Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Прибор для проверки конденсаторов


При сборке практически любой радиолюбительской схемы, где есть конденсаторы, их необходимо проверить на исправность перед сборкой схемы. Для этого я собрал прибор для проверки конденсаторов. Схему взял из сборника Б. С. Иванов « В помощь радиокружку», Радио и связь. 1990г, 3-е издание. Вот схема прибора.

Для сборки нам потребуются следующие детали и инструменты:

1 – микросхема К 155 ЛА3,Сопротивления 0,25вт ,1,5ком, 15 ком, 3,3 ком, 1 ком, Конденсаторы 4700 пф, 68 пф , диод Д9Б , светодиод АЛ 307А , две кнопки, или двойной тумблер « шестиконтактный » , монтажные провода , припой , два 5-ти контактных магнитофонных разъема «папа» и «мама». 2- паяльник, пинцет , кусачки, пассатижи, дрель, сверла, винты и гайки М3 М4, два небольших уголка , Корпус небольших размеров , Фольгированный , стеклотекстолит для печатной платы. Собираем следующим образом. Шаг 1 – изготавливаем печатную плату. Как ее изготовить знает каждый школьник.

После этого спаиваем детали на плате, согласно схеме.

Шаг-2


в готовом у меня пластмассовом корпусе я просверлил два отверстия , и установил в них разъем и тумблер.

Шаг-3


установил печатную плату в корпус, при помощи винтов и гаек М3.

Шаг-4


из такой же пластмассы изготовил боковую стенку корпуса.

Внутри корпуса закрепил два уголка , а уже на них я закрепил боковую крышку при помощи двух винтов М4. После этого спаиваю до конца схему.

Шаг-5 налаживаю прибор


Для этого Нам нужен стрелочный прибор Ц4315 или аналогичный с пределом измерения постоянного тока 100 мка. Подключаю прибор согласно фото к источнику постоянного питания 4,5в, в моем случае к блоку питания , и к прибору Ц4315 согласно схеме.

Выводы разъема обозначены на схеме цифрами 1-6. При подключении кнопкой SB2 источника питания 4,5в через индикатор протекает ток около 15 мка. Если параллельно конденсатору С2 будет подключен кнопкой SB1 исправный проверяемый конденсатор, ток возрастет и будет находится в пределах 40 – 60 мка, независимо от его емкости .
Эти пределы принимают за нормальные и отмечают на шкале зеленым цветом . При проверке конденсаторов емкостью больше 5 мкф стрелка прибора вначале резко отклоняется в сторону конечного деления шкалы 100 мка , а затем возвращается в пределы сегмента. При проверке оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (+). Если внутренний обрыв , стрелка остается на делении 15 мка.

Если конденсатор пробит , стрелка отклонится за конечное деление . Если с утечкой , стрелка отклонится за пределы сегмента, если сопротивление утечки менее 60 ком. Налаживаем так. Нажать SB2, убедится в отклонении стрелки на 15 мка , если не соответствует ( 15 – 20%) – подобрать R3. К гнездам XS1 и XS2 подключают конденсатор 250 пф и нажав сразу две кнопки замечают показания индикатора . Подбором R2 доводят стрелку до деления 50 мка ( середина сегмента).

Замкнув после этого гнезда убеждаются в отклонении стрелки за конечное деление. Я уменьшил C2 -20 пф, R1-1 ком , C1 – 3300 пф теперь прибор проверяет конденсаторы от 1 пф. Как подключать прибор к Ц4315 показано на фото. Этот прибор работает у меня уже 5 лет , им легко и быстро проверять конденсаторы.

ОЧЕНЬ ПРОСТОЙ ПРИБОР ДЛЯ ПРОВЕРКИ КОНДЕНСАТОРОВ

May 20, 2012 by admin Комментировать »

В процессе длительной эксплуатации отказы в работе радиоэлектронной аппа­ратуры нередко связаны с потерей емкости оксидных конденсаторов. Как известно любому практику, процедура демонтажа конденсаторов весьма трудоемка. Более того, при демонтаже часто возникает опасность перегрева и отслоения фольги пе­чатной платы. –

Вниманию радиолюбителей предлагается простой вариант прибора, который позволяет проверять конденсаторы, не выпаивая их из монтажной платы. Он прост в изготовлении, требует минимальное число недефицитных деталей и не нуждает­ся в настройке.

Схема прибора показана на рисунке. На инверторах микросхемы DD1 собран широкодиапазонный генератор прямоугольных импульсов, частота которых оп­ределяется емкостью проверяемого конденсатора. Существенной его особен­ностью является то, что даже при шунтировании проверяемых конденсаторов в монтажных платах сопротивлениями 100 Ом и более устойчивость работы гене­ратора не нарушается, а малая величина переменного напряжения в точках конт­роля не открывает р-п переходы полупроводниковых приборов. Конденсатор С1 повышает устойчивость работы генератора.

На счетчике DD2 собран делитель частоты, к отдельным выводам которого под­ключены светодиоды. Работоспособность проверяемого конденсатора и ориенти­ровочно его емкость определяются по частоте мигания соответствующего свето­диода. Так, при частоте мигания 1 Гц светодиода HL1 измеряемый конденсатор имеет емкость около 100 мкФ, аналогичная частота мигания второго светодиода ‘ (HL2) соответствует емкости конденсатора порядка 10 мкФ, та же частота для третьего — порядка 1 мкФ.

При другой частоте мигания светодиодов по пропорциональному увеличению (уменьшению) частоты можно приблизительно определить величину измеряемой емкости.

При желании диапазон измеряемых емкостей можно расширить, подключив еще один делитель частоты последовательно с первым с соответствующими отво­дами к светодиодным индикаторам.

Журнал «Радио», 1998, №2, с. 41

Источник: Измерительные пробники. Сост. А. А. Халоян.— М.: ИП РадиоСофт, ЗАО «Журнал «Радио», 2003.— 244 с: ил.— (Радиобиблиотечка. Вып. 20)

Радиосхемы. – Прибор для проверки конденсаторов

Самодельные приборы

материалы в категории

При помощи этого простого прибора можно проверить конденсатор на утечку или обрыв.

Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах DD1.1— DD1.3 генератор прямоугольных импульсов, частота следования которых составляет около 75 кГц, а скважность примерно 3.

Схема прибора для проверки конденсаторов

Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2.
Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 … 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности.

Эти пределы тока цепи отмечают на шкале прибора цветными метками. Если емкость проверяемого конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад, устанавливается в пределах отмеченного сегмента.
Полярный конденсатор “плюсовым” выводом подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.

Настройка прибора для проверки конденсаторов

После включения питания стрелка должна отклониться до деления примерно 15 мкА. В случае необходимости такой ток устанавливают подбором резистора R3. Затем к гнездам «Сх» подключают конденсатор емкостью 220 … 250 пФ и подбором резистора R2 добиваются отклонения стрелки индикатора до отметки 50 мкА.

После этого замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.Монтажную плату устройства вместе с питающей его батареей 3336Л следует разместить в корпусе подходящих размеров. Но прибор можно питать от любого другого источника с напряжением 5 В и током не менее 50 мА.

Печатная плата прибора


В качестве микроамперметра можно использовать китайский стрелочный прибор. Вот его шкала:

Вместо нее изготавливается другая шкала (клеится поверх прежней).
На новой шкале отмечается сектор: относительно “родной” шкалы он будет находиться в районе 8…20 Ом по верхним делениям. Вот так она будет выглядеть

Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом. Выключатель SB1 не применяется. Всё устройство получает питание от 4-х батареек 1,5В, то есть 6В, что ни как не сказывается на работе измерителя. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА. 

 

Внешний вид прибора

Примеры измерений

Примечание:
Источник: Массовая радиобиблиотека (МРБ), И.А.Нечаев, “Конструкции на логических элементах цифровых микросхем” стр.43, Издательство “Радио и связь”
Фото с сайта radio-hobby.org

Измерители емкости конденсаторов, схемы самодельных приборов


Простые схемы измерителей ESR оксидных конденсаторов

В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы. Кроме того, данным прибором можно “прозванивать” электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные …

5 7741 0

Прибор для измерения емкости электролитических конденсаторов

Этот измеритель является простым устройством, служащим для измерения емкости электролитических конденсаторов от 1 мФ до 4700 мФ. Его точность – около 5% – в большей мере зависит от точности исполнения и градуировки. Принцип действия устройства следующий: измеряемый конденсатор Сх заряжается током…

1 6640 7

Измеритель емкости на логических микросхемах (К1ЛБ553, К155ИЕ2)

Схема простого самодельного измерителя емкости на логических микросхемах. Измеритель емкости состоит из генератора импульсов (D1.1—D1.3), делителя частоты-(02—D4), электронного ключа (V1) и измерительной цепи (V2, R7 и Р1). Принцип действия прибора основан на измерении среднего тока разряда измеряемого конденсатора, заряженного от источника …

0 4336 0

Измеритель емкости на операционном усилителе К153УД1 (МАА501)

Принципиальная схема самодельного измерителя емкости конденсаторов. выполнена на операционном усилителе К153УД1. Принцип действия измерителя емкости конденсаторов от нескольких пикофарад до 5 мкФ основан на измерении переменного тока, протекающего через исследуемый конденсатор …

1 5469 0

Простой стрелочный измеритель емкости электролитических конденсаторов

Схема измерителя емкости электролитических конденсаторов, которые в процессе эксплуатации и хранения изменяют свою емкость, поэтому иногда возникает необходимость измерения их емкости. Принцип действия измерителя емкости конденсаторов от 3000 пФ — 300 мкгФ основан на измерении пульсирующего тока, протекающего …

0 6014 0

Приставка к частотомеру для проверки конденсаторов (icm7555)

Для измерения емкости конденсаторов можно воспользоваться схемой, рис., и любым частотомером. Схема представляет из себя приставку к частотомеру, по показаниям которого при помощи пересчета можно определить емкость. Измеряемый конденсатор подключается к клеммам Х1 – Х2, и его…

1 4957 0

Испытатель конденсаторов (155ЛА3)

С помощью такого прибора можно проверить, нет ли внутри конденсаторов обрыва или короткого замыкания, значительной утечки. Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах …

1 5029 0

Испытатель конденсаторов

Как показала практика, при ремонте промышленной и бытовой радиоаппаратуры наиболее часто встречающаяся неисправность – полная (обрыв, пробой) или частичная потеря емкости как оксидных, так и любых других . ..

1 7859 0

Цифровой измеритель ёмкости

Предлагаемый прибор позволяет измерять емкость конденсаторов в диапазоне 1…10000 мкФ. Он портативен и потребляет от девятивольтовой батареи всего 7 мА. Принцип роботы прибора основан на измерении продолжительности разряда конденсатора…

0 6562 3


Радиодетали, электронные блоки и игрушки из китая:

Пробник для проверки конденсаторов

Очень простой прибор для проверки конденсаторов, схема которого показана на рис. 1, описан в одном из американских радиолюбительских журналов.

Прибор может быть использован для проверки различных конденсаторов, в том числе и электролитических, однако в этом случае необходимо следить за полярностью включения таких конденсаторов.

При подключении конденсаторов к прибору неоновая лампочка вспыхнет на короткое время, а затем сразу же потухнет.

Рис. 1. Принципиальная схема прибора для проверки конденсаторов.

При наличии утечки лампочка потухает медленно. Если конденсатор пробит— лампочка светится, не потухая. Следует помнить, что таким прибором нельзя проверять низковольтные конденсаторы, так как напряжение, подаваемое на конденсаторы, относительно высоко — от 50 до 125 в. В случае, если прибором проверяются конденсаторы очень малой емкости, прибор может указать лишь наличие утечки и короткого замыкания.

Конденсаторы большой емкости следует после проверки разряжать, так как на них может оставаться заряд. «CQ», октябрь, 1959 г.

При изменении I’ переключатель П1, ставится в положение 2, а выключатель Вк2 замыкается. Стрелочный прибор покажет тогда непосредственно значение тока Iко ‘ .

Для измерения параметра b переключатель П1, ставится в положение 3. Потенциометр R4 («Установка нуля») устанавливается в положение, при котором стрелочный прибор будет показывать нуль. При замыкании выключателя Вк1, стрелка прибора отклонится и даст непосредственно показание параметра b.

Для измерения входного сопротивления h21′ и граничной частоты fгр, как уже упоминалось, необходимо дополнительно использовать генератор (с диапазоном частот от 1 до 200 кгц) и ламповый вольтметр (можно заменить осциллоскопом). Эти приборы подключаются к соответствующим зажимам, показанным на схеме.

Сигнал от генератора при этом попадает на испытываемый триод через сопротивление R1. Нагрузкой коллекторной цепи триода служит в данном случае сопротивление R9 (выключатель Вк2 остается в замкнутом положении).

При этом триод работает в режиме близком к режиму разомкнутого входа и закороченного выхода. Выходное напряжение триода усиливается затем широкополосным вспомогательным усилителем измерительного прибора и подается на вход лампового вольтметра.

Порядок измерения входного сопротивления следующий. Выключатель Вк3 замыкается, затем частота генератора устанавливается в 1 кгц и напряжение, подаваемое с него, регулируется так, чтобы ламповый вольтметр показал 0,5 в.

Далее выключатель Вк3 размыкается, и записывается новое показание вольтметра. Если это новое показание обозначить как л, то входное сопротивление (в ком) можно вычислить по формуле h21 = 2n—1.

Если затем провести еще одно измерение при разомкнутом выключателе Вк2, то можно найти входное сопротивление, соответствующее коллекторной нагрузке в 4,4 ком.

Предельная частота триода определяется следующим образом. Выключатель Вк2 замыкается, а Вк3 — размыкается. Напряжение на входе вольтметра должно быть равно 1 в.

Затем частота генератора увеличивается (генерируемое напряжение должно оставаться постоянным) до тех пор, пока вольтметр не покажет 0,7 в. Частоту Д, на которой это наблюдается, используют для расчета предельной рабочей частоты триода по формуле: fгр = b * f3,

В усилителе прибора применены два высокочастотных ПП триода с граничной частотой в 6 Мгц. Цепь обратной связи, соединяющая коллектор второго триода с эмиттером первого, стабилизирует усиление, расширяет полосу частот и повышает входное сопротивление.

Усиление такого устройства равномерно в пределах от 200 гц до 200 кгц и составляет 30 дб, однако в случае необходимости полоса за счет введения коррекции может быть расширена до 500 кгц.

Следует сказать, что точность измерений в значительной степени зависит от подбора сопротивлений R1, R2, R3, R5, R7, и R8. Отклонение величины их от номинала, указанного на схеме, должно быть минимальным.

«Electronic Engineering», октябрь, 1969 г.

Простой прибор для проверки конденсаторов

Пробник собран на микросборке К155ЛА3. Если проверяемый конденсатор пробит, то светодиод тухнет. Если емкость в обрыве, то светодиод постоянно светится. Если же контролируемый конденсатор исправен, то светодиод мигает, а частота мигания световых последовательностей меняется в зависимости от сопротивления переменного резистора.

Аналоговые (со стрелочной измерительной головкой) тестеры типа 4353, 43101 и аналогичные были в своё время широко распространены и, возможно, есть в «закромах» многих радиолюбителей. Современные цифровые приборы, конечно, имеют гораздо меньшие габариты и большую функциональность и универсальность, тем не менее, из такого «старого» тестера можно при желании сделать вполне удобный измерительный прибор. Тем более, что стрелочный индикатор во многих случаях оказывается гораздо удобнее и нагляднее для отображения информации, если, конечно, при измерениях не требуется запредельная точность.

Так например, с использованием стрелочной головки от подобного тестера мной был сделан небольшой настольный измерительный прибор, который позволяет с достаточной для радиолюбителя точностью измерить ёмкость конденсаторов ( 5 пФ — 10 мкФ), индуктивности катушек ( от единиц мкГн до 1 Гн ), ёмкости электролитов ( 1 мкФ — 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты ( 10, 100. 1000 Гц, 10, 100, 1000 кГц ). И, кроме того, имеет встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколёвки неизвестных транзисторов. Причём проверить параметры большинства элементов можно, не выпаивая их из схемы.

Прибор собирался в корпусе меньших размеров, чем «родной» от тестера и делался по «модульному» принципу — по желанию можно добавлять или исключать отдельные измерительные узлы и при этом не производить никаких существенных изменений в остальной схеме. Можно сохранить также и изначальные фунции измерения напряжений и токов, если это потребуется. Причём совсем не обязательно ориентироваться на применённую здесь стрелочную головку от взятого мной тестера — подойдёт любая другая с током полного отклонения 50 … 200 мкА, это не принципиально. Ниже будут даны схемы и описания отдельных функциональных узлов-«модулей», структурная схема их соединений в приборе в целом.

Каждый «модуль» предназначен для измерения-проверки различных радиодеталей широкого применения и может использоваться не только в составе такого прибора, но и, конечно, отдельно, в виде небольшой независимой конструкции. Сами схемы измерительных узлов, входящие в состав, не новы и не раз были опубликованы в своё время в различных источниках и проверены на практике многими радиолюбителями, показав стабильную и надёжную работу, Никаких редких и дорогих элементов констукция не содержит, схемы чрезвычайно «лаконичные» и просты в понимании, не требуют особых приборов для настроек, при этом обеспечивают достаточную точность измерений при внимательной и грамотной сборке и применении заведомо исправных деталей.

Генератор образцовых частот

Даже простейший генератор сигналов в радиолюбительской практике полезен сам по себе и часто входит в других приборов, например, измеряющих ёмкости и индуктивности. Здесь удобно применить в качестве генератора широко известная схема на цифровых элементах, простую и легко повторяемую:

Задающий генератор на МС типа К561ЛА7 (или К561ЛЕ5, К176ЛА7, ЛЕ5 и подобные) выдаёт на своём выходе частоту, которая стабилизирована кварцевым резонатором в цепи обратной связи — в данном случае 1 МГц. Далее сигнал проходит через несколько каскадов-делителей частоты на 10 например, на МС К176ИЕ4, СD4026 или любых других счётчиков-делителей на 10) и с выхода каждого каскада снимается сигнал с частотой, в десять раз меньше предудыщей.

С помощью любого подходящег переключателя коммутируем один из выходов счётчиков-делителей и получаем, таким образом, набор фиксированных частот. Конденсатором С1 можно подстроить частоту в небольших пределах, если это необходимо, никаких других настроек данная схема не требует и питается от источника напряжением 9-12 вольт (при указанных выше типах микросхем).

Модуль измерения L, C

Первая схема представляет собой узел измерения емкостей конденсаторов от 10 пФ до 10 мкФ и индуктивностей от 10 мкГ до 10 Гн (рис.2).

Сигнал на вход подается с выхода генератора сигналов ( в нашем случае – с движка переключателя SA1 на рис.1). Через транзистор VT1, работающий в режиме ключа, прямоугольный импульсный сигнал можно снять с выхода «F» и использовать для проверки или настройки других внешних устройств, при этом уровень сигнала можно регулировать резистором R4 в широких пределах. Этот же импульсный сигнал подаётся на измеряемые элементы — конденсаторы или индуктивности, подключаеые к соответствующим клеммам «C» или «L», выставив переключатель SA2 в соответствующее положение.

К выходу Uизм. подключаем непосредственно нашу измерительную головку (может понадобиться добавочное сопротивление, об этом будет сказано подробнее далее – «Модуль индикации»). Резистором R5 устанавливаем пределы измерений индуктивностей, а R6 — ёмкостей (например, подключаем к клеммам «Сх» и «Общ.» образцовый конденсатор 0,1 мкФ на диапазоне с частотой 1 кГц (см. схему рис.1) и подстроечником R6 устанавливаем стрелку прибора на конечное деление шкалы. ). Питание этого модуля может быть 6-12 вольт.

Примечание: при настройке этого модуля была совсем исключена из схемы ёмкость С1 (1000 пФ), так как при её наличии не удавалось настроить диапазон измерений 1-100 пФ. При настройке также возможен подбор сопротивлений R2, R3 в зависимости от напряжения питания и конкретного типа применённого транзистора (может быть любой маломощный p-n-p структуры). В качестве выпрямительных использовались «старинные» германиевые диоды типа Д9, обеспечивающие более линейную характероистику отображения показаний стрелочной головки. Возможно применение кремниевых, но в данном случае я этот вариант не пробовал, так как диодов Д9 давно лежала без дела небольшая кучка.

Модуль измерения электролитических конденсаторов (+ C и ESR)

Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):

Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки. В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы. Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.

Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.

Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).

Переменное напряжение 100 кГц, наведённое во вторичной обмотке, выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.

В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом.

Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС. Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR может быть как и у предыдущих схем.

Величины типовых (максимально допустимых) значений ESR различных конденсаторов даны ниже в таблице (позаимствованно из открытых источников).

Функциональная схема соединений модулей прибора

Соединение между собой всех перечисленных выше «модулей» в одном общем приборе не представляет особой сложности и это видно из рис.4:

Модуль индикации, помимо самой стрелочной головки, включает в себя шунтирующий конденсатор (10 … 47 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. Добавочное сопротивление подбирается в зависимости от чувствительности измерительной головки.

В случае объединения всех перечисленных выше модулей в одном приборе следует иметь ввиду, что клемма «Общ.» на схеме рис.2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.

Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.

При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.

В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В). Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n). Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).

При проверке полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С». Полевые транзисторы, или очень мощные биполярные всё-таки лучше проверять, выпаяв их из плат.

Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.

Примечания к схеме

Схемы, приведённые в данной статье, рисовались несколько лет назад и оригинальные файлы формата .spl безвозвратно утеряны. Из-за чего проблематично было оперативно внести необходимые изменения в схему, в частности рис.1. Поэтому приведу ниже подкорректированное и правильное соответствие частот генератора и диапазонов измерений:

  • 1 МГц — 100 пФ — 100 мкГн
  • 100 кГц — 1000 пФ — 1 мГн
  • 10 кГц — 0,01 мкФ — 10 мГн
  • 1 кГц — 0,1 (+100) мкФ — 100 мГн
  • 100 Гц — 1 (+1000) мкФ — 1 Гн
  • 10 Гц — 10 (+10000) мкФ — 10 Гн

(в скобках указаны значения ёмкости для электролитических конденсаторов)

Материал в редакцию сайта Радиосхемы прислал автор – Андрей Барышев.

Обсудить статью УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Знакомство с интересной новинкой – летающая радиоуправляемая платформа “мультикоптер”.

После этого спаиваем детали на плате, согласно схеме.

в готовом у меня пластмассовом корпусе я просверлил два отверстия , и установил в них разъем и тумблер.

установил печатную плату в корпус, при помощи винтов и гаек М3.

Внутри корпуса закрепил два уголка , а уже на них я закрепил боковую крышку при помощи двух винтов М4. После этого спаиваю до конца схему.

Шаг-5 налаживаю прибор

Выводы разъема обозначены на схеме цифрами 1-6. При подключении кнопкой SB2 источника питания 4,5в через индикатор протекает ток около 15 мка. Если параллельно конденсатору С2 будет подключен кнопкой SB1 исправный проверяемый конденсатор, ток возрастет и будет находится в пределах 40 – 60 мка, независимо от его емкости .Эти пределы принимают за нормальные и отмечают на шкале зеленым цветом . При проверке конденсаторов емкостью больше 5 мкф стрелка прибора вначале резко отклоняется в сторону конечного деления шкалы 100 мка , а затем возвращается в пределы сегмента. При проверке оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (+). Если внутренний обрыв , стрелка остается на делении 15 мка.

Если конденсатор пробит , стрелка отклонится за конечное деление . Если с утечкой , стрелка отклонится за пределы сегмента, если сопротивление утечки менее 60 ком. Налаживаем так. Нажать SB2, убедится в отклонении стрелки на 15 мка , если не соответствует ( 15 – 20%) – подобрать R3. К гнездам XS1 и XS2 подключают конденсатор 250 пф и нажав сразу две кнопки замечают показания индикатора . Подбором R2 доводят стрелку до деления 50 мка ( середина сегмента).

Замкнув после этого гнезда убеждаются в отклонении стрелки за конечное деление. Я уменьшил C2 -20 пф, R1-1 ком , C1 – 3300 пф теперь прибор проверяет конденсаторы от 1 пф. Как подключать прибор к Ц4315 показано на фото. Этот прибор работает у меня уже 5 лет , им легко и быстро проверять конденсаторы.

Простой ESR (ЭПС) измеритель быстрого приготовления

ESR-метр или прибор для измерения ЭПС – эквивалентного последовательного сопротивления.
Как выяснилось, работоспособность (электролитических – частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.

Величина ЭПС в какой-то степени связана с основным параметром конденсатора – емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.
В технической литературе и на страничках технических сайтов описано немало случаев полной неработоспособности устройств из-за завышенной величины ЭПС электролитических конденсаторов.
В различных электронно-технических журналах и страничках сайтов, посвященных электронике, приводятся схемы приборов различной сложности и функциональности для определения величины ЭПС конденсаторов.

Предлагаю свой вариант прибора, не отличающегося от многих прочих, похожих на него, по принципу работы, но, быть может, еще более простого…
Схема прибора потребляет от двух 3-хвольтовых батареек, соединенных последовательно, 6,5мА при разомкнутых щупах и 10мА – при замкнутых. Схема прибора выглядит так:

В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ – одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание!!! В трансформаторе Т1 используется лишь половинка обмотки.

Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.
Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.
Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.
Удачи!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

 

Цепь тестера утечки конденсатора

– Быстрый поиск протекающих конденсаторов

Этот простой тестер конденсаторов способен проверять протекающие электролитические конденсаторы в диапазоне от 1 мкФ до 450 мкФ. Он может тестировать большие пусковые и рабочие конденсаторы, а также миниатюрные конденсаторы 1 мкФ на 10 В. Как только вы поймете временной цикл, вы можете протестировать до 0,5 мкФ и до 650 мкФ.

Генри Боуман

Как сделать этот тестер емкости

Схема тестера утечки конденсатора была сделана из некоторых ненужных деталей, которые у меня были под рукой, а также из пары операционных усилителей и таймера 555.Тест основан на синхронизированном цикле зарядки, когда два отсека напряжения показывают заряд 37% и 63%.

На схеме конденсатор подключен к клеммам, обозначенным C. Одна сторона заземлена, а другая сторона подключена к поворотному селекторному переключателю, а также ко входам двух операционных усилителей. Положение «G» на поворотном переключателе – это заземление с низким сопротивлением для разряда конденсаторов при подключении. Конденсаторы большой емкости перед подключением всегда следует разряжать.

Принципиальная схема

Стабилитрон 12 В также предназначен для защиты по напряжению.Если на конденсаторе отмечена полярность, красная точка или + должна быть подключена к положительному щупу. Селекторный переключатель также должен находиться в положении «G» при подключении. S2 должен находиться в положении «разгрузка».

Размеры резистора поворотного переключателя были определены путем обращения формулы T = RC, так что R = T / C. Каждое значение резистора на поворотном переключателе выбирается таким образом, чтобы обеспечить приблизительное время зарядки 5,5 секунд. Фактическое среднее время зарядки составляет от 4,5 до 6,5 секунд.

Допуски резисторов и небольшие различия в номиналах конденсаторов создают разницу в 5.5-секундный дизайн. Напряжение питания должно быть очень близким к 9 вольт. Любое более низкое или более высокое напряжение повлияет на напряжение на резистивных делителях на входных контактах 3 IC 2 и IC 3.

Как проверить

Напряжение на вилке адаптера переменного / постоянного тока было выше заявленных 9 вольт. Я использовал последовательно понижающий резистор на 110 Ом, чтобы снизить его до 9 В. Когда конденсатор подключен к испытательным клеммам, переключатель выбора должен быть перемещен от «G» к тому же значению или ближайшему значению конденсатора для проверки.

Когда S2 приводится в действие для зарядки, 9 вольт подается на резистор селекторного переключателя через общий дворник к конденсатору, чтобы начать заряд конденсатора. Напряжение 9 В также подается на эмиттер Q1, транзистора с усилением по току. Q1 немедленно проведет и запитает 555, так как база Q1 находится под резистивным потенциалом земли от выходного контакта IC 3 6.

Таймер 555 загорается светодиодом 2 один раз в секунду, пока не будет достигнуто 63% заряда. Два операционных усилителя сконфигурированы как компараторы напряжения.Когда достигается 37% (3,3 В) заряда, выход IC2 становится высоким, загорается светодиод 3.

Когда достигается 63% заряда (5,7 В), IC 3 становится высоким, загорается светодиод 4, а также прекращает подачу питания Q1. к таймеру. Работа S2 для разряда обеспечивает заземление через тот же резистор, который заряжал конденсатор.

Модель 555 не работает во время разряда. Светодиод 4 сначала погаснет, указывая на то, что напряжение упало ниже 63%, затем светодиод 3 также погаснет, когда напряжение упадет ниже 37%.Ниже приведены индикаторы неисправностей для тестов конденсаторов после проверки того, что вы выбрали правильный диапазон и правильно подключена полярность:

Обрыв конденсатора : Загораются светодиоды 3 и 4 сразу после срабатывания переключателя заряда. Через конденсатор не протекает ток, поэтому оба компаратора сразу обеспечат высокий выходной сигнал.

Закороченный конденсатор : светодиоды 3 и 4 никогда не загораются. Светодиод таймера 2 будет постоянно мигать.

Высокое сопротивление: короткое замыкание или изменение значения: 1.светодиод 3 может гореть, а светодиод 4 не гореть. 2. Оба светодиода 3 и 4 могут гореть, но время зарядки больше или меньше расчетного. Попробуйте использовать заведомо исправный конденсатор и повторите проверку.

У меня был конденсатор с маркировкой 50 мкФ, который заряжался до 63% за 12-13 секунд. Я проверил его с помощью цифрового тестера конденсаторов, и он показал фактическое значение 123 мкФ!

Если у вас конденсатор, который находится в среднем диапазоне между двумя значениями конденсатора, проверьте оба значения. Среднее значение между высокими и низкими интервалами заряда должно находиться в пределах 4.Диапазон 5-6,5 секунд.

Время зарядки 0,5 мкФ составляет 2,5–3 секунды в положении 1 мкФ. Кроме того, тестирование конденсатора емкостью 650 мкФ в позиции 450 мкФ обеспечит время зарядки 8-10 секунд. Альтернативой поворотному переключателю могут быть переключатели spst для каждого резистора. Перед установкой используйте цифровой омметр для проверки сопротивления каждого резистора. Резисторы 6 кОм и 3,4 кОм, используемые в сетях делителей напряжения операционного усилителя, следует выбирать из соображений низких допусков. Напряжение 3 и 6 вольт на делителях было бы достаточно близко для цикла зарядки.

Другой простой тестер конденсаторов

Следующая конструкция представляет собой простую схему тестера утечки электролитических конденсаторов. Довольно много излучающих конденсаторов создают внутреннее сопротивление, которое изменяется в ответ на изменения температуры и / или напряжения.

Эта внутренняя утечка может вести себя как переменный резистор, включенный параллельно синхронизирующему конденсатору.

В невероятно быстрых интервалах времени результат утечки конденсатора может быть номинальным, но по мере увеличения временного интервала ток утечки может привести к значительному изменению схемы таймера или, возможно, к полному отказу.

В любом случае непредсказуемый конденсатор синхронизации может превратить безупречно исправную схему таймера в ненадежный мусор.

Как работает схема

На рисунке ниже представлена ​​принципиальная схема нашего электролитического детектора утечки. В этой схеме используется PNP-транзистор общего назначения (Q1) 2N3906, подключенный к схеме постоянного тока, в результате чего на испытательный конденсатор подается зарядный ток 1 мА.

Двухдиапазонная измерительная схема используется для отображения заряда конденсатора и тока утечки.Пару батареек обеспечивают питание цепи.

Стабилитрон 5 В (D1) фиксирует на базе Q1 постоянный потенциал 5 В, обеспечивая постоянное падение напряжения вокруг R2 (эмиттерный резистор Q1) и постоянный ток на тестируемом конденсаторе (показанном как Cx).

При установке в положение 1 S1 напряжение, используемое на Cx, ограничивается примерно 4 В; если S1 находится в положении 2, напряжение на конденсаторе увеличивается примерно до 12 В. Дополнительная батарея может быть включена последовательно с B1 и B2 для повышения зарядного напряжения примерно до 20 В.

Когда S2 находится в его нормально замкнутом положении (как показано), измеритель подключается параллельно с R3 (шунтирующий резистор измерителя), что позволяет схеме отображать полный диапазон 1 мА. Когда S2 нажат (разомкнут), диапазон измерения контура уменьшается до 50 мкА полной шкалы.

Настройка схемы

Схемы на рис. 2 и 3 демонстрируют несколько способов выбора шунтирующего резистора (R3 на рис. 1) для увеличения диапазона M1 с диапазона 50 мкА по умолчанию до 1 мА.

Если у вас есть соответствующий вольтметр, который может измерять 1 В, тогда вы можете использовать схему, показанную на рис. 2, для определения R3.

В этой процедуре отрегулируйте R1 (потенциометр 10 кОм) на максимальное сопротивление и отрегулируйте R3 (потенциометр на 500 Ом) до минимального значения.

Подключите батарею, как показано, и выполните точную настройку R1 для получения показания 1 В на M1. Осторожно увеличивайте предустановленное значение R3, пока M2 (измеритель тока) не покажет отклонение на полную шкалу. Изучите только R1, пока вы изменяете предустановку R3, чтобы поддерживать показание 1V на M1.

В то время как M1 показывает 1 вольт, а M2 отображает полную шкалу, потенциометр устанавливается на правильное значение сопротивления, необходимое для R3. Вы можете использовать потенциометр для шунтирующего резистора или выбрать одно из эквивалентных значений из своего блока резисторов. В качестве альтернативы, если у вас есть прецизионный амперметр, который может проверять 1 мА, вы можете попробовать схему на рис. 3.

Вы можете реализовать точно такие же процедуры, как на рис. 2, и точно настроить R1 для отображения 1 мА. .

Как использовать

Чтобы применить предложенную схему проверки утечки конденсатора, начните с S1 в выключенном положении.Подключите проверяемый конденсатор к клеммам, соблюдая правильную поляризацию.

Переместите S1 в положение 1, и вы увидите, что измеритель (в зависимости от номинала конденсатора) показывает полную шкалу в течение короткого промежутка времени, а затем возвращается к нулевому показанию тока. В случае, если конденсатор закорочен внутри или сильно протекает, вы можете обнаружить, что измеритель постоянно показывает показания полной шкалы.

В случае, если счетчик все же вернется к нулю, попробуйте нажать S2, и счетчик может не сдвинуться вверх по шкале для исправного конденсатора.Если номинальное напряжение конденсатора превышает 6 вольт, переместите S1 в положение 2, и вы должны увидеть идентичные результаты для исправного конденсатора.

Если измеритель показывает возрастающее отклонение, конденсатор не может быть хорошей перспективой для применения в схеме таймера. Возможно, конденсатор не выдержит испытания, но все равно останется хорошим устройством.

Если электролитический конденсатор не используется или не заряжается в течение длительного времени, это может привести к высокому току утечки при первоначальном приложении напряжения; но когда напряжение остается подключенным к конденсатору в течение разумного периода времени, блок обычно может снова включиться.

Испытательную схему можно применить для восстановления дремлющего конденсатора путем надлежащего контроля результатов на измерителе M1.

Резисторы
(Все постоянные резисторы – 1/4 Вт, 5% единиц.)
R1-2.2k
R2-4.7k
R3 – см. Текст
Semiconductors
Q1-2N3904 NPN кремния общего назначения транзистор
D1 — IN4734A стабилитрон 5,6 В

Разное
MI- 50 мкА измеритель
B1, B2 транзистор-радиобатарея 9 В
Переключатель SI-SP3T
S2-нормально замкнутый кнопочный переключатель

О Swag

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как создать простой аналоговый измеритель емкости

Введение

Различные модели цифровых мультиметров, представленные на рынке, оборудованы для измерения большинства электронных величин. Но, что удивительно, почти все они не включают в себя устройство для измерения конденсаторов.Счетчики, которые имеют это, могут быть слишком дорогими для приобретения новыми электронными энтузиастами и инженерами. Представленная здесь схема простого измерителя емкости является аналогом в работе, но определенно может оказаться очень полезным инструментом для измерения конденсаторов с достаточно хорошими диапазонами переменных.

Принцип работы довольно прост. Прямоугольные волны, создаваемые ИС генератора КМОП, используются для попеременной зарядки и разрядки неизвестного конденсатора. Средний ток, необходимый для процедуры, отображается непосредственно на аналоговом измерителе с подвижной катушкой.Ток, будучи прямо пропорционален скорости зарядки конденсатора, всегда дает равноправные показания на измерителе (после правильной калибровки) и, таким образом, может быть считан напрямую.

Перед тем, как перейти к этапу строительства, будет полезно прочитать о следующих деталях функционирования схемы.

Описание цепи

Обратитесь к рисунку, чтобы можно было понять работу схемы по указанным точкам:

(Щелкните изображение, чтобы увеличить)

  • CMOS IC 4049, содержащая 6 инверторов в одной упаковке, составляет основную активную часть всей схемы.

  • Два его затвора N1 и N2 сконструированы как нестабильный мультивибратор, причем VR1, R1 и S1 (переменные) определяют частоту генератора.

  • Сигнал на выходе N2 неизменно представляет собой прямоугольную волну. Прямоугольные волны в основном представляют собой просто непрерывную и попеременную генерацию положительного и нулевого напряжения.

  • Все вентили с N3 по N6 скомпонованы как буферы для уменьшения зависимости схемы от нагрузки, C7 и R2 действуют как интеграторы для стабилизации указателя стрелки счетчика.

  • Конденсатор CX, который должен быть измерен, подключается к выходу буферов, как показано на рисунке.

  • Во время положительного пика прямоугольной волны неизвестный конденсатор CX заряжается до напряжения питания, а при следующем импульсе нулевого напряжения он почти мгновенно разряжается через D1.

Список запчастей

Все резисторы ¼ Вт, углеродная пленка, допуск 5% (если не указано иное)

R1 = 100 К

R2 = 10 К,

VR1 = 10 К,

C1 = 470 п, C2 = 4.7 n, C3 = 0,047 мкм, C4 = 0,47 мкм, C8 = 104 (полностью керамический диск),

C5 = 4,7 мк / 25 В, C6 = 47 мк / 25 В, C7, C9 = 10 мк / 25 В, C10 = 100 мк / 25 В (полностью электролитический),

D1 = 1N4148,

от N1 до N6 = IC 4049,

Общая плата по размеру,

Амперметр с подвижной катушкой = 100 мкА, отклонение на полную шкалу

Связь между током и емкостью

Прежде чем узнавать, как тестировать конденсатор, было бы интересно сначала узнать о математике, задействованной в процессе тестирования.Давайте прочитаем краткое объяснение.

Заряд Q на конденсаторе можно выразить следующей формулой:

Q = CV, где C – емкость, а V – напряжение питания.

Теперь, поскольку ток, задействованный во время процесса, представлен как:

I = Q × F, где F – частота прямоугольной волны.

Заменяя Q = CV в приведенной выше формуле, получаем:

I = CVF, что ясно указывает на то, что емкость C прямо пропорциональна току I при условии, что частота постоянна.

Также, поскольку напряжение питания 9 вольт, окончательно имеем:

I = 9CF; эта величина тока достигнет счетчика и будет отвечать за соответствующие показания.

Таким образом, посредством расчетов по приведенной выше формуле микроамперметр сначала калибруется соответствующим образом для прямого считывания значений рассматриваемых конденсаторов.

Советы по строительству

С помощью показанной схемы легко построить схему, выполнив следующие шаги:

  • Начните с того, что вставьте ИС где-нибудь в середине общей печатной платы и припаяйте все ее выводы.

  • Расположите связанные компоненты в максимально возможной ориентации вокруг ИС и припаяйте их соединения.

  • Аналогичным образом завершите сборку блока питания над печатной платой и выполните необходимые соединения.

  • Подключите соответствующий амперметр к собранной цепи.

  • Поместите всю сборку в подходящую пластиковую или деревянную коробку с необходимыми вырезами для крепления счетчика, конденсаторных розеток и розетки для выхода сетевого шнура (щелкните изображение, чтобы увеличить)

На этом процедура строительства завершается; Теперь давайте узнаем, как настроить устройство.

Калибровка

Калибровка этого измерителя емкости просто выполняется с помощью следующих инструкций:

  • Возьмем конденсатор относительно небольшой емкости, емкость которого точно известна (например, керамический диск 0,1 мкФ). Закрепите его в гнезде конденсатора, предназначенном для проверки номиналов неизвестных конденсаторов.

  • Включите источник питания – выберите подходящее положение на S1, чтобы отклонение на измерителе было почти на полную шкалу.Выполните точную настройку VR1, чтобы показания были точными.

  • Благодаря линейному поведению схемы, показания будут точно соответствовать другим значениям конденсаторов пропорционально на протяжении всей калибровки измерителя.

  • Эти усилия должны позаботиться о калибровке, и теперь ваш глюкометр готов к использованию.

Еще не знаете, как проверить конденсатор? Что ж, теперь нужно просто вставить неизвестные клеммы конденсатора в данную розетку и получить прямые показания счетчика.Просто не правда ли? Но не забудьте отрегулировать переключатель S1 так, чтобы максимальный диапазон был выбран соответствующим образом.

Не забудьте разрядить (закоротив провода) большие конденсаторы перед проверкой, иначе накопленный заряд может повредить ваш счетчик.

Тестер конденсаторов спичечных коробок – RadioRadar

Измерительная техника
RadioRadar Измерительная техника

Проверка электролитического конденсатора без измерителя LCR не без проблем. Вот простое решение для проверки исправности конденсатора.

Схема и работа

На рис. 1 показана принципиальная схема простого тестера конденсаторов, который может быть помещен в небольшой спичечный коробок. По сути, это схема генератора, состоящая из двух транзисторов, BC558 (T1) и BC548 (T2), и нескольких других компонентов. Частота колебаний в звуковом диапазоне зависит от номинала тестируемого конденсатора. Тестер может проверить исправность конденсаторов в диапазоне от 1 мкФ до 2200 мкФ.

Рис. 1: Принципиальная схема тестера конденсаторов

Строительство и тестирование

Односторонняя печатная плата реального размера для тестера конденсаторов показана на рис.2 и его расположение компонентов на рис. 3.

Рис. 2: Схема печатной платы реального размера для схемы тестера

Рис. 3: Компоновка компонентов печатной платы

Разъем CON1 в Схема предназначена для вставки тестируемого конденсатора. Здесь используется четырехконтактный штекер типа «мама» для подключения конденсаторов различных размеров. LSI – это небольшой динамик, используемый в качестве наушников (показан на рис. 4). Собранная печатная плата схемы может быть заключена в спичечный коробок, как показано на рис.5.

Рис. 4: Наушник наушников

Рис. 5: Тестер конденсатора в спичечном коробке

После подключения убедитесь, что напряжения соответствуют таблице контрольных точек.

9035V

Контрольные точки

Контрольные точки

Подробные сведения

TP0

0V

0V

3

СПИСОК ДЕТАЛЕЙ

Полупроводники :

T1

– BC558 9325

транзистор np322

Резисторы (все 1/4 Вт, ± 5% углерода):

R1

-220 килоом

– 5.6 кОм

Конденсатор:

C1

– керамический диск 4,7 нФ

– динамик для наушников с сопротивлением 32 Ом

CON1

– 4-контактный разъем

BATT.1

– клемма 3V

-контактный разъем

Для проверки конденсатора вставьте его в CON1.Если конденсатор исправен, издается звук пожарной сирены. Если конденсатор закорочен, издается непрерывный звуковой сигнал.

Автор: Каушик Хазарика

Мнения читателей

Комментариев нет. Ваш комментарий будет первым.

По току вы можете комментировать:

Тестер электролитических конденсаторов | Доступна подробная принципиальная схема

Используя этот тестер электролитических конденсаторов, вы можете обнаружить негерметичные и мертвые (открытые) электролитические конденсаторы.Он работает на основе постоянной времени (T) конденсатора, когда он заряжается до 63 процентов приложенного напряжения через известный резистор. Постоянная времени рассчитывается следующим образом:

T = C × R

Где «T» – секунды, «C» – микрофарады, а «R» – мегаомы.

Схема тестера электролитических конденсаторов

Используются две микросхемы таймера NE555. IC1 подключен в моностабильном режиме. Первоначально при подаче питания низкий выходной сигнал IC1 заставляет LED1 светиться.Когда IC1 запускается нажатием переключателя S3, тестируемый конденсатор начинает заряжаться через выбранный резистор (R1, R2, R3 или R4), и его выход переходит в высокое состояние, в результате чего LED1 гаснет. Он остается высоким в течение некоторого времени (в секундах) в зависимости от постоянной времени RC, а затем возвращается в исходное низкое состояние, что заставляет LED1 снова светиться.

Схема

тестера электролитических конденсаторов Период времени моностабильности (= 1,1 × R × C) можно измерить с помощью секундомера. Сравнивая этот период времени (время задержки) с периодом исправного конденсатора, мы можем найти номинал конденсатора.

Схема работы

IC2 подключен в нестабильном режиме. Два красных светодиода (LED2 и LED3) подключены к его выходному контакту 3. Когда выход IC1 переходит в высокое состояние, LED1 гаснет, и питание подается на контакты 4 и 8 IC2, в результате чего LED2 и LED3 (подключенные к IC2 ), чтобы начать мигать. С помощью VR1 отрегулируйте частоту мигания LED2 и LED3 до одной вспышки в секунду. По истечении периода времени моностабильности светодиоды LED2 и LED3 перестают мигать, а LED1 снова светится. Подсчитанное количество миганий – это период времени в секундах.

Подключите проверяемый конденсатор в указанном месте с соблюдением полярности, как показано на рисунке. Замкните переключатель S1, чтобы подать питание на тестер. Светодиод LED1 немедленно загорается, указывая на то, что на тестер подано питание. Установите переключатель выбора S2 в положение диапазона низкого сопротивления. При нажатии переключателя S3 LED1 гаснет, а LED2 и LED3 начинают мигать. Тщательно подсчитайте количество вспышек, пока светодиод не перестанет мигать.

Теперь подключите исправный конденсатор того же номинала к тестеру и отметьте время задержки.Если период задержки тестируемого конденсатора почти равен периоду задержки исправного конденсатора, он находится в хорошем состоянии. В случае, если LED2 и LED3 мигают бесконечно без остановки или не мигают, тестируемый конденсатор протекает или имеет короткое замыкание.

Чтобы рассчитать приблизительную емкость тестируемого конденсатора, умножьте время задержки на произвольный коэффициент. Произвольный коэффициент отличается для разных диапазонов сопротивления (см. Таблицу I).

Опытные образцы

Пример 1: Для конденсатора 10 мкФ время задержки составляет 126 секунд в диапазоне 10 мегаом.Умножив 126 на 0,09, мы получим 11,34 мкФ как измеренное значение конденсатора.

Пример 2: Для конденсатора емкостью 1000 мкФ время детализации составляет 130 секунд в диапазоне 100 кОм. Умножив 130 на 9,0, мы получим 1170 мкФ как измеренное значение.

Время задержки и измеренные значения конденсатора приведены в таблице II.


Статья была впервые опубликована в ноябре 2003 г. и недавно была обновлена.

Измеритель емкости


ВЧ лаборатории часто требуются измерители емкости для конденсаторов малой емкости в диапазоне пФ.Такое устройство легко построить своими руками. Здесь представлен преобразователь измерений для последовательного порта ПК. Частота генератора снижается целью и измеряется на ПК. Соответствующее преобразование позволяет напрямую отображать емкость. На входе используется короткий наконечник пробника с малой емкостью. Противоположный полюс зажимается к заземляющему кабелю с помощью крокодила. Прецизионный таймер NE555 получает рабочее напряжение напрямую от последовательного интерфейса и создает объект измерения без C – прямоугольный сигнал с частотой 3.5 кГц. Сигнал обрабатывается через вход CTS интерфейса.


Программа VB основана на программе измерения частоты из обучающего пакета электронных экспериментов на ПК. Он использует ELEXS.DLL для доступа к последовательному порту. Измерение определяет емкость цели C по отношению к эталону Cref = 3300 пФ. Счетчик можно откалибровать настройкой Cref.

Const C ref = 3300
Частная подпрограмма Timer1_Timer ()
частота = 0
alt = CTS ()
РЕАЛЬНОЕ ВРЕМЯ
НАЧАЛО ВРЕМЕНИ
Пока TIME READ новый = (CTS)
Если новый> старый Тогда freq = freq + 1
старое = новое
Управляющий
НОРМАЛЬНОЕ ВРЕМЯ
частота = частота
Если freq = 0, то freq = 1
Если ноль * ноль C = C ref / freq – Cref
C = Int (С)
Text1.Text = Str $ (C) + “pF”
Конечный переводник

Измерение емкости со звуковой картой
Специально для ноутбуков без RS232 удобно использовать звуковую карту для измерения.На его веб-сайте вы найдете другие приложения звуковой карты, такие как измерение индуктивности:

Для измерителя емкости теперь требуется другой источник питания. Вы можете использовать 9-вольтовый аккумулятор или, например, +5 В от USB-порта компьютера. NE555 обеспечивает стабильную частоту, которая в значительной степени не зависит от рабочего напряжения.

Программа обрабатывает частоты до 10 кГц. Следовательно, можно использовать в схеме меньший эталонный конденсатор, например, 1 нФ. Таким образом, разрешение увеличивается примерно до 0.1 пФ. Также важно соответствие уровней. Следующая схема показывает соответствие, полученное с делителем напряжения. Здесь используется левый канал линейного входа.





Accurate LC Meter

Создайте свой собственный Accurate LC Meter (измеритель индуктивности емкости) и начните создавать свои собственные катушки и индукторы.Этот LC-метр позволяет измерять невероятно малые индуктивности, что делает его идеальным инструментом для изготовления всех типов ВЧ-катушек и индукторов. LC Meter может измерять индуктивность от 10 до 1000 нГн, 1 мкГн – 1000 мкГн, 1 мГн – 100 мГн и емкости от 0,1 пФ до 900 нФ. Схема включает автоматический выбор диапазона, а также переключатель сброса и обеспечивает очень точные и стабильные показания.

PIC Вольт-амперметр

Вольт-амперметр измеряет напряжение 0-70 В или 0-500 В с разрешением 100 мВ и потребление тока 0-10 А или более с разрешением 10 мА.Счетчик является идеальным дополнением к любым источникам питания, зарядным устройствам и другим электронным проектам, в которых необходимо контролировать напряжение и ток. В измерителе используется микроконтроллер PIC16F876A с ЖК-дисплеем с подсветкой 16×2.


Измеритель / счетчик частоты 60 МГц

Измеритель / счетчик частоты измеряет частоту от 10 Гц до 60 МГц с разрешением 10 Гц. Это очень полезное стендовое испытательное оборудование для тестирования и определения частоты различных устройств с неизвестной частотой, таких как генераторы, радиоприемники, передатчики, функциональные генераторы, кристаллы и т. Д.

1 Гц – 2 МГц XR2206 Функциональный генератор

1 Гц – 2 МГц Функциональный генератор XR2206 выдает высококачественные синусоидальные, квадратные и треугольные сигналы с высокой стабильностью и точностью. Формы выходных сигналов могут модулироваться как по амплитуде, так и по частоте. Выход 1 Гц – 2 МГц Функциональный генератор XR2206 может быть подключен непосредственно к счетчику 60 МГц для точной настройки выходной частоты.


BA1404 HI-FI стерео FM-передатчик

Будьте в прямом эфире со своей собственной радиостанцией! BA1404 HI-FI стерео FM-передатчик передает высококачественный стереосигнал в FM-диапазоне 88–108 МГц.Его можно подключить к любому типу стереофонического аудиоисточника, например iPod, компьютеру, ноутбуку, проигрывателю компакт-дисков, Walkman, телевизору, спутниковому ресиверу, магнитофонной кассете или другой стереосистеме для передачи стереозвука с превосходной четкостью по всему дому, офису, двору или палаточный лагерь.

USB IO Board

USB IO Board – это крошечная впечатляющая маленькая плата разработки / замена параллельного порта с микроконтроллером PIC18F2455 / PIC18F2550.Плата USB IO совместима с компьютерами Windows / Mac OSX / Linux. При подключении к плате ввода-вывода Windows будет отображаться как COM-порт RS232. Вы можете управлять 16 отдельными выводами ввода / вывода микроконтроллера, отправляя простые последовательные команды. Плата USB IO получает питание от порта USB и может обеспечить до 500 мА для электронных проектов. Плата USB IO совместима с макетной платой.


Комплект для измерения ESR / емкости / индуктивности / транзистора1 Ом – 20 МОм), проверяет множество различных типов транзисторов, таких как NPN, PNP, полевые транзисторы, полевые МОП-транзисторы, тиристоры, тиристоры, симисторы и многие типы диодов. Он также анализирует такие характеристики транзистора, как напряжение и коэффициент усиления. Это незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов. В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеритель одновременно измеряет значение ESR конденсатора, а также его емкость.

Комплект усилителя для наушников для аудиофилов

Комплект усилителя для наушников для аудиофилов включает высококачественные компоненты аудиосистемы, такие как операционный усилитель Burr Brown OPA2134, потенциометр регулировки громкости ALPS, разветвитель шины Ti TLE2426, фильтрующие конденсаторы Panasonic FM с ультранизким ESR 220 мкФ / 25 В, Высококачественные входные и развязывающие конденсаторы WIMA и резисторы Vishay Dale. Разъем для микросхем 8-DIP позволяет заменять OPA2134 на многие другие микросхемы двойных операционных усилителей, такие как OPA2132, OPA2227, OPA2228, двойной OPA132, OPA627 и т. Д.Усилитель для наушников достаточно мал, чтобы поместиться в жестяной коробке Altoids, и благодаря низкому энергопотреблению может питаться от одной батареи на 9 В.


Комплект прототипа Arduino

Прототип Arduino – это впечатляющая плата для разработки, полностью совместимая с Arduino Pro. Он совместим с макетной платой, поэтому его можно подключить к макетной плате для быстрого прототипирования, и на обеих сторонах печатной платы имеются выводы питания VCC и GND.Он небольшой, энергоэффективный, но настраиваемый с помощью встроенной перфорированной платы 2 x 7, которую можно использовать для подключения различных датчиков и разъемов. Arduino Prototype использует все стандартные компоненты со сквозными отверстиями для легкой конструкции, два из которых скрыты под разъемом IC. Плата оснащена 28-контактным разъемом DIP IC, заменяемым пользователем микроконтроллером ATmega328 с загрузчиком Arduino, кварцевым резонатором 16 МГц и переключателем сброса. Он имеет 14 цифровых входов / выходов (0-13), из которых 6 могут использоваться как выходы ШИМ и 6 аналоговых входов (A0-A5).Эскизы Arduino загружаются через любой USB-последовательный адаптер, подключенный к 6-контактному гнезду ICSP. Плата питается напряжением 2-5 В и может питаться от аккумулятора, такого как литий-ионный элемент, два элемента AA, внешний источник питания или адаптер питания USB.

4-канальный беспроводной радиочастотный пульт дистанционного управления с частотой 433 МГц, 200 м

Возможность беспроводного управления различными приборами внутри или снаружи дома является огромным удобством и может сделать вашу жизнь намного проще и веселее.Радиочастотный пульт дистанционного управления обеспечивает дальность действия до 200 м / 650 футов и может найти множество применений для управления различными устройствами, и он работает даже через стены. Вы можете управлять освещением, вентиляторами, системой переменного тока, компьютером, принтером, усилителем, роботами, гаражными воротами, системами безопасности, занавесками с электроприводом, моторизованными оконными жалюзи, дверными замками, разбрызгивателями, моторизованными проекционными экранами и всем остальным, о чем вы можете подумать.

ESR meter – Тестер электролитических конденсаторов

ESR meter – Тестер электролитических конденсаторов

ESR – эквивалентное последовательное сопротивление конденсатора.Вы можете представить это как подключенный резистор. последовательно с идеальным конденсатором. Величина этого сопротивления – СОЭ.
Одна из самых распространенных неисправностей бытовой электроники – это просто неисправные электролитические конденсаторы. Использование мультиметра или измерителя емкости не может выявить большинство их неисправностей. Измерение ESR позволяет надежно обнаружить неисправные электролитические конденсаторы. Износ этролитического конденсатора сначала приведет к увеличению его ESR, позже его емкость также может снизиться.Высокое ESR конденсатора уже может вызвать неисправность прибора, при этом емкость все еще остается хорошей. Большим преимуществом этого измерителя ESR является то, что вам не нужно снимать конденсаторы, потому что измерительное напряжение низкое и окружающие компоненты не влияют на измерение. Стандартный измеритель емкости не работает с конденсаторами внутри платы. Он также не может идентифицировать неисправные конденсаторы, потому что у них часто бывает высокое СОЭ, при этом емкость все еще хорошая.Для мастера по ремонту электроники измеритель ESR абсолютно необходим. Его часто используют чаще, чем мультиметр!
Принцип измерения прост: конденсатор подключается к переменный ток высокой частоты (обычно 50-100 кГц) и падение напряжения на нем измеряется. Более высокое падение напряжения означает более высокое ESR.
В Интернете есть много схем самодельных измерителей СОЭ. Однако большинство из них очень сложны и используют микроконтроллер.Другие индикаторы имеют только один светодиод, чего недостаточно для измерения конденсаторов разных размеров и номиналов. Я выбрал простое и эффективное решение. В качестве источника тока высокой частоты, около 50 кГц, я использовал хорошо известную схему 555. Для измерения падения напряжения Я использовал небольшой аналоговый измеритель. Вы можете использовать небольшой микроампер или милливольтметр, Достаточно индикатора с подвижной катушкой, индикатора настройки от старого радио или индикатора уровня звука (VU-метр). Выпрямительный диод D1 имеет малое падение напряжения, это может быть германиевый диод (от старое радио) или диод Шоттки.D2 защищает аналоговый счетчик от чрезмерное напряжение при отсутствии конденсатора. Номиналы резисторов R1 и R2 должны быть выбран в соответствии с вашим аналоговым измерителем. R2 выбран так, чтобы аналоговый измеритель не выходил за пределы диапазона, пока не подключен конденсатор, а R1 определяет чувствительность. Измерительные провода должны быть короткими (не более 30 см / 1 фут), поскольку их сопротивление и индуктивность может повлиять на измерение. Провода к измеряемому конденсатору следует сдвоить (показано на принципиальной схеме).
Конечно, у более крупных электролитов более низкое СОЭ, поэтому рекомендуется сделайте шкалу в соответствии с типичными значениями ESR новых конденсаторов. Достаточно логарифмической шкалы как 1 мкФ, 10 мкФ, 100 мкФ, 1000 мкФ. Счетчик питается от батареи 9 В. В состоянии разомкнутой цепи измеритель СОЭ потребляет около 6 мА, а во время измерения – около 16 мА.


Схема измерителя ESR – тестера электролитических конденсаторов.


Внутренности измерителя СОЭ.


Тестер ESR конденсатора в пластиковом ящике (аналоговый индикатор – измеритель VU от советского магнитофона).

Добавлен: 2006
дом

Простой метод измерения ESR конденсатора

Конденсаторы классифицируются по типу диэлектрика. Электролитические конденсаторы популярны в силовых электронных схемах из-за их высокого объемного КПД и отличного соотношения цена / качество. [1] К сожалению, их характеристики меняются с рабочей частотой, тогда как полное сопротивление идеального конденсатора уменьшается с частотой.Но в реальном мире этого не наблюдается в лаборатории. Увеличение частоты до определенной точки приводит к ожидаемому снижению импеданса, но увеличение частоты вызывает увеличение импеданса, то есть действует как резонансный контур. Чтобы смоделировать поведение реального конденсатора, требуется добавление дополнительных элементов к модели конденсатора. ESR – это фактически сопротивление, которое конденсатор показывает на границе между поведением, подобным конденсатору, и поведением, подобным индуктору, то есть сопротивлением на резонансной частоте.

При моделировании динамического поведения преобразователей мощности значение ESR является важным, поскольку оно позволяет прогнозировать пульсации на выходе преобразователя, а также срок службы конденсатора. [2] Мощность, рассеиваемая в ESR, вызывает повышение температуры конденсатора, а также уменьшение его емкости и срока службы.

Простой и прямой метод измерения ESR предложен в [3] , в котором ESR определяется непосредственно отношением напряжения пульсаций конденсатора к току пульсаций.Но реализация довольно дорогая и хлопотная. Чтобы определить ESR, используя только измерения напряжения, Chen et al. [4] предположил, что при некоторых конкретных условиях ток пульсаций индуктора можно считать постоянным и, следовательно, выходное напряжение пульсаций определяет ESR. Однако предлагаемый метод ограничен, а точность его невысока.

Лабораторный метод, который можно использовать для определения собственного значения ESR электролитических конденсаторов, был предложен в [5] .Однако этот метод дорог в реализации.

Здесь мы представляем простой метод измерения для определения ESR конденсатора.

Предлагаемый метод:

Предположим, что модель, подобная показанной на рис. 1 , для тестируемого конденсатора (CUT):

1. Модель тестируемого конденсатора.

В этой модели не учитывается индуктивность выводов. Предположим, что CUT подключен к генератору синусоидальной волны с частотой Fg и внутренним сопротивлением rg, как показано на Рис.2 :

2. CUT подключен к генератору синусоидальной волны.

Передаточная функция этой схемы:

Уравнение 1 показывает характер пропускания верхних частот этой схемы. Следовательно, мы можем аппроксимировать передаточную функцию как:

Уравнение 2 является основой для наших измерений ESR конденсатора. Когда входная частота достаточно высока, мы можем упростить соотношение вход-выход как алгебраическое уравнение 2.Для высоких частот схема действует как аттенюатор с коэффициентом ослабления:

.

Измерение коэффициента затухания цепи и внутреннего сопротивления генератора приводит к r c , ESR конденсатора:

Вместо возбуждения синусоидальной волны мы можем использовать прямоугольную волну. Это позволяет нам использовать ряд Фурье для написания уравнения с уровнями + Vm и -Vm и периодом T:

Где:

Прямоугольная волна состоит из нечетных гармоник.Когда основная гармоника достаточно высока, конденсатор действует как короткое замыкание, и выходное напряжение является приблизительно ослабленной версией входного напряжения в установившемся состоянии. Затухание в цепи в установившемся режиме напрямую связано с эквивалентным последовательным сопротивлением конденсатора r c , которое можно получить, измерив коэффициент затухания в цепи и используя уравнение 3.

Результаты моделирования:

Диаграмма

Simulink показана на рис. 3 :

3.Схема моделирования схемы в Simulink.

В качестве возбуждения используется прямоугольная волна с амплитудой +1 и -1 вольт. Выходное сопротивление генератора сигналов принято равным 50 Ом, конденсатор – 30 мкФ, ESR 0,8 Ом. Форма выходного сигнала стабильного состояния показана на рис. 4 :

4. Устойчивый выход цепи.

Расчетный коэффициент затухания цепи:

и СОЭ CUT рассчитывается как:

Результаты лаборатории:

Генератор сигналов с номинальным выходным сопротивлением 50 Ом обеспечивает возбуждение.Выходное сопротивление 47,1 Ом измеряется с помощью простого делителя напряжения. Пиковое напряжение установившегося выходного напряжения измеряется с помощью цифрового осциллографа. На рисунке 5 показан пример выходных данных.

5. Пример формы волны выходного напряжения.

Расчетные значения СОЭ

Этот простой метод измерения обеспечивает точные результаты и позволяет более точную модель преобразователя мощности.

Список литературы

1. Amaral A.M.R., Cardoso A.J.M .: Экспериментальная методика оценки значений ESR и собственных значений реактивного сопротивления алюминиевых электролитических конденсаторов . Proc. Конференция по контрольно-измерительным приборам, IMTC 2006, апрель 2006 г., стр. 1820–1825.

2. Шанкаран В.А., Рис Ф.Л., Авант К.С .: Проверка и прогноз срока службы электролитических конденсаторов . Proc. 32-е ежегодное собрание Общества отраслевых приложений IEEE, октябрь 1997 г., т.2. С. 1058–1065

3. Venet P., Perisse F., El-Husseini M.H., Rojat G .: Реализация схемы интеллектуального электролитического конденсатора , IEEE Ind. Appl. Mag., 2002, 8, (1), с. 16–20

4. Чен Ю.-М., Чжоу М.-В., Ву Х.-К .: Прогнозирование выхода из строя электролитического конденсатора LC-фильтра для импульсных преобразователей мощности . Proc. 40-е ежегодное собрание Общества отраслевых приложений IEEE, октябрь 2005 г., т. 2. С. 1464–1469.

5. Amaral A.M.R., Cardoso A.J.M.: Измеритель СОЭ для высоких частот .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *