Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Зануление — принцип действия и область применения


Помимо заземления, обеспечивающего защиту от короткого замыкания, имеется также процедура зануления, которая кардинально отличается. Это специализированное соединение электрических частей открытого типа, имеющих отношение к силовым установкам, рабочим состоянием для которых является отсутствие напряжения, с глухозаземленной нейтралью генерирующих или преобразующих устройств, что особенно характерно для трехфазного тока. Также возможно сопряжение с глухим заземлением на выходе из источника с одной фазой или такой же точкой в сетях с постоянным током. Единственной целью данного действия является обеспечение высшей степени безопасности рабочего персонала на потенциально опасных объектах.

Зануление, сооружаемое с целью защиты, часто является единственной мерой защиты на электрических установках мощность до 1 киловольта, но только при условии наличия в них глухозаземленной нейтрали.

Основной принцип работы

Зануление заключается в том, что при наличие фазового перехода между корпусом (пробивается фаза), то происходит КЗ. В этом случае сила тока имеет огромные значения, что вызывает срабатывание защитных вспомогательных приборов. Неисправный прибор при этом быстро обесточивается. Если ПУЭ сработает без зануления, то тогда сети будет нанесён очень сильный ущерб. Просто автоматика не успеет выключить всё быстро. А так происходит выигрыш, иногда до 1 секунды. Этого достаточно, чтобы КЗ не сожгло всю проводку на объекте и в оборудовании.

Процедура может быть проведена только на базе специализированных проводников, где жила имеет точное расчётное сопротивление. В однофазной сети нужно использовать трехжильные провода, чтобы добиться успеха. Также можно с этой целью использовать третий провод.

Чтобы вовремя отключить петлю типа «фаза-ноль» и снизить её сопротивление, нужно предварительно проектировать данную систему, иначе зануление потеряет свою эффективность.

Быстрое обесточивание линий электроснабжения не является единственной мерой. Нейтраль имеет глухое заземление, поэтому при касании корпуса человек может почувствовать только неприятное пощипывание. Это строго необходимая мера для всего промышленного оборудования. Зануление сильно отличается от заземления, эти два процесса нельзя сравнивать. Данная мера очень эффективна, известны случаи, когда люди выживали при касании неисправного оборудования, работающего от 10000 вольт.


Главные ошибки в организации

Некоторые люди, далекие от сферы электрификации, думают, что заземление нужно выносить на отдельный провод, который не сопряжен с нулевым проводником электрической сети, но это неверно. Они просто пренебрегают сопротивлением бесконечного длинного проводника, которые идёт от раздающей электрической установки потребителя к ближайшей КТП. Это неверно, ведь если сопротивление заземления будет ниже, чем у нулевой жилы, то тогда весь ток при КЗ пойдёт на корпус, а это приведёт к известным печальным последствиям.

Опасный потенциал будет искать наиболее кратчайший и простейший путь для распространения. Поток электронов пойдёт туда, где сопротивление будет значительно меньше. Чем большее время будет обеспечено для срабатывания ПУЭ, тем лучше будет работать вся система. Некоторые владельцы собственного бизнеса даже раскошеливаются на проводники, состоящие из смеси серебра и меди, чтобы снизить сопротивление на порядок, а также гарантировать 100% срабатывание.

Сейчас многие владельцы производственных линий разбалованы современными УЗО. Они полностью списывают на эти устройства всю ответственность, что делать запрещено. Серьезность отношения к процедуре зануления была очень велика в советское время. Тогда вообще запрещалось делать без этой меры подключение любого промышленного оборудования по системе ТТ. Именно этим и поясняется столь малое количество несчастных случаев на производстве, связанных с электричеством. Когда всё возложено на УЗО, то это также хорошо работает, но шанс получить удар током всегда есть.

Лучше делать двойную защиту.

Где купить товары для зануления

Все необходимые приспособления вы можете приобрести прямо сейчас в нашем интернет-магазине «ПрофЭлектро». Мы являемся признанными экспертами в сфере создания систем электрификации бытового и промышленного назначения. Поэтому наш ассортимент состоит далеко не только из розеток, выключателей и проводов. У нас также имеется множество сопряженного оборудования, инструментов и вспомогательных аксессуаров, необходимых профессиональным электрикам для ежедневной работы. Всё тщательно проверяется нашими специалистами на предмет соответствия заявленным характеристикам и наличие фабричного брака перед отправкой. Доставка возможна в любую точку России.

Защитное зануление

Главная / Зануление

Компания ЛенПроектСтрой имеет опыт в качественном проведении работ, все необходимые сертификаты, лицензии. Необходимо установить зануление электроустановок? Специалисты выполнят в короткий срок весь комплекс зануления.

По своей сути зануление выступает в качестве намеренного объединения открытых проводных элементов установки электросети, которые не подвержены напряжению в оптимальном состоянии. К ним относятся сети:

  • с глухим заземлением нейтрального участка трансформаторного блока;
  • электрические сети 3-фазового тока;
  • сети с глухим заземлением источника в электрических сетях с постоянным током;
  • сети с глухим заземлением вывода источника 1-фазового электрического тока.


Основная задача защитного зануления – гарантировать безопасное использование электрической сети.

Зануление и заземление в чем разница

Основное расхождение между занулением и установкой заземляющего контура состоит в том, что первое предполагает достижение эффекта короткого замыкания. При грамотном распределении напряжения на производствах и корректном функционировании нулевого проводника, защитный ноль надежно фиксируется к покрытию электромотора. Короткие замыкания случаются в случае проникновения напряжения определенной фазы на поверхность электродвигателя.

В подобной ситуации на возможность возникновения короткого замыкания реагируют либо дифференциальный автомат, либо стандартный автомат защиты. Следует иметь ввиду, что путем применения стальной шины заземления друг с другом объединяются все имеющиеся на производстве электрические установки, выведенные на централизованный заземляющий контур объекта. Как видите, 

зануление и заземление – совсем разные понятия. 

Как производится расчет зануления

Довольно часто многие задаются вопросом: каким же образом зануление проникает внутрь дома? Чтобы понять суть процесса, следует подробно рассмотреть путь, прокладываемый от трансформаторного блока, чтобы оценить степень безопасности установки зануления в квартире. Начало работы подразумевает установку зануления с глухим заземлением нейтрали, объединенной с контуром заземления нейтрали трансформаторного блока.

Итак, нейтраль наряду с 2-фазовой линией проникают в шкаф ввода, после чего постепенно распространяются по всей этажности электрощита. Далее следует взять показатель рабочего ноля, который в сочетании фазой образует известное нам фазовое напряжение. Термин «рабочий ноль» имеет довольно простое происхождение – показатель назван именно так ввиду его использования в ходе эксплуатации электрических установок и приборов.

После того, как с электрического щита взят отдельный ноль, обладающий электрическим объединением с глухим заземлением нейтрали, возникает само защитноезануление. Следует помнить, что в череде проводников защитного зануления никогда не числятся аппараты коммутации, к примеру рубильники или автоматы. Также не наблюдаются и предохранители.

Зануление принцип действия

Сферой использования защитного зануления служат электроустановки, находящиеся под напряжением до 1 кВ. К таковым относятся:

  • сети с постоянным электрическим током и заземлением среднего участка источника;
  • однофазовые электрические сети в переменным током и заземлением вывода;
  • трехфаховые электрические сети с переменным током и заземлением ноля.

Защитное зануление

 -имеет своим основным предназначением защиту от потенциального риска возникновения коротких замыканий, и как следствие – ударов током. К примеру, внутри электрической установки наблюдается дефект изоляционного покрытия или корпуса прибора (например, посудомоечной машины), после чего прибор охвачен напряжением. В таком случае на короткое замыкание немедленно реагируют автоматы защиты, пробки, моментально отключающие электрическую установку от питания.

Процесс возникновения цепи тока однофазовых коротких замыканий (иными словами, наблюдаемых между нулем и фазой проводников защиты) построен по алгоритму замыканий проводов фазы на корпусе зануления потребителя электричества. Некорректно функционирующая электрическая установка отключается от сети после реакции на замыкание со стороны защитных приборов.

Чтобы как можно быстрее и безопаснее отключить охваченную напряжением электрическую установку, требуются автоматы защиты, предохранители и иные механизмы, способные защитить сеть от коротких замыканий.

Кроме того, в таких случаях часто используют пускатель магнитного типа, оснащенный монтированным в него тепловым предохранителем, а также контакты с реле тепла, эффективно защищающие установку от перегрузок.

Принцип зануления, в чем заключается?

Как известно, короткие замыкания возникают при проникновении проводов фазы, находящихся под напряжением, на поверхность металлических приборов, подключенных к нулевому проводнику. При этом можно отметить явное повышение мощности электрического тока до непомерных показателей, в результате чего тут же следует реакция со стороны автоматов защиты, отключающих неисправное оборудование от питания.

На то, чтобы отключить поврежденный прибор от питания при фазном напряжении электросети в 380-220 Вольт, согласна правилам устройства электроустановок, требуется не более 0,4 сек. Чтоб произвести зануление, применяют специализированные проводящие механизмы, такие как 3-я кабельная жила или кабели (дляоднофазовых проводок).

Петля нулевой фазы должна обладать умеренным сопротивлением, так как только при таком условии выведение защитного прибора из строя возможно в установленное нормативами время. По этой причине достичь безопасного и оперативного зануления можно только при отменном качестве установки сети и соединений.

Благодаря занулению можно обеспечить не только оперативное и безопасное отключение от сети поврежденной аппаратуры, но и гарантировать понижение напряжения при контакте с корпусом электроприбора. За это стоит поблагодарить заземление нейтрали.
Тем самым, потенциальный риск получить сильный удар током снижается практическим до ноля. Нейтраль заземления является поводом для того, чтобы считатьзануление едва ли не подвидом заземляющего устройства.

Таким образом, в качестве базиса принципа работы зануления можно рассматривать предупреждение коротких замыканий, а также трансформацию замыканий на корпусе в однофазовое. В любом случае, главной задачей зануления остается защита электросети и своевременное отключение от нее поврежденного прибора.

Зануление электробезопасность

Защитное зануления квартире. в чем состоит опасность?

Прежде всего, стоит раз и навсегда уяснить разницу чем отличается заземление от зануления. Предлагаем немного углубиться в суть расхождений между данными понятиями. Согласно правилам устройства электроустановок, зануление не может использоваться в бытовых условиях ввиду высокого риска опасности при его функционировании. Однако, наперекор правилам, данная система активно практикуется не только в промышленной и производственной областях, но и в условиях квартиры. Как правило, данная система защиты, не лишенная недостатков, часто выбирается ввиду банальной нехватки знаний о ней.

Конечно, устанавливать защитное зануление в условиях квартиры можно, но никто не сможет гарантировать вам безопасность. Последствия в таком случае могут быть самыми непредсказуемыми. На наглядных примерах пронаблюдаем, какие именно ситуации могут возникнуть в таком случае.

  • Зануление розеток

Порой вам могут предложить произвести заземление электроприборов таким путем: нужно перемкнуть клемму рабочего ноля в розетках на контакте защиты. Кроме того, при вводе в помещение как правило присутствует прибор, назначение которого – коммутация как фазовая, так и нулевая. Например, таким аппаратом можно считать пакетник, прибор на два полюса. Однако, коммутацию нулевого проводника, используемого в роли защитного, категорически запрещают пуэзануление и гост зануление. Иными словами, применять проводник защиты, в цепи которого имеется аппарат коммутации, не допускается.

Перемычка, в свою очередь, опасна при заземлении розеток тем, что в случае повреждения целостной структуры ноля корпуса электрических приборов тут же охватываются фазовым напряжением. Если произошел обрыв нулевого кабеля, электрический приемник прекращает свою работу. В результате, подобный кабель выглядит обесточенным, то есть не представляющим опасности, что серьезно усложняет задачу.

  • Неверное расположение фазы и ноля

При изучении очередного примера, мы можем наблюдать красочную картину реальной опасности, которую таит в себе 2-проводной стояк. Довольно часто при проведении ремонта в домовых электрохозяйственных учреждениях путают показатели N (ноля) b L (фазы), меняя их местами. Проблема в том, что специфической окраски провода в электрических щитах с двойной проводкой не имеют, потому перепутать нулевую и фазную жилу очень просто – даже если работает профессионал.

  • Отгоревший ноль

Под отгоранием нуля, или же его обрывом, любой электрик понимает нередкий и довольно опасный случай. Подобный термин, как правило, не знаком обычному потребителю электричества. В чем же состоит опасность обрыва нуля? Чаще всего, его наблюдают в домах, оснащенных устаревшей проводкой, которую проектировали при расчете порядка 2 кВт/квартира. Несомненно, на данный момент квартиры оснащаются различными приборами, значительно повышающими данный показатель.

Если случается обрыв нуля, может произойти фазовый перекос на трансформаторных подстанциях, питающих многоквартирные дома, а также в централизованном щите. В итоге может случится неприятный конфуз: в один сектор квартир будет поступать повышенное напряжение, в другой – наоборот.

 

Зануление с оформлением всех необходимых документов,

оперативный выезд.

Тел./факс: +7 (812) 466-46-29
Сопутствующие вопросы:

Протоколы электроизмерений примеры

технический отчет электроизмерений

 

 

Защитное заземление и зануление (Реферат)

Введение

Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия — защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с “землей”, а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.

Заземление — преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ

Терминология

  • Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

  • Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Обозначения

Обозначение на схемах (два символа справа)

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

  • T — непосредственное соединения нейтрали источника питания с землёй;

  • I — все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

  • T — открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

  • N — непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

  • S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

  • C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

  • Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

  • Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО).

Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР.

Система TN-S

Разделение нулей в TN-S и TN-C-S

На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция — электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи — отдельный нулевой защитный проводник (PE).

Система TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Система IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип действия

Принцип действия зануления

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля. Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли “фаза-ноль” должно быть небольшим, что, в свою очередь, накладывает на все соединения и монтаж сети жесткие требования качества, иначе зануление может оказаться неэффективным. Помимо быстрого отключения неисправной линии от электроснабжения, благодаря тому, что нейтраль заземлена, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека.

Различают зануление систем TN-C, TN-C-S и TN-S:

Система зануления TN-C

http://ru. wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:%D0%A3%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE_%D0%B7%D0%B0%D0%BD%D1%83%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F.PNG

Система зануления TN-C

Устройство зануления.PNG Простая система зануления, в которой нулевой проводник N и нулевой защитный PE совмещены на всей своей длине. Совместный проводник обозначается аббревиатурой PEN. Имеет существенные недостатки, главный из которых – высокие требования к системам уравнивания потенциалов и сечению PEN-проводника. Применяется для электроснабжения трехфазных нагрузок, например асинхронных двигателей. Применение данной системы в однофазных групповых и распределительных сетях запрещено:

Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник.

— ПУЭ-7

Система зануления TN-C-S

Усовершенствованная система зануления, предназначенная для обеспечения электробезопасности однофазных сетей электроустановок. Она состоит из совмещенного PEN-проводника, который соединен с глухозаземленной нейтралью питающего электроустановку трансформатора. В точке, где трехфазная линия разветвляется на однофазные потребители (например в этажном щите многоквартирного дома или в подвале такого дома) PEN-проводник разделяется на PE- и N-проводники, непосредственно подходящие к однофазным потребителям.

Система зануления TN-S

Наиболее совершенная, дорогая и безопасная система зануления, получившая распространение, в частности, в Великобритании. В этой системе нулевой защитный и нулевой проводники разделены на всей своей длине, что исключает вероятность ее выхода из строя при аварии на линии или ошибке в монтаже электропроводки.

Заключение

Обеспечение безопасности жизнедеятельности – задача первостепенного приоритета для личности, общества и государства. С момента своего появления на Земле человек перманентно живёт и действует в условиях постоянно изменяющихся потенциально опасностей. Реализуясь в пространстве и времени, опасности причиняют вред здоровью человека, который проявляет в нервных потрясениях, болезнях, инвалидных и летальных исходах и др. Профилактика опасности и защита от них – актуальнейшая гуманная, социально-экономическая и юридическая проблема, в решении которой государство не может быть не заинтересованным.Для обеспечения электробезопасности необходимо строгое выполнение ряда организационно-технических мероприятий установленных правилами устройства электроустановок, правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей. Опасное и вредное воздействие на людей электрического тока, электрической дуги и электромагнитных полей проявляется в виде электротравм и профессиональных заболеваний. Электробезопасность в помещении обеспечивается техническими способами и средствами защиты, а так же организационными и техническими мероприятиями.

Заземление и соединение электрических систем Справка

Используйте поиск, чтобы быстро найти ответы на вопросы – откройте окно поиска (ctrl + f), затем введите ключевое слово из вопроса, чтобы перейти к этим терминам в материале курса

Цель.

Целью этого курса является ознакомление инженеров с проблемами заземления и соединения электрических систем, связанными с глухозаземленными системами под напряжением 600 В. Этот курс может служить введением в заземление и подключение для инженеров, не имеющих или почти не имеющих опыта профессионального проектирования электрооборудования.В курсе также представлена ​​практическая, но не совсем известная информация по применению заземления и соединения, которая пригодится даже самому опытному профессионалу в области проектирования электрических систем.

Зачем тратить время на изучение заземления и подключения?

 Многие специалисты в области электротехники придерживаются популярного и ошибочного убеждения, что заземление металлического объекта (путем прямого подключения к земле)
поможет снять опасное напряжение, вызванное замыканием линии на землю. Заземление объекта не способствует снятию опасного напряжения или снижению напряжения прикосновения или шагового напряжения, которые являются причиной нескольких смертельных случаев каждый год.

 Неправильное заземление и подключение – частая причина несчастных случаев, связанных с электрическим током.

 Эффективное заземление играет важную роль в правильной работе чувствительного электронного оборудования.

 «Более 80% всех отказов электронных систем, которые связаны с аномалиями питания, на самом деле являются результатом ошибок электропроводки или заземления или вызваны другими нагрузками на предприятии заказчика». EPRI (Научно-исследовательский институт электроэнергетики)

 «Из всех проблем с питанием и заземлением, влияющих на электронное оборудование, почти 90% вызваны электропитанием и условиями заземления внутри объекта, в котором используется оборудование… Что еще более важно, почти 75% проблем Проблемы с качеством электроэнергии внутри объекта связаны с заземлением, что делает его единственным наиболее важным фактором с точки зрения обеспечения надежной работы оборудования.”Уоррен Льюис, ECM Magazine

 Издание 2005 г. Национального электротехнического кодекса (NEC) включало полный пересмотр и переименование статьи 250 (ранее называвшейся« Заземление »), которая, по словам редакторов Справочника NEC «Одно из самых значительных изменений, произошедших в новейшей истории Кодекса».

Основа и ресурсы.

Следующие ресурсы служат в качестве первичной основы информации, представленной в этом курсе
, и на них будут ссылаться в материалах курса:

 Статья 250 Национального электротехнического кодекса (NEC) – издание 2005 г.

 Стандарт IEEE 1100-1999 рекомендуется Практика питания и заземления чувствительного электронного оборудования

 Стандарт IEEE 142-1982 Заземление промышленных и коммерческих систем питания

 Общие сведения о тестировании сопротивления заземления AEMC (рабочая тетрадь, издание 6.0)

Для многих инженеров, подрядчиков и техников Национальный электротехнический кодекс и его статья 250 (Заземление и соединение) являются единственной основой при проектировании и установке системы заземления.

Перед тем, как начать курс, жизненно важно, чтобы мы рассмотрели цель и ограничения Национального электрического кодекса (NEC) – чтобы понять, как следует применять NEC.

Статья 90.1 Национального электротехнического кодекса устанавливает его цель и намеренные ограничения:

90.1 Цель

(A) Практическая защита – Целью настоящего Кодекса является практическая защита людей и имущества от опасностей, возникающих в результате использования электричества.

(B) Соответствие – этот Кодекс содержит положения, которые считаются необходимыми для обеспечения безопасности. Их соблюдение и надлежащее техническое обслуживание приводят к установке, которая по существу не опасна, но не обязательно эффективна, удобна или адекватна для хорошего обслуживания или будущего расширения использования электричества.

(C) Намерение – Этот Кодекс не предназначен в качестве проектной спецификации или руководства по эксплуатации для неподготовленных людей!

Согласно NEC – Инженеры, проектирующие и определяющие заземление и подключение, не должны использовать Национальный электрический кодекс (NEC) в качестве поваренной книги.

NEC не заменяет понимание теории, лежащей в основе требований кодекса.

Чтобы понять заземление и соединение, важно знать значения слов, которые мы будем использовать. В статье 110 Национального электротехнического кодекса содержатся определения слов, которые мы будем использовать в этом курсе. Они перечислены в порядке важности, не обязательно в алфавитном порядке.

Приложение 1 Различные компоненты заземления и соединения.

Заземленный проводник. Система или провод цепи, который намеренно заземлен. Его также обычно называют нейтральным проводником в заземленной звездообразной системе.

Заземляющий провод. Проводник, используемый для соединения оборудования или заземленной цепи системы электропроводки с заземляющим электродом или электродами.

Заземляющий провод, оборудование. Проводник, используемый для подключения нетоковедущих металлических частей оборудования, кабельных каналов и других кожухов к заземленному проводнику системы, проводнику заземляющего электрода или к тому и другому на сервисном оборудовании или в источнике отдельно созданной системы.Статья 250.118 NEC описывает различные типы заземляющих проводов оборудования. Правильный выбор заземляющих проводов оборудования приведен в 250.122 и таблице 250.122.

Электрод заземления. Устройство, обеспечивающее электрическое соединение с землей.

Провод заземляющего электрода. Проводник, используемый для подключения заземляющего электрода (ов) к заземляющему проводу оборудования, к заземленному проводу или к обоим при обслуживании, в каждом здании или сооружении, где питание подается от фидера (ов) или ответвительной цепи (ов). , или в источнике отдельно производной системы.

Склеивание (скрепленное). Постоянное соединение металлических частей для образования электропроводящего пути, обеспечивающего непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть.

Назначение соединения – установить эффективный путь для тока короткого замыкания, который, в свою очередь, облегчает работу устройства защиты от сверхтока. Это объясняется в статьях 250.4 (A) (3) и (4) и 250.4 (B) (3) и (4) Национального электротехнического кодекса. Конкретные требования к соединению содержатся в Части V Статьи 250 и в других разделах Кодекса, как указано в Статье 250 NEC.3.

Соединительная перемычка. Надежный проводник, обеспечивающий необходимую электрическую проводимость между металлическими частями, подлежащими электрическому соединению.

Заглушки концентрического и эксцентрического типа могут ухудшить электрическую проводимость между металлическими частями и фактически вызвать ненужное сопротивление в цепи заземления. Установка соединительных перемычек – это один из часто используемых методов между металлическими дорожками качения и металлическими частями для обеспечения электропроводности. Связывающие перемычки можно найти в сервисном оборудовании [NEC 250.92 (B)], подключение более 250 В (NEC 250.97) и расширительные фитинги в металлических дорожках качения (NEC 250.98). На рис. 2 показана разница между выбивками концентрического и эксцентрического типов. На Таблице 2 также показан один из методов установки соединительных перемычек при этих типах заглушек.

Приложение 2 Соединительные перемычки устанавливаются вокруг концентрических или эксцентрических выбивных участков.

Клеящая перемычка, оборудование. Соединение между двумя или более частями заземляющего провода оборудования.

Соединительная перемычка, основная. Соединение между заземленным проводом цепи и заземляющим проводом оборудования при обслуживании.

На рисунке 3 показана основная перемычка, используемая для обеспечения соединения между заземленным рабочим проводом и заземляющим проводом оборудования на рабочем месте. Связывающие перемычки могут быть расположены по всей электрической системе, но основная перемычка заземления находится только в служебных помещениях. Основные требования к перемычкам подключения приведены в NEC 250.28.

Приложение 3. Основная перемычка, устанавливаемая на сервисе, между заземленным проводником и заземляющим проводом оборудования.

Соединительная перемычка, система. Соединение между проводником заземленной цепи и проводом заземления оборудования в отдельно выделенной системе.

На рисунке 4. показана перемычка для соединения системы, используемая для обеспечения соединения между заземленным проводником и заземляющим проводом (проводниками) оборудования трансформатора, используемого как отдельно производная система.

Приложение 4. Перемычка заземления системы, устанавливаемая рядом с источником отдельно выделенной системы между заземленным проводником системы и заземляющим проводом (проводниками) оборудования.

Перемычки соединения системы расположены рядом с источником отдельно производной системы. В производной системе используется соединительная перемычка, если производная система содержит заземленный провод. Подобно основной перемычке заземления на сервисном оборудовании, перемычка заземления системы обеспечивает необходимое соединение между заземляющими проводниками оборудования и заземленным проводником системы, чтобы создать эффективный путь для тока замыкания на землю. Требования к перемычкам для подключения системы находятся в NEC 250.30 (А) (1).

Заземлен. Подключен к земле или к какому-либо проводящему телу, которое служит вместо земли.

Эффективно заземлено. Преднамеренно подключено к земле через заземление или соединения с достаточно низким импедансом и достаточной допустимой нагрузкой по току, чтобы предотвратить повышение напряжения, которое может привести к чрезмерной опасности для подключенного оборудования или людей.

Без заземления. Подключено к земле без установки резистора или устройства импеданса.

 Распространенное заблуждение состоит в том, что заземление и соединение – это одно и то же. Хотя они связаны, это не одно и то же. Цель этого курса – прояснить каждую тему.

 В редакции Национального электротехнического кодекса 2005 г. это признается и изменено название статьи 250 (которая раньше называлась «Заземление») на «Заземление и соединение», чтобы усилить, что заземление и соединение – это две отдельные концепции, но не исключающие друг друга, и фактически, напрямую связаны между собой требованиями статьи 250.

 Соединение – это соединение двух или более проводящих объектов друг с другом с помощью проводника, такого как провод.

 Заземление, также называемое «заземлением», представляет собой особую форму соединения, при которой один или несколько проводящих объектов соединяются с землей с помощью проводника, такого как провод или стержень.

 Правильное заземление объектов (проводников) в поле обычно включает как связи между объектами, так и особую связь с землей (землей).

Заземление для целей этого курса означает намеренное соединение с землей или другим проводящим телом относительно большой протяженности, которое служит вместо земли.Другое слово для обозначения заземления – «заземление». Если мы будем помнить об этом и использовать термин «заземление» всякий раз, когда мы используем термин «заземление», это поможет нам понять, что такое заземление (или заземление), а что нет.

Связывание – это соединение проводящих частей между собой с целью поддержания общего электрического потенциала и обеспечения электрического проводящего пути, который будет гарантировать непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть. IEEE Std. 1100–1999.

В соответствии со статьей 250.4 (A) Национального электротехнического кодекса, ниже приведены общие требования к заземлению и соединению заземленных систем. В системе с заземлением вторичные обмотки питающего трансформатора могут иметь конфигурацию «звезда» с заземлением общей ветви или конфигурацию «треугольник» с заземленным центральным отводом или заземленным углом.

Следующие общие требования определяют, какие заземления и соединения электрических систем необходимо выполнить. Для соответствия эксплуатационным требованиям этого раздела необходимо следовать предписывающим методам, содержащимся в Статье 250.

(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время нормальной работы. операция.

(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.

(3) Соединение электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть соединены вместе и с источником электропитания таким образом, чтобы установить эффективный ток замыкания на землю. дорожка.

(4) Соединение электропроводящих материалов и другого оборудования Электропроводящие материалы, которые могут оказаться под напряжением, должны быть
соединены вместе и с источником электропитания таким образом, чтобы создать эффективный путь тока замыкания на землю.

(5) Эффективный путь тока замыкания на землю Электрооборудование, проводка и другие электропроводящие материалы, которые могут оказаться под напряжением, должны быть установлены таким образом, чтобы создать постоянную цепь с низким сопротивлением, облегчающую работу устройства максимального тока или детектора заземления для системы с высокоомным заземлением. Он должен быть способен безопасно пропускать максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю источника электропитания.Заземление не должно рассматриваться как эффективный путь тока замыкания на землю.

Давайте рассмотрим с предыдущей страницы общие требования, представленные в Национальном электротехническом кодексе для заземления и соединения, чтобы лучше понять, какие требования выполняются посредством заземления (заземления), а какие – посредством методов соединения.

 Требования (1) и (2) относятся к заземлению – они конкретно относятся к «заземлению».

 Требование (1) – заземление системы или преднамеренное соединение системного проводника в заземленной системе с землей.Заявленная цель этого намеренного подключения к земле состоит в том, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и это стабилизирует напряжение относительно земли во время нормальной работы.

 Требование (2) выполняется путем присоединения нетоковедущих металлических предметов к заземляющему проводу оборудования, который присоединен к проводнику заземляющего электрода на служебном входе и на стороне нагрузки каждой отдельно выделенной системы.

 Требования (3), (4) и (5) являются связующими. Путем соединения всех металлических предметов, которые могут оказаться под напряжением в случае неисправности (и путем обеспечения заземляющего проводника оборудования, соединенного с этими предметами и с источником), обеспечивается эффективный путь заземления, облегчающий работу устройств защиты от перегрузки по току. Проще говоря, путь тока короткого замыкания должен иметь достаточно низкое сопротивление, чтобы пропускать ток короткого замыкания достаточно высокой величины, чтобы вызвать срабатывание защитного устройства на входе.Связывание также помогает обеспечить безопасность персонала, так что кто-то, прикоснувшись к двум частям оборудования одновременно, не получит шока, став путем выравнивания, если они окажутся под разными потенциалами. По той же причине, по которой соединение защищает людей, оно защищает оборудование, уменьшая ток по проводам питания и данных между частями оборудования с разными потенциалами.

Важно понимать разницу между соединением и заземлением. Имейте в виду, что земля (грунт) является плохим проводником, и на нее нельзя полагаться как на часть пути возврата тока замыкания на землю – это путь, предназначенный для устранения замыкания.Причина, по которой никогда нельзя полагаться на землю / почву как часть обратного пути от замыкания на землю, связана с ее высоким сопротивлением.

Сопротивление земли примерно в один миллиард раз больше, чем у меди (согласно стандарту IEEE 142, раздел 2.2.8), и обеспечивает возврат к источнику только нескольких ампер (1-10).

Стандарт 142 Института инженеров по электротехнике и радиоэлектронике гласит: «Самая сложная система заземления, которую можно спроектировать, может оказаться неадекватной, если соединение системы с землей не является адекватным и имеет низкое сопротивление.Отсюда следует, что заземление является одной из наиболее важных частей всей системы заземления. Это также самая сложная часть для проектирования и получения … Для небольших подстанций и промышленных предприятий в целом должно быть получено сопротивление менее 5 Ом, если это практически возможно ».

Однако с практической точки зрения на заземляющий электрод, независимо от его сопротивления, нельзя полагаться на устранение замыкания на землю. Если оборудование эффективно заземлено и соединено, то должен быть предусмотрен путь с низким импедансом (не через заземляющий электрод к земле и через землю обратно к источнику), чтобы облегчить работу устройств максимального тока в цепи.В то время как минимальное практическое сопротивление заземляющего электрода желательно и будет лучше ограничивать потенциал корпусов оборудования над землей, более важно обеспечить путь с низким импедансом для быстрого устранения повреждения в целях обеспечения безопасности. Чтобы получить наименьшее практическое сопротивление, цепь заземления оборудования должна быть подключена к заземленному проводу внутри вспомогательного оборудования.

Ни заземление (заземление), ни система заземляющих электродов не помогают устранять электрические неисправности. Именно соединение металлических предметов с заземляющим проводом оборудования обратно к источнику обеспечивает путь с достаточно низким импедансом, позволяющим срабатывать защитным устройствам от сверхтоков и устранять неисправности.Если путь замыкания на землю опирается на землю, то тока короткого замыкания (из-за высокого импеданса) будет недостаточно для срабатывания защитного устройства
.

Помните закон Ома, V = I x R? Рассмотрим следующий пример. Фазный провод на 120 В намеренно подключается непосредственно к земле (если оголенный провод под напряжением был подключен к заземляющему стержню в грязи), а заземляющий стержень имеет сопротивление 25 Ом к заземленному источнику питания (трансформатору). В этом сценарии будет получено чуть менее 5 Ампер (4.8А) тока замыкания на землю. Это преднамеренное соединение с землей не дало бы достаточного тока короткого замыкания для отключения даже автоматического выключателя на 20 А, поскольку автоматический выключатель на 20 А может непрерывно выдерживать 16 Ампер.

Тот же высокий импеданс земли, который ограничивает ток короткого замыкания до уровней, меньших, чем требуется для размыкания защитных устройств, создаст опасные скачки напряжения или напряжения прикосновения в непосредственной близости от заземляющего стержня, которые могут быть смертельными. Несколько человек умерли в последние годы именно из-за этого состояния, когда столбы уличного освещения были заземлены заземляющими стержнями, но не имели заземляющих проводов оборудования, которые могли бы служить эффективным путем обратного тока короткого замыкания к источнику питания.

Давайте рассмотрим факторы, которые влияют на сопротивление систем заземляющих электродов (давайте использовать стержни для обсуждения).

 Сопротивление электрода (разница всего в несколько миллиОм между различными обычно используемыми материалами и размерами – IEEE Std 142-1982). Сопротивление электрода зависит от материала стержня и площади поверхности стержня. Площадь поверхности стержня зависит от диаметра стержня.

 От стержня к поверхности почвы (не имеет значения – обычно составляет лишь долю Ом – если стержень вбивается в уплотненную почву и не является рыхлым – IEEE Std 142-1982) Различия в размерах заземляющих стержней и материалах делают небольшая заметная разница в сопротивлении электрода (однако материал стержня играет роль в ожидаемом сроке службы стержня).

 Контактное сопротивление между стержнем и окружающей почвой. Если стержень вбивается в уплотненный грунт, сопротивление между стержнем и окружающей почвой не является существенным фактором (это обсуждается более подробно в разделе, посвященном стержням с глубоким забиванием).

 Сопротивление почвы, окружающей электрод (самый большой фактор). В правильно установленной системе заземляющих электродов сопротивление почвы является ключевым фактором, определяющим, каким будет сопротивление заземляющего электрода и на какую глубину необходимо ввести стержень, чтобы получить низкое сопротивление заземления.
Удельное сопротивление почв зависит от глубины от поверхности, типа концентрации растворимых химических веществ (минералов и растворенных солей) в почве, содержания влаги и температуры почвы. Другими словами, удельное сопротивление определяется электролитом в почве. Сопротивление заземляющего стержня 5/8 дюйма для типичных типов грунта из IEEE 142-1982 представлено ниже:

Вот несколько удивительных фактов:

Согласно этой таблице IEEE 142-1992, 10-дюймовый заземляющий стержень приводится в действие в двух из четырех категорий типов грунтов в среднем не обеспечивали сопротивления 25 Ом или менее! Это обычное дело во многих районах с песчаной почвой.

Наличие поверхностных вод не обязательно указывает на низкое удельное сопротивление (IEEE Std 142-1982).

Недавний проект наглядно иллюстрирует истинность этого утверждения. Почва водомелиоративного сооружения всегда была влажной. Инженеры-электрики, исследующие проблемы с заземлением на объекте, наивно полагали, что постоянное присутствие воды (из-за высокого уровня грунтовых вод) гарантирует низкое удельное сопротивление почвы и что отдельных стержней заземления или, возможно, параллельных стержней заземления будет достаточно для создания заземления с низким сопротивлением. (заземление).Однако все было наоборот. Дальнейшие исследования показали, что высокий уровень грунтовых вод был связан с подземным водным потоком. Буквально через это место протекала река, которая была частью гидрологии района. Почва была очень песчаной.

Со временем все растворимые минералы, которые существовали, были растворены и унесены медленно текущей водой, оставив песок и дистиллированную воду – оба отличные изоляторы!

Это открытие радикально изменило направленность исследования заземления площадки и соответствующих корректирующих действий, заставив инженеров задуматься о стратификации почвы.

Традиционные методы заземления, которым в течение последних сорока лет обучали производителей заземления и тестирования заземления, основаны на предполагаемом однородном состоянии почвы. Традиционные методы породили практические правила, которые стали приняты многими инженерами
как стандартные практики. Одна из таких практик заключалась в том, что как удвоение глубины заземляющего стержня, так и установка двух параллельных заземляющих стержней были одинаково эффективными методами для снижения сопротивления стержня (ов) относительно земли.Эти практические правила предполагали, что почва однородна – что почва остается того же типа и сопротивления по мере того, как вы погружаетесь на большую глубину. На практике на многих территориях имеется слоистая почва, а не однородная почва.

Как ответственные инженеры, мы должны помнить, что практика использования параллельных заземляющих стержней, иногда соединенных по схеме треугольника, которая была разработана с использованием методов, предполагающих однородность грунтовых условий, может быть не лучшей практикой для стратифицированных почвенных условий.

Мы рассмотрим это более подробно в следующем разделе.

Что может служить заземляющим электродом?

Помните: заземляющий электрод – это средство выполнения двух из пяти требований к заземлению и соединению, перечисленных в Национальном электротехническом кодексе.

(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время Нормальная операция.

(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.

В соответствии с Национальным электротехническим кодексом в качестве заземляющих электродов могут использоваться следующие электроды, и если их более одного, они должны быть соединены вместе:

 Металлическая подземная водопроводная труба (NEC 250.52 (A) (1))

 Металлический каркас конструкции (NEC 250.52 (A) (2))

 Заземляющий электрод в бетонном корпусе (также известный как заземление UFER) (NEC 250,52 (A) (3))

 Кольцо заземления (NEC 250.52 (A) (4))

 Заземляющий стержень (NEC 250.52 (A) (5))

 Заземляющие пластины (NEC 250.52 (A) (6))

В Национальных электротехнических правилах указаны конкретные требования к установке для каждого типа электрода.

Два или более заземляющих электрода, которые эффективно соединены вместе, должны рассматриваться как единая система заземляющих электродов.

Давайте рассмотрим различные места, где требуется заземление (имеется в виду преднамеренное соединение или подключение к системе заземления). Национальный электротехнический кодекс требует следующего:

Служебный вход – Статья 250.24 (A) NEC требует, чтобы в системе электропроводки помещения, снабжаемой заземленной службой переменного тока, был провод заземляющего электрода, соединенный с заземленным служебным проводом (также называемый нейтралью). дирижер). Статья 250.24 (A) (1) требует, чтобы соединение было выполнено в любой доступной точке от конца нагрузки на линии ответвления или боковой линии обслуживания до терминала или шины, к которым подключен заземленный провод (нейтраль), на стороне обслуживания и включительно. отключающие средства.Это переводится в одно из трех мест, как показано ниже:

Отдельно производные системы – Обратитесь к разделу VI для обсуждения отдельно производного заземления системы.

Металлические водопроводные и другие металлические трубопроводы, которые могут оказаться под напряжением – 250.104 (A) и (B) требует, чтобы металлическая система водяных трубопроводов была соединена с системой заземления в любом из следующих мест: кожух вспомогательного оборудования, заземленный провод на обслуживание, провод заземляющего электрода или заземляющие электроды.В то время как металлические водопроводные трубы должны быть заземлены, другие системы металлических трубопроводов должны быть соединены с землей (заземлены) только в том случае, если существует вероятность того, что они будут под напряжением – то есть там, где в оборудовании имеются механические трубопроводы и электрические соединения (например, газовые приборы). .

Конструкционный металл – 250.104 (C) требует наличия открытого конструкционного металла, который соединен между собой для образования металлического каркаса здания и не заземлен намеренно и может оказаться под напряжением, должен быть соединен с землей либо в корпусе сервисного оборудования, либо в заземленном проводе в сервисе. , провод заземляющего электрода или к заземляющим электродам.

Если система переменного тока подключена к заземляющему электроду в здании или сооружении или на них, тот же электрод должен использоваться для заземления корпусов проводников и оборудования внутри или на этом здании или сооружении. Если отдельные службы, фидеры или ответвления питают здание и должны быть подключены к заземляющему электроду (ам), следует использовать тот же заземляющий электрод (а). Это необходимо для того, чтобы все металлические объекты в конструкции имели одинаковый потенциал земли.

Какое сопротивление земли требуется? Разрешается?

Если вас спросят: «Сколько Ом сопротивления земли требуется Национальным электрическим кодексам (NEC) для заземления системы?» Что бы вы сказали? А) 25 Ом? Б) 10 Ом? В) 100 Ом? Или D) Вы бы сказали, что NEC не устанавливает минимальных требований?

Если бы вы ответили D), вы были бы правы! Как бы трудно в это поверить, но в Национальном электротехническом кодексе нет заявленного минимального сопротивления заземления для заземления системы.

Давайте посмотрим на статью 250-56 NEC

250.56 Сопротивление стержневых, трубных и пластинчатых электродов:

 Отдельный электрод, состоящий из стержня, трубы или пластины, не имеющий сопротивления заземления 25 Ом или менее, должен может быть усилен одним дополнительным электродом любого из типов, указанных в пунктах от 250,52 (A) (2) до (A) (7). Если в соответствии с требованиями данного раздела установлено несколько стержневых, трубных или пластинчатых электродов, они должны находиться на расстоянии не менее 1,8 м (6 футов) друг от друга.

 FPN: Эффективность параллельного включения стержней длиннее 2.5 м (8 футов) увеличивается за счет расстояния более 1,8 м (6 футов).

Обратите внимание, что NEC говорит, где «Один электрод…». Также обратите внимание, что это не требует повторных испытаний и установки дополнительных стержней или стержней дополнительной длины до тех пор, пока не будет достигнуто сопротивление 25 Ом или меньше. Эта статья NEC позволяет подрядчику запускать две штанги, разнесенные на 6 футов друг от друга, не проводить наземных испытаний и прекращать работу!

Многие районы имеют слоистую (то есть слоистую) песчаную почву. Наиболее чистый песок – это кварц, диоксид кремния (SiO2).Диоксид кремния – это высококачественный электрический изолятор, который обычно используется в качестве барьерного материала при имплантации примесей или диффузии, для электрической изоляции полупроводниковых устройств, в качестве компонента металлооксидных полупроводниковых (МОП) транзисторов или в качестве межслойного диэлектрика при многоуровневой металлизации. такие структуры, как многокристальные модули
. Песок – хороший изолятор; это НЕ хороший заземляющий материал.

Чтобы выйти из слоистых песчаных почв, необходимо продвинуть заземляющие стержни глубже через слой песка (каким бы глубоким он ни был) в более проводящую почву.

Установка нескольких параллельных стержней в песчаный грунт не имеет большого значения, если требуется соединение с землей с низким сопротивлением – вы должны пройти под слоем песка.

Национальный электротехнический кодекс содержит две таблицы, в которых указаны размеры заземления и соединения.

 Таблица 250.66 Заземляющий провод для систем переменного тока

 Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования.

Таблица 250.66 Провод заземляющего электрода для систем переменного тока

Примечания:
1.Если используется несколько наборов служебных вводных проводников, как это разрешено в 230.40, исключение № 2, эквивалентный размер самого большого служебного вводного проводника должен определяться по наибольшей сумме площадей соответствующих проводников каждого набора.
2. Если нет проводов для входа в сервисный центр, размер жилы заземляющего электрода должен определяться эквивалентным сечением самого большого входного проводника, необходимого для обслуживаемой нагрузки.

Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования

Примечание:
Если необходимо, чтобы соответствовать требованиям 250.4 (A) (5) или (B) (4), заземляющий провод оборудования должен иметь сечение больше, чем указано в этой таблице.
* См. Ограничения на установку в 250.120.

Источником этих таблиц был отчет комитета IEEE «Руководство по безопасности при заземлении подстанций переменного тока». В отчете комитета обсуждалась обоснованность размеров заземляющих проводов, указанных в таблицах, исходя из типичной длины проводника 100 футов и падения напряжения на проводнике на основе этой длины 100 футов. [Руководство к Национальному электротехническому кодексу – Грегори Биералс – Институт проектирования электрооборудования].Для длин более 100 футов «минимальный размер», указанный в таблице, может оказаться недостаточным для устранения неисправности или проведения тока повреждения, которому она подвержена.

С практической точки зрения, проводники заземляющих электродов редко проектируются так, чтобы их длина превышала 100 футов, и на Таблицу 250.66 можно положиться почти без исключения.

Заземляющие проводники оборудования, с другой стороны, часто длиннее 100 футов, то есть всегда, когда длина ответвленной цепи или фидера заземляющего проводника оборудования, с которым они установлены, превышает 100 футов.В этих ситуациях минимальный провод заземления оборудования, указанный в таблице 250.122, не будет достаточным для пропускания и / или снятия ожидаемых токов повреждения.

Опытные инженеры-электротехники и специалисты по проектированию знакомы с необходимостью увеличения размеров проводников для длинных ответвлений цепи и проводов фидера для решения и уменьшения проблем, связанных с падением напряжения. В статье 250.122 (B) указывается, что заземляющий провод оборудования также должен быть увеличен.

250.122 (B) Увеличенный размер – Если размер незаземленных проводов увеличен, заземляющие проводники оборудования, если они установлены, должны быть увеличены в размере пропорционально круговой миловой площади незаземленных проводов.

Заземляющие провода оборудования на стороне нагрузки средств отключения обслуживания и устройств максимального тока подбираются в зависимости от размера устройств максимального тока фидера или ответвленной цепи перед ними.

Если незаземленные проводники цепи (токоведущие, линейные) увеличены в размере для компенсации падения напряжения или по любой другой причине, связанной с правильной работой схемы, заземляющие провода оборудования должны быть пропорционально увеличены.

Пример:

Однофазная 250-амперная нагрузка на 240 вольт питается от 300-амперного выключателя, расположенного на щите на расстоянии 500 футов.«Нормальная» цепь (без увеличения размера для ограничения падения напряжения) будет состоять из медных проводников на 250 тыс. Куб. М с медным заземляющим проводом оборудования 4 AWG. Если количество проводников было увеличено до 350 тыс. Куб. М из соображений падения напряжения, каков минимальный размер заземляющего проводника оборудования с учетом требования пропорционального увеличения?

Решение

ШАГ 1.

Рассчитайте соотношение размеров проводов увеличенного диаметра и проводов нормального размера:

ШАГ 2.

Рассчитайте площадь поперечного сечения заземляющего проводника оборудования увеличенного размера, умножив размерное соотношение на площадь поперечного сечения заземляющего проводника оборудования стандартного размера, взятого из Таблицы 250.122 для защитного устройства на 250 А (необходимо использовать следующий больший или 300 А). В таблице 250.122 указано, что подходит медный провод номер 4 AWG. В соответствии с таблицей 8 главы 9 Национального электротехнического кодекса – Свойства проводника
(см. Стр. 21) заземляющий провод 4 AWG имеет поперечное сечение 41 740 круглых мил.

Соотношение размеров x круговые милы заземляющего проводника

1,4 x 41,740 круглых милов = 58 436 круглых милов

ШАГ 3.

Определите сечение заземляющего проводника нового оборудования.

Опять же, обращаясь к таблице 8 главы 9, мы обнаруживаем, что 58 436 круговых милов больше 3 AWG. Следующий больший размер – 66 360 круглых милов, который преобразуется в медный заземляющий провод для оборудования 2 AWG.

Для данного сценария нормальный заземляющий провод оборудования, указанный в Таблице 250.122 для цепи на 250 А будет медным заземляющим проводом № 4 AWG. В этом случае заземляющий провод оборудования необходимо увеличить до медного заземляющего проводника № 2 AWG, чтобы соответствовать требованиям статьи 250.122 (B) NEC. Целью этого требования по увеличению размера является обеспечение проводника, имеющего соответствующий размер, чтобы выдерживать и устранять ожидаемые токи короткого замыкания.

NEC Ch. 9 Таблица 8

Согласно требованиям Национального электрического кодекса (NEC) нейтраль и заземляющий провод оборудования должны быть подключены к главной сервисной панели и вторичной стороне отдельно выделенной системы (подробнее об этом ниже).NEC разрешает использовать только одно соединение нейтрали с землей в каждой отдельно производной системе. Неправильное дополнительное соединение нейтрали с землей – довольно распространенная проблема, которая не только создает опасность поражения электрическим током для обслуживающего персонала, но также может ухудшить характеристики электронного оборудования. Неправильное соединение нейтрали и заземления в розетках можно обнаружить с помощью тестера проводки и заземления, предназначенного для этой цели.

Вольтметр также можно использовать для определения наличия неправильных соединений в розетках.Измерение напряжения между нейтралью и землей на розетках может указывать на напряжение в диапазоне от милливольта до нескольких вольт при нормальных рабочих условиях и в зависимости от нагрузки, длины цепи и т. Д. Однако показание 0 В может указывать на наличие ближайшей нейтрали. – земляная связь. Чрезмерный ток заземления оборудования в распределительных панелях также указывает на возможность заземления нейтрали на стороне нагрузки. Визуальный осмотр нейтральной шины внутри щитков необходим, чтобы проверить расположение этих дополнительных и неправильных соединений.

Если в отдельно созданной системе существует более одной связи нейтраль-земля, это приводит к намеренному соединению (или соединению) проводов нейтрали и земли в двух местах. Это создает параллельное соединение, в котором ток нейтрали делится на часть, возвращающуюся на нейтраль, а оставшаяся часть возвращается к источнику через путь заземления оборудования в соответствии с законом Ома (ток будет делиться пропорционально по пути наименьшего сопротивления с напряжением падение по каждой параллельной траектории одинаково).На рисунке ниже представлены два варианта предотвращения протекания нежелательного тока в системе заземления (и соединения).

Отдельно производные системы – это системы, которые не имеют прямого соединения между выходными проводниками питания и входными проводниками питания. Это трансформаторы без прямого соединения между нейтралью первичной системы и вторичной нейтралью, только системы ИБП, которые включают в себя изолирующие трансформаторы, таким образом получая новый нейтральный системный проводник (примечание – все системы ИБП не являются отдельно производными системами), и комплекты двигателей-генераторов, которые подключаются. к системе электропроводки здания через 4-полюсный автоматический переключатель являются отдельно производными системами, потому что у них есть отдельная нейтраль, которая не имеет прямого соединения с нейтралью электросети (из-за 4-го полюса безобрывного переключателя).Двигатель – генераторные установки, в которых применяются 3-полюсные системы переключения, имеют прямое соединение с нейтралью энергосистемы общего пользования и не являются отдельно производными системами и не могут иметь заземление нейтрали на двигателе-генераторной установке. [IEEE Std 1100-1999]

Есть много дискуссий об отдельных или специальных основаниях, связанных с чувствительным электронным оборудованием. Статья 250.96 (B) Национального электротехнического кодекса разрешает изолировать электронное оборудование от кабельного канала таким же образом, как шнур и подключенное к вилке оборудование изолируются от кабельного канала.

250,96 (B) Изолированные цепи заземления. Если требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, корпус оборудования, питаемый от ответвленной цепи, должен быть разрешен для изоляции от кабельного канала, содержащего цепи, питающие только это оборудование, с помощью одного или нескольких перечисленных неметаллических фитингов кабельного канала, расположенных в точку крепления кабельного канала к корпусу оборудования. Металлический кабельный канал должен соответствовать положениям настоящей статьи и должен быть дополнен внутренним изолированным заземляющим проводом оборудования, установленным в соответствии с 250.146 (D), чтобы заземлить корпус оборудования.

FPN (ПРИМЕЧАНИЕ ОТНОСИТЕЛЬНО ПЕЧАТИ): Использование изолированного заземляющего проводника оборудования не отменяет требования по заземлению системы кабельных каналов.

Ключом к этому методу заземления электронного оборудования является постоянное обеспечение того, чтобы изолированный заземляющий провод, независимо от того, где он заканчивается в системе распределения, был подключен таким образом, чтобы создать эффективный путь для тока замыкания на землю (через соединение), как требуется NEC 250.4 (А) (5).

Хотя использование изолированных заземляющих проводов оборудования может быть полезно для уменьшения электромагнитных помех, очень важно, чтобы требование изолированного заземления НЕ приводило к изолированному, изолированному или иным образом не подключенному к заземлению заземлению системы электродов заземления здания. Такой изолированный стержень заземления (соединение с землей) нарушит NEC 250.50.

250,50 Система заземляющих электродов Все заземляющие электроды, как описано в пунктах 250.52 (A) (1) – (A) (6), которые имеются в каждом обслуживаемом здании или сооружении, должны быть соединены вместе, чтобы сформировать систему заземляющих электродов.

Причина, по которой изолированный заземляющий стержень (то есть тот, который не соединен с другими заземленными или заземленными электродами) запрещен, и что NEC требует, чтобы отдельные заземляющие электроды были соединены вместе, заключается в уменьшении разницы потенциалов между ними из-за молния или случайный контакт с линиями электропередач. Системы молниезащиты, связи, радио и телевидения, а также заземления систем кабельного телевидения ВСЕ должны быть соединены вместе, чтобы минимизировать потенциальные различия между системами.Отсутствие соединения (или соединения) всех компонентов заземления может привести к серьезному поражению электрическим током и пожару.

Например, для установки кабельного телевидения, показанной на Рисунке 250.39, предположим, что ток индуцируется в линии электропередачи импульсным перенапряжением или ближайшим ударом молнии, так что мгновенный ток силой 1000 ампер возникает по линии электропередачи к источнику питания. линия земли. Такая сила тока не является чем-то необычным при таких обстоятельствах – она ​​может быть и часто бывает значительно выше.Также предположим, что заземление питания имеет сопротивление 10 Ом, что в большинстве случаев является очень низким значением (одиночный заземляющий стержень в среднем грунте имеет сопротивление относительно земли около 40 Ом).

Приложение 250.39 Установка кабельного телевидения, не соответствующая Кодексу, демонстрирующая, почему необходимо соединение между различными системами. Согласно закону Ома, ток через оборудование, подключенное к электрической системе, будет на мгновение увеличиваться до потенциала 10 000 вольт (1000 вольт). амперы × 10 Ом).Этот потенциал в 10000 вольт будет существовать между системой CATV и электрической системой
, а также между заземленным проводником в кабеле CATV и заземленными поверхностями в стенах дома, такими как водопроводные трубы (которые подключены к заземлению), по которому проходит кабель. Этот потенциал также может появиться у человека, держащего одной рукой кабель кабельного телевидения, а другой рукой – металлическую поверхность, подключенную к заземлению (например, радиатор или холодильник).

Фактическое напряжение, вероятно, будет во много раз больше рассчитанного 10 000 вольт, поскольку для сопротивления заземления и тока были приняты чрезвычайно низкие (ниже нормального) значения.Однако большинство систем изоляции не рассчитано выдерживать даже 10 000 вольт. Даже если система изоляции выдержит скачок напряжения в 10 000 вольт, она может быть повреждена, и выход из строя системы изоляции приведет к искрообразованию.

Такая же ситуация могла бы существовать, если бы скачок тока был на кабеле CATV или телефонной линии. Единственная разница будет заключаться в напряжении, которое будет зависеть от индивидуального сопротивления заземляющих электродов относительно земли.

Решение состоит в том, чтобы соединить две системы заземляющих электродов вместе или подключить оболочку кабеля CATV к заземлению, что и требуется Кодексом.Когда одна система поднимается выше потенциала земли, вторая система достигает того же потенциала, и между двумя системами заземления отсутствует напряжение.

Exhibit 250.40 Установка кабельного телевидения, соответствующая требованиям 250.94.

Ниже приведены примеры реальных случаев, когда отдельные заземления или предметы, которые должны быть заземлены (заземлены), были изолированы друг от друга (не соединены вместе):

 Женщина заметила «покалывание» электричеством, когда принимала душ. Расследование показало, что между сливом душа и ручками душа было электрическое напряжение.Тот факт, что женщина была босиком с мокрыми руками (а люди часто бывают в душе!), Способствовал тому, что она чувствовала разницу в напряжении. Причиной проблемы были паразитные напряжения, создаваемые воздушной распределительной линией. Разница в напряжении была между колодцем и септической системой. Решением было скрепить дренажную и водопроводную трубы вместе.

 Владелец бизнеса жаловался на постоянные сбои компьютерного модема и компьютера. Коммунальная компания обнаружила, что сбои произошли по совпадению с перебоями в электроснабжении (замыканием на землю) на одном из основных фидеров, обслуживающих объект.Проведенное расследование показало, что телефонный, водопроводный и силовой заземления были электрически изолированы (не соединены друг с другом). Правильное соединение (соединение) систем устранило дальнейшие проблемы с этим клиентом.

[Примеры приведены из статьи «Заземление энергетических систем: практическая точка зрения», номер статьи PCIC-2002-xx Джон П. Нельсон, сотрудник IEEE]

Термин «заземление Ufer» назван в честь консультанта, работающего в США. Армия во время Второй мировой войны. Техника Mr.Придуманный Уфер был необходим, потому что на участке, нуждающемся в заземлении, не было грунтовых вод и мало осадков. Это место в пустыне представляло собой серию хранилищ бомб в районе Флагстаффа, штат Аризона.

Принцип Уфер земли прост. Его очень эффективно и недорого устанавливать при новом строительстве. Земля Уфер использует агораскопические свойства бетона. Бетон быстро впитывает влагу и очень медленно теряет влагу. Минеральные свойства бетона (известь и другие) и присущий им pH означает, что бетон имеет запас ионов для проведения тока.Почва вокруг бетона становится «легированной» бетоном. В результате pH почвы повышается и понижается, что обычно составляет 1000 Ом · м в почвенных условиях (трудно получить хороший грунт). Присутствующая влага (бетон очень медленно отдает влагу) в сочетании с «легированной» почвой являются хорошим проводником для электрической энергии или тока молнии.

Эффект почти такой же, как и при химической обработке почвы вокруг электрода. Авторы статьи IEEE 1969 года пришли к выводу о следующих обширных испытаниях такой электродной системы: «.. . Сети из арматурных стержней… бетонных оснований обеспечивают приемлемо низкое сопротивление заземления, с возможностью защиты от коротких замыканий и импульсных токов, подходящих для всех типов заземления конструкций и цепей. . . . Не последним преимуществом системы арматуры является ее доступность и низкая стоимость ». [Fagan & Lee, «Использование бетонных арматурных стержней в качестве заземляющих электродов», Конференция по нефтяной и химической промышленности 1969 г.]

Методы Ufer используются при строительстве нижних колонтитулов, бетонных полов, радио- и телебашен, анкеров для опорных тросов, освещения столбы и др.Медная проволока не работает как «уферское» заземление из-за pH-фактора бетона (обычно + 7pH). Использование стальной арматуры в качестве «уферского» грунта работает хорошо, и бетон не трескается и не отслаивается, как это было с медью. Использование медной проволоки, привязанной к стержням арматуры, находящимся вне бетона, не вызывает ни одной из этих проблем.

Минимальный размер арматуры, необходимый для предотвращения проблем с бетоном, зависит от:

1. Тип бетона, его содержание, плотность, удельное сопротивление, коэффициент pH и т. Д.

2. Площадь поверхности бетона, контактирующей с почвой.

3. Удельное сопротивление почвы и содержание грунтовых вод.

4. Размер и длина арматурного стержня, проволоки или пластины.

5. Величина тока удара молнии.

На следующей диаграмме показана проводимость тока молнии на фут арматурного стержня (арматурного стержня). Учитывается только внешний арматурный стержень. Арматурный стержень в центре нижнего колонтитула или фундамента не учитывается в этом расчете. В нижнем колонтитуле траншеи можно учитывать только арматуру по бокам и внизу нижнего колонтитула.

Г-н Уфер не знал, что он нашел, пока не экспериментировал с проволокой различной длины в бетоне. Сегодняшний информированный инженер извлекает выгоду из открытия г-на Уфера и привяжет стержни стальной арматуры в здании или другом фундаменте к электрическому заземлению здания. При присоединении к электрическому заземлению, строительной стали и т. Д. Армированный пол и фундамент здания становятся частью системы заземления здания. Результатом является значительно улучшенная система заземления с очень низким общим сопротивлением относительно земли.

Если бы одного заземления Ufer было достаточно, производители заземляющих стержней прекратили бы свою деятельность. Но одной только земли Уфер этого недостаточно. Немногие здания, даже те, которые строятся сегодня, построены с учетом преимуществ земли Уфер. Часто можно увидеть использование «заземления Ufer» на военных объектах, в компьютерных залах и других сооружениях с очень специфическими характеристиками заземления. Это не распространено на большинстве промышленных предприятий, офисных зданий и жилых домов. Сегодня более распространенным является заземление в соответствии с минимальными национальными и местными электротехническими нормами.Это будет включать в себя один или несколько приводных заземляющих стержней, подключенных (соединенных) к нейтральному проводу электрического служебного входа.

В 2005 году NEC был пересмотрен, чтобы четко требовать включения UFER или электрода в бетонном корпусе (теперь 250,52 (A) (3)) в систему заземляющих электродов для зданий или сооружений, имеющих бетонное основание или фундамент без площадь поверхности менее 20 футов в непосредственном контакте с землей. Это требование применяется ко всем зданиям и сооружениям с фундаментом и / или опорой размером 20 футов или более или более 1/2 дюйма.или армирующая сталь с большей электропроводностью, или 20 футов или более из чистой меди не менее 4 AWG.

Заземляющие стержни бывают разных видов, но чаще всего в заземлении электрических сетей используются заземляющие стержни из оцинкованной стали. Пожалуйста, помните, лучший день для заземляющего стержня (удельное сопротивление) – это день его установки. Коррозия, остекление и т. Д. – все это факторы, снижающие эффективность заземляющих стержней.

Заземляющие стержни обычно делятся на один из следующих размеров; 1/2 дюйма, 5/8 дюйма, 3/4 дюйма и 1 дюйм.Они бывают из стали с покрытием из нержавеющей, оцинкованной или медной стали и могут быть из твердой нержавеющей стали или из мягкой (без плакировки) стали. Их можно приобрести в безрезьбовых или резьбовых частях различной длины. Наиболее распространенная длина – 8 футов и 10 футов. Некоторые из них будут иметь заостренный конец, другие будут иметь резьбу и могут быть соединены вместе для образования более длинных стержней при движении.

Эффективность заземляющего стержня диаметром 1 дюйм над стержнем заземления 1/2 дюйма минимальна при снятии показаний сопротивления. Штанги большего размера выбираются для более сложных почвенных условий.Глиняные или каменистые условия часто требуют использования силовых приводов, похожих на ударные, используемые механиками при работе с вашим автомобилем. Обычно они бывают электрическими или пневматическими. Силовые приводы при использовании с тяжелыми заземляющими стержнями диаметром 1 дюйм будут работать на большинстве почв.

Пруток с медным покрытием диаметром 1 дюйм по сравнению с прутком с медным покрытием 1/2 дюйма в тех же почвенных условиях дает улучшение производительности примерно на 23%. Площадь поверхности стержня 1/2 дюйма составляет 1,57 по сравнению с площадью поверхности стержня 1 дюйм при 3,14 (3,14 x.5 = 1,57 и 3,14 х 1 = 3,14). Таким образом, удвоение площади поверхности дает улучшение производительности только на 23%.

Покрытие заземляющих стержней предназначено для защиты стали от ржавчины. Большинство думает, что оболочка (медь на стальном стержне) предназначена для увеличения проводимости стержня. Это действительно способствует проводимости, но основная цель покрытия – предохранить стержень от ржавчины.

Не все плакированные заземляющие стержни одинаковы, и важно, чтобы плакированный стержень имел достаточно толстую оболочку.Высококачественные промышленные заземляющие стержни из стали, плакированной медью, могут стоить немного дороже, но они оправдывают небольшие дополнительные затраты.

Когда заземляющий стержень вбивается в каменистую почву, он может поцарапать покрытие, и стержень заржавеет. В сухом виде ржавчина не проводит электричество, это хороший изолятор. Когда он влажный, он все еще не такой проводящий, как медь на стержне. Можно проверить pH почвы, и это должно определить тип используемого стержня. В почвенных условиях с высоким pH следует использовать только высококачественные плакированные стержни.Если почва очень кислая, лучше всего подойдут нержавеющие стержни. Один из самых популярных стержней заземления – стержень заземления из оцинкованной (горячеоцинкованной) стали.

Этот стержень используется с медными и алюминиевыми проводниками для формирования заземления служебного входа в большинстве зданий и жилых домов. Это плохой выбор для определения удельного сопротивления грунта с течением времени. Стыки между заземляющим стержнем и проводом выполняются выше или ниже поверхности земли и в большинстве случаев подвержены постоянной влажности. В лучших условиях соединение двух разнородных материалов со временем приведет к коррозии и увеличению сопротивления.

При соединении разнородных материалов происходит электролиз. Если алюминий используется с медью, которая не покрыта оловом, алюминий будет разъедать медь, оставляя меньшую площадь поверхности для контакта, и соединение может расшататься и даже вызвать искрение. Любой резкий удар или удар могут привести к разрыву соединения. При установке в грунт не рекомендуется использовать луженую проволоку. Олово, свинец, цинк и алюминий более анодны, чем медь, и они пожертвуют (исчезнут) в почве.При подключении над поверхностью почвы в распределительном щите допускается использование луженой проволоки.

Имейте в виду, что статья 250.64 Национального электротехнического кодекса указывает, что алюминиевые или медные алюминиевые заземляющие проводники не должны соприкасаться с почвой или бетоном и должны иметь концевые заделки не менее чем на 18 дюймов выше готовой конструкции при использовании на открытом воздухе.

Другой способ лечения коррозии стыков – это использование герметика для швов для предотвращения образования мостиков влаги между металлами.Наиболее популярные соединения – частицы меди или графита, погруженные в консистентную смазку. Использование аналогичного материала – лучшее решение, поскольку даже стыковые смеси могут потерять свою эффективность, если их не поддерживать в надлежащем состоянии, но их использование предпочтительнее, чем сухое соединение. Соединения работают путем погружения частиц в металлы, чтобы сформировать чистый стык с низким сопротивлением, лишенным воздуха, когда они находятся под давлением. Это давление обеспечивается за счет затягивания зажима на проводе и стержне.

Проблема разнородных материалов не встречается в стальных стержнях, плакированных медью.Из всех вариантов по разумной цене лучшим выбором будет стальной пруток, плакированный медью с медным проводником. Если бы деньги не были предметом, золотой проводник и заземляющий стержень были бы идеальными, но вряд ли экономически практичными.

Ведомый стержень намного лучше по сравнению со стержнем с обратным наполнением. Плотность ненарушенного грунта намного выше, чем даже уплотненного грунта. Связь грунта со стержнем – ключ к производительности удилища.

Одним из интересных аспектов проводников заземляющих электродов является их необходимость в физической защите.Если для защиты проводника заземляющего электрода используется стальной канал или гильза, то на каждом конце гильзы должны быть предусмотрены средства, чтобы сделать ее непрерывной электрически с проводником. Этого можно добиться, установив перемычку на каждом конце гильзы и подключив ее к гильзе, оборудованию и заземляющему электроду на каждом конце. Причина, по которой этот метод важен, заключается в том, что в условиях сильного повреждения стальная трубная муфта создает дроссельный эффект (индуктивность муфты создает магнитное поле, препятствующее изменениям тока), а полное сопротивление системы заземления резко возрастает.Из-за этого – по возможности лучше использовать неметаллическое покрытие соответствующего номинала (таблица 80, где возможны повреждения) для обеспечения физической защиты.

Установить заземляющие стержни несложно, но необходимо соблюдать соответствующие процедуры, а полученные стержни должны быть проверены на работоспособность.

Установка заземляющих стержней глубиной более 10 футов представляет несколько проблем. Могут использоваться секционные стержни (обычно длиной 10-12 футов), соединенные вместе для достижения желаемой глубины.Муфта имеет больший диаметр, чем стержень, и поэтому образует отверстие больше, чем сам стержень. Это создает пустоту муфты, ограничивающую контакт почвы с поверхностью штанги дополнительных секций. Только первая секция будет поддерживать полный контакт стержня с почвой.

Ручное забивание штанг с помощью кувалд, трубных инструментов и других средств не может обеспечить достаточное усилие для проникновения в твердые почвы. Для стержней с глубоким забиванием необходимы механические или механические приводы.

Материал стержня и конструкция муфты должны выдерживать силу, необходимую для прохождения через твердый грунт.

Из-за чрезмерных усилий, необходимых для привода более длинных штанг, муфты винтового типа механически выходят из строя. Резьба обрывается, что приводит к плохому контакту стержня со стержнем. Коническая шлицевая / компрессионная муфта зарекомендовала себя как самая надежная муфта.

Чтобы поддерживать полный контакт стержня с почвой, суспензионная смесь натриевого бентонита (природная глина) может быть введена в полость муфты при установке стержней. Это обеспечивает токопроводящий материал между поверхностью стержня и почвой по глубине стержня.Для обычного 60-футового заземляющего стержня требуется от 2 до 5 галлонов бентонита.

Недостатком более длинных и глубоких штанг является то, что соединенные штанги могут изгибаться при столкновении с более плотной почвой. В одном из проектов подрядчику требовалось соединить и установить заземляющий стержень длиной 100 футов для достижения сопротивления 5 Ом в слоистых песчаных почвах. Когда подрядчик соединил и проехал пятую 10-ю секцию штанги, было замечено, что «заостренный конец» заземляющей штанги проходил под автомобилем на ближайшей стоянке.[Глубокое заземление по сравнению с заземлением на мелководье, Computer Power Corporation, Мартин Д. Конрой и Пол Г. Ричард – http://www.cpccorp.com/deep.htm]

Эффективность заземляющих стержней снижается из-за состояния почвы , токи молнии, физические повреждения, коррозия и т. д. и должны регулярно проверяться на сопротивление. Тот факт, что в прошлом году земля была хорошей, не означает, что это хорошо сегодня.

Проверили бы его методом испытания на падение потенциала или методом зажима при условии, что установка подходит для измерения сопротивления заземления с использованием метода зажима (см. Следующий раздел для обсуждения инструментов и методов тестирования).

Измерение сопротивления заземления может выполняться только с помощью специально разработанного оборудования. В большинстве приборов используется принцип падения потенциала переменного тока, циркулирующего между вспомогательным электродом и заземляющим электродом при тестировании. Показание выражено в омах и представляет собой сопротивление заземляющего электрода к окружающей земле. Некоторые производители испытательного оборудования недавно представили тестеры сопротивления заземления, которые также будут обсуждаться.

Принцип измерения сопротивления заземления (падение потенциала – трехточечное измерение)

Разность потенциалов между стержнями X и Y измеряется вольтметром, а ток между стержнями X и Z измеряется амперметром (см. Рисунок 13). )

По закону Ома E = IR или R + E / I, тогда мы можем получить сопротивление заземляющего стержня R. Если E = 20 В и I = 1 A, то:

R = E / I = 20/1 = 20

Нет необходимости проводить все измерения при использовании тестера заземления.Тестер заземления будет измерять непосредственно, генерируя собственный ток и отображая сопротивление заземляющего электрода.

Положение вспомогательных электродов при измерениях

Целью точного измерения сопротивления относительно земли является размещение вспомогательного токового электрода Z на достаточном удалении от тестируемого заземляющего электрода, чтобы вспомогательный потенциальный электрод Y находился за пределами эффективного площадь сопротивления как заземляющего электрода, так и вспомогательного токового электрода.Лучший способ узнать, находится ли вспомогательный потенциальный стержень Y за пределами эффективных областей сопротивления, – это переместить его между X и Z и снять показания в каждом месте. Если вспомогательный потенциальный стержень Y находится в зоне эффективного сопротивления (или оба, если они перекрываются, как на рисунке 14), при его перемещении полученные показания будут заметно отличаться по величине. В этих условиях невозможно определить точное значение сопротивления заземления.

С другой стороны, если вспомогательный потенциальный стержень Y расположен за пределами эффективных областей сопротивления (рисунок X), когда Y перемещается вперед и назад, вариация показаний минимальна.Полученные показания должны быть относительно близки друг к другу и являются наилучшими значениями сопротивления заземления X. Показания должны быть нанесены на график, чтобы гарантировать, что они лежат в области «плато», как показано на рисунке 15. Эту область часто называют. как «62% площади».

Измерение сопротивления заземляющих электродов (метод 62%)

Метод 62% был принят после графического рассмотрения и после реальных испытаний. Это наиболее точный метод, но он ограничен тем фактом, что тестируемая земля представляет собой единое целое.

Этот метод применяется только тогда, когда все три электрода находятся на прямой линии, а заземление представляет собой один электрод, трубу или пластину, как показано на рисунке 16.

Рассмотрим рисунок 17, на котором показаны площади эффективного сопротивления (концентрические оболочки) заземляющего электрода X и вспомогательного токового электрода Z. Области сопротивления перекрываются. Если бы показания были сняты путем перемещения вспомогательного потенциального электрода Y к X или Z, тогда разница показаний была бы большой, и нельзя было бы получить показания в разумном диапазоне допуска.Чувствительные области перекрываются и постоянно действуют для увеличения сопротивления по мере удаления Y от X.

Теперь рассмотрим рисунок 18, на котором электроды X и Z достаточно разнесены, чтобы области эффективного сопротивления не перекрывались. Если мы построим график измеренного сопротивления, мы обнаружим, что измерения сбиваются, когда Y находится на 62% расстояния от X до Z, и что показания по обе стороны от начального значения Y (62%), скорее всего, будут в пределах установленный диапазон допуска.Этот диапазон допуска определяется пользователем и выражается как
процентов от начального показания +/- 2%, +/- 5%, +/- 10% и т. Д.

Расстояние между вспомогательными электродами

Нет определенного расстояния между Могут быть заданы X и Z, поскольку это расстояние зависит от диаметра испытуемого стержня, его длины, однородности испытуемого грунта и, в частности, от эффективных площадей сопротивления. Однако приблизительное расстояние можно определить из следующей таблицы, которая дается для однородной почвы и электрода диаметром 1 дюйм (для диаметра ½ дюйма уменьшите расстояние на 10%).

Измерение сопротивления заземления с помощью клещей

В отличие от метода падения потенциала (трехточечный), который требует, чтобы заземляющий стержень или тестируемая система были отключены от энергосистемы, этот метод измерения требует соединения между тестируемым стержнем для подключение электросети к земле. В результате метод предлагает возможность измерения сопротивления без отключения заземления. Он также предлагает преимущество включения заземления и общего сопротивления заземляющего соединения.

Принцип работы

Обычно заземленную систему общей распределительной линии можно смоделировать как простую базовую схему, как показано на рисунке 29, или как эквивалентную схему, показанную на рисунке 30. Если напряжение E приложено к любому измеренному заземляющему элементу Rx через специальный трансформатора, через цепь протекает ток I, который может быть представлен следующим уравнением:

Суть этого состоит в том, что заземляющий электрод для типичной заземленной электрической системы i параллелен заземляющим стержням и стыковым заземлениям на каждом трансформаторе. и столб, который находится на стороне линии обслуживания, для которого вы тестируете землю.Все параллельные заземления выше по потоку становятся очень и очень малым параллельным сопротивлением по сравнению с сопротивлением стержня, на котором вы отдыхаете (R x ).

Если R x и R 1 , и R 2 …. все примерно одинаковой величины, а n – большое число (например, 200), тогда х будет намного меньше

Например, если х , 1 , 2 , R 3 и т. Д. Все равны 10 Ом и n = 200, тогда:

В этом примере мы видим, что до тех пор, пока количество заземляющих стержней в системе электроснабжения велико (и проверяемый стержень подключен к ним), то эквивалентное сопротивление боковых стержней линии (.05 Ом) незначительно по отношению к измеряемому сопротивлению заземления (10 Ом).

E / I = Rx установлен. Если I определяется при постоянном значении E, можно получить измеренное сопротивление заземляющего элемента. Снова обратитесь к рисункам 29 и 30. Ток подается на специальный трансформатор через усилитель мощности через генератор постоянного напряжения 1,7 кГц. Этот ток обнаруживается детекторным трансформатором тока. На частоте 1,7 кГц сигнал усиливается фильтрующим усилителем. Это происходит перед аналого-цифровым преобразованием и после синхронного выпрямления.Затем он отображается на жидкокристаллическом дисплее.

Фильтр-усилитель используется для отсечки как тока земли на промышленной частоте, так и высокочастотного шума. Напряжение обнаруживается катушками, намотанными на трансформатор тока впрыска, который затем усиливается, выпрямляется и сравнивается компаратором уровня. Если зажим на CT не закрыт должным образом, и на ЖК-дисплее появляется индикация OPEN или OPEN.

Хотя точность клещей для тестеров сопротивления заземления хороша для многих сценариев, но имеет свои ограничения.Например, если условия заземления на стороне линии неизвестны (на этом основана теория работы клещевого тестера) или если в системе электроснабжения не имеется большого количества заземлений на стороне линии (заземление стыковых полюсов), тогда трехточечный падение потенциального испытания должно быть выполнено.

Перед тем, как использовать и полагаться на данные любого измерительного оборудования, убедитесь, что оно откалибровано и сертифицировано. Если вы этого не сделаете, данные, которые он предоставляет, могут оказаться бесполезными.

Это обсуждение методов тестирования сопротивления заземления было взято из не защищенного авторским правом материала из рабочей книги AEMC Instruments «Общие сведения о тестировании сопротивления заземления», издание 6.0.

Все о системах электрического заземления

Дата публикации: 26 сен 2020 г. Последнее обновление: 26 сен 2020 г. Абдур Рехман

В этом блоге мы расскажем о необходимости системы электрического заземления, ее важности, типах заземленной системы, общих методах и факторах, влияющих на установку заземленной системы, советах по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля – ​​это обычная точка возврата электрического потока.Система заземления – это резервный путь, по которому электрический ток может протекать на землю по альтернативному пути из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

W Что такое электрическое заземление?

Проще говоря, «заземление» означает, что был проложен путь с низким сопротивлением для прохождения электричества в землю. «Заземленное» соединение включает соединение между электрооборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока.Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке – это, по сути, предохранительный клапан.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по разработке энергетических систем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Целью заземления электрической системы является повышение безопасности всей системы и обеспечение защиты от колебаний в электросети.Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Зачем нужно заземлять электрическую систему?

Некоторые люди, особенно в крупномасштабных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грзивача, почетного профессора Национального учебного института OSHA, «Большинство несчастных случаев и смертельных случаев в связи с контактом с линией являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного покрытия линии или отсутствия соответствующего заземления. ”

Общие риски незаземленной электрической системы – поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением. Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество.В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Как правило, системы питания подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между какими-либо линиями питания и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были нормальными в 40-х и 50-х годах, они все еще используются сегодня.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током.При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск любой неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление – это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор.Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением:

Ограничьте ток замыкания на землю до <10 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

Заземление с низким сопротивлением:

Ограничивает ток замыкания на землю от 100 до 1000 ампер.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электроснабжения напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса. Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах.Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Наиболее распространенными методами электрического заземления являются:

  • Пластины заземления
  • Заземляющие трубы и стержни

Пластины заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы заземляющие пластины имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Увеличение РИТЭГа в холодной воде Сильно затронутые
Увеличение количества РИТЭГов с течением времени РИТЭГ усиленный
Максимальное усилие электрода Среднее
Стоимость установки Ниже среднего
Ожидаемая продолжительность жизни Бедные 5-10 лет

Трубки и стержни заземления:

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вставляется вертикально в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Увеличение РИТЭГа в холодной воде Сильно затронутые
Увеличение количества РИТЭГов с течением времени РИТЭГ хуже
Максимальное усилие электрода Плохо
Стоимость установки Среднее
Ожидаемая продолжительность жизни Бедные 5-10 лет

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, которые влияют на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование системы заземления
  • Расположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии существенно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы – это серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Система с заземлением обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт и время простоя оборудования, снижает уровень электрического шума (колебания электрического сигнала).

Советы по безопасности при электрическом заземлении:

В электрической системе поддержание заземления должно быть приоритетом для безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • При удалении заземления заземляющее соединение должно устанавливаться первым и удаляться последним (OSHA 29CFR 1910.269 ​​(п) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения, чтобы отключить подачу питания на рабочем месте при возникновении неисправности, защитные устройства для кабеля пола для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и продлевает их безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.


  • Об авторе

    Абдур Рехман (Abdur Rehman) – профессиональный инженер-электрик с более чем восьмилетним опытом работы с оборудованием от 208 В до 115 кВ как в коммунальных, так и в промышленных и коммерческих помещениях.Особое внимание он уделяет вопросам защиты энергосистем и инженерным исследованиям.

% PDF-1.4 % 452 0 obj> эндобдж xref 452 79 0000000016 00000 н. 0000002685 00000 н. 0000001876 00000 н. 0000002876 00000 н. 0000002902 00000 н. 0000002948 00000 н. 0000002983 00000 н. 0000003184 00000 п. 0000003262 00000 н. 0000003338 00000 н. 0000003416 00000 н. 0000003494 00000 н. 0000003572 00000 н. 0000003650 00000 н. 0000003728 00000 н. 0000003805 00000 н. 0000003882 00000 н. 0000003959 00000 н. 0000004036 00000 н. 0000004113 00000 п. 0000004190 00000 п. 0000004267 00000 н. 0000004344 00000 п. 0000004421 00000 н. 0000004498 00000 н. 0000004575 00000 п. 0000004652 00000 п. 0000004729 00000 н. 0000004806 00000 н. 0000004883 00000 н. 0000004960 00000 н. 0000005037 00000 н. 0000005114 00000 п. 0000005191 00000 п. 0000005268 00000 н. 0000005345 00000 п. 0000005422 00000 н. 0000005499 00000 н. 0000005575 00000 н. 0000005651 00000 п. 0000005775 00000 н. 0000006399 00000 н. 0000006911 00000 п. 0000006947 00000 н. 0000007132 00000 н. 0000007209 00000 н. 0000007399 00000 н. 0000008046 00000 н. 0000008724 00000 н. 0000009416 00000 н. 0000010102 00000 п. 0000010871 00000 п. 0000011469 00000 п. 0000012145 00000 п. 0000012316 00000 п. 0000014986 00000 п. 0000015043 00000 п. 0000015146 00000 п. 0000015238 00000 п. 0000015323 00000 п. 0000015418 00000 п. 0000015519 00000 п. 0000015651 00000 п. 0000015740 00000 п. 0000015832 00000 п. 0000015993 00000 п. 0000016154 00000 п. 0000016281 00000 п. 0000016449 00000 п. 0000016554 00000 п. 0000016685 00000 п. 0000016795 00000 п. 0000016902 00000 п. 0000016999 00000 н. 0000017107 00000 п. 0000017198 00000 п. 0000017287 00000 п. 0000017401 00000 п. 0000017515 00000 п. трейлер ] >> startxref 0 %% EOF 454 0 obj> поток xb“`f`f` cg`a8Ġ! `

Заземление системы | Определение | Принципы

Заземление системы:

Процесс подключения некоторой электрической части энергосистемы (т.е.грамм. нейтральная точка системы, соединенной звездой, один провод вторичной обмотки трансформатора и т. д.) относительно земли (т. е. почвы) называется заземлением системы.

Системное заземление приобрело большое значение в быстрорастущей энергосистеме. Приняв надлежащие схемы заземления системы, мы можем добиться многих преимуществ, включая защиту, надежность и безопасность сети энергосистемы. Но прежде чем обсуждать различные аспекты заземления нейтрали, желательно привести два примера, чтобы оценить необходимость заземления системы.

(i) На рис. 26.5 (i) показана первичная обмотка распределительного трансформатора, подключенная между линией и нейтралью линии 11 кВ. Если вторичные проводники незаземлены, может показаться, что человек может прикоснуться к любому вторичному проводнику без вреда, потому что нет возврата на землю. Однако это не так. Как показано на рис. 26.5, между первичной и вторичной обмотками имеется емкость C 1 , а между вторичной обмоткой и землей – емкость C 2 . Эта емкостная связь может создавать высокое напряжение между вторичными линиями и землей.

В зависимости от относительных величин C 1 и C 2 , оно может составлять от 20% до 40% от первичного напряжения. Если человек касается любого из вторичных проводов, возникающий в результате емкостной ток I C , протекающий через тело, может быть опасным даже в случае небольших трансформаторов [см. Рис. 26.5 (U)]. Например, если I C составляет всего 20 мА, человек может получить смертельный удар электрическим током.

Если один из вторичных проводов заземлен, емкостная связь почти уменьшается до нуля, как и емкостной ток I C . В результате человек не испытает поражения электрическим током.Это объясняет важность заземления системы.

(ii) Давайте теперь обратимся к более серьезной ситуации. На рис. 26.6 (i) показана первичная обмотка распределительного трансформатора, подключенная между линией и нейтралью линии 11 кВ. Вторичные проводники не заземлены. Предположим, что линия высокого напряжения (в данном случае 11 кВ) касается проводника 230 В, как показано на рис. 26.6 (i). Это может быть вызвано внутренней неисправностью трансформатора или ветвью или деревом, падающими на линии 11 кВ и 230 В.В этих условиях между проводами вторичной обмотки и землей возникает очень высокое напряжение. Это немедленно пробьет изоляцию 230 В, что приведет к сильному пробою. Этот пробой может произойти где угодно во вторичной сети, возможно, внутри дома или на заводе. Следовательно, незаземленная вторичная обмотка в этом случае представляет собой потенциальную опасность возгорания и может привести к серьезным несчастным случаям при ненормальных условиях.

Если одна из вторичных линий заземлена, как показано на рис. 26.6 (ii), случайный контакт между проводом 11 кВ и проводом 230 В приведет к полному короткому замыканию.Ток короткого замыкания (т.е. ток короткого замыкания) следует по пунктирной траектории, показанной на рис. 26.6 (ii). Этот большой ток приведет к срабатыванию предохранителя на стороне 11 кВ, отключив, таким образом, трансформатор и вторичную распределительную систему от линии 11 кВ. Это объясняет важность системного заземления в линии энергосистемы.

Электрооборудование – Заземление | Управление охраны труда

Заземление

Термин «земля» относится к проводящему телу, обычно к земле.«Заземление» инструмента или электрической системы означает намеренное создание пути к земле с низким сопротивлением. При правильном выполнении ток от короткого замыкания или молнии следует по этому пути, предотвращая накопление напряжения, которое в противном случае могло бы привести к поражению электрическим током, травмам и даже смерти.

Есть два типа оснований; оба требуются строительным стандартом OSHA:

  • Системное или служебное заземление: В этом типе заземления провод, называемый «нейтральный проводник», заземляется на трансформаторе и снова на служебном входе в здание.Это в первую очередь предназначено для защиты машин, инструментов и изоляции от повреждений.
  • Заземление оборудования: оно предназначено для повышения защиты самих рабочих. Если из-за неисправности металлический каркас инструмента оказывается под напряжением, заземление оборудования обеспечивает другой путь для прохождения тока через инструмент к земле.

У заземления есть один недостаток: обрыв системы заземления может произойти без ведома пользователя. Использование прерывателя цепи замыкания на землю (GFCI) является одним из способов устранения недостатков заземления.

Сводка требований к заземлению
  • Заземлите все электрические системы. [ для исключений см. 29 CFR 1926.404 (f) (1) (v)]
  • Путь к земле от цепей, оборудования и корпусов должен быть постоянным и непрерывным.
  • Заземлите все опоры и корпуса для проводов. [ для исключений см. 29 CFR 1926.404 (f) (7) (i)]
  • Заземлите все металлические корпуса для сервисного оборудования.
  • Заземлите все открытые нетоковедущие металлические части стационарного оборудования.[ для исключений см. 29 CFR 1926.404 (f) (7) (iii)]
  • Незаземленные нетоковедущие металлические части инструментов и оборудования, соединенные шнуром и вилкой. [ для исключений см. 29 CFR 1926.404 (f) (7) (iv)]
  • Заземлите металлические части следующего неэлектрического оборудования:
    • Рамы и гусеницы кранов с электроприводом.
    • Каркасы лифтов без электрического привода, к которым прикреплены электрические провода.
    • Тросы или тросы электрические подъемные электрические ручные.
    • Металлические перегородки, решетки и аналогичные металлические ограждения вокруг оборудования напряжением более 1 кВ между проводниками.
Способы заземления оборудования
  • Заземлите все стационарное оборудование с помощью заземляющего проводника оборудования, который находится в том же кабельном канале, кабеле или шнуре, или который проходит вместе с проводниками цепи или закрывает их (за исключением только цепей постоянного тока).
  • Проводники, используемые для заземления стационарного или передвижного оборудования, включая заземляющие проводники для обеспечения непрерывности электрической цепи, должны быть способны безопасно пропускать любой ток короткого замыкания, который может быть на них наложен.
  • Электроды не должны иметь непроводящих покрытий, таких как краска или эмаль, и, если это практически возможно, должны быть заделаны ниже постоянного уровня влажности.
  • Одиночные электроды, сопротивление которых относительно земли превышает 25 Ом, должны быть усилены одним дополнительным электродом, установленным не ближе 6 футов от первого электрода.
  • Для заземления систем и цепей высокого напряжения (1000 В и выше) см. 29 CFR 1926.404 (f) (11).
Дополнительные ресурсы

Заземление и соединение 101: что нужно знать разработчикам устройств

Когда о человеке говорят, что он «заземлен», это означает, что он стабилен, рассудителен и, возможно, немного осторожен.Их энергия безопасно и логично направляется туда, где она наиболее продуктивна. Как оказалось, принципы электрического заземления (и его близкого родственника, соединения) на самом деле не так уж и различаются. Все дело в том, чтобы убедиться, что электрический ток направлен туда, куда он должен идти, и что безопасность не будет нарушена, когда ток выходит из строя.

Цель Polycase – всегда расширять возможности наших клиентов, будь то высококачественные корпуса для электроники, отличное обслуживание клиентов или экспертные знания.Многие наши клиенты, будь то предприятия, исследовательские лаборатории или любители, проектируют и производят электронные устройства. Сегодня мы поделимся небольшими знаниями об электрическом заземлении и соединении, чтобы помочь вам создавать и проектировать устройства более безопасно и эффективно.

Перед тем, как мы начнем, вы должны отметить, что это только общий обзор принципов заземления и соединения и не является полным руководством по заземлению и подключению цепи. Если вы новичок в проектировании схем, обязательно изучите передовой опыт для конкретного типа устройства, которое вы собираете.

С учетом сказанного, давайте углубимся в определения заземления и соединения, ключевые методы, используемые для их создания, и почему они так важны для проектирования электронных устройств. Затем мы покажем вам, как корпуса Polycase могут помочь вам в создании стабильных, правильно заземленных и соединенных электрических систем.

Заземление. Зеленый – это стандартный цвет заземляющих проводов в США.

Что такое заземление?

Термины заземление и заземление имеют множество различных применений и определений в электрическом проектировании.Три наиболее полезных и важных определения:

    • Физическое соединение электрической системы с Землей (называемое заземлением)
    • Обратный путь для электрического тока, такой как заземляющий штырь. на заземленной электрической вилке
  • Точка, в которой напряжение тока достигает нуля (используется для измерения и сравнения напряжений других компонентов системы)

Все эти определения имеют общий элемент: заземление – это где электрический заряд хочет течь, чтобы перейти в состояние нулевого напряжения.Напряжение, представляющее собой разность электрических потенциалов между двумя точками, является результатом попытки тока уравновесить их потенциал. Поскольку ток будет следовать по пути наименьшего сопротивления, заземление можно понимать как науку о безопасном направлении этого пути.

В крайнем (но очень простом) примере, таком как молния, ударяющая о землю, облако разряжает свой отрицательный заряд на положительно заряженную землю, тем самым уравновешивая свой заряд. Напротив, в простой цепи с батарейным питанием заземление может быть просто отрицательной клеммой на батарее – там, где ток может найти путь наименьшего сопротивления, чтобы вернуться к своему нулевому опорному уровню.

Хотя существует несколько различных типов заземления и тысячи различных способов создания заземления внутри них, мы сосредоточимся на нескольких ключевых деталях. Прежде всего: заземление, относительно простой, но широко используемый вид заземления.

Основы: заземление

Заземление может быть не тем, с чем вы будете иметь дело непосредственно при разработке электроники, но все же важно знать основы того, как это работает, потому что оно составляет основу принятых передовых практик для создания безопасные электрические системы.В частности, вы будете разбираться в системах заземления, когда будете определять, как устройство взаимодействует с большими источниками питания, такими как здания и офисы.

В большинстве жилых и коммерческих систем электроснабжения есть заземляющий стержень – металлический стержень с высокой проводимостью, который погружается в грязь и / или бетон и обеспечивает предохранительный клапан от блуждающих токов. (Обычно они находятся снаружи и / или сзади.) Элементы электрической системы подключаются к заземлению через шину заземления внутри распределительной коробки.При возникновении неисправности, такой как короткое замыкание или замыкание на землю, заземление используется в качестве меры безопасности, предотвращающей перегрев системы.

Однако цель заземления – не просто сбросить мощность в землю. Фактически, это необходимо для того, чтобы вернуть питание к источнику питания, где скачок тока вызывает срабатывание устройств перегрузки по току, таких как автоматические выключатели. Затем прерыватель включается и останавливает ток.

Основы: розетки с заземлением

Если вы не знаете, как работает заземляющий штырек на розетке, сейчас отличное время для изучения, потому что это может иметь отношение к конструкции вашего устройства.Два верхних отверстия на розетке – это горячий разъем (справа) и нейтральный разъем (слева). (Некоторые старые розетки имеют только эти два.) Ток течет от источника питания через горячий слот, питает подключенное устройство и возвращается через нейтральный слот.

Но более новые розетки включают третью вилку заземления. В случае возникновения тока короткого замыкания (из-за короткого замыкания или замыкания на землю) избыточный или смещенный ток будет течь к заземляющему проводу и, в свою очередь, обратно к нейтральному выводу источника питания, где он отключает выключатель.(Опять же, заземляющий контакт на розетке на самом деле не идет на землю – скорее, он отправляет ток обратно в источник питания.) Это ключевой метод для повышения безопасности всех видов электроники, и, как мы обсудим позже, многие должны иметь это.

Основы: Заземление корпуса

Однако, если вы разрабатываете электронное устройство, вы можете заземлить компоненты, используя заземление корпуса. Эта система включает создание единой точки заземления для цепи вашего устройства.По нескольким причинам выгодно, чтобы вся ваша энергия проходила через одну точку.

Одной из наиболее важных причин использования заземления шасси является то, что оно фактически функционирует как система распределения питания для устройства. Легче всего это увидеть в автомобиле или грузовике. В автомобилях заземление шасси используется для распределения электроэнергии по всем компонентам, которые в ней нуждаются. Радиоприемник, кондиционер, стартер и многое другое имеют мощность, протекающую через заземление шасси, которое обычно находится на раме или другом металлическом компоненте шасси автомобиля.Большинство заземлений шасси подключаются только в одной точке для предотвращения «контуров заземления», которые могут вызывать помехи.

Это делает важным наличие проводящего шасси в вашем устройстве. Отчасти поэтому стальные и алюминиевые корпуса Polycase являются отличным выбором для многих типов электронных устройств. Они обеспечивают простой и высокопроводящий способ заземления и соединения электроники.

Основы: соединение

Соединение – это процесс, связанный, но не совсем идентичный заземлению.Ключевая идея состоит в том, чтобы довести ряд устройств до одного и того же электрического потенциала, чтобы ток короткого замыкания не приводил к возбуждению или нагреву одного элемента системы (что приводило к опасности поражения электрическим током или возгорания). Соединение предотвращает это, потому что без разности потенциалов нет пути поиска пути напряжения. В случае неисправности ток автоматически снижается и помогает предотвратить перегрев устройства.

Хотя соединение само по себе не защищает людей или устройства, в сочетании с заземлением оно является основным элементом безопасной электрической конструкции.Основные электрические панели включают в себя соединительные винты или шпильки для соединения шины заземления панели с нейтральной шиной, чтобы обеспечить возврат тока к источнику питания, чтобы он мог отключить прерыватель. В большинстве электрических систем проектирования каждый металлический объект в комнате, не предназначенный для проведения тока, будет соединен вместе с использованием методов, соответствующих применению.

Устройства, которым необходимо заземление или соединение

Для большинства электронных устройств требуется какой-либо тип подключения к заземлению по соображениям безопасности.Заметным исключением являются некоторые устройства, которые имеют достаточную внутреннюю изоляцию и считаются уже заземленными. Это обычное дело для инструментов домашнего мастера. Они состоят из двух слоев изоляции между электрическими компонентами и корпусом дрели. Таким образом, производитель может изготавливать их без заземляющего штыря на вилке, но при этом производить безопасный продукт.

Однако для многих других устройств требуется надежное соединение с землей. Как упоминалось выше, это обычно происходит в виде заземления шасси, которое позволяет току эффективно циркулировать по всему устройству и возвращаться к источнику питания.

Когда дело доходит до решения, требует ли устройство заземления, вам необходимо обратиться к стандартам NEC или IEEE, которые мы обсудим ниже, но есть несколько типичных соглашений, основанных на том, какой ток потребляет устройство и что оно из себя представляет. из. Часто обнаруживается, что устройства с низким энергопотреблением, такие как радиоприемники, фонарики, часы, вентиляторы и кофейники, не заземлены. Устройства с большей мощностью, такие как посудомоечные машины и телевизоры, всегда заземлены, как и устройства, сделанные в основном или частично из металла.

Соблюдение стандартов заземления и подключения

Если вы создаете какое-либо устройство, потребляющее электроэнергию, вы должны быть знакомы с соответствующими стандартами заземления и подключения для этого типа устройств. Несоблюдение требований может стать серьезной проблемой регулирования и безопасности для любого учреждения, производящего электронику. И если устройство, которое вы собираете, предназначено только для использования дома или в хобби, вам, возможно, не придется беспокоиться о юридических стандартах, но вы все равно рискуете возгоранием и поражением электрическим током из-за неправильного заземления оборудования.

Национальный электротехнический кодекс – это стандарт, используемый большинством американских муниципальных органов власти для регулирования электрических установок и методов проектирования. Этот кодекс в основном ориентирован на системы, питающие жилые и коммерческие здания, и лицензированные электрики обучаются работе в соответствии с его стандартами. Это важно для понимания того, как устройства взаимодействуют с различными конфигурациями электрических систем, но это не окончательный документ по проектированию безопасного питания для электронных устройств.

Чтобы получить подробное руководство по стандартам безопасности при проектировании устройств, обратитесь в Институт инженеров по электротехнике и электронике, торговую организацию, которая представляет накопленный опыт сотен тысяч инженеров-электронщиков по всему миру.Самый простой способ сделать это – использовать стандарт IEEE Standard 1100-2005, также известный как Изумрудная книга. Он устанавливает ключевые стандарты безопасности и эффективности практически во всех областях проектирования устройств, в том числе:

    • Обработка нарушений напряжения и защита от перенапряжения
    • Как эффективно экранировать устройства от радиочастотных и электромагнитных помех
    • Проведение тщательного и информативного обследования объекта и согласование технических характеристик устройства с ним
    • Выбор самых качественных и эффективных материалов
    • Обеспечение точности и эффективности инструментов
    • Лучшие практики для установки и обслуживания устройств в коммерческих или промышленных средах
  • Специальные рекомендации для устройств в секторах телекоммуникаций и информационных технологий

Изумрудная книга даст вам e, но IEEE также публикует другие стандарты проектирования электроники, которые могут иметь отношение к вам.Сюда входят отраслевые стандарты, такие как их стандарты для нефтегазовой отрасли, и специализированные для конкретного типа оборудования, такие как маломощные интегральные схемы. Перед тем, как начать свой проект, рекомендуется проверить, какие дополнительные стандарты могут быть доступны в IEEE.

Корпуса Polycase для проектирования электронных устройств

Polycase является лидером отрасли в производстве корпусов для высокопроизводительной электроники, и у нас есть несколько моделей корпусов, которые хорошо подходят для закрытия устройств, требующих заземления и / или соединения.Они также отличаются прочностью, универсальностью и эстетическим совершенством, которыми славится Polycase.

Корпуса из нержавеющей стали серии SA от Polycase – отличный выбор для приложений, требующих заземления и соединения. Фактически, каждый корпус серии SA поставляется со встроенными металлическими шпильками на двери и в основании. Они обеспечивают удобную точку подключения для систем заземления и соединения. Помимо того, что серия SA является отличным выбором для заземления, она также отличается исключительной прочностью и защищает от пыли, воды и коррозии в соответствии со строгим стандартом NEMA 4X.Водонепроницаемая и устойчивая к ржавчине конструкция делает эти корпуса отличным вариантом для использования вне помещений, например, для распределительных коробок и автоматических выключателей.

Конечно, мы знаем, как важно предоставлять нашим клиентам широкий спектр возможностей, поэтому ваш выбор металлических корпусов для электроники не останавливается на достигнутом. Мы предлагаем более широкий выбор, например, серию AN из литого под давлением алюминия, разработанную в соответствии со строгим стандартом NEMA 6P, и серию EX из экструдированного анодированного алюминия, которая идеально подходит для нестандартных электронных устройств и включает предварительно отлитый слот для печатных плат.

Нам еще предстоит узнать гораздо больше о мире заземления и соединения – мы лишь прикоснулись к основным принципам. Вам нужно будет выяснить для себя, каковы идеальные методы заземления вашего электронного устройства. Но благодаря нашему опыту в области корпусов создавать безопасные и эффективные устройства с правильно настроенными заземлением и соединением стало проще, чем когда-либо.

Остались вопросы о том, как наши корпуса позволяют эффективно заземлять и связывать электронику? Наши специалисты по корпусам будут рады помочь.Просто позвоните по телефону 1-800-248-1233 или свяжитесь с нами через Интернет.

Принципы обоснования (релевантного) значения

  • Андерсон А. Р. и Белнап Н. (1975). Увлечение. Логика актуальности и необходимости . Принстон: Издательство Принстонского университета.

    Google ученый

  • Бетти, А. (2010). Объяснение в метафизике и теории основания и следствия Больцано. Logique et Analyze , 211 , 281–316.

    Google ученый

  • Коррейя, Ф. (2010). Заземление и истинностные функции. Logique et Analyze , 53 (211), 251–79.

    Google ученый

  • Коррейя, Ф. (2014). Логические основания. Обзор символической логики , 7 (1), 31–59.

    Артикул Google ученый

  • Коррейя, Ф.(2016). О логике фактической эквивалентности. Обзор символической логики , 9 , 103–122.

    Артикул Google ученый

  • де Россет, Л. (2013). Что такое слабая земля? Очерки философии , 14 (1), 7–18.

    Артикул Google ученый

  • Доен, К. (1993). Историческое введение в субструктурную логику. В П.Schroeder-Heister & K. Doen (Eds.), Субструктурная логика (стр. 1–30). Оксфорд: Издательство Оксфордского университета.

    Google ученый

  • Данн, М. (1970). Алгебраическая полнота r-mingle и его расширений. Журнал символической логики , 25 , 1–13.

    Артикул Google ученый

  • Данн, М., и Рестолл, Г. (2002). Логика релевантности.В D. Gabbay & F. Guenthner (Eds.), Справочник по философской логике (стр. 291–309). Амстердам: Kluwer Academic Publishers.

    Google ученый

  • Файн, К. (1974). Модели для порождения. Журнал философской логики , 3 , 347–372.

    Артикул Google ученый

  • Fine, K. (2012a). Путеводитель по земле. В F. Correia & B.Schnieder (Eds.), Метафизическое заземление, (стр. 37–80). Кембридж: Издательство Кембриджского университета.

    Глава Google ученый

  • Fine, K. (2012b). Чистая логика земли. Обзор символической логики , 25 (1), 1–25.

    Артикул Google ученый

  • Франсез, Н. (2018). Диверсификация объектных языков для логики высказываний. Журнал логики, языка и информации , 27 , 193–203.

    Артикул Google ученый

  • Франсез, Н. (2019). Соответствующая связная логика. Логика и логическая философия , 30 , 1–18.

    Google ученый

  • Яго, М. (2019). Семантика истины для соответствующей логики. Journal of Philosophical Logic , 1–26, готовится к печати.

  • Корбмахер Дж. (2017). Аксиоматические теории частичного основания i. Базовая теория. Журнал философской логики , 47 , 161–191.

    Артикул Google ученый

  • Кремер С. (2013). Более простая головоломка с землей. Мысль , 2 (2), 85–89.

    Google ученый

  • Марес, Э. (2014). Логика релевантности.В Э. Н. Залта (ред.), Стэнфордская энциклопедия философии . https://plato.stanford.edu/archives/spr2014/entries/logic-relevance/.

  • Поджиолези, Ф. (2016a). Критический обзор новейшей логики заземления. В F. Boccuni & A. Sereni (Eds.), Объективность, реализм и доказательство . Бостон: Бостонские исследования в области философии и истории науки.

    Google ученый

  • Поджиолези, Ф.(2016b). Об определении понятия полного и непосредственного формального обоснования. Synthese , 193 , 3147–3167.

    Артикул Google ученый

  • Поджиолези, Ф. (2018). О построении логики понятия полного и непосредственного формального обоснования. Synthese , 195 , 1231–1254.

    Артикул Google ученый

  • Поджиолези, Ф.(2020a). Больцано, соответствующая логика и правила обоснования импликации. В С. Роски и Б. Шнидер (ред.), Больцано и заземление . Оксфорд: Издательство Оксфордского университета.

    Google ученый

  • Поджиолези, Ф. (2020b). Les conditionnels. В F. Poggiolesi & P. ​​Wagner (Eds.), Précis de Философия логики . Париж: Издание Сорбонны.

    Google ученый

  • Роски, С.(2017). Концепция заземления Больцано . Йена: Klostermann Verlag.

    Google ученый

  • Рутли Р. и Мейер Р. К. (1973). Семантика следования. В H. Leblanc (Ed.), Истинный синтаксис и модальность . Амстердам: Северная Голландия.

    Google ученый

  • Румберг, А. (2013). Теория обоснования Больцано на фоне нормальных доказательств. Обзор символической логики , 6 (3), 424–459.

    Артикул Google ученый

  • Шаффер, Дж.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *