазы статора, а значение емкости минимально, когда лопасти находятся вдали от пазов. Емкость подстроечных конденсаторов колеблется от нескольких пикофарад до нескольких десятков пикофарад. В основном они используются в LC-цепях радиоприёмников.

2. Триммер Конденсаторы

Конденсаторы триммера состоят из трех контактов; один подключен к неподвижной пластине, один к поворотной пластине, а другой является общим штифтом. Емкость подстроечного конденсатора можно изменять с помощью отвертки. Подвижная пластина конденсатора имеет полукруглую форму. Емкость зависит от площади, противоположной подвижному полукруглому диску и неподвижной пластине. Когда противоположная площадь больше, значение емкости будет выше, тогда как с уменьшением противоположной области емкость соответственно уменьшается.

3. Электролитические конденсаторы 

Первый электрод электролитического конденсатора состоит из тонкой металлической пленки, тогда как второй электрод или катод состоит из полужидкого раствора электролита, который представляет собой желе или пасту. форма. Между двумя электродами образуется тонкий слой оксида, который действует как диэлектрическая среда. Электролитический конденсатор используется в приложениях, где требуются высокие значения емкости.

4. Керамический Конденсатор

Керамические конденсаторы — это конденсаторы, в которых в качестве диэлектрической среды между двумя электродами используется керамика. Как правило, они имеют низкое значение емкости и являются неполярными конденсаторами. Керамический конденсатор обычно имеет круглую форму и оранжевый цвет.

5. Пленочный конденсатор 

В пленочных конденсаторах в качестве диэлектрического материала используется пластиковая пленка. Они чаще всего используются в приложениях, где желательны стабильность, низкая индуктивность и низкая цена. Кроме того, пленочные конденсаторы можно разделить на полиэфирную пленку, металлизированную пленку, полипропиленовую пленку, пленку PTE и пленочные конденсаторы из полистирола.

6. Слюда Конденсатор

Слюда — это минерал, естественным образом присутствующий в горных породах на поверхности земли. Благодаря отличным изоляционным свойствам слюда используется в качестве диэлектрической среды в конденсаторах. Слюдяные конденсаторы имеют высокие индуктивные и резистивные потери, поэтому они способны проявлять высокочастотные свойства. Конструкция слюдяного конденсатора состоит из тонкого листа слюды, наложенного на тонкий лист серебра, помещенного между двумя электродами. Диапазон слюдяных конденсаторов лежит между несколькими пФ и несколькими нФ. Они обладают высокой точностью и достаточно стабильны по своей природе.

7. Бумага Конденсатор

Бумажный конденсатор состоит из двух алюминиевых электродных пластин, разделенных бумагой в качестве диэлектрической среды. Бумажные конденсаторы обеспечивают высокие токи утечки и имеют значение емкости в диапазоне от 500 пФ до 50 нФ. Эти конденсаторы чаще всего используются в таких приложениях, как автомобильные аудиосистемы, аналоговые эквалайзеры, радиоприемники и т. д.0010

1. Вентиляторы

Вы, должно быть, заметили, что во время устранения неполадок вентилятора техник приближается к цилиндрическому электронному устройству, подключенному к внутреннему механизму вентилятора. Это цилиндрическое устройство на самом деле является конденсатором. Конденсатор используется в потолочных вентиляторах, чтобы помочь вентилятору запуститься, а также помогает вентилятору вращаться. Магнитный поток, создаваемый конденсатором, используется для создания крутящего момента. Крутящий момент дополнительно помогает вращать вентилятор.

2. Фильтрация сигналов

Одним из основных применений конденсаторов является фильтрация помех. Схемы фильтрации сигналов имеют определенную временную характеристику, которая помогает отсеивать частоты выше или ниже определенного порогового уровня. В первую очередь фильтрация сигналов применяется в громкоговорителях, вуферах, твиттерах и т. д.

3. Устройства накопления энергии

Конденсаторы могут временно действовать как источник энергии. Энергия, выдаваемая конденсатором, ниже, чем у батареи с аналогичными характеристиками; однако они имеют сравнительно долгий срок службы. Кроме того, конденсатор подает энергию с большей скоростью, что делает его наиболее подходящим для приложений, где требуется всплеск мощности.

4. Преобразователь переменного тока в постоянный

Диодные выпрямители в основном используются для преобразования переменного тока в постоянный; однако работа таких схем во многом зависит от конденсаторов. Выход выпрямителя представляет собой пульсирующую форму волны. Следовательно, зарядку и разрядку конденсатора можно использовать для преобразования пульсирующего сигнала в устойчивый постоянный ток.

5. Таймеры

Время зарядки и разрядки конденсаторов можно легко определить путем расчета постоянной времени RC. Следовательно, их можно легко использовать в качестве часовых устройств. В таких схемах, как схемы с временной задержкой, также используются конденсаторы.

Каков принцип работы конденсатора?

Ответить

Проверено

165 тыс.+ просмотров

Подсказка: Сначала мы должны понять значение и работу, выполняемую конденсатором в электрической цепи. Конденсатор — это компонент, используемый для изменения или хранения электрического заряда в цепи. Это может быть позже использовано в качестве электрического тока, если питание будет прервано. Основа этой работы зависит от некоторого принципа, который мы должны обсудить.

Полный ответ:
Конденсатор: Это устройство, накапливающее заряд в электрической цепи. Конденсатор работает по принципу увеличения емкости проводника при приближении к нему заземленного проводника. Следовательно, конденсатор имеет две параллельные пластины, обращенные друг к другу в противоположных направлениях и разделенные некоторым расстоянием или зазором. Этот зазор заполняется вакуумом или диэлектрическим материалом с некоторой постоянной по требованию.

Принцип работы конденсатора: давайте рассмотрим плоский конденсатор с диэлектриком между ними, как показано на схеме ниже. Теперь подайте напряжение V, как показано на схеме: пластина 1 имеет положительный заряд, а пластина 2 — отрицательный. На конденсаторе возникает электрическое поле. Когда на эти пластины подается напряжение, они будут нести положительный заряд от батареи на пластине 1 и отрицательный заряд на пластине 2. В течение некоторого времени прикладывается напряжение, и в течение этого времени конденсатор заряжается до максимального предела удержания заряда, и это время называется временем заряда конденсатора.

Через некоторое время, когда конденсатор достигнет максимального предела заряда, мы отключим подачу питания на конденсатор. В течение определенного времени две пластины удерживают отрицательный и положительный заряд. Таким образом, конденсатор действует как источник электрического заряда. Если эти пластины подключены к нагрузке, ток течет через нагрузку от пластины 1 к пластине 2, пока все заряды не рассеются с обеих пластин. Это время разрядки конденсатора известно как время диссипации.

Примечание: Конденсатор также известен как зарядное устройство в электрической цепи, которое можно использовать даже после отключения питания в цепи. Мы используем конденсаторы в электрических устройствах, чтобы мы могли выполнять оставшуюся работу в это конкретное время рассеивания или разрядки, например, сохранять данные на компьютере и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *