Сюрпризы схем китайских блоков питания эконом класса.
Обслуживая очередной объект с щитами управления бассейном. На достаточно не бедном объекте, с удивлением обнаружил, что используемый блок питания оперативных цепей построен не на закрытом модульном БП а открытом БП в корпусе. Отчего сборщику того щита пришлось его колхозить стяжками на перекрест к дин рейке. Это какой-то китайский NoName HSM-15-12, который благополучно сдох и обесточил цепи управления. Кстати, из цепей управления питал он только одно промежуточное реле 1Вт мощности, потому причина его гибели при такой низкой нагрузки для меня неясна.
Заменять на подобный нет желания, потому предложил поставить там, проверенный временем модульный MeanWell HDR-15-12 на 15Вт/12В, с таким БП проблем быть не должно.
При том, что этот блок питания дешёвый внешне он выполнен аккуратно, штамповка и сборка сделана на высоком технологическом уровне.
В целом в руках держать приятно.
Не в последнюю очередь, по этой причине я, решил по-быстрому его отремонтировать, тем более список поломок таких БП банален:
— Электролиты, как первичных так и вторичных цепей питания.
— Силовой ключ первичной цепи + ШИМ, либо просто интегрированный ШИМ с обвязкой.
— В редких случаях первичка трансформатора.
— Оптрон ОС, и/или микросхема TL431.
Когда открыл этот БП, то выяснялось, что он построен, на автогенераторной схеме без микросхем ШИМ.
Электролиты первичной и вторичной цепи вздуты, предохранитель цел, входной диодный мост и ключ первичной цепи целы, при подключении ни каких признаков жизни не демонстрирует.
Имея определенный опыт ремонта таких изделий обольщаться простой ремонта не стал.
Заменил вздутые конденсаторы проверил силовой ключ первичной цепи, мост и предохранитель — целы. Включил через балласт, чтобы избежать взрывов, если что. БП признаков жизни так и не поддал. Решил проверить оптопару, для этого надо выпаять. Но тут выяснилась первая «тупость» а точнее говоря сознательная подлость конструкции – оптопара находится под силовым трансформатором… стало быть надо выпаять и его!Вот как это выглядело после ремонтных работ о чем будет ниже:
Ну что-ж, «надо, значить надо», аккуратно выпаиваю трансформатор и оптрон.
Подключаю его выводы 1-2 к лабороторнику, задав ограничение по напряжению в 1.2В а току в 20мА. На выводах оптрона 3-4 мерим сопротивление, и получаем – 1.2кОм (обычно порядка 40-65 Ом) значит сдохла и оптопара.
Тут я допустил оплошность, будучи уверенным в том, что все позади, запаял трансформатор на место и включил БП на прямую. Слава Богу, ничего не произошло, но БП так и не подал признаков жизни.
Пришлось делать того чего, не хотелось в рамках данного проекта — срисовывать схему по образцу платы. Так как, входные цепи были уже проверены решил сэкономить время и вычерчивать только ту часть схемы где много всякой обвязки и не очевидно, как она устроена. Где-то потихоньку начал высокую сторону реставрировать…
Но походу работы решил сделать ход конем. Подключить к выходу БП, параллельно лабораторник, и начать подымать напряжение до номинала, чтобы проверить вторичную цепь. Только начал наращивать напряжение, как лабороторник уперся в ограничение тока 1А.
Проверяю диод вторичной цепи – пробит!
Заменяю безимяный китайский 3IDQ 100E, на аналогичный по корпусу SR560.
Снова поддаю и увеличиваю напряжения.
Все хорошо, загорелся светодиод, в защиту уже не уходим, но замечаю, что при 12В потребляемый ток аж 130мА! Для 15Вт БП, это слишком лихо для холостого хода. Нащупываю плату, в первую очередь баластные резисторы, но они холодны. Тем временем где-то выделяются 1.5Вт тепла. Вдруг неожиданно обжигаю палец об поверхность платы, под… трансформатором, там где, стоит перепаянный оптрон… и парочка резисторов. Но, не оптрон горяч, а резистор возле него. Отключил все.
Выпаял трансформатор для расследования причин.
Начинаю срисовывать всю вторичку, чтобы понять, что там за резисторы стоят ну и в целом как она устроена.
Проверяю микросхему TL431А – пробит по всем направлениям. Это конечно плохо, но еще не причина потерь мощности аж в целые 1.5Вт.
И тут барабанная дробь… номинал сопротивления в цепи оптрона R11 – 100Ом, это при 12вольтах номинала напряжения! И спрятан этот резистор вместе с оптроном прямо под силовой трансформатор!
И действительно, если принять падение напряжение на открытом оптроне в 1.2В, и микросхеме TL431A в 2.5В, то мы имеем ток I=(Uin-DUopt-DU431)/R11=(12-1.2-2.5)/100= 0.083А = 83mA (при сгоревшем TL431 этот ток будет выше — 108mA). При максимально допустимом токе оптрона в 50mA, очевидно что проживет, он не долго. Сколько прожил этот БП на том объекте, не знаю. Судя по чистому корпусу его поставили не давно. Поэтому перепаял сгоревший TL431A и заменил R11 со 100 на 680Ом.
Снова запаял трансформатор на место,
включил блок питания в сеть и он заработал.
Нагрузил его лентой – полет нормальный. Все!
Вот такие, вот дела. Китайцы, не просто «экономят» а тупо в цепь ОС закладывают такой резистор из-за которого впоследствии вылетит целый набор компонентов. Чтобы ремонтнику было веселее, проблемные компоненты прячутся под трансформатор!!!
По просьбе трудящихся добавляю всю принципиальную схему:
Импульсный блок питания на одном транзисторе со стабилизацией. Схема
Главная » Источники питания » Импульсный блок питания на одном транзисторе со стабилизацией. Схема
Данный импульсный блок питания изначально был создан в качестве источника питания для цифровой камеры.
Ток потребления самой камеры в районе 600 мА, а в пиковом режиме до 1300 мА. Разумеется, можно было бы применить обычный линейный блок питания, например, на стабилизаторе LM317, но в этом случае КПД его будет не высоким, да и еще с массивным трансформатором и радиатором для стабилизатора.
Данный же импульсный блок питания является оптимальным решением. Ниже приведена принципиальная схема компактного импульсного блока питания на одном транзисторе и оптопаре. Импульсный блок питания без оптопары с косвенной стабилизацией был бы еще проще, но в этом случае его выходное напряжение будет недостаточно стабильным.
Этот импульсный блок питания функционирует как обратный преобразователь. Принцип работы его достаточно прост: при подаче напряжения на схему через резистор R3 немного открывания транзистор VT1 (MJE13005). Он обеспечивает на дополнительной обмотке трансформатора (8 вит.) положительное напряжение, которое в свою очередь полностью открывает транзистор.
Когда конденсатор C3 разряжается, транзистор закрывается, а возникшее во вторичной обмотке трансформатора напряжение заряжает конденсатор фильтра (C5). Когда конденсатор C3 заряжается, транзистор открывается, и все повторяется.
Когда желаемое напряжение, заданное делителем на резисторах R7 и R8, включает VD5 (TL431), светодиод в оптопаре VD3 (4N35) начинает светиться, и фототранзистор ограничивает ток на базе транзистора. Это сокращает рабочий цикл ШИМ и снижает энергию, подаваемую на трансформатор. Данный метод стабилизации очень эффективен, напряжение на нагрузке падает не более чем на 0,01 В.
Данный импульсный блок питания не способен работать без нагрузки. Для устранения этой проблемы на выходе установлен резистор R9 имитирующий нагрузку. Для защиты от перенапряжения, в случае отказа узла стабилизации, на выходе установлен стабилитрон VD6. Его напряжение стабилизации немного больше чем выходное напряжение блока питания.
Резистор R1 уменьшает пусковой ток при включении, а конденсатор C1 подавляет электромагнитные помехи. На рабочую частоту преобразователя влияет изменение емкости конденсатора C3.
Трансформатор выполнен на ферритовом сердечнике EE с эффективным сечением 0,5 см2.
Потом снова наматываем не менее 7 слоев изоленты. Далее наматываем вспомогательную обмотку (8 витков) тем же проводом, что и первичная обмотка. После этого наматываем слой изоляции, который может быть не таким плотным. И в конце наматываем оставшиеся 40 витков первичной обмотки. Затем снова несколько слоев изоляции.
Чтобы предотвратить насыщение сердечника трансформатора, между его половинками помещаем слой изоленты, образующий воздушный зазор.
Инвертор 12 В/ 220 В
Инвертор с чистой синусоидой, может обеспечивать питание переменно…
Подробнее
Конечно же, данную схему импульсного источника питания можно модифицировать для получения другого выходного напряжения. Для этого достаточно изменить количество витков вторичной обмотки (приблизительно 1 виток = 1 вольт).
Сопротивление резистора R9 подбирается из расчета 10 Ом на каждый 1 В. Выходное напряжение можно получить путем изменения сопротивления резистора R7, так чтобы при требуемом выходном напряжении делитель подавал на вход TL431 напряжение 2,5 В.
Выпрямительный диод VD4 должен иметь обратное напряжение раз в 8 больше чем выходное напряжение блока питания. Поэтому для более высоких напряжений желательно заменить диод Шоттки быстрым диодом, так как диоды Шоттки всегда имеют низкое номинальное обратное напряжение.
Предупреждение! Импульсные источники питания не для новичков, так как большинство его цепей подключено к опасному сетевому напряжению. При плохой конструкции сетевое напряжение может попасть на выход! Конденсаторы могут оставаться заряженными до опасного напряжения даже после отключения от сети. Все, что вы делаете на свой страх и риск, за любой ущерб здоровью или имуществу мы ответственности не несем.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
Categories Источники питания Tags импульсный БП
Отправить сообщение об ошибке.
Как работает оптопара | ОРЕЛ
Необходимо защитить чувствительные низковольтные компоненты и изолировать цепи на печатной плате? Оптопара может сделать эту работу. Да будет свет! Это устройство позволяет передавать электрический сигнал между двумя изолированными цепями с двумя частями: светодиодом, излучающим инфракрасный свет, и светочувствительным устройством, обнаруживающим свет от светодиода. Обе эти части содержатся в традиционном черном ящике с парой контактов для подключения. На первый взгляд, оптопару легко спутать с интегральной схемой (ИС).
Эта симисторная оптопара выглядит как интегральная схема. (Источник изображения)
Как это работает
Сначала на оптопару подается ток, который заставляет инфракрасный светодиод излучать свет, пропорциональный току. Когда свет попадает на светочувствительное устройство, оно включается и начинает проводить ток, как любой обычный транзистор.
Как работает оптопара. (Источник изображения)
Фоточувствительное устройство по умолчанию обычно не подключено, чтобы обеспечить максимальную чувствительность к инфракрасному свету. Он также может быть подключен к земле с помощью внешнего резистора для более высокой степени контроля над чувствительностью переключения.
Оптопара эффективно изолирует выходную и входную цепи. (Источник изображения)
Это устройство в основном работает как переключатель, соединяя две изолированные цепи на вашей печатной плате. Когда ток перестает течь через светодиод, светочувствительное устройство также перестает проводить ток и выключается. Все это переключение происходит через пустоту из стекла, пластика или воздуха без каких-либо электрических частей между светодиодом или светочувствительным устройством. Все дело в свете.
Преимущества и типы
Если вы разрабатываете электронное устройство, которое будет восприимчиво к скачкам напряжения, ударам молнии, скачкам напряжения и т. д., вам понадобится способ защиты низковольтных устройств. При правильном использовании оптопара может эффективно:
- Удаление электрических помех из сигналов
- Изолировать низковольтные устройства от высоковольтных цепей
- Позволяет использовать небольшие цифровые сигналы для управления большими переменными напряжениями
Оптопары бывают четырех конфигураций. Каждая конфигурация использует один и тот же инфракрасный светодиод с другим светочувствительным устройством. К ним относятся:
Photo-Transistor и Photo-Darlington , которые обычно используются в цепях постоянного тока, и Photo-SCR и Photo-TRIAC , которые используются для управления цепями переменного тока.
Четыре типа оптопары. (Источник изображения)
Если вы любите приключения, вы даже можете сделать самодельную оптопару из некоторых запасных частей. Просто объедините светодиод и фототранзистор внутри отражающей пластиковой трубки.
Самодельная оптопара всего из трех простых деталей. (Источник изображения)
Типичные области применения
Оптопарымогут использоваться либо сами по себе в качестве коммутационного устройства, либо с другими электронными устройствами для обеспечения изоляции между цепями низкого и высокого напряжения. Обычно эти устройства используются для:
- Переключение ввода/вывода микропроцессора
- Регулятор мощности постоянного и переменного тока
- Защита оборудования связи
- Регулировка электропитания
В этих приложениях вы столкнетесь с различными конфигурациями. Некоторые примеры включают:
Оптотранзисторный переключатель постоянного тока
Эта конфигурация будет обнаруживать сигналы постоянного тока, а также позволяет управлять оборудованием с питанием от переменного тока. MOC3020 идеально подходит для управления сетевым подключением или подачи стробирующего импульса на другой фототриак с токоограничивающим резистором.
(Источник изображения)
Симисторная оптопара
Эта конфигурация позволит вам управлять нагрузками с питанием от переменного тока, такими как двигатели и лампы. Он также способен работать в обеих половинах цикла переменного тока с обнаружением пересечения нуля. Это позволяет нагрузке получать полную мощность без значительных скачков тока при переключении индуктивных нагрузок.
(Источник изображения)
Руководство по компоновке печатных плат
Перед добавлением оптопары в топологию печатной платы примите во внимание следующие три рекомендации:
- Держите соединения заземления оптопары отдельно
Стандартная оптопара имеет два контакта заземления: один для светодиода, а другой для фоточувствительного устройства. Соединение обоих этих заземлений вместе откроет вашу чувствительную схему для любого шума от внешнего заземления. Во избежание этого всегда создавайте две точки подключения: одну для внешних заземляющих контактов, а другую для входных заземляющих проводов.
- Выберите правильное значение токоограничивающего резистора
Выбор токоограничивающего резистора, работающего при минимальном значении оптопары, приведет к нестабильному поведению. Также можно выбрать резистор, обеспечивающий слишком большой ток, который приведет к срабатыванию светодиода. При выборе значения для вашего резистора обязательно найдите значение минимального прямого тока из диаграммы коэффициента передачи тока в техническом описании вашей оптопары. У Vishay есть отличное руководство о том, как читать техническое описание оптопары здесь.
- Знайте, какой тип оптопары вам нужен
Не все оптопары созданы одинаковыми, и вам необходимо выбрать правильный тип для вашего приложения. Например, Opto-Triac используется, если вам нужно управлять нагрузкой переменного тока. Опто-Дарлингтоны предназначены только для небольших входных токов. Если все, что вам нужно, это стандартная изоляция входа, то обычная оптопара PC817 справится с этой задачей. Эту статью от Nuts and Volts определенно стоит прочитать, чтобы понять типы и различия оптронов.
Библиотеки оптопар в EAGLE
Управляемые онлайн-библиотеки Autodesk EAGLE включают целую категорию оптопар для использования в вашем следующем проекте. Это лучше, чем создавать свои собственные пакеты и символы с нуля! Чтобы использовать эту библиотеку, убедитесь, что файл optocoupler.lbr активирован в панели управления Autodesk EAGLE, как показано ниже. Если это так, то у вас будет доступ ко всем этим устройствам в следующий раз, когда вам нужно будет добавить компонент.
Готовы приступить к изоляции цепей и защите низковольтных устройств? Загрузите Autodesk EAGLE бесплатно сегодня, чтобы начать использовать прилагаемые библиотеки оптопары!
Работа оптопары
Google Ads
- Изучив этот раздел, вы сможете:
- Описать Различные режимы смещения, используемые в оптронах:
- • Режим насыщения.
- • Линейный режим.
- • Аналоговый режим.
- Перечислите преимущества и недостатки транзисторных и диодных оптронов:
Оптопары/оптоизоляторы
Оптопары или оптоизоляторы используются для передачи сигналов между двумя изолированными цепями с использованием различных методов, в основном в зависимости от типов соединяемых сигналов. Компьютерной системе и ее периферийным устройствам может потребоваться цифровой сигнал, такой как сигнал широтно-импульсной модуляции, приводящий в движение двигатель. В этом случае оптопара будет использоваться в режиме насыщения.
Импульсному источнику питания может потребоваться выборочное напряжение постоянного тока переменного значения для обратной связи с выхода в систему управления напряжением во входной цепи источника питания при сохранении полной гальванической развязки между входной и выходной цепями. В этом случае будет использоваться линейный режим, поскольку схема управления должна обнаруживать небольшие изменения напряжения постоянного тока.
Для связи таких цепей, как аудиоусилители, где напряжение сигнала быстро меняется, но необходимо избегать насыщения и искажения, оптопары могут передавать сигналы в аналоговом режиме, чтобы можно было безопасно передавать звук, например, с устройства аудиовхода на высокочастотный мощный усилитель.
Рис. 5.1.1 Режим насыщения
Режим насыщения
В режиме насыщения выходной транзистор оптопары либо полностью включен (условия насыщения), либо полностью выключен (непроводящий). Оптопары, работающие в режиме насыщения, широко используются, например, для защиты выходных контактов микроконтроллеров, где они могут использоваться для управления выходными устройствами, такими как двигатели, которым может потребоваться больший ток и/или более высокое напряжение, чем может быть подано непосредственно от микроконтроллера. порт.
В этом случае микроконтроллер фактически управляет только инфракрасным светодиодом, используя такие сигналы, как широтно-импульсная модуляция, данные шагового двигателя или простые сигналы включения и выключения. Изоляция, обеспечиваемая оптопарой, означает, что микроконтроллер также защищен от любых внешних высоких напряжений, таких как противо-ЭДС, которая может возникнуть при отключении индуктивной нагрузки, такой как двигатель. Оптопары также находят применение в модемах, обеспечивающих изоляцию между компьютерами и внешними телефонными линиями.
Рис. 5.1.2 Линейный режим
Линейный режим
Оптопары могут использоваться для обратной связи по напряжению в цепях, таких как импульсные источники питания, где светодиод загорается от образца выходного напряжения, так что любые изменения напряжения вызывают изменение свечения светодиода оптопары и, следовательно, изменение проводимости выходного транзистора оптопары, которое можно использовать для обозначения ошибки в схеме управления источником питания, позволяя ей компенсировать изменение выходного сигнала. Практический пример этой обратной связи и гальванической развязки, которую она обеспечивает с помощью оптопары в линейном режиме, можно увидеть в нашем модуле источников питания 3. 4, где IC3 (4N25) обеспечивает выборку выходного напряжения, которая подается обратно на усилитель ошибки, управляющий схема регулятора напряжения внутри IC1, обеспечивающая автоматическое управление напряжением, обеспечивая при этом полную электрическую изоляцию между выходной цепью 5 В постоянного тока и входной цепью более высокого напряжения.
Рис. 5.1.3 Аудиовход в аналоговом режиме
Аналоговый режим
Как и в линейном режиме, фототранзисторы, используемые в аналоговом режиме, не могут насыщаться, но постоянное напряжение смещения постоянного тока, составляющее примерно половину напряжения питания, модулируется звук, как показано на рис. 5.1.3, или какой-либо другой быстро меняющийся сигнал. Это создает переменный ток в светодиоде, который, в свою очередь, создает переменный ток в выходном компоненте оптопары. Это может быть фототранзистор или очень часто фотодиод. Фототранзисторы, используемые в оптронах для звуковых целей, также могут использовать базовое соединение, доступное в некоторых оптронах, для приложения подходящего смещения к фототранзистору, чтобы обеспечить получение неискаженного выходного аудиосигнала. Специализированные аудиооптопары, такие как IL300, показанные на рис. 5.1.4, могут использовать один или несколько фотодиодов для обеспечения более линейного отклика, чем те, которые используют только фототранзисторы.
Рис. 5.1.4 IL300 Audio
Оптопара
В дополнение к обеспечению более линейной (с меньшими искажениями) характеристики второй диод используется для обеспечения (изолированной) обратной связи во входной цепи, чтобы IL300 мог автоматически компенсировать колебания в CTR из-за изменения температуры и/или старения входного светодиода.
Рис. 5.1.5 Аудиовход в аналоговом режиме
Фототранзистор и фотодиодные оптопары
Оптопары, использующие фототранзисторные выходы, могут передавать аналоговые аудиосигналы с частотой до нескольких десятков кГц. Изменение луча инфракрасного света от светодиода на этих частотах вызывает изменение величины тока, генерируемого на базе выходного фототранзистора, при этом выход транзистора следует за изменениями на входе и усиливает их.
Однако оптопары, использующие фототранзисторы, не имеют такой хорошей линейной зависимости между изменениями входного и выходного светового тока, как фотодиодные типы, как показано на рис. 5.1.5, поэтому могут возникать некоторые искажения сигнала. Устройства вывода с фотодиодами предпочтительны для использования в большинстве аудио (и некоторых цифровых) приложений, даже несмотря на то, что амплитуды их выходного сигнала намного меньше, чем это возможно при усилении, обеспечиваемом фототранзистором; причиной этого являются искажения фототранзистора и плохая работа на высоких частотах.
Это связано с тем, что фототранзистор имеет значительно увеличенную площадь основания, что, повышая светочувствительность, также значительно увеличивает емкость перехода база/эмиттер. Эта увеличенная емкость также усугубляется «эффектом Миллера», который приводит к умножению емкости база/эмиттер транзистора на коэффициент усиления по току (h fe ) транзистора. Поэтому более высокие частоты постепенно уменьшаются по амплитуде, потому что реактивное сопротивление емкости база/эмиттер уменьшается по мере увеличения частоты намного выше звукового диапазона.