Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

185. Защитное заземление. Назначение, принцип действия и область применения.

Защитное заземление – преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.

Область применения защитного заземления – трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали.

 

 

Рис.1 Принципиальные схемы защитного заземления:

а – в сети с изолированной нейтралью до 1000В и выше

б – в сети с заземленной нейтралью выше 1000В

1 – заземленное оборудование;

2 – заземлитель защитного заземления

3 – заземлитель рабочего заземления

rв и rо – сопротивления соответственно защитного и рабочего заземлений

Iв – ток замыкания на землю

 

Заземляющим устройством называется совокупность заземлителя – металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное и контурное.

Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

Данный тип заземляющего устройства применяют лишь при малых значениях тока замыкания на землю и, в частности, в установках напряжением до 1000В, где потенциал заземлителя не превышает допустимого напряжения прикосновения. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта.

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру площадки, на которой находится заземляемое оборудование, или распределяют по всей площадке по возможности равномерно.

Безопасность при контурном заземлителе обеспечивается выравниванием потенциала на защищаемой территории путем соответствующего размещения одиночных заземлителей.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводу, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещениях  с повышенной опасностью и особо опасных по условиям поражения током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного и 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.

Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей.

Для искусственных заземлителей применяют вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные трубы диаметром 3…5см и стальные уголки размером от 40*60 до 60*60мм и длиной 2,5…,м.

В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономую. Недостатками естественных заземлителей является доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей.

В начало

Защитное заземление: принцип работы и схемы

С помощью создания электрического соединения металлических конструкций промышленного и бытового оборудования с землей повышают безопасность в процессе его эксплуатации. Такой метод используется для предотвращения поражения человека электрическим током при возникновении аварийных ситуаций.

На рисунке ниже отображены основные принципы функционирования защитной системы. Даже при использовании качественных автоматических устройств, скорость их отключения будет недостаточной, чтобы полностью исключить возможность поражения человека электрическим током. При наличии заземления будет образована цепь с меньшим сопротивлением. Это снизит вредные воздействия на организм человека до безопасного уровня.

Защитное заземление – необходимый элемент безопасности, предотвращающий поражение электротоком

Принцип работы

Обычно его устанавливают для защиты при возникновении короткого замыкания. Если фазный проводник отсоединится и прикоснется к металлическому шасси установки, то корпус окажется под напряжением.

Правильно созданное защитное заземление образует электрическую цепь, имеющую низкое сопротивление. Именно этот путь является наиболее благоприятным для электрического тока, поэтому случайное прикосновение человека к корпусу не будет опасным (рис. выше).

Надо отметить, что такое устройство одновременно будет выполнять несколько важных функций:

  1. Оно обеспечит защиту и в том случае, когда потенциально опасное напряжение на корпусе образовано не коротким замыканием, а индукционными токами. Такие ситуации возможны в установках с высоким напряжением и там, где допустимо воздействие излучения СВЧ.
  2. При использовании глухозаземленной нейтрали и некоторых других схем подключения в цепи питания при коротком замыкании возникнут продолжительные и большие по амплитуде импульсы, достаточные для срабатывания автоматов, отключающих напряжение.
  3. Если заземленное оборудование подвергнется удару молнии, то такой проводник обеспечит определенную защиту от повреждений.

По этой формуле рассчитывают сопротивление проводника защитной цепи между основной шиной и распределительным щитком: 50 х СЦФН/ НН. СЦФН – сопротивление в цепи ноль-фаза; НН – напряжение номинальное в вольтах.

Чтобы не ошибаться с терминологией, надо понимать действительное значение следующих названий:

  • Рабочим называют заземление, которое выполняет функции второго проводника. Его используют для электрического питания установок, решения иных задач.
  • Упомянутая выше защита от молнии не является целевым предназначением. Для обеспечения безопасности при грозах применяют специально предназначенные для этого устройства. Они рассчитываются на относительно большие величины токов и напряжений.

Схемы подключения

Чтобы выбрать оптимальный вариант необходимо знать, для каких целей применяется защитное заземление в конкретном случае. Ниже рассмотрены разные системы, их особенности, преимущества и недостатки.

Тип TN, с глухозаземленной нейтралью. По этой схеме подключается промышленное и бытовое оборудование, работающее в сетях с напряжением до и выше 1000 V. Нейтраль генератора (трансформатора) источника питания подключается к заземлителю. Устройства потребителей, а точнее корпуса, экраны, шасси, подсоединяют к общему проводнику.

Если электрическая схема создана в соответствии с международными стандартами, то по надписям можно понять следующее. Латинской буквой «N» обозначают «нулевой» проводник, который используется для работы оборудования. Его так и называют, функциональным. «PE» – проводник, использующийся для создания защитной цепи.  Буквами «PEN» обозначают проводник, предназначенный для решения функциональных и защитных задач.

Чаще всего используют следующие схемы. Их наименования отличаются буквой, которую через дефис добавляют к «TN».

Схемы подключения

СистемаПринцип работыПреимущества, недостатки, особенности
CВ системе «С» проводник выполняет рабочие и защитные функции одновременно. В качестве примера можно вспомнить типовое трехфазное электропитание с глухозаземленной нейтралью, являющейся нулевым проводом.Эта схема относительно проста и экономична. Корпуса устройств потребителей подключают непосредственно к нейтрали. Недостатком является утеря защитных свойств, если электрическая цепь разорвана. Такое повреждение нельзя исключить при аварийном повышении тока, нагреве и разрушении проводника. В такой ситуации на корпусе появится опасное напряжение. При использовании таких систем особо тщательно подбирают автоматы, которые должны быстро и надежно отключать питающее напряжение.
SВ этой схеме используются два раздельных нулевых проводника, рабочий и защитный.Несколько проводников увеличивают стоимость системы, но существенно повышают надежность защиты.
C-SЭто – комбинированная система. Генерирующий источник подсоединяется к глухозаземленной нейтрали. К потребителю идут только четыре проводника (трехфазное питание). В объекте недвижимости добавляется защитный проводник «PE».Низкая по сравнению с предыдущим вариантом стоимость сопровождается меньшей надежностью. При повреждении проводника на участке до объекта (или к «PE») защитные функции будут утрачены. В соответствии с действующими нормами при использовании таких систем требуется предотвратить механическое повреждение соответствующих проводников.

Наиболее часто используемые схемы подключения

Достаточно высокие риски возникают при использовании воздушных линий электропередач. Они могут быть повреждены ураганом, иными негативными внешними воздействиями. Для обеспечения высокого уровня безопасности применяют схему TT.

Глухозаземленную нейтраль подсоединяют к генератору. Передача энергии осуществляется по четырем проводам. У потребителя устанавливают автономную систему заземления, к которой подключаются корпуса оборудования.

IT – последняя схема на рисунке. Здесь нейтральный провод генератора (другого источника) изолирован. Корпуса электрических установок заземлены. Подобные решения применяются часто в исследовательских центрах, чтобы паразитные наводки не искажали показания чувствительной аппаратуры.

Виды

Чтобы сопротивление было минимальным, желательно сократить длину защитного проводника. Это обеспечивают с помощью создания заземляющего контура по периметру объекта.

Выносные системы применяют при оснащении установок, которые работают с питающим напряжением до 1 000 V.

Заземлители разделяют также на искусственные и естественные. Это распределение по группам условно, так как в обоих случаях используются металлические части конструкций, находящиеся в земле:

  • В первом – их создают специально, для системы заземления. Такой подход позволяет точно рассчитать сопротивление, размеры отдельных частей, иные важные параметры.

Естественный заземлитель – металлическая часть конструкции, находящейся в земле

  • Второй вариант предусматривает подсоединение к металлическим частям конструкции здания, арматуре фундаментных блоков. Он экономичнее, так как для защиты применяются некоторые готовые детали. Однако надо учитывать, что для подключения оборудования понадобится прокладка соответствующих линий, которые будут иметь определенное нормативами сопротивление. Недостатком является относительная доступность обычному персоналу.

Для заземления используют проводники из меди, черной и оцинкованной стали. Сечения и другие характеристики изделий подбираются с учетом электрических параметров установки и условий ее эксплуатации.

В частности, имеет значение уровень влажности.  При расчете проверяют удельное сопротивление и другие особенности грунтов.

Грунты, в которых устанавливают устройства заземления

Видео про заземление

Как подобрать и сделать защитное заземление в доме, рассказывается в этом видео.

В этой статье рассмотрен принцип работы защитного заземления и основные параметры соответствующих инженерных систем. Для точного соблюдения действующих норм надо изучить «Правила устройства электроустановок», утвержденные Министерством энергетики России в приказе от 08. 07. 2002 г. Требования к заземлению изложены в гл.1. 7 этого документа.

Оцените статью:

отличия от рабочего, назначение, схема и устройство

На чтение 10 мин Просмотров 177 Опубликовано Обновлено

Работающие электрические приборы должны иметь заземление. В зависимости от цели оно может быть рабочим или защитным. Первое предназначено для корректной работы устройств, а второе – для защиты людей. Принцип действия одного и второго разный.

Основные цели и задачи заземления

Заземление представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется

Почва способна нейтрализовать электрический ток, так как степень ее напряжения равна нулю. Сопротивление – это основной показатель заземляющего устройства, по которому можно судить о его качестве и способности выполнять свое предназначение. Удельное сопротивление зависит от состава почвы, наличия в ней химических веществ – кислотных или щелочных, влажности, рыхлости. В зависимости от состава почвы может потребоваться использование какого-либо специального комплекта заземления или же полная замена грунта для корректной работы заземляющих устройств.

Заземление – это соединение какого-либо прибора, электрической установки или части сети с заземляющим устройством. Оно представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется.

Заземлителей может быть несколько. В распределенной схеме они располагаются по периметру объекта, электрическую сеть которого необходимо обезопасить. Проводящая часть (заземлители) обычно выполняются из металла. К ним подводятся заземляющие электроды, которые имеют непосредственный контакт с почвой.

Устройство контура заземления

Заземляющее устройство монтируется по контуру. Контур заземления – это несколько проводников электродов, которые забиваются в грунт. Их длина – 3 метра, располагаются они на небольшом расстоянии друг от друга. В качестве соединения применяется горизонтальная металлическая полоса, которую укладывают в почву на небольшую глубину – до 1 метра. Соединение с электродами осуществляется с помощью обычной сварки. В специальных заземляющих комплектах части оборудования соединяются резьбой, что никак не влияет на рабочие свойства.

Рабочее заземление необходимо в следующих случаях:

  • Защита оборудования от накопления статического электричества. Процессы, происходящие в природе, например, молнии, могут влиять на ток, протекающий в цепи, в результате чего оборудование может быть повреждено. Электроды, установленные в грунте, отводят излишки тока.
  • Защита сети от замыканий.
  • Защита от перенапряжения.

Пример рабочего заземления – молниеотвод, который присоединен к электродам. Особенно актуально в генераторах, трансформаторах.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Схема защиты дома от молний

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется. Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Устройства защиты от импульсных перенапряжений

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Самодельные устройства могут выглядеть следующим образом: к корпусу прибора подсоединен провод, который выводится на улицу и соединяется с вбитым в землю металлическим изделием (труба, уголок, ведро, арматура). Эти изделия являются хорошими проводниками тока, в отличие от человеческого тела, поэтому ток выбирает металл и уходит в грунт.

Отличие рабочего заземления от защитного

Рабочее и защитное заземление по правилам техники безопасности не должно совмещаться водной схеме. При атмосферных разрядах электрические приборы могут повредиться, при этом защитное заземление не сработает.

В схеме функционального (рабочего) заземления все токонесущие конструкции соединяются с электродами, установленными в грунте. Для корректной работы рабочего заземления используются также предохранители, которые принимают напряжение на себя и выходят из строя.

Рабочее заземление оборудуется в том случае, если к приборам прилагается указание производителя и требования, которые защищают данное устройство.

К защитному заземляющему устройству предъявляется больше требований, так как оно имеет более важные задачи: сохранение жизни людей.

Назначение рабочего заземляющего устройстваНазначение защитного заземления
Большая мощность приборовТрехфазные приборы мощностью менее 1 кВт
Электронное чувствительное оборудованиеОдно- и двухфазные устройства, не имеющие контакта с грунтом
Медицинские приборыТехника мощностью более 1 кВт
Электронная техника, которая является носителем важной информацииВ схемах с предохранителями и нулевым защитным проводником

Самое надежное заземление предусмотрено в схеме электросети дома. Кабели, которые подходят к каждой розетке, должны быть трехжильными. Третья жила соединяется с землей и отводит статическое электричество, а также предотвращает короткие замыкания и попадание молнии внутрь здания.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Если напряжение не превышает 42 В переменного тока или 110 В постоянного, заземление не требуется.

Бытовое заземление

Заземление ванны в квартире

Большая часть несчастных случаев в бытовых условиях связана с касанием прибора, который имеет повреждение изоляции. Тело человека в данном случае является проводником тока. Электрические варочные плиты, стиральные и посудомоечные машины, радиаторы отопления, микроволновки, бойлеры, ПК, мойки для посуды – все это металлические конструкции, которые хорошо проводят ток и без заземления могут причинить вред здоровью.

Короткое замыкание – это соприкосновение фазного и нулевого провода в сети, что приводит к срабатыванию аварийной защиты и отключению прибора от питания. Чаще всего происходит не короткое замыкание, а утечка тока, который накапливается в корпусе бытового оборудования. Это может привести к поражению электричеством.

Для безопасности человека необходимо устанавливать розетки с заземляющими контактами. К розетке должен быть подведен трехжильный кабель. При двухжильной и трехжильной системе заземление оборудуется по-разному – от распределительной коробки или электрического щитка.

В качестве заземлителя нельзя использовать газовые, водопроводные или трубы централизованного отопления.

Работа заземления при неисправностях электрооборудования

Под неисправностью оборудования подразумевают повреждение изоляции и возникновение фазы в корпусе прибора. Если части оборудования находятся под напряжением, но не имеют защиты в виде заземления и УЗО, человек, не подозревающий об опасности, может получить удар током.

Во втором варианте утечка тока может быть не значительной, устройство защиты оборудования не среагирует на напряжение и не отключит прибор. Человек может получить незначительный удар.

Если корпус не заземлен, но УЗО установлено, оно сработает через 0,02 секунды после прикосновения человека к корпусу прибора. Этого времени не достаточно для нанесения вреда здоровью.

Самой эффективной с точки зрения безопасности схемой является наличие заземления и УЗО. При возникновении утечки тока и переходе его в грунт УЗО реагирует и отключает прибор.

Как производится расчет параметров основных заземляющих элементов

Расчет параметров заземляющего устройства выполняется по формулам. Исходными элементами являются:

  • сопротивление грунта на данном участке;
  • длина, толщина, диаметр электродов, а также их количество.

На практике во всех случаях бывают расхождения с намеченным планом работ, так как показатель почвы необходимо анализировать более точно. Сделать это практически невозможно: на 100 квадратных метрах необходимо пробурить около 100 мини шахт глубиной до 10 м, чтобы оценить слои почвы, ее состав и включения элементов – глины, известняка, песка и других компонентов.

Установку заземляющих устройств проводят по главному принципу заземления: наличие запаса прочности, имея усредненные значения параметров. Чем ниже получается сопротивление, тем лучше для всех электрических приборов и людей.

Установка заземлителей

Вертикальные электроды более эффективно выполняют свои функции, так как их можно установить на большую глубину. При горизонтальной укладке на небольшую глубину сопротивление увеличивается, особенно в зимний период, когда верхние слои грунта промерзают.

Для электродов применяют штыри, длина которых более 1 метра (обычно 1,5 м). Такие конструкции легко забить в грунт с помощью обычного молотка, соединение выполняется в горизонтальной плоскости не менее 0,5 м в глубину.

Принцип действия защитного заземления | Защитное заземление

Страница 2 из 3

Корпус электродвигателя или трансформатора, арматура электрического светильника или трубы электропроводки нормально не находятся под напряжением относительно земли благодаря изоляции от токоведущих частей. Однако в случае повреждения изоляции любая из этих металлических частей может оказаться под напряжением, нередко равным фазному. Электродвигатель с пробитой на корпус изоляцией часто электрически соединен с машиной, которую он приводит в движение, — например, установлен на станке. Таким образом, рабочий, взявшись за рукоятки управления станком, может нечаянно попасть под напряжение. Чтобы уменьшить опасность поражения людей при повреждениях изоляции токоведущих частей, применяют ряд мер, среди которых наиболее распространено защитное заземление металлических частей электроустановок, обычно не находящихся под напряжением, и их зануление.

Защитное заземление состоит в том, что заземляемые металлические части соединяют электрическим проводником с заземлителем, то есть с металлическим предметом, находящимся в непосредственном соприкосновении с землей или с группой таких предметов. Чаще всего — это стержни из угловой стали, забитые в землю вертикально и соединенные между собой под землей приваренной к ним стальной полосой. Благодаря защитному заземлению напряжение, под которое может попасть человек, прикоснувшись к заземленной части, значительно снижается. Однако неверно распространенное мнение, что это напряжение равно нулю, так как все, что электрически связано с землей, должно иметь потенциал земли, то есть нуль. Дело в том, что землю можно рассматривать как электрический проводник с некоторым сопротивлением электрическому току, с падением напряжения вдоль пути тока, то есть с различным потенциалом точек земли около заземлителя и на большом расстоянии от него, где потенциал действительно можно считать нулевым.
Если представить себе заземлитель полусферы (рис. 1), то ток в земле растекается во все стороны от этого заземлителя в радиальных направлениях. Сечение «земляного проводника» определяется поверхностью полусфер того или иного радиуса и по мере увеличения радиуса возрастает. Соответственно уменьшается сопротивление грунта растеканию тока. Как показывают опыты, падение напряжения на участке однородного грунта радиусом в 1 м от поверхности заземлителя составляет около 68% от всего напряжения на заземлителе, то есть от напряжения между заземлителем и точками нулевого потенциала, которые располагаются на расстоянии около 20 м от такого заземлителя. Приблизительно так же, как на рис. 1, выглядит эта кривая при другой конструкции сосредоточенного заземлителя.
На расстоянии более 20 м от одиночного сосредоточенного заземлителя падение напряжения в слоях земли от тока, растекающегося с заземлителя, уже практически не обнаруживается. Пространство вокруг заземлителя, где обнаруживается ток растекания, называется полем или зоной растекания. Сопротивление заземлителя относительно земли (то есть относительно точек грунта с нулевым потенциалом) включает в себя, кроме сопротивления растеканию тока в земле, также сопротивление току при прохождении по самим заземлителям и переходное сопротивление в электрическом контакте между металлическим заземлителем и ближайшими к нему слоями грунта.

Рис. 1. Растекание тока в земле от сосредоточенного заземлителя и кривая изменения потенциала на поверхности земли по мере удаления от заземлителя

Последние две составляющие очень малы по сравнению с первой, даже если заземлители стальные и покрыты слоем ржавчины (но не краски). Поэтому под сопротивлением заземлителя относительно земли часто понимают его сопротивление растеканию, однако, точнее, сопротивление заземлителя — это отношение напряжения на нем (его потенциал) к току, который через него протекает при повреждении изоляции одной из фаз:


Напряжение на заземленном корпусе электрооборудования UK отличается от напряжения заземлителя U3 на величину падения напряжения в заземляющих проводниках, соединяющих корпус с заземлителем. Но можно считать U3 * UK.
Хотя за пределами поля растекания ток в земле практически не обнаруживается, не следует считать, что в этом месте его нет. Для наличия электрического тока необходим замкнутый контур. Ток с провода, где повреждена изоляция, протекает через заземлитель и землю на провода других фаз в сети с незаземленной нейтралью через активное сопротивление их изоляции и через емкостные сопротивления этих проводов относительно земли. В сети с заземленной нейтралью ток от места замыкания течет главным образом к этой нейтрали, но не только по пути с наименьшим индуктивным сопротивлением (непосредственно под проводами линии), а и по другим путям, немного напоминающие силовые линии поля. На силу тока, протекающего через защитное заземление, влияет сопротивление всех элементов цепи этого тока, в том числе сопротивление заземлителя нейтрали.
Если человек, находясь на земле в потенциальном поле заземлителя, прикоснется к заземленному корпусу оборудования с поврежденной изоляцией, он окажется под действием разности потенциалов между корпусом и точкой поверхности земли, на которой он стоит (рис. 1). Эту разность называют напряжением прикосновения Unp. Оно в общем случае составляет лишь часть напряжения заземлителя или равного ему напряжения на корпусе UK относительно точек земли с нулевым потенциалом:

где
I3 — ток, стекающий с заземлителя;
R3 — сопротивление заземлителя;
а — коэффициент прикосновения (меньше единицы) который показывает,
какую часть от напряжения на корпусе составляет напряжение прикосновения.
Величины а и Unp зависят от расстояния между ногами человека и заземлителем (чем дальше, тем больше) и от крутизны кривой спада потенциала, которая может быть более пологой при сложной конструкции заземлителя (чем положе, тем лучше условия безопасности). К телу человека приложена лишь
часть напряжения прикосновения, потому что последовательно с сопротивлением тела включено электрическое сопротивление обуви, пола и сопротивление растеканию тока в земле от ног человека. Часто под напряжением прикосновения понимают именно падение напряжения в теле человека между точками с разным потенциалом, которых он одновременно касается рукой и ногами или двумя руками.
Между ступнями человека, идущего в потенциальном поле заземлителя, действует разность потенциалов, называемая шаговым напряжением Uш. Как видно из рисунка, оно тем больше, чем ближе человек к заземлителю и чем шире шаг. При расчетах принимают, что шаг человека равен 0,8 м. Для крупных животных расстояние между передними и задними ногами больше, отчего напряжение шага, действующее на них, выше; оно опаснее, чем для людей, еще и потому, что вызванный им ток проходит у животных через грудную клетку. Поэтому, например, корова может погибнуть при значительно меньшем напряжении на заземлителе, к которому она приближается (или на большем расстоянии от упавшего на землю провода), хотя для крупных животных значение смертельных токов намного больше, чем для людей. Установлено, что при одиночном вертикальном стержневом заземлителе ток через него в 3,5 А уже может создать смертельное для животных шаговое напряжение.
На рисунке 2 показана сеть без заземленной точки с сопротивлением изоляции проводов относительно земли Г; и г2. После пробоя изоляции одного из проводов на металлический корпус, который связан с защитным заземлением, обладающим сопротивлением растеканию тока в земле г3, этот корпус будет иметь относительно участков земли с нулевым потенциалом напряжение, равное падению напряжения на корень из 3 от тока через него.
Так как сопротивление изоляции проводов относительно земли значительно больше сопротивления растеканию тока в земле, ток через заземлитель практически не зависит от сопротивления заземлителя. Поэтому с уменьшением сопротивления заземлителя пропорционально уменьшается напряжение прикосновения. Уменьшается и опасность от прикосновения. Однако такое же напряжение появится на корпусах и неповрежденного оборудования, присоединенных к тому же защитному заземлению. Это один из недостатков заземления как защитного мероприятия.

Рис. 2. Защитное заземление в однофазной сети без заземленной точки

Что такое защитное заземление и зануление?

Для обеспечения защиты людей при прикосновении к металлическим нетоковедущим частям, которые могут по каким-либо причинам оказаться под напряжением, наряду с другими средствами применяются защитное заземление и зануление.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при замыкании на корпус.

Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей и животных.

Принцип действия защитного заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Следует отметить, что в техническом кодексе установившейся практики «Электроустановки на напряжение до 750 кВ. Линии электропередачи воздушные и токопроводы, устройства распределительные и трансформаторные подстанции, установки электросиловые и аккумуляторные, электроустановки жилых и общественных зданий. Правила устройства и защитные меры электробезопасности. Учет электроэнергии. Нормы приемо-сдаточных испытаний», утвержденном постановлением Министерства энергетики Республики Беларусь от 23 августа 2011 г. № 44, дается определение не только термину «заземление», но и производным от него терминам:

заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством;

заземление защитное – заземление, выполненное в целях электробезопасности;

заземление функциональное (рабочее, технологическое) – заземление точки или точек системы, или установки, или электрооборудования в целях, отличных от целей электробезопасности.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение зануления – устранение опасности поражения людей током при пробое на корпус.

Принцип действия зануления – превращение замыкания на корпус в однофазное короткое замыкание (т. е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Занулению подлежат металлические конструктивные нетоковедущие части электрооборудования, которые должны быть заземлены: корпуса машин, аппаратов и др. В сети с занулением корпус приемника нельзя заземлять, не присоединив его к нулевому защитному проводу.

Принцип работы защитного заземления как технического способа

Обеспечения электробезопасности в электроустановках. Область применения

Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей оборудования (например, корпусов), которые могут оказаться под напряжением в результате нарушения изоляции токоведущих частей оборудования (и по другим причинам), с землей посредством заземляющего устройства (рис.4.3.).

Принцип действия защитного заземления заключается в уменьшении опасности электропоражения за счет снижения напряжения на заземленном корпусе (или других частях) при замыкании на него (или другие части оборудования) питающего напряжения до значения Uк = Iз ⋅ Rз (где Iз – ток, протекающий через заземлитель;  Rз – сопротивление защитного заземления) и выравнивания потенциалов между корпусом установки и землей за счет подъема потенциала земли (основания, на котором стоит человек), возникшего в результате растекания в нем тока.Таким образом, напряжение, действующее на человека в данном случае (напряжение прикосновения) будет равно разности потенциалов на корпусе установки (потенциал рук, ϕр ) и на основании (потенциал ног, ϕн)

Так как потенциал рук равен напряжению на корпусе, ϕр =Uк= Iз⋅Rз , то напряжение прикосновения при заземленном корпусе станет равно:

Где α1 – коэффициент напряжения прикосновения, равный .

Он зависит от разности потенциалов на корпусе установки и основании (земле). В связи с тем, что потенциал на поверхности грунта уменьшается в зависимости от расстояния до заземлителя (места стекания тока в землю) по гиперболическому закону (рис. 3.4), то по мере удаления от места заземления разность потенциалов между корпусом и основанием будет увеличиваться и в зоне электротехнической земли (расстояние равно около 15–20 м), где потенциал на основании (поверхности грунта) приблизительно равен нулю, она

станет равной напряжению на корпусе. В этом случае коэффициент напряжения прикосновения α1 =1, а напряжение прикосновения равно:    

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Зона, в пределах которой потенциалы на поверхности грунта не равны нулю, называется зоной растекания тока (рис.3.4.).

Рис.3.4. Гиперболический закон распределения потенциала на основании земли в зависимости от расстояния (X) до заземлителя.

Для того, чтобы обеспечить достаточно безопасное значение напряжения прикосновения, т.е. не более 42 В, при длительности воздействия t≥1с, необходимо, как видно из выражения Uпр = Iз⋅Rз, уменьшать значение сопротивления заземляющего устройства  Rз (R з.у. ). Так как ток, протекающий через заземлитель Iз , не может быть более 10 А в сетях напряжением до 1000 В, то  Rз должно быть не более 4 Ом. Допускается 10 Ом при суммарной мощности источников напряжения сети до 100 кВ⋅А.

Защитное заземление применяется в сетях, изолированных от земли (трехфазные трехпроводные сети с изолированной от земли нейтралью,двухпроводные сети переменного и постоянного тока с изолированными отземли проводами или полюсами).Заземлению подлежат корпуса и другие части электрооборудования, на которых может оказаться напряжение, во всех случаях при величине номинального напряжения электропитания 380 В переменного тока и 440 В постоянного тока и выше; при номинальных напряжениях равных и выше 42 В(50 Гц) и 110 В помещениях с признаками повышенной и особой опасности и в наружных условиях; во взрывоопасных помещениях при любых значениях постоянного и перем. напряжения.

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Узнать стоимость

описание, принцип действия и назначение, схемы подключения и отличия,

Во время эксплуатации электроприборов необходимо использовать заземляющие устройства. В соответствии с назначением, возможно использование защитного и рабочего заземления. Первый вид позволяет обеспечить нормальную работу оборудования, а второй предназначен для защиты людей. Эти виды мер безопасности имеют различное назначение и принцип работы.

Защита электрооборудования

Рабочее (функциональное) заземление — соединение с землей определенных точек токоведущих частей электрооборудования. Чаще всего это нейтральные точки обмоток трансформаторов и генераторов. Для реализации этого вида защиты используются надежные проводники либо специальные устройства, например, пробивные предохранители. Основной задачей рабочего заземления является предотвращение замыканий и сбоев в работе электроустановок.

Согласно правилам техники безопасности, эти виды защиты от электротока не могут совмещаться. Дело в том, что токи помех (например, атмосферные разряды) могут накладываться на протекающие в электроцепи. В результате оборудование может быть повреждено, а защитное заземление не будет выполнять свои функции. Также следует помнить, что показатель сопротивления функционального не должен превышать 4 Ом.

Защитное заземление

Благодаря электрическому соединению металлических конструкций оборудования промышленного и бытового назначения с землей повышается безопасность его эксплуатации. Этот способ защиты людей от поражения электротоком называется защитным заземлением. Даже если в цепи используются специальные автоматические устройства, скорость их работы не позволяет полностью обезопасить человека.

Принцип работы

Если фазный провод коснется металлической конструкции оборудования, то его корпус окажется под напряжением. Если этот вид защиты был организован правильно, то создается электроцепь с низким сопротивлением. В результате этот путь станет для тока более предпочтительным, прикосновение человека к корпусу окажется безопасным. Так кратко можно описать принцип действия защитного заземления.

Основные функции:

  1. Защита обеспечивается даже в ситуации, когда опасное напряжение на корпусе было образовано токами индукции, а не коротким замыканием.
  2. Использование глухозаземленной нейтрали позволяет получить при коротком замыкании длительные импульсы с большой амплитудой, способствующие срабатыванию защитной автоматики.
  3. Заземляющий проводник способен обеспечить надежную защиту оборудования при попадании в него молнии.

Последняя функция не является целевой и носит второстепенный характер. Основное назначение защитного заземления — обеспечение безопасности людей во время работы на оборудовании.

Схемы подсоединения

Для выбора оптимального варианта защиты следует разобраться в схемах организации заземления, а также их преимуществах и недостатках. Первый вид — глухозаземленная нейтраль (тип TN). Эта схема используется в бытовом и промышленном электрооборудовании, предназначенном для работы в сетях до 1 кВ. Для ее реализации нейтральный провод источника питания соединяется с заземлителем. Затем к общему проводнику подключаются корпус, экран и шасси.

Наибольшей популярностью пользуются три схемы, обозначающиеся соответствующей буквой:

  1. C — проводник выполняет одновременно защитную и рабочую функцию. Схема предельно проста в реализации, но при разрыве электроцепи теряет свои защитные свойства.
  2. S — применяется два отдельных нулевых провода. Стоимость схемы несколько выше, но ее надежность существенно увеличивается.
  3. C-S — комбинация двух предыдущих систем. При ее использовании необходимо принять меры по предотвращению механического повреждения защитных проводников, иначе схема перестанет выполнять свою функцию.

На воздушных линиях электропередач используется схема ТТ. К источнику питания подключается глухозаземленная нейтраль, а энергия передается по четырем проводникам. На стороне потребителя монтируется автономная система защиты, к которой и подключается оборудование.

Еще одна схема реализации этого вида защиты — схема IT. Она активно применяется в исследовательских центрах, так как позволяет дополнительно устранить паразитные электрические наводки. Для уменьшения показателя сопротивления приходится сокращать длину проводника. Решается эта задача с помощью создания по периметру объекта специального заземляющего контура.

Категории заземлителей:

  1. Искусственные — изготавливаются специально для создания защитного заземления и не должны покрываться лакокрасочными материалами. Допускается использование в роли заземлителя электропроводящего бетона.
  2. Естественные — электропроводящие части сетей и коммуникаций строений, находящиеся в контакте с землей.

Такая классификация носит условный характер, так как в любом случае для обеспечения безопасности людей используются металлические части здания, расположенные в земле. Рекомендуется создавать защитное заземление с помощью естественных заземлителей. Однако для решения поставленной задачи запрещено применять трубопроводы, подающие горючие вещества.

Назначение и устройство защитного заземления существенно отличается от функционального, поэтому их нельзя совмещать. Подробно вопросы организации защиты оборудования и людей от воздействия электротока изложены в особом документе «Правила устройства электроустановок».

Применение и удаление защитного заземления

Средства индивидуальной защиты для защиты электротехников в случае случайного включения оборудования.

Индивидуальное защитное заземление для электрического обслуживания включает в себя кабель, подключенный к обесточенным линиям и оборудованию путем перемычки и соединения с соответствующими зажимами, чтобы ограничить разницу напряжений между доступными точками на рабочем месте до безопасных значений, если линии или оборудование случайно повторно под напряжением .

Должны быть размещены средства индивидуальной защиты для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Фото: USBR.

Защитные заземления рассчитаны на пропускание максимально доступного тока короткого замыкания на рабочем месте. Также называется перемычкой заземления, это преднамеренно низкоомный путь к земле.

Любой сотрудник, работающий с обесточенным высоковольтным оборудованием, несет ответственность за понимание требований и процедур защитного заземления.Только обученные и квалифицированные рабочие должны применять и удалять временные средства индивидуальной защиты.

Примечание: Необходимо разместить временные защитные заземления для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Основания безопасности не должны быть слишком длинными, потому что они могут начать резкое движение в случае неисправности и нанести кому-либо травму. Ссылка NFPA 70B Раздел 7.7.4.2.4


Шаг 1: Обесточьте линию в соответствии с процедурами.

Используйте задокументированную процедуру LOTO, чтобы убедиться, что цепь или оборудование обесточены и изолированы от всех источников опасной энергии. Желательно разместить временные защитные площадки для создания эквипотенциальной зоны в рабочей зоне на месте проведения работ.


Шаг 2: Проверить цепь на наличие напряжения.

Зажимы на концах проводов должны устанавливаться и отсоединяться с помощью горячих стержней соответствующего номинала и длины.При нанесении грунта всегда используйте защитные средства индивидуальной защиты от поражения электрическим током и искрением соответствующего уровня.

Не думайте, что цепь была обесточена только потому, что она была выключена. Другие источники энергии, такие как индукция от близлежащих цепей, могут привести к смертельным ударам и другим травмам.

Требуется выполнить трехточечный тест с помощью чувствительных устройств измерения напряжения для проверки состояния нулевой энергии. Примеры чувствительных устройств для проверки напряжения включают в себя «бесконтактные» тестеры, такие как светящиеся палочки (похожие на световые ручки), тик-трассеры (они издают звук) или высоковольтные вольтметры с прямым считыванием.

Трехточечный тест состоит из проверки измерителя напряжения на известном источнике под напряжением, чтобы убедиться, что он работает правильно. (Тест № 1) .

Затем проверьте цепь, на которой должны выполняться работы (Тест № 2) .

Наконец, протестируйте тестер напряжения на том же источнике питания, который использовался в тесте № 1, чтобы убедиться, что тестер все еще работает правильно. (Тест № 3) .

ВАЖНАЯ ИНФОРМАЦИЯ: При нанесении грунта всегда используйте средства индивидуальной защиты, защищающие от поражения электрическим током и искрения дуги.

Рекомендовано: Обзор средств индивидуальной защиты от поражения электрическим током и дугового разряда


Шаг 3: Очистите все соединения.

Следует исключить дополнительное сопротивление, вызванное коррозией и грязью, чтобы поддерживать чрезвычайно низкое сопротивление заземления, в противном случае одноточечное заземление будет неэффективным.


Шаг 4: Сначала установите зажимы заземления и снимите их в последнюю очередь.

Это гарантирует, что во время установки не будет времени, в течение которого оператор может стать путем заземления с наименьшим сопротивлением.Механические соединения должны быть достаточно прочными, чтобы выдерживать силы, создаваемые электромагнитной индукцией.


Шаг 5: Зажимы на концах проводника должны устанавливаться и отсоединяться горячими палками соответствующего номинала и длины.

Если физически невозможно использовать инструменты горячей линии для нанесения грунта, для защиты рабочего требуются дополнительные средства индивидуальной защиты от ударов и дуги.


Список литературы

Обновление принципов защитного заземления (VOD) – Интернет-институт предотвращения инцидентов

Детали

ПРОДОЛЖИТЕЛЬНОСТЬ ВИДЕО: 1 ЧАС | БЕЗ ПРИСОЕДИНЯЕМЫХ баллов

Этот курс не предназначен для того, чтобы рассказать вам о том, что в сводах правил говорится о заземлении.Скорее, он предоставит вам представление о практических приложениях, основанных на принципах протекания тока в заземленной системе. Презентация Джима Вона, сделанная осенью 2016 года на конференции и выставке IP Utility Safety в Аризоне, дает представление о том, как правильно применять принципы заземления.

ВЫ ИЗУЧИТЕ:

  • О распространенных заблуждениях относительно заземления индивидуальной защиты
  • Важные основы заземления
  • О цели требований OSHA, ANSI и IEEE
  • Из реальных примеров, изучающих инциденты, связанные с заземлением

ВЕДУЩИЙ:

Джим Вон, Global Energy Solutions

Джим Вон, специалист по безопасности и гигиене труда, имеет более чем 40-летний опыт работы в сфере коммунального и промышленного электрического строительства, технического обслуживания и эксплуатации промышленных предприятий; промышленное строительство и экологическая безопасность производственных и технологических предприятий.Г-н Вон является автором множества документов по процедурам и стандартам, а также программ технического обучения. Его первоначальная программа обучения линейных технических специалистов была принята Департаментом образования Флориды и широко используется во Флориде и в электроэнергетике. В дополнение к своему опыту работы со стандартами OSHA в 1910 и 1926 годах Вон также обладает знаниями в области международных стандартов безопасности OHSA. Г-н Вон высоко ценится за продемонстрированные навыки в идентификации опасностей; проверка безопасности завода; расследование происшествий; разработка программ безопасности и применение согласованных стандартов для соответствия требованиям OSHA.

Г-н Вон написал статьи о безопасности и обучении для нескольких публикаций, является востребованным докладчиком по современным вопросам безопасности и техническим вопросам, и его часто приглашали за свои навыки в качестве консультанта по криминалистической электротехнике после инцидентов. Вон провел много часов как в классе колледжа, так и в техническом обучении взрослых учащихся, и получил признание за эффективные навыки передачи технологий, которые дополняют его курсы по технике безопасности и технической подготовке. В настоящее время г-н Вон входит в состав редакционного совета журнала Incident Prevention Magazine, является востребованным техническим писателем и докладчиком и часто консультирует по вопросам безопасности для коммунальных предприятий Аризоны.


Посмотреть предварительный видеоролик:

Обучение инструкторов 101: Практическое заземление для индивидуальной защиты – предотвращение инцидентов

За последние 10 лет я консультировал по десяткам индукционных инцидентов, восемь из которых закончились смертельным исходом. В каждом было что-то общее. Практически каждый читатель по предотвращению инцидентов согласится с тем, что одна из тем, которой уделяется наибольшее внимание в электроэнергетике – в письменной форме, в обучении и в беседе, – это индивидуальное защитное заземление (PPG).Не проходит и недели, чтобы я не писал по электронной почте и не разговаривал с кем-нибудь о PPG и, в частности, о работе с индукцией.

В iP мы обсуждаем и делимся информацией, а также новостями об инцидентах, связанных с индукцией, и да, они действительно происходят с угрожающей скоростью. Я не могу указать на какие-либо эмпирические доказательства, но я и мои коллеги думаем, что мы, как отрасль, являемся причиной путаницы по вопросам PPG. Мы медленно переходили от заземления для стабилизации электрических систем и защиты оборудования к заземлению для защиты рабочих.Некоторым даже язык стандарта OSHA кажется расплывчатым, противоречивым или слишком техническим. Стандарты ANSI устанавливают надежные процедуры для защитных мер, но они не являются учебными ресурсами для рабочих. Теперь, когда нагрузка на инфраструктуру и напряжение в системе продолжают расти, возникают соответствующие опасности, которые даже не обсуждались всего лишь поколение назад. Эти опасности приводят к инцидентам и, что еще хуже, инцидентам, которые можно предотвратить, которые ставят под угрозу жизнь работников, работающих на линиях электропередач.

Шесть принципов
Мы с коллегами проконсультировались с компаниями, у которых есть учебные курсы и руководства по процедурам заземления на 300 страниц, которые не предотвращают индукционные несчастные случаи.Общей чертой среди погибших было то, что задействованные экипажи просто не видели опасностей, обычно потому, что они не понимали задействованных простых принципов, которые могли их предотвратить. Я считаю, что если квалифицированные работники поймут следующие шесть принципов о текущем потоке, включая информацию о заземленных системах, они смогут принять соответствующие решения о том, как защитить себя в сотнях сценариев, с которыми они могут столкнуться в своей карьере.

Принцип 1
В заземленных системах ток течет так же, как в незаземленных цепях.

Принцип 2
Ток в параллельных системах проходит по каждому доступному пути, обратно пропорциональному сопротивлению пути. Это означает, что соединенные между собой системы будут иметь ток на каждом пути, а пути с низким сопротивлением будут иметь больше тока, чем пути с высоким сопротивлением.

Принцип 3
Если вы не можете дать количественную оценку, вы должны предположить, что это смертельно опасно, и соответственно защитить себя. Это означает, что вы не можете делать предположений относительно уровня индукции.Если вы не можете рассчитать или измерить его, вы должны предположить, что он будет там, и принять необходимые меры предосторожности, такие как соединение для создания областей с равным потенциалом.

Принцип 4
Для нарушения электрического сопротивления кожи требуется около 50 вольт. Напряжение, необходимое для нарушения электрического сопротивления вашего тела, увеличивается, когда вы надеваете неэлектрические барьеры, такие как обувь или перчатки. При использовании резиновых перчаток необходимое напряжение существенно возрастает.

Принцип 5
Этот принцип касается силы тока, необходимой для того, чтобы причинить вам вред. Эмпирические данные Чарльза Далзиэля из его экспериментов в 1950-х и 1960-х годах показали нам, что 155-фунтовая линейная машина может выдержать 91 миллиампер в течение 3 секунд до фибрилляции желудочков (см. Www.hubbellpowersystems.com/literature/encyclopedia-grounding/pdfs/07-0801- 02.pdf). По этой причине широко принято и используется здесь, что 50 миллиампер тока – это порог воздействия, который повышается до уровня опасности для рабочих.Здесь следует отметить, что OSHA в примечании к 29 CFR 1926.964 (b) (4) использует ток 1 мА (порог восприятия), предполагая, что воспринимаемый шок (т. Е. Ток выше 1 мА) может вызвать непроизвольная реакция, приводящая к неэлектрической травме.

Принцип 6
Этот принцип нацелен на разницу между заземлением срабатывания и эквипотенциальным заземлением. Заземление, установленное для отключения обесточенной системы во время непреднамеренного включения, не защитит рабочего, потенциал которого не равен потенциалу пути системы.Заземления, установленные для отключения цепи, или заземляющие заземления также могут использоваться для защиты рабочего. Однако, если они не расположены или не установлены для создания зоны уравнивания потенциалов, они не защитят работника от травм в результате непреднамеренного включения питания или индукции.

Эти шесть принципов не кодифицированы и не записаны ни в одном учебном пособии. Это то, что я узнал за годы, как важные для распознавания и снижения риска инцидентов и травм, связанных с индукцией.Но чаще всего проблема связана с первыми двумя принципами. В PPG больше не всегда лучше. Проблема с заземлением заключается в том, что существует множество соединений, которые мы добавляем либо намеренно, либо посредством соединения.

A Test Case
Давайте рассмотрим пример, основанный на недоразумении бригады по строительству трансмиссии относительно сопротивлений в цепи, который, кстати, очень похож на три из восьми смертельных инцидентов, о которых я упоминал в начале этой статьи.В данном конкретном случае бригады закрепляли три пучка 1590 на новой конструкции 500 кВ на стальных монополях. Бригада правильно знала, что корзина должна быть прикреплена к связке, прежде чем связать связку с установкой для подъема. Они использовали цепную лебедку и стальную стропу, прикрепленную к стреле башни, чтобы поднять узел. Связка соединялась с подъемником нейлоновыми стропами. Их корзина для людей, установленная на кране, была заземлена в основании башни. Ошибка экипажа заключалась в том, что, прикрепив корзину к жгуту, провод был подключен к тому же потенциалу, что и подъемник и мачта через соединение с корзиной и краном.Это предположение было неверным, но нередким. Как только команда изучила принципы PPG, они поняли, какую ловушку строят для себя.

Применение Принципов 1 и 2
Ток течет в заземленной цепи так же, как и в незаземленной, и ток течет по каждому доступному пути, обратно пропорциональному сопротивлению пути. Источником в примере, который я только что описал, была индукция от линии 500 кВ, параллельной строению бригады. На жгуте был неизвестный уровень тока, но напряжение не было обнаружено.Это произошло из-за заземленных блоков связки, которые остались на новой конструкции, и площадки, расположенной на каждом конце двухмильной секции, которую команда отсекала. Когда корзина прикреплена к проводу, индукционный ток течет от проводника через стрелу в мачту и землю через заземление мачты. Вверху на проводе имеется электрический зазор между непроводящими нейлоновыми стропами, используемыми для закрепления проводника к стальному подъемнику, соединенному с вышкой. Если человек, соприкасающийся с узлом, схватится за подъемник, он закроет эту брешь.Башня имеет очень низкое сопротивление по сравнению с корзиной и краном. У башни будет больше тока, протекающего через это меньшее сопротивление, чем у крана. Другими словами, два пути к земле – один через кран, другой через башню – не имеют равного потенциала. Мужчина в этом промежутке подвергается риску. Единственный способ создать на обоих путях равный или почти равный потенциал – это прикрепить проводник к опоре.

Применение принципа 3
Если вы не можете дать количественную оценку, вы должны предположить, что это смертельно опасно, и соответствующим образом защитить себя.Многие линейные мастера, возможно, работали по сценарию, аналогичному вышеупомянутому примеру, и сказали бы, что они делали это сотни раз и никогда ничего не чувствовали. И это может быть правдой, особенно если они работали в кожаных перчатках. В их случае возможно, что напряжение на открытом промежутке между тросом и лебедкой составляло всего 25 вольт, но предположим, что оно составляет 1800 вольт. Что, если бы в то утро было 25 вольт, потому что на соседней линии было только 80 ампер, а затем они переключили его на 10 А.м. и через долю секунды на нем было 300 ампер? Вы не можете количественно оценить риск и убедиться, что его нет, поэтому вы должны предположить, что он смертельный, и преодолеть разрыв.

Применение Принципов 4 и 5
Для нарушения электрического сопротивления кожи требуется около 50 вольт, а сила тока более 50 миллиампер опасна для рабочих. Это правда, что когда корзина была прикреплена к башне, по ней протекал ток в точке заземления. Мы уже знаем о сопротивлениях и протекании тока.Заземление опоры имеет очень низкое сопротивление, а заземление крана подключено к клеммной шпильке для заземления опоры. Большая часть тока на кране уходит в землю. Напряжение опоры в этой точке можно измерить между заземлением клеммы и удаленной землей. Удаленная земля – ​​это некоторая точка на земле, удаленная от проводника заземляющего электрода от башни к заземляющим стержням. Это напряжение возникает на сопротивлении земли. Есть еще одно сопротивление, на котором теперь можно измерить напряжение.Это зазор между проводом и башней. В этом промежутке легко может быть 20 вольт или 1500 вольт или более в зависимости от тока, протекающего в этом заземленном пучке. И если блок пучка на этой конструкции заземлен, возникает еще один зазор, который появляется, как только проводники поднимаются из блока пучка. Между прочим, я знаю два случая, когда индукционный ток был настолько высоким, что веревочные стропы – а в другом случае – нейлоновые стропы – загорелись.

Применение принципа 6
Хотя это случается, мы редко слышим о том, чтобы кто-то замыкался на заземленной линии.В строительстве наиболее вероятным сценарием является потеря тягового провисания или такелажа, в результате чего ваши новые проводники попадут в линию под напряжением. Если это произойдет, ваши заземленные путешественники будут делать свою работу при условии, что линейный мастер, установивший их, почистил зажимы и соединения. Приземленных путешественников часто упускают из виду. Несколько наборов заземленных путешественников обеспечивают несколько путей к земле, помогая управлять током короткого замыкания и уменьшая нарастание тока на рабочем месте. Но единственные основания, которые будут защищать сотрудников, – это те, которые приспособлены к тому, чтобы мост или прыгать вокруг них, предотвращая повышение напряжения на их телах, где они находятся между потенциалами, такими как путешественники и вышка, буксиры и земля или проводники и прицепы с катушкой.

Работодатели изо всех сил пытаются выявлять риски и обучать процедурам. В этой статье нет места для рассмотрения всех возможных сценариев заземления, и вы можете найти некоторые дополнительные базовые принципы, которые здесь не обсуждаются. Присылайте нам свои комментарии и идеи по обучению. Мы надеемся, что понимание и принципы предоставят вашим линейным мастерам больше инструментов для выявления и снижения индукционных рисков.

Об авторе: Проработав 25 лет линейным мастером и прорабом, Джим Вон последние 17 лет посвятил безопасности и обучению.Известный автор, тренер и лектор, он является директором по безопасности Atkinson Power. С ним можно связаться по этому адресу электронной почты, защищенному от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Примечание редактора: «Обучите инструктора 101» – это обычная функция, предназначенная для помощи инструкторам, решая сложные технические вопросы в нетехническом формате. Если у вас есть комментарии к этой статье или идея темы для будущего выпуска, свяжитесь с Кейт Уэйд по адресу: Этот адрес электронной почты защищен от спам-ботов.У вас должен быть включен JavaScript для просмотра.

Заземление – Устройство защиты от перенапряжения Устройство защиты от перенапряжения SPD

Метод защитной проводки, при котором металлическая часть электрического устройства (то есть металлическая конструктивная часть, изолированная от токоведущей части), которая может заряжаться после повреждения изоляционного материала или в других случаях надежно соединен проводником и заземляющим телом. Система защиты от заземления имеет только фазную и нейтральную линии.Трехфазная силовая нагрузка может использоваться без нейтрали. Пока оборудование хорошо заземлено, нейтральная линия в системе не должна иметь заземления, за исключением нейтральной точки источника питания. Система защиты от нулевого соединения требует, чтобы нейтральная линия в любом случае была защищена. При необходимости линия защиты нейтрали и линия защиты от нулевого соединения могут быть установлены отдельно. При этом нейтральная линия защиты в системе должна иметь многократное повторное заземление.

Введение / Защита от заземления

Меры по заземлению металлического корпуса электрооборудования. Это может предотвратить прохождение сильного тока через тело человека, когда металлический корпус заряжается в условиях повреждения изоляции или аварии, чтобы обеспечить личную безопасность.

Это своего рода метод защитной проводки, который соединяет металлическую часть электрического прибора (то есть часть металлической конструкции, изолированную от токоведущей части), которая может заряжаться после повреждения изоляционного материала или в других случаях, и проводник надежно соединен с заземляющим телом.Заземление обычно используется в системе электроснабжения, где нейтральная точка распределительного трансформатора не заземлена напрямую (трехфазная трехпроводная система), чтобы гарантировать, что напряжение заземления, генерируемое при утечке электрического оборудования из-за повреждения изоляции, не превышает безопасный диапазон. Если бытовой прибор не защищен заземлением, когда изоляция определенной части повреждена или определенная фазовая линия касается внешнего кожуха, внешний кожух бытового прибора будет заряжен, и если человеческое тело касается внешнего кожуха ( каркас) электрооборудования, поврежденного изоляцией, это может привести к поражению электрическим током.Напротив, если электрическое оборудование заземлено, ток короткого замыкания однофазного заземления будет проходить через две параллельные ветви заземляющего устройства и тело человека. Вообще говоря, сопротивление человеческого тела превышает 1000 Ом, а сопротивление заземляющего тела не может превышать 4 Ом в соответствии с правилами, поэтому ток, протекающий через человеческое тело, невелик, и ток, текущий через заземление устройство большое. Это снижает риск поражения электрическим током тела человека после утечки электрического оборудования.

Операция защитного заземления и меры предосторожности / Защита заземления

Практика доказала, что использование защитного заземления является эффективной мерой безопасности в низковольтных электросетях Китая. Поскольку защитное заземление делится на защиту заземления и защиту от нулевого соединения, объективная среда, используемая двумя различными методами защиты, различается. Следовательно, неправильный выбор не только повлияет на характеристики защиты потребителя, но и повлияет на надежность электроснабжения энергосистемы.Тогда, как потребителю электроэнергии в распределительной сети общего пользования, как мы можем правильно и разумно выбрать и использовать защитное заземление?

Защита от заземления и защита от нулевого соединения

Чтобы понять и понять защиту от заземления и защиту от нулевого соединения, ознакомьтесь с различиями и областью использования этих двух методов защиты.

Защита от заземления и защита от нулевого соединения вместе называются защитным заземлением. Это важная техническая мера, принимаемая для предотвращения поражения электрическим током и обеспечения нормальной работы электрического оборудования.Разница между этими двумя защитами в основном проявляется в трех аспектах: во-первых, различен принцип защиты. Основной принцип защиты заземления заключается в ограничении тока утечки устройства утечки на землю так, чтобы он не превышал определенный диапазон безопасности. Как только защитное устройство превышает определенное установленное значение, подача питания может быть автоматически отключена. Принцип защиты от нулевого соединения заключается в использовании нулевой соединительной линии. Когда устройство повреждено изоляцией и образует однофазное металлическое короткое замыкание, ток короткого замыкания используется для быстрого срабатывания защитного устройства на линии.Во-вторых, разная сфера применения. В соответствии с соответствующими факторами, такими как распределение нагрузки, плотность нагрузки и характер нагрузки, Технический регламент по низковольтному энергоснабжению в сельской местности разделяет сферу использования двух вышеупомянутых операционных систем энергосистемы. Система ТТ обычно применима к сельской низковольтной электросети общего пользования, которая относится к режиму защиты заземления в защитном заземлении; Система TN (систему TN можно разделить на TN-C, TN-CS, TN-S) в основном подходит для городских сетей низкого напряжения. Специальная сеть низкого напряжения для потребителей электроэнергии, таких как электрические сети, фабрики и шахты.Эта система представляет собой метод защиты при нулевом подключении в защитном заземлении. В настоящее время текущая низковольтная распределительная сеть общего пользования в Китае обычно использует систему TT или TN-C и реализует однофазные и трехфазные гибридные режимы электропитания. То есть трехфазное четырехпроводное распределение мощности 380/220 В при подаче питания на осветительную нагрузку и силовую нагрузку. В-третьих, линейная структура отличается. Система защиты от заземления имеет только фазную и нейтральную линии. Трехфазная силовая нагрузка может использоваться без нейтрали.Пока оборудование хорошо заземлено, нейтральная линия в системе не должна иметь заземления, за исключением нейтральной точки источника питания. Система защиты от нулевого соединения требует, чтобы нейтральная линия в любом случае была защищена. При необходимости линия защиты нейтрали и линия защиты от нулевого соединения могут быть установлены отдельно. При этом нейтральная линия защиты в системе должна иметь многократное повторное заземление.

Выбор методов защиты

В зависимости от системы электроснабжения, в которой находится заказчик, следует правильно выбрать защиту от заземления и метод защиты от нулевого подключения.

Какую защиту должен использовать потребитель электроэнергии? Во-первых, это должно зависеть от того, в какой системе распределения электроэнергии находится система электроснабжения. Если распределительная сеть общего пользования, в которой находится заказчик, является системой TT, заказчик должен принять унифицированную защиту заземления; если распределительная сеть общего пользования, в которой находится заказчик, находится в системе TN-C, защита от нулевого соединения должна быть принята единообразно.

Система TT и система TN-C – это две системы со своими независимыми характеристиками.Хотя обе системы могут предоставить клиентам одно- и трехфазные гибридные источники питания 220/380 В, они могут не только заменять друг друга, но и защищать их. Вышеуказанные требования совершенно другие. Это связано с тем, что в одной и той же системе распределения электроэнергии, если два режима защиты существуют одновременно, напряжение фаза-земля нейтральной линии возрастет до половины или выше фазного напряжения в случае заземления. защищенное устройство. В это время все устройства с нулевой защитой (поскольку металлический корпус устройства напрямую соединен с нейтральной линией) будут иметь одинаковый высокий потенциал, так что металлические части, такие как корпус устройства, будут иметь высокое напряжение для землю, тем самым подвергая опасности пользователя.Безопасность. Следовательно, одна и та же система распространения может использовать только один и тот же метод защиты, и эти два метода защиты нельзя смешивать. Во-вторых, заказчик должен понимать, что называется защитным заземлением, и правильно различать разницу между заземлением и защитой от обнуления. Под защитным заземлением понимается тот факт, что бытовые приборы, электрическое оборудование и т. Д. Могут быть заряжены металлическим корпусом из-за повреждения изоляции. Заземление, обеспечивающее защиту персонала от такого напряжения, называется защитным заземлением.Заземляющая защита металлического корпуса с проводом защитного заземления (PEE), непосредственно подключенным к заземляющему столбу, называется защитой заземления. Когда металлический корпус соединен с защитным проводом (PE) и защитным нейтральным проводом (PEN), это называется защитой от нулевого соединения.

Стандартный дизайн, стандарт процесса

В соответствии с различными требованиями к установке двух методов защиты, стандартного проектирования и стандартов процесса строительства.

Стандартизация стандартов проектирования и строительства и требований распределительных линий в зданиях, принимающих электроэнергию, и замена внутренней части распределения электроэнергии в недавно построенных или реконструированных зданиях заказчика на местную трехфазную пятипроводную систему или одиночную -фазная трехпроводная система. Трехфазный четырехпроводной или однофазный двухпроводной режим распределения питания в системе TT или TN-C может эффективно реализовать защитное заземление клиента. Так называемая «местная трехфазная пятипроводная система или однофазная трехпроводная система» означает, что после подключения низковольтной линии к потребителю, заказчик должен изменить исходный традиционный режим электропроводки на основе оригинальная трехфазная четырехпроводная система и однофазная двухпроводная система разводки.Вверху каждая дополнительная линия защиты подключается к каждой клемме заземляющего провода заказчика, которая должна обеспечивать электрическую розетку защиты заземления. Чтобы облегчить обслуживание и управление, пересечение внутреннего вывода и наружного вводного конца линии защиты должно быть установлено на распределительном щите, на котором вводится источник питания, а затем метод доступа к защите. Линия должна быть установлена ​​отдельно в соответствии с системой распределения электроэнергии, в которой находится заказчик.

1, Установка требований для линии защиты заземления системы TT (PEE)

Если система распределения электроэнергии потребителя является системой TT, система требует, чтобы покупатель использовал метод защиты заземления. Таким образом, чтобы соответствовать значению сопротивления заземления защиты заземления, заказчик должен закопать устройство искусственного заземления на открытом воздухе в соответствии с требованиями «Технического регламента на сельское низковольтное электроснабжение». Сопротивление заземления должно соответствовать следующим требованиям:

Re≤Ulom / Iop

Re сопротивление заземления (Ом)

Ulom называется пределом напряжения (В).В нормальных условиях его можно рассматривать как среднеквадратичное значение переменного тока 50 В.

Рабочий ток устройства защиты от остаточного тока (утечки) рядом с Iop (I)

Для среднего потребителя, если используется стальной уголок 40 × 40 × 4 × 2500 мм, его можно загнать в землю на 0,6 м вертикально механическим приводом, который может соответствовать требованиям сопротивления заземления. Затем его приваривают к круглой стали диаметром ≥ φ8 и выводят на землю на 0.6 м, а затем подсоединяется к защитному проводу (PEE) распределительного щита с использованием того же материала и типа провода, что и фаза импортного источника питания.

2, Установка требований к линии нулевой защиты (PE) системы TN-C

Поскольку система требует, чтобы заказчик принял режим защиты нулевого соединения, необходимо добавить специальную линию защиты (PE) на основа оригинальной трехфазной четырехпроводной системы или однофазной двухпроводной системы, которая защищена приемным концом потребителя.Защитная нейтральная линия (PEN) распределительного щита вынимается и подключается к исходной трехфазной четырехпроводной системе или однофазной двухпроводной системе. Для обеспечения безопасности и надежности всей системы особое внимание следует уделять использованию. После того, как защитная линия (PE) отключена от защитной нейтральной линии (PEN), нейтральная линия N и защитная линия (PE) формируются на стороне клиента. Два провода нельзя объединить в линию (PEN) во время использования. Для обеспечения надежности повторного заземления защитной нейтральной линии (PEN), первой и конечной магистрали системы TN-C, всех клеммных стержней T ответвления, концевых стержней ответвления и т. Д.должна быть оборудована повторяющимися линиями заземления и трехфазной. Четырехпроводная система также должна быть повторно заземлена на входном кронштейне абонентской линии, прежде чем линия (PEN) будет разделена на нейтральную линию (N) и линию защиты. (ПЭ). Сечение провода защитной нейтрали (PEN), нейтрали (N) или защитного провода (PE) всегда выбирается в соответствии с типом провода и стандартом сечения фазовой линии.

Защитное заземление и заземление экрана / Защита заземления

Защитное заземление

1, Защищенная зона:

Все шкафы находятся внутри.Например, в шкафу обычно нет места, где нет краски, а потом подключаются провода. Это заземление корпуса шкафа. Провод заземления внутри источника питания (то есть желто-зеленая фаза) также играет роль. Его цель – предотвратить зарядку шкафа.

2, зона защиты обычно выполняется электрическими приборами.

3 Заземление питания:

Эта линия, обычно через источник питания, возвращается к центральной линии трансформатора, а затем входит в землю.В некоторых местах это и охраняемая территория – одно, а некоторые места – не одно.

Заземление экрана

1, Также называется заземлением прибора:

Следует отметить, что провод заземления прибора не должен касаться электрического / защитного заземления во время процесса подключения, иначе он потеряет свое значение.

2, Внимание при экранировании:

При использовании экранированного кабеля используйте несимметричное заземление. Не заземляйте экранированный провод в полевых условиях.Обратите внимание на уборку. В главной диспетчерской оплетите экранирующие провода нескольких кабелей и подключите их к клемме заземления экрана шкафа. (Хорошие шкафы имеют заземленные медные полосы и изолированы от шкафа)

3, Специальный анализ

Клемма заземления экрана шкафа соединена с заземлением экрана прибора. Это дает возможность подключить заземление прибора в целом. Он имеет аналоговое заземление, цифровое заземление, заземление низкого напряжения, источник питания высокого напряжения (220 В) и несколько типов защиты.В центре управления осуществляется точечное заземление, сопротивление заземления составляет 1 Ом, а если оно не 4 Ом, то заземляющие провода разных разных линий сначала собираются в специальную точку заземления. Затем подключите все точки заземления к общему местоположению, правила заземления для каждого объекта, аналоговое заземление, заземляющие провода низкого напряжения питания цифрового заземления соответственно сконцентрированы, а затем соединены с точкой заземления сигнала заземления и, наконец, подключены к экран кабеля, высоковольтное заземление и защита После подключения заземления сопротивление заземления составляет 4 Ом, и две точки заземления поля изолированы.Сопротивление изоляции следует указывать в соответствии с требованиями датчика, но оно должно быть более 0,5 МОм. Другими словами, сигнальный контур заземлен на одном конце, а заземление для защиты поля имеет переднюю заземляющую защиту в качестве сигнального заземления для предотвращения пробоя заземления из-за индуцированного напряжения. Если два конца заземлены, будет сформирована индуктивная петля, которая вызовет сигнал помехи и приведет к саморазрушению. Если вы чувствуете себя не в своей тарелке, вы можете использовать варисторный поглотитель перенапряжения непрямого действия на объекте или для защиты на месте.Уровень напряжения меньше максимального напряжения, которое может выдержать датчик. Как правило, не превышайте напряжение питания 24 вольт. Экранирование имеет два значения: электромагнитное экранирование и электростатическое экранирование, которые относятся к экранированию магнитных цепей и цепей соответственно. Обычный экранирующий провод из медной сетки не влияет на магнитную цепь, поэтому учитывается только экранирование электрических помех, то есть электростатическое экранирование. В это время необходимо заземлить экранирующий слой (магнитная цепь экранирована без заземления).Принцип в основном тот же: источник помех и приемный конец эквивалентны двум полюсам конденсатора. Одна сторона колебания напряжения будет воспринимать другой конец через конденсатор. Промежуточный слой (то есть экран), который вставлен в землю, разрушает эту эквивалентную емкость, тем самым перекрывая путь помех. Будьте осторожны при подключении к земле сигнала, который вы хотите защитить при заземлении, и подключайте только на одном конце экрана.В противном случае возникнет большой ток (контур заземления), вызывающий повреждение, когда потенциалы на обеих сторонах не равны.

Защита от замыканий на землю – реле защиты

Что такое замыкание на землю?

Замыкание на землю – это случайный контакт между проводником под напряжением и землей или корпусом оборудования. Обратный путь тока короткого замыкания проходит через систему заземления и любой персонал или оборудование, которые становятся частью этой системы.Замыкания на землю часто являются результатом пробоя изоляции. Важно отметить, что влажная, влажная и пыльная среда требует особого внимания при проектировании и обслуживании. Поскольку вода является проводящей, она вызывает разрушение изоляции и увеличивает вероятность возникновения опасностей.


Какова цель заземления?

Основная цель заземления электрических систем – обеспечить защиту от электрических неисправностей. Однако этого не произошло до 1970-х годов.До этого большинство коммерческих и промышленных систем не имели заземления. Хотя незаземленные системы не вызывают значительных повреждений во время первого замыкания на землю, многочисленные недостатки, связанные с замыканиями на землю, привели к изменению философии заземления. У заземленной системы есть и другие преимущества, такие как снижение опасности поражения электрическим током и защита от молнии.

Электрические неисправности можно разделить на две категории: межфазные замыкания и замыкания на землю. Исследования показали, что 98% всех электрических неисправностей связаны с замыканиями на землю (Источник: Woodham, Jack, P.E. «Основы систем заземления» 1 мая 2003 г.). Там, где предохранители могут защитить от межфазных замыканий, для защиты от замыканий на землю обычно требуется дополнительная защита, такая как реле защиты.

ВЕДУЩИЕ ИНИЦИАТОРЫ НЕИСПРАВНОСТЕЙ

% ВСЕХ НЕИСПРАВНОСТЕЙ

Воздействие влаги

22.5%

Заготовка орудиями труда, грызунами и т. Д.

18,0%

Воздействие пыли

14,5%

Прочие механические повреждения

12.1%

Воздействие химикатов

9,0%

Нормальное ухудшение с возраста

7,0%

Таблица 1

Например, в приведенной ниже схеме тостера черный или горячий провод закорочен на металлический корпус тостера.Когда цепь замыкается, весь или часть тока проходит через корпус тостера, а затем через зеленый провод заземления. Когда протекает достаточный ток (обычно 6 x 15 A = 90 A), автоматический выключатель размыкается. Реле защиты может быть установлено для обнаружения токов до 5 мА, которые откроют автоматический выключатель на значительно более низком уровне, следовательно, намного быстрее, чем традиционный автоматический выключатель.

Хотя в приведенном выше примере показана однофазная цепь с глухим заземлением, принцип такой же для трехфазных цепей, обсуждаемых ниже.Реле и мониторы специально разработаны для поиска ведущих инициаторов, показанных в таблице 1, путем обнаружения низкоуровневых изменений тока, напряжения, сопротивления или температуры.

Какие проблемы вызывают случайное срабатывание реле замыкания на землю?

Гармоники и высокочастотный шум, особенно на третьей гармонике, проявляются как ток короткого замыкания. Электрический шум становится все более серьезной проблемой, поскольку все больше пользователей используют частотно-регулируемые приводы, инверторы, аккумуляторные батареи / ИБП и даже светодиодное освещение.Чтобы избежать ложных срабатываний, выберите высококачественное реле защиты от замыканий на землю, которое удаляет гармонические частоты и другие шумы из результатов измерений.

Каковы преимущества использования заземленной системы перед незаземленной системой?

Одной из основных проблем незаземленной системы является риск переходного перенапряжения. Прерывистое или дуговое замыкание на землю может привести к нарастанию напряжения в системе, напряжению и ухудшению изоляции, а также к повышению напряжения в 6 раз по сравнению с номинальным напряжением системы.Еще одно преимущество заземленной системы – простота обнаружения замыкания на землю. Незаземленные системы не допускают протекания тока замыкания на землю при первом замыкании, а вместо этого снижают напряжение на фазе замыкания во всей системе. В заземленных системах могут использоваться токовые реле защиты от замыканий на землю, чтобы точно определить место повреждения.

Что касается неисправностей, сколько может быть неисправностей?

Существует 3 различных типа неисправностей: межфазное замыкание, трехфазное замыкание и замыкание на землю.Междуфазные замыкания или «короткие замыкания» обнаруживаются внутри устройства, когда перегруженный электрический ток протекает через провод и сгорает. Согласно учебнику Дунки-Джейкобса 95% коротких замыканий являются замыканиями на землю, 4% считаются замыканиями между фазами и 1% считаются трехфазными замыканиями.

Что делают реле замыкания на землю?

В электрических цепях ток возвращается к своему источнику. Токовое реле защиты от замыканий на землю может искать ток замыкания на землю одним из двух способов: 1.) Нулевая последовательность. Здесь реле смотрит на фазные проводники, чтобы убедиться, что все ток, идущий от источника, возвращается по тем же проводникам. Если некоторые из ток возвращается к источнику по другому пути (обычно по земле), реле защиты от замыканий на землю обнаружит эту разницу и, если она превысит заранее установленный количество в течение заранее определенного времени, реле защиты от замыкания на землю сработает. 2.) Прямое измерение. Реле замыкания на землю также может считывать ток в соединение нейтрали трансформатора с землей (даже с заземлением нейтрали) резистор).Замыкание на землю в любом месте системы вернет ток через этот путь.

TechTopics № 88 | TechTopics

Этот выпуск TechTopics – один из нескольких, посвященных защитному заземлению в распределительных устройствах. В TechTopics № 87 обсуждались заземляющие и испытательные устройства, используемые в распредустройствах с металлической оболочкой. В этом выпуске TechTopics обсуждаются другие способы применения заземления безопасности в распределительном устройстве.

Временные средства индивидуальной защиты (часто называемые «основаниями безопасности») являются очень важным элементом процесса создания электрически безопасных условий труда, как это определено в NFPA 70E, Стандарте по электробезопасности на рабочем месте и в соответствии с требованиями охраны труда. и правила Управления здравоохранения (OSHA).

Согласно концепции NFPA 70E для достижения электробезопасных рабочих условий требуется:

  1. Идентификация всех возможных источников энергии для оборудования
  2. Открытие и изоляция каждого из идентифицированных источников
  3. По возможности, визуальная проверка изоляции источников
  4. Применение устройств блокировки / маркировки ко всем идентифицированным источникам
  5. С помощью соответствующего устройства проверки напряжения проверить отсутствие напряжения
  6. Заземление фазных проводов перед контактом с ними.

Сегодня многие спецификации для распределительных устройств включают требования к временному заземлению, при этом большинство спецификаций требует заземления и испытательных устройств, а другие спецификации требуют заземляющих переключателей (или, как это называется в стандартах IEC, «заземлителей»), шпилек заземления или аналогичных устройств. . Независимо от указанных средств, цель включает в себя желание установить заземление на первичных проводниках, чтобы достичь того, что NFPA 70E® называет «электрически безопасным рабочим состоянием».

Это включает в себя установку заземления, которое способно пропускать доступный ток повреждения системы в течение того времени, пока вышестоящие защитные устройства (например, автоматические выключатели, предохранители или другие устройства) будут пропускать ток повреждения.

Прежде чем будут применены основания безопасности, необходимо выполнить множество действий. По сути, заземление – это последний шаг в последовательном процессе. Если не соблюдается весь процесс, включая все первые пять шагов, существует риск остановки работающей системы и нарушения производственного процесса, а также значительный риск травмы персонала.

При применении заземления безопасности к электрической системе необходимо, чтобы пользователь разработал подробные инструкции по эксплуатации для выполнения требований NFPA 70E. Это необходимо, чтобы избежать непреднамеренного отключения электрической системы и уменьшить опасности, которым может подвергаться обслуживающий персонал и другие люди, находящиеся рядом с оборудованием.

Есть несколько способов применения соображений безопасности:

  • Заземление и испытательное устройство
  • Заземлитель (заземлитель)
  • Штифты заземления, или заземляющие скобы, или заземляющие площадки.

Разберем каждую по очереди.

Заземление и испытательное устройство

Если не используются шпильки заземления или заземляющие перемычки, заземление и испытательное устройство были испытаны на выдерживание номинального тока короткого замыкания распределительного устройства в течение двух секунд. См. TechTopics № 87 для более полного обсуждения.

Заземлитель (заземлитель)

Заземляющие переключатели

являются популярным вариантом в оборудовании, сконструированном в соответствии со стандартами IEC, в основном IEC 62271-102 (замена IEC 60129), но, как правило, не пользуются популярностью на рынках, основанных на стандартах ANSI / IEEE.На Рисунке 1 показан выключатель заземления в распределительном устройстве: на левой фотографии переключатель показан в нормальном рабочем положении (не заземлен), а на правой фотографии – переключатель в заземленном положении.

Межфазные барьеры сняты с заземляющего переключателя для фотографий на Рисунке 1. Чаще всего эти переключатели не обладают способностью к устранению неисправностей, хотя доступны быстродействующие переключатели с возможностью замыкания. Если коммутатор имеет возможность включения, минимальная возможность составляет две операции включения, с дополнительной расширенной возможностью до пяти операций включения.Короче говоря, заземлители IEC имеют ограниченную электрическую стойкость. Кроме того, номинальные характеристики заземлителей IEC часто относительно ограничены.

Заземлитель, как видно, имеет неизолированные жилы. Таким образом, установка заземляющего переключателя в распределительное устройство с металлической оболочкой по ANSI / IEEE нарушает один из принципов распределительного устройства с металлической оболочкой, согласно которому все проводники в конструкции распределительного устройства изолированы. Назначение изоляции – снизить вероятность неисправностей в распределительном устройстве, особенно дуговых замыканий.

Шпильки заземления, дужки заземления или контактные площадки заземления

Эти типы заземляющих средств очень похожи, поэтому мы обсудим их как группу. На рисунке 2 показан пример шпильки заземления как с имеющейся крышкой шпильки заземления, так и без нее. Показанный штырь заземления, вероятно, является наиболее часто используемым типом, обычно называемым типом штифта. Оборудование должно быть спроектировано таким образом, чтобы соответствовать номинальным диэлектрическим характеристикам оборудования, даже если любая крышка шпильки заземления удалена.Будь то шпильки заземления или зажимы заземления, способность к короткому замыканию шпильки заземления или зажима заземления ограничивается возможностями кабеля заземления и / или зажима заземления, в зависимости от того, что ниже.

В случае с площадками заземления ситуация несколько иная. Площадка заземления, такая как может поставляться в ручном заземляющем и испытательном устройстве, представляет собой простую площадку NEMA с четырьмя отверстиями, к которой можно подключить несколько кабелей на каждую фазу. При использовании нескольких кабелей способность к короткому замыканию может приближаться к номинальному току короткого замыкания распределительного устройства.Однако с площадками заземления, когда используется только один кабель на фазу, применяется то же ограничение короткого замыкания, что и в случае шпилек заземления или заземляющих перемычек.

Какие ограничения накладывают кабели? Эти ограничения содержатся в ASTM F855, «Спецификации для систем временного заземления, которые будут использоваться на обесточенных линиях электропередач и оборудовании», и по существу определяются из физических ограничений самих кабелей. Для наиболее часто используемого заземляющего кабеля, кабеля 4/0, ограничение составляет 43 кА на 15 циклов.Это соответствует примерно 15,2 кА в течение двух секунд на основе простого сравнения I-квадрат. Номинальная кратковременная продолжительность в большинстве комплектов распределительного устройства составляет две секунды, как и расчетная допустимая задержка срабатывания автоматических выключателей согласно ANSI / IEEE C37.04.

Предотвращение поражения электрическим током с помощью надлежащих методов заземления

Время чтения: 9 минут

Удар электрическим током

Примерно 58 человек каждую неделю гибнут в результате поражения электрическим током.

Фото 1.Правильное заземление

В электрической системе система заземления и соединения является основной защитой от поражения электрическим током. Он обеспечивает путь к земле с низким сопротивлением для защиты от электрических неисправностей. Эффективный путь тока замыкания на землю обеспечивает облегчение работы устройства максимального тока в условиях замыкания на землю. Заземление не должно рассматриваться как эффективный путь тока замыкания на землю [см. 250.4 (A) (5)]. Использование надлежащих методов заземления и соединения, проверка и поддержание хорошего электрического заземления и установка защитных устройств – лучшие способы защитить людей и оборудование от поражения электрическим током.

Методы правильного заземления

Поддержание качественной системы заземления оборудования начинается с правильного подключения цепей. В соответствии с 250.148 (B) NEC требует, чтобы удаление любого устройства не могло прервать путь заземления. Производители розеток отреагировали, поставив розетки только с одним заземляющим контактом. Это запретило бы электрикам подключать устройство последовательно с цепью заземления.

Соединения косичками

Распространенным методом обеспечения целостности заземляющего соединения оборудования является использование гибкого кабеля.Кодовый термин для этого «гибкого провода» – это перемычка для подключения оборудования, которая определена в Статье 100. Чтобы выполнить гибкое соединение, возьмите оба заземляющих провода и соедините их 6-дюймовым проводом того же цвета, который был зачищен на любом из них. конец. Крепко возьмите все три и свяжите их вместе проволочным соединителем. Убедитесь, что вы используете разъем правильного размера, соответствующий размеру и количеству проводов.

Рисунок 1. Розетки с одинарным заземлением

Доступны специальные соединители, облегчающие эту работу.В одном из них через отверстие в верхней части разъема вставляется неизолированный медный провод. Затем все провода связывают вместе, скручивая соединитель до упора.

Готовые косички становятся популярными из-за экономии времени. Например, в некоторых разъемах теперь совмещен скручивающийся провод с предварительно обжатым жгутом. Сверхгибкий шестидюймовый кабель обеспечивает беспроблемное размещение в распределительной коробке, а заземляющие кабели поставляются с предварительно обжатым вилочным соединением для быстрой и простой установки устройства.

Присоединение распределительной коробки к заземляющему проводнику

Во многих электрических цепях более одного заземляющего провода оборудования входит в розетку. Согласно NEC 250.148, если в коробку входит более одного заземляющего проводника оборудования, все такие проводники должны быть сращены или присоединены к коробке или к коробке.

Фото 2. Коннектор косички

Единственное исключение – изолированные розетки, указанные в Разделе 250.146 (D), где изолированные розетки требуются для уменьшения электрических шумов (электромагнитных помех).

Для металлических распределительных коробок заземляющие проводники от каждого устройства также должны быть подключены к коробке с помощью указанного заземляющего устройства или заземляющего винта, которые не используются ни для каких других целей.

Присоединение клеммы заземления розетки к распределительной коробке

Устройство может быть подключено к распределительной коробке с помощью перемычки. Согласно NEC 250.146, перемычка заземления оборудования должна использоваться для подключения клеммы заземления розетки заземляющего типа к заземленной коробке, если не заземлено как в 250.146 (A) – (D).

(A) Если коробка установлена ​​на поверхности, должен быть разрешен прямой контакт металл-металл между вилкой устройства и коробкой или контактным устройством, которое соответствует 250.146 (B), для заземления розетки на коробку. По крайней мере, одна из изолирующих шайб должна быть удалена с емкостей, не имеющих контактной вилки или устройства, соответствующего 250.146 (B), для обеспечения прямого контакта металла с металлом. Это положение не применяется к розеткам, установленным на крышке, если комбинация коробки и крышки не указана как обеспечивающая приемлемое заземление между коробкой и розеткой.

(B) Контактные устройства или хомуты спроектированы и внесены в список как самозаземляющиеся. допускается в сочетании с поддерживающими винтами для создания цепи заземления между ярмом устройства и коробками скрытого типа.

(C) Напольные коробки предназначены и перечислены как обеспечивающие удовлетворительное заземление между коробкой и устройством.

(D) Там, где это требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, должна быть разрешена розетка, в которой вывод заземления специально изолирован от средств крепления розетки.Клемма заземления розетки должна быть заземлена изолированным заземляющим проводом оборудования, проложенным с проводниками цепи. Этому заземляющему проводнику должно быть разрешено проходить через один или несколько щитовых щитов без подключения к заземляющему зажиму щитового щита, как разрешено в пункте 408.40, Исключение, так, чтобы он заканчивался в том же здании или структуре непосредственно на зажиме заземления оборудования соответствующей производной системы или услуги. .

Клемма заземления розетки соединяется с изолированным заземляющим проводом оборудования, который проходит вместе с проводниками цепи и может проходить через одну или несколько субпанелей без подключения к клеммной колодке заземления щита, как разрешено в Разделе 408.40 Исключение.

Обратите внимание, что использование изолированного заземляющего проводника оборудования не отменяет требования по заземлению системы кабельных каналов и распределительной коробки.

Обеспечение эффективного пути заземления

Фото 3. Разъем «косичка» (на фото вывод к прибору укорачивается).

Хорошая система электрического заземления требует большего, чем выполнение нескольких требований NEC; это также должна быть эффективная система заземления. Путь к земле – это заземленный провод системы и соединение оборудования с землей, а также путь для паразитного тока.Если электричество следует по пути наименьшего сопротивления, то цепь (путь) заземления должна иметь меньшее сопротивление, чем индивидуальное, чтобы защитить их. Практическое правило защиты людей – поддерживать полное сопротивление заземления менее одного Ом. Обратите внимание, что в Кодексе нет установленных значений для этого сопротивления, кроме максимальных значений сопротивления, указанных для стержневых, трубных или пластинчатых электродов, которые составляют 25 Ом.

Ложные основания

Заземленный (часто нейтральный) провод, как правило, может быть подключен к земле только на нейтральной шине служебного разъединителя [см. 250.24 (А) (5) и 250.142 (В)]. Основная перемычка на сервисе соединяет заземленный провод и заземляющий провод оборудования в этой точке. Перемычка основного заземления служит важным звеном на пути тока замыкания на землю от рабочего разъединителя до обмоток источника (обычно трансформатора электросети). . Иногда из-за ошибки или незнания заземленный (нейтральный) провод и заземляющий провод оборудования соединяются вместе на стороне нагрузки средства отключения обслуживания, что нарушает общие требования 250.24 (А) (5). Это часто называется ложным или незаконным заземлением и может создавать нежелательный или нежелательный ток в цепи заземления. Если заземленный провод и заземляющие проводники оборудования подключены в любом другом месте здания, весь заземленный металл может стать частью цепи возврата заземленного (нейтрального) проводника для несбалансированного тока нейтрали, который может создавать различные потенциалы напряжения на электронном оборудовании. При использовании обычных тестеров розеток это состояние обычно проявляется как нормально подключенное.

Земля Земля

Путь к земле простирается за пределы главной панели к системе заземления, известной как система заземляющих электродов, как указано в Разделе 250.50. Заземление может быть одним заземляющим стержнем, несколькими заземляющими стержнями, матом или сеткой или различными другими проводящими элементами, которые устанавливают соединение с землей. Кодекс требует, чтобы все элементы, перечисленные в пунктах 250.52 (A) (1) – (6), при их наличии, были соединены вместе для образования системы заземляющих электродов. Есть одно исключение для электродов в бетонном корпусе, но это касается только фундаментов существующих зданий или сооружений.В разделе 250.56 рассматривается сопротивление заземления, указывая, что, если заземляющий электрод (стержневой, трубный или пластинчатый) не имеет сопротивления заземления 25 Ом или менее, дополнительный электрод любого из типов, перечисленных в 250,52 (А) ) через (7) должны быть добавлены и установлены на расстоянии не менее 1,8 м (6 футов) от первого электрода. Систему заземляющих электродов можно проверить с помощью тестера сопротивления заземления или токоизмерительных клещей.

При испытании сопротивления заземляющего электрода стержневого, трубного или пластинчатого типа после установки будет соответствовать требованиям NEC в 250.56, не всегда достаточно обеспечить защиту персонала или электронного оборудования.

Фото 4. Токоизмерительные клещи сопротивления заземления

Сопротивление заземляющего электрода сильно зависит от удельного сопротивления почвы. Поскольку удельное сопротивление почвы зависит от влажности и температуры, сопротивление системы заземления будет варьироваться в разные сезоны года. Чтобы обеспечить эффективную систему заземляющих электродов, включите заземляющий электрод или заземление как часть стандартных процедур тестирования на вашем предприятии.Токоизмерительные клещи для измерения сопротивления заземления позволяют электрикам измерять сопротивление заземляющего электрода за долю времени, необходимого с помощью традиционного трехточечного испытания на падение потенциала.

Прерыватели цепи при замыкании на землю

Кодекс требует установки прерывателей цепи замыкания на землю (GFCI) в жилых домах для защиты от поражения электрическим током. Сосуды в ванных комнатах, гаражах, на открытом воздухе, в подвальных помещениях, недостроенных подвалах, кухнях, возле раковин с раковинами, хозяйственных раковинах и раковинах для стирки требуют защиты.Все 125-вольтовые 15- и 20-амперные розетки в лодочных домах должны иметь GFCI, так же как и любые ответвленные розетки для лодочного подъемника для жилых единиц (дополнительную информацию см. 210.8 (A)). Кодекс также требует защиты GFCI для многих установок, не относящихся к жилым домам. [См. 210.8 (B) для более полного списка тех областей, где требуется эта прерыватель цепи защиты от замыкания на землю].

Розетка GFCI – это устройство со встроенной схемой для обнаружения тока утечки на землю на стороне нагрузки устройства.Когда GFCI обнаруживает ток утечки в диапазоне 4–6 миллиампер, он прерывает подачу питания на сторону нагрузки устройства, предотвращая опасное замыкание на землю. [См. Определение устройства GFCI класса A прерывателя цепи замыкания на землю (GFCI) в Статье 100 для получения дополнительной информации].

Эти устройства следует регулярно проверять, поскольку они зависят от механических соединений, которые со временем могут ухудшиться. Согласно недавнему исследованию, проведенному Институтом Левитона, в среднем 15 процентов GFCI не работали во время тестирования.«Скачки напряжения от молнии, коммутации сети и других источников – все это сказывается на устройствах, поэтому Underwriters Laboratories (UL) требует, чтобы GFCI проверялись ежемесячно».

Отказ оборудования

Когда чувствительное электронное оборудование выходит из строя, первая реакция – поднимать руки вверх и винить в этом низкое качество электроэнергии. Из-за этого проблема кажется неуправляемой и неподвластной нам. Большинство из этих проблем находятся под нашим контролем, потому что 80 процентов всех проблем с качеством электроэнергии обнаруживаются в системе распределения, заземления и соединения.

Помимо предотвращения возможности возгорания, хорошее электрическое заземление с низким сопротивлением и система соединения будут служить для защиты электронного оборудования. Соединение с высоким сопротивлением, такое как свободный провод, вызовет колебания или падение напряжения при приложении большой нагрузки. Если напряжение падает достаточно низко, это может привести к блокировке, сбросу или полному отключению электронного оборудования. Заземление – еще одна проблема для электронного оборудования. Хотя сопротивление заземления в 1 Ом или менее может защитить людей от поражения электрическим током, оно может быть недостаточной защитой для электронного оборудования.IEEE рекомендует, чтобы импеданс заземления был менее 0,25 Ом для надлежащей защиты.

Изолированное заземление и выделенные цепи

В некоторых случаях легче изолировать чувствительное электронное оборудование, чем повторно подключить всю цепь. Это можно сделать, запустив изолированное заземление для рассматриваемого оборудования или запустив новую выделенную цепь. Кодекс в настоящее время не включает термин «выделенная цепь»; тем не менее, термин «отдельная ответвленная цепь» определен; и такая схема часто устанавливается для чувствительного электронного оборудования.Отдельные ответвленные цепи могут также включать изолированные заземляющие проводники, установленные в соответствии с положениями 250.146 (D).

Изолированное заземление защищает оборудование от другого оборудования в той же цепи заземления. Электронное оборудование может создавать электрические помехи в цепи заземления, которые могут мешать работе другого оборудования в цепи. Важно отметить, что изолированное заземление не защитит оборудование от гармонических искажений, проходящих через общий нейтральный проводник типичных многопроволочных ответвленных цепей.

В некоторых случаях запуск выделенной цепи (индивидуальной ответвленной цепи) необходим для полной изоляции части оборудования и обеспечения защиты.

Статья 285 устанавливает правила и охватывает использование ограничителей импульсных перенапряжений. Эти устройства защищают силовые, телефонные и кабельные линии от скачков напряжения. Переходные процессы – это короткие импульсы большой амплитуды, вызванные выделением энергии в электрической системе. Эти импульсы энергии могут быть вызваны внутренними источниками, такими как конденсатор, выделяющий энергию в систему, или внешними источниками, такими как освещение.

Заключение

Скрытые опасности, связанные с разветвленной проводкой, очень серьезны, но, к счастью, меры предосторожности просты. Мы можем защитить себя и оборудование, используя сертифицированные устройства и испытательное оборудование от известных производителей, а также применяя политику тестирования ответвлений. Эти политики должны включать проверку правильности проводки, тестирование устройств, проверку целостности ответвленной цепи и измерение целостности системы заземления.

Установщики

должны всегда проверять все устройства сразу после установки, чтобы проверить правильность подключения и проверить устройства. Инспектор по электрике, как правило, не несет ответственности за проверку установки после ее завершения. Подрядчик по установке, как правило, несет ответственность за этот тип испытаний. Розетки следует проверять, чтобы избежать распространенных ошибок подключения, таких как неправильная полярность или обрыв нейтрали. Проверка уровня напряжения с помощью тестера напряжения быстро подтверждает, что розетка правильно подключена на 120 или 220 В переменного тока.Проверка целостности коммутатора подтверждает его правильную работу. На рынке доступны различные тестеры для быстрого и точного тестирования этих устройств.

Проверить электрические цепи под нагрузкой, чтобы проверить целостность параллельной цепи. Испытание на падение напряжения может выявить соединения с высоким сопротивлением, что может привести к возгоранию, пробою изоляции и снижению эффективности электрической системы, что может способствовать неустойчивой работе оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *