ЦИФРОВОЙ ЧАСТОТОМЕР СВОИМИ РУКАМИ
Предлагаемый для самостоятельной сборки частотомер сравнительно низкочастотный, тем не менее позволяет измерять частоты до нескольких мегагерц. Разрядность измерителя частот зависит от количества установленных цифровых индикаторов. Чувствительность входа – не хуже 0,1V, максимальное входное напряжение, которое он может выдерживать без повреждения – порядка 100V. Время индикации и время измерения чередуются, длительность одного цикла — 1 сек. измерение и 1 сек. – индикация. Собран он по классической схеме, с генератором частоты 1 Гц на специализированных микросхемах-счётчиках, применяемых в частности в схемах цифровых часов:
На К176ИЕ5 собран «секундный» генератор по типовой схеме, с кварцевым «часовым» резонатором 16,384 Гц. Конденсатор С2 — подстроечный, позволяет в некоторых пределах подстраивать частоту с необходимой точностью. Резистор R1 подбирается при настройке по наиболее устойчивому запуску и генерации схемы. Цепь С3 VD1 R2 формирует короткий импульс «сброса» всей схемы в начале каждого секундного периода счёта.
Транзистор VT2 работает как ключ: когда на его коллектор поступает постоянное напряжение питания от схемы «счёта» (уровень логической «1») – он пропускает импульсы от входного формирователя, которые затем поступают на десятичные счетчики и цифровые светодиодные индикаторы. Когда же на его коллекторе появляется уровень логического «0» – коэффициент усиления транзистора резко снижается и счёт входных импульсов прекращается. Эти циклы повторяются каждую 1 сек.
Вместо К176ИЕ5 можно применить также аналогичную по функциям микросхему К176ИЕ12:
В обоих случаях используется часовой кварц на частоту 16 348 Гц (такие часто применяются, например, в «китайских» электронных часах разных размеров и видов). Но можно поставить и отечественный кварц на 32768 Гц, тогда необходимо понизить частоту в два раза. Для этого можно использовать типовую схему «делителя на 2» на триггере К561ТМ2 (имеет два триггера в корпусе). Например, как показано на рисунке выше (обведено пунктиром). Таким образом на выходе получим необходимую нам частоту (секундные импульсы).
К коллектору транзистора-ключа (КТ315 на первой схеме) подключается узел счёта и индикации на микросхемах — десятичных счётчиках-дешифраторах и цифровых светодиодных индикаторах:
Вместо индикаторов АЛС333Б1 можно без каких-то изменений в схеме использовать АЛС321Б1 или АЛС324Б1. Или любые другие подходящие индикаторы, но с соблюдением их цоколёвки. Цоколёвку можно определить по справочной литературе или же просто «прозвонить» индикатор «батарейкой» на 9V с последовательно включенным резистором 1 кОм (по засвечиванию). Количество микросхем-дешифраторов и индикаторов может быть любым, в зависимости от общей необходимой разрядности счётчика (количества цифр в показаниях).
В данном случае были использованы три имеющихся в наличии малогабаритных знакосинтезирующих индикатора типа К490ИП1 – индикаторы управляемые цифровые, красного цвета свечения, предназначенные для применения в радиоэлектронной аппаратуре. Схема управления выполнена по КМОП технологии. Индикаторы имеют 7 сегментов и децимальную точку, позволяют воспроизвести любую цифру от 0 до 9 и децимальную точку. Высота знака 2,5 мм):
Данные индикаторы удобны тем, что имеют в своём составе не только сам индикатор, но и счётчик-дешифратор, что позволяет значительно упростить схему и сделать её очень малогабаритной. Ниже приведена схема счёта-индикации на таких микросхемах:
Как видно из схемы, эти МС требуют два отдельных питания – для самих светодиодных индикаторов и для схемы счётчиков-дешифраторов. Однако напряжения питания обоих «частей» МС одинаковы, поэтому и запитать их можно от одного источника. Но от напряжения питания «индикатора» (выводы 1) зависит яркость свечения «цифр», а величина напряжения питания схемы дешифраторов (выводы 5) оказывает некоторое влияние на чувствительность и стабильность работы этих МС в целом. Поэтому при настройке эти напряжения следует подбирать экспериментально (при питании от 9 вольт можно использовать дополнительные «гасящие» резисторы, чтобы несколько понизить напряжение). При этом следует обязательно зашунтировать все выводы питания микросхем конденсаторами ёмкостью 0,1-0,3 мкФ.
Для гашения «точек» на индикаторах следует отключить напряжение +5…9 V от выводов 9 индикаторов. Светодиод HL1 – это индикатор «переполнения» счётчика. Он загорается при достижении счёта цифры 1000 и в данном случае (при наличии трёх МС-индикаторов как на этой схеме) соответственно показывает количество единиц килогерц – в данном варианте счётчик в целом может посчитать и «показать» частоту 999 Гц. Для увеличения разрядности счётчика следует, соответственно увеличить количество микросхем дешифраторов-индикаторов. В данном случае подобных микросхем было в наличии только три, поэтому пришлось добавить дополнительный узел деления частоты на 3-х микросхемах К176ИЕ4 (или аналогичных микросхемах счётчиков-делителей на 10) и соответствующий переключатель. В целом схема получилась такая:
Переключатель также управляет включением/гашением «точек» на индикаторах для лучшего визуального восприятия отображаемого значения измеряемой частоты. Он ползунковый, сдвоенный, на четыре положение (такие применяются, например, в импортных магнитолах). Таким образом при разных положениях переключателя измерение и отображение частоты имеет следующие значения и вид:
«999 Гц» – «9.99 кГц» – «99.9 кГц» – «999. кГц». При превышении значения частоты 1 МГц загорится светодиод HL2, 2 МГц — загорится дважды и т. д.
Схема входной цепи
Большое значение при измерениях частоты имеет качество входного каскада — формирователя сигнала. Он должен иметь высокое входное сопротивление чтобы не оказывать влияния на измеряемую цепь и преобразовывать сигналы любой формы в последовательность прямоугольных импульсов. В данной конструкции применена схема согласующего каскада с полевым транзистором на входе:
Эта схема частотомера, конечно, не лучшая из возможных, но всё-таки обеспечивает более-менее приемлемые характеристики. Она была выбрана в основном исходя из общих габаритов конструкции, которая получилась очень компактная. Вся схема собрана в пластиковом корпусе-футляре от зубной щётки:
Микросхемы и прочие элементы запаяны на узкой полоске макетной платы и все соединения сделаны с помощью проводов типа МГТФ. При настройке входного каскада-формирователя сигнала следует подбором сопротивлений R3 и R4 добиться установления напряжения 0,1…0,2 вольт на истоке полевого транзистора. Транзисторы здесь можно заменить на аналогичные, достаточно высокочастотные.
Дополнения
Для питания частотомера можно использовать любой сетевой адаптер с выходным стабилизированным напряжением 9 вольт и током нагрузки не менее 300 мА. Либо установить в корпус частотомера стабилизатор на микросхеме типа КРЕН на 9 вольт и питать от адаптера с выходным напряжением 12 вольт, либо брать питание непосредственно от измеряемой схемы, если там напряжение питания не менее 9 вольт. Каждую микросхему необходимо зашунтировать по питанию конденсатором порядка 0,1 мкФ (можно подпаять конденсаторы прямо на ножки «+» и «-» питания). В качестве входного щупа можно использовать стальную иглу, припаянную к входной «площадке» платы, а «общий» провод снабдить зажимом типа «крокодил».
Данная конструкция была «создана» в 1992 году и успешно работает до сих пор. Андрей Барышев.
Форум
Обсудить статью ЦИФРОВОЙ ЧАСТОТОМЕР СВОИМИ РУКАМИ
radioskot.ru
Измеритель частоты тока своими руками: схема
Частотомеры, доступные на рынке, как правило, слишком дороги и сложны. Новым энтузиастам электроники всегда трудно заполучить эти высокочастотные измерители частоты. Кроме того, поскольку потребности измерения этих электронных новичков ограничены, простой аналоговый частотомер в большинстве случаев может легко удовлетворить их требования. Самодельная схема измерителя частоты, описанная в этой статье, очень проста по конструкции и обеспечит оптимальный диапазон измерения частоты, полезный для большинства любителей электроники. Более того, было бы очень интересно создать тестовый инструмент дома и использовать его для тестирования будущих строительных проектов.
Что такое частота
В электронике частота обычно имеет форму напряжения, которое меняет свое число полярности в секунду. Вы можете взять пример вашей домашней сети переменного тока, где частота напряжения меняется с положительного на отрицательное 50–60 раз в секунду, отсюда и название «переменный ток».
Частоты, используемые в электронных схемах, всегда имеют низкую амплитуду и не могут превышать максимальное рабочее напряжение или напряжение питания самой схемы. Они используются для выполнения многих сложных функций в схеме и в основном генерируются с использованием логических элементов КМОП. Часто возникает необходимость измерить частоту этих частот, и, таким образом, измеритель частоты оказывается весьма незаменимым инструментом для этого.
Схема аналогового частотомера, представленная здесь, может использоваться для измерения частот от 25 Гц до максимум 500 КГц.
Описание схемы
Чтобы понять схему функционирования этого самодельного частотомера, давайте рассмотрим следующее объяснение:
IC 555 формирует основную часть схемы и подключается как моностабильный мультивибратор.
Его частота определяется внешними компонентами R2, VR1 и C3. Настройка VR1 важна и может использоваться для настройки диапазона измерения частотомера.
Рассматриваемая частота подается на базу транзистора T1 через резистор R6. Т1 проводит только во время положительных пиков входных колебаний.
Во время этих проводников T1 конденсатор C2 вынужден быстро разряжаться через R7 и T1. Кроме того, во время отрицательных пиков входных колебаний T1 отключается, и теперь C2 заряжается через R1, но с довольно медленной скоростью.
Из-за этого на контакте 2 микросхемы через конденсатор С1 появляется резкий отрицательный импульс. Резистор R3 гарантирует, что импульс является небольшим и только запускает IC.
Микросхема немедленно реагирует на триггер, генерирующий импульс постоянного периода, установленного VR1 на своем выходном выводе 3.
Этот импульс сглаживается и интегрируется с помощью R4, R5 и C5, C6, чтобы получить среднее значение импульсов. Измеритель с подвижной катушкой может использоваться для указания этого интегрированного значения.
Величина этих импульсов будет линейно изменяться в зависимости от входной частоты и, таким образом, может быть измерена непосредственно с помощью измерителя.
meanders.ru
КАК СДЕЛАТЬ ИЗМЕРИТЕЛЬ ЧАСТОТЫ
Поводом повторения данного частотомера и приставки для определения параметров неизвестных контуров послужила конструкция приемника Р-45. В дальнейшем этот “мини комплекс” облегчит намотку и настройку ВЧ контуров, контроль опорных точек генераторов и так далее. Итак, представленный в данной статье частотомер позволяет измерять частоту от 10 Гц до 60 МГц с точностью 10 Гц. Это позволяет использовать данный прибор для самого широкого применения, например измерять частоту задающего генератора, радио приёмника и передатчика, функционального генератора, кварцевого резонатора. Частотомер обеспечивает хорошие параметры и обладает хорошей входной чувствительностью, благодаря наличию усилителя и TTL-преобразователя. Это позволяет измерять частоту кварцевых резонаторов. Если использовать дополнительный делитель частоты, максимальная частота измерения может достигать 1 ГГц и выше.
Схема простого частотомера
Схема частотомера довольно простая, большинство функций выполняет микроконтроллер. Единственное, для микроконтроллера необходим усилительный каскад, чтобы увеличить входное напряжения с 200-300 мВ до 3 В. Транзистор, включенный по схеме с общим эмиттером, обеспечивает псевдо-TTL сигнал, поступающий на вход микроконтроллера. В качестве транзистора необходим какой-нибудь “быстрый” транзистор, я применил BFR91 – отечественный аналог КТ3198В.
Напряжение Vкэ устанавливается на уровне 1.8-2.2 вольта резистором R3* на схеме. У меня это 22 кОм, однако может потребоваться корректировка. Напряжение с коллектора транзистора прикладывается к входу счетчика/таймера микроконтроллера PIC, через последовательное сопротивление 470 Ом. Для выключения измерения, в PIC задействываются встроенные pull-down резисторы. В PIC реализован 32-битный счетчик, частично аппаратно, частично софтово. Подсчет начинается после того, как выключаются встроенные pull-down резисторы микроконтроллера, продолжительность составляет точно 0.4 секунды. По истечении этого времени, PIC делит полученное число на 4, после чего прибавляет или отнимает соответствующую промежуточную частоту, для получения реальной частоты. Полученная частота конвертируется для отображения на дисплее.
Для того, чтобы частотомер работал правильно, его необходимо откалибровать. Проще всего это сделать так: подключить источник импульсов с заранее точно известной частотой и вращая подстроечный конденсатор выставить необходимые показания. Если данный метод не подходит, то можно воспользоваться “грубой калибровкой”. Для этого, выключите питание прибора, а 10 ножку микроконтроллера подсоедините на GND. Затем, включите питание. МК будет измерять и отображать внутреннюю частоту.
Если вы не можете подстроить отображаемую частоту (путем подстройки конденсатора 33 пФ), то кратковременно подсоедините вывод 12 или 13 МК к GND. Возможно, что это нужно будет сделать несколько раз, так как программа проверяет эти выводы только один раз за каждое измерение (0.4 сек). После калибровки, отключите 10 ногу микроконтроллера от GND, не выключая при этом питания прибора, чтобы сохранить данные в энергонезависимой памяти МК.
Печатную плату рисовал под свой корпус. Вот что получилось, при подаче питания выскакивает кратковременно заставка и частотомер переходит в режим измерения, тут на входе нет ни чего:
Схема приставки контур
Автор статьи схему доработал относительно первоисточника, посему оригинал не прилагаю, плата и файл прошивки в общем архиве. Теперь возьмем неизвестный нам контур – приставка для измерения резонансной частоты контура.
Вставляем в не совсем пока удобную панельку, для проверки девайса сойдет, смотрим результат измерений:
Частотомер калибровался и тестировался на кварцевом генераторе 4 МГц, результат был зафиксирован такой: 4,00052 МГц. В корпусе частотомера решил вывести питание и на приставку +9 Вольт, для этого был сделан простой стабилизатор +5 В, +9 В, его плата на фото:
Забыл добавить, плата частотомера разведена немного к верху задом – для удобства съёма pic микроконтроллера, вращении подстроечного конденсатора, минимальной длины дорожек на LCD.
Теперь частотомер выглядит вот так:
Единственное, не стал исправлять пока ошибку в надписи мгГц, а так всё на 100% рабочее. Сборка и испытание схемы – ГУБЕРНАТОР.
Форум по частотомерам
Обсудить статью КАК СДЕЛАТЬ ИЗМЕРИТЕЛЬ ЧАСТОТЫ
radioskot.ru
|
| |
radioskot.ru
Лабораторный частотометр на микросхемах 555 серии, с намёком на стимпанк.
Частотометр – первейший, после вульгарного тестера, прибор в измерительной лаборатории радиолюбителя. Действительно, при конструировании и настройке аппаратуры, работа которой основана на явлении резонанса в колебательных контурах, жизненно важно иметь возможность измерения основных параметров этих самых контуров. Более того, частотометр, оснащенный несложными приставками, позволяет проводить измерения емкостей конденсаторов, индуктивностей катушек, что весьма полезно в радиолюбительской практике. Существуют конструкции приставок-преобразователей, позволяющих превратить частотометр в вольтметр-милливольтметр, термометр. Не сложно дополнить частотометр на микросхемах, режимом секундомера. Весьма точного.
В аэроплан залезь не глядя.Начни роман со слов “Мой дядя”.
Луди, паяй, чуди безбожно.
Но не гуляй, куда не можно.
Михаил Щербаков «Заклинание».
Что сказать, эта конструкция у меня зародилась давненько. Была изготовлена печатная плата основного модуля – авторский вариант из описания, плата индикации своя, для других индикаторов. Дорожки рисовал от руки самодельным рейсфедером из иглы от медицинского шприца. К несчастью, разводка довольно плотная, да еще и не до травил. Самую малость. Остались кое-где мельчайшие проводнички, как паутинки, практически невидимые невооруженным глазом. Словом, с самого начала не задалась конструкция. Платы были собраны, но разумеется, прибор не заработал, повозился с ним немного и бросил – было лето, строительный сезон, а это я для души по вечерам возился. Ну вот. Собранная плата, постепенно стала расползаться на запчасти, и пока не расползлась окончательно, решил ее, таки одолеть. Вдумчиво, шаг за шагом.
Итак. Что касается схемы. Схемы приборов подобного типа неоднократно описывались в радиолюбительской литературе. Каждая из них отличается нюансами – типом индикации и количеством разрядов, построением отдельных каскадов, входным формирователем. Принцип же, работы отдельных узлов практически одинаков. Описываемый прибор, в сущности – некая компиляция из трех подобных. Взглянем, что получилось.
Схема основного блока [1]. Кроме изменений отраженных в схеме, уменьшено количество разрядов индикатора до пяти, и введены транзисторные ключи для управления более крупными индикаторами [2] по схеме ниже.
Индикаторы применены КЛЦ 202А с общим анодом, ключевые транзисторы КТ503.
Схема входного формирователя взята из [3], там же самое подробное описание работы узлов и настройки такого типа частотометра.
Что использовалось.
Инструменты, приборы.
Набор инструментов для радиомонтажа, понятно паяльник с принадлежностями, мультиметр. Столярный инструмент для изготовления корпуса, пригодился ювелирный лобзик. Мелкий слесарный инструмент. Что нибудь для сверления отверстий, в том числе и мелких (~0,8мм) на печатных платах, лучше, если это будет специальная микродрель или станочек для таких целей, плюс сверла. Пользовался термоклеем. Строительный фен для работы с термотрубками. Паяльник мощностью около 60 ватт, для конструктивной пайки. Для подачи испытательного сигнала, удобно пользоваться ВЧ генератором. Кое-где пригодилась бормашина, небольшая газовая горелка.
Материалы.
Кроме радиоэлементов, использовались – кусочки фольгированного материала для печатных плат, термотрубки разные, монтажный провод, крепеж. Фанера для корпуса. Листовая оцинкованная сталь для передней панели, кусочек латуни для декоративной накладки. Соответствующие химикаты, доступ к компьютеру с принтером.
Плата, основного блока частотометра. Почти растащена на запчасти.
Задающий генератор на 155ЛА3. Примечателен кварцевый резонатор на 1МГц. Он чудовищного размера и помещен в металлический корпус от радиолампы 6П9. Поверх выдавленной маркировки «6П9», белой краской нанесено «кварц» «1000кГц», ну и звезды там всякие. Октальный цоколь, все дела. Цоколь, правда, оторван и висел на проводках-выводах, видимо, предыдущий хозяин тоже глазам своим не поверил и расковырял, чтоб заглянуть. Но емкость с кристаллом не разгерметизирована. Цоколь оторвал, на его место термоклеем влепил спиной микросхему. И за нежные выводы спокойнее и в смысле компоновки правильнее.
Самые плотные и подозрительные шлейфы дорожек, счистил бормашинкой в пользу навесного монтажа, оставил от них только контактные площадки для выводов элементов.
Начал восстанавливать плату.
Пространственный монтаж вместо плоского – «печатного», выглядит на удивление лаконично, что объясняется возможностью перехлестывания проводников.
Включение. Вдумчиво, последовательно блок за блоком, методично проверяя работу каждого.
Решено было все же попробовать задействовать все разряды.
Немного потыркал им – нет, все таки такая иллюминация не слишком удобна. Сложновато ориентироваться в показаниях индикатора. Привыкнуть можно, но вроде как незачем – важны только первые три цифры после запятой, остальные только мешаются и нужны только для исключения из схемы переключателя диапазонов измерений. Более того, такое количество довольно мощных индикаторов, электричество жрет, как свинья помои – +5 В, больше ампера. 7805 от этого не в восторге, сильно греется. Пришлось для нее задействовать внешний регулирующий транзистор [4].
Схема не содержит редких элементов, как например токоизмерительные резисторы и хорошо работает. Напряжение стабилизации VD3 – 6.8 В. Транзистор и диоды, желательно установить на один радиатор, вблизи друг от друга.
Вот так выглядит мое исполнение. Стрелочкой отмечены диоды VD1,2 – IN5822, для более плотного прилегания к радиатору, их цилиндрические корпуса опилены на наждаке до квадратного сечения. Не забывать под соприкасающиеся с радиатором поверхности, плюхнуть немного термопасты, для уменьшения теплового сопротивления.
Стабилизатор хорошо показал себя в работе, нагрев микросхемы существенно уменьшился.
По результатам испытаний, решено было уменьшить количество индикаторов до 5 и ввести переключатель двух диапазонов, как в [5]. Это позволит при удобной индикации, не уменьшать диапазон измеряемых частот. Сильно уменьшится и потребляемый ток.
Здесь же на кусочке макетной платы, был собран и настроен входной формирователь. Максимальная частота которую удалось измерить около 15 МГц.
Частотометр был смонтирован в уже готовой коробке из фанеры толщиной 8мм. Передняя панель для скрытия следов всех промежуточных вариантов, была изготовлена из оцинкованной кровельной стали 0,5мм. Окна выпилены моим любимым инструментом. Для некоторого «оживляжа», над индикаторами впаян козырек-бленда, опять же, не будет мешать свет.
М-м, нет, все равно получилось довольно уныло, да и надписи фломастером – моветон. Был рассмотрен ряд вариантов, остановился на шильдиках из травленой латуни, как дальнейшее развитие – накладной декоративной панели с надписями.
Несколько вариантов панелей и самих надписей были вычерчены в Автокаде, заодно добавились декоративные элементы. Панель, для уточнения размеров, распечатывалась в масштабе 1:1, отверстия и окна вырезались скальпелем. Уточнялись их размеры и положение, корректировались в КАДе, снова распечатывались… Словом, методом последовательных итераций.
После, методом контактной печати, изображение переносилось на заготовку с фотолаком, вытравливалось, наносилась искусственная патина.
Снова мой любимый инструмент.
И вот готовая панель. Осталось покрыть ее прозрачным нитролаком для защиты от окисления и можно устанавливать.
Все установочные элементы на месте, окончательный монтаж. Частотометр смог измерять на мегагерц больше, что видимо, объясняется минимизацией длин проводов и некоторого упорядочивания монтажа.
Литература.
1. Универсальный частотометр. Иванов А. Радиоконструктор №4,5 2007г. 1.rar
[459.27 Kb] (скачиваний: 210)
2. ВКЛЮЧЕНИЕ МОЩНЫХ СЕМИЭЛЕМЕНТНЫХ СВЕТОДИОДНЫХ ИНДИКАТОРОВ. 2.rar
[136.58 Kb] (скачиваний: 148)
3. Частотомер на микросхемах К155. 3.rar
[574.04 Kb] (скачиваний: 245)
4. Применение микросхемных стабилизаторов. 4.rar
[315.56 Kb] (скачиваний: 145)
5. частотомер электронносчетный. 5.rar
[68.97 Kb] (скачиваний: 193)
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
ЧАСТОТОМЕР СВОИМИ РУКАМИ
Если уж браться за создание цифрового частотомера, то делать сразу универсальный измерительный прибор, способный мерять частоты не до пары десятков мегагерц (что свойственно большинству таких схем), а до 1000 МГц. При всём этом, схема не сложнее стандартной, с использованием pic16f84. Отличие лишь в установке входного делителя, на специализированной микросхеме SAB6456. Этот электронный счетчик будет полезен для измерения частоты различного беспроводных оборудования, особенно передатчиков, приемников и генераторов сигналов в диапазонах УКВ.
Технические характеристики частотомера
— Напряжение питания: 8-20 V
— Потребляемый ток: 80 мА макс. 120 мА
— Входная чувствительность: макс. 10 мВ в 70-1000 МГц диапазон
— Период измерения: 0,08 сек.
— Частота обновления информации: 49 Гц
— Диапазон: 0,0 до 999,9 МГц, разрешение 0,1 МГц.
Особенности и преимущества схемы. Быстрая работа — короткий период измерения. Высокая чувствительность входного сигнала в диапазонах СВЧ. Переключаемое промежуточное смещение частоты для использования его совместно с приемником — в качестве цифровой шкалы.
Принципиальная схема самодельного частотомера на PIC
Список деталей частотомера
R1 — 39 k
R2 — 1 k
R3-R6 — 2,2 k
R7-R14 — 220
C1-C5, C6 — 100-n mini
C2, C3, C4 — 1 n
C7 — 100 ед.
C8, C9 — 22 p
IC1 — 7805
IC2 — SAB6456 (U813BS)
IC3 — PIC16F84A
T1 — BC546B
T2-T5 — BC556B
D1, D2 — BAT41 (BAR19)
D3 — HD-M514RD (красный)
X1 — 4.000 МГц кварц
Вся необходимая информация по прошивке микроконтроллера, а также полное описание микросхемы SAB6456, находятся в архиве. Данная схема многократно испытана и рекомендована к самостоятельному повторению.
el-shema.ru
ГЕНЕРАТОР ЧАСТОТОМЕР
ГЕНЕРАТОР ЧАСТОТОМЕР
В радиолюбительской лаборатории обязательно должен присутствовать прибор для цифрового измерения и генерации сигналов высокой частоты. И если с НЧ проблем нет – до 20 кГц можно использовать вход – выход аудиокарты ноутбука, то на частоте свыше 20кГц нужен отдельный прибор. Значит делаем всё в одном корпусе: генератор частотомер.
Предлагаю для этих целей собрать распространённые и проверенные схемы следующих девайсов, частотомер:
А для генератора ВЧ пойдёт такая схема:
Обозн. Число витков Провод Тип намотки
L1 585 ПЭЛШО 0,1 Многослойная
L2 255 ПЭЛШО 0,12 Многослойная
L3 100 ПЭЛШО 0,12 Многослойная
L4 56,5 ПЭЛШО 0,12 Двухрядная, виток к витку
L5 22,5 ПЭВ 0,27 Однорядная с шагом 0,15
L6 6,5 ПЭВ 0,55 Однорядная с шагом 0,5
Каркасы катушек пластмассовые диаметром 5 и высотой 12 мм с внутренней резьбой М4.
Диаметр каркасов для катушек L1-L3 увеличен до 5,6 мм за счет двух слоев трансформаторной бумаги, наклеенной на каркас для его удлинения (для L1 до 20 мм, для L2, L3 до 15 мм). В качестве подстроечных сердечников для катушек L1-L3 используются ферритовые сердечники 600НН, а для L4-L6 карбонильные.
Весь диапазон разбит на 6 поддиапазонов (140-330; 315-780; 715-1800 кГц; 1,6-4,6; 4,4-12,5; 11,3-30 МГц).
Реально, для практики достаточно последних трёх диапазонов.
Напряжение генератора ВЧ – 100 мВ. Частота генератора НЧ (модулятора) – 1000 Гц, выходное напряжение – 0,5-0,6 В. Максимальная глубина модуляции на частотах до 11 МГц – 60%, свыше 11 МГц – 80%. Изменение глубины модуляции плавное. Имеется отдельный выход низкочастотного генератора.
Фото готовой конструкции генератора частотомера:
Для питания генератора частотомера используем БП с трансформатором (только не импульсник!), с обмотками на ток 0.5 А.
ФОРУМ по измерительной технике
Схемы измерительных приборовelwo.ru