Как проверить транзистор мультиметром не выпаивая
Опубликовано:
Содержание
- Как проверить биполярный транзистор мультиметром
- Как проверить p-n-p транзистор мультиметром
- Как найти цоколевку транзистора мультиметром
- Как проверить мощный биполярный транзистор и его цоколевку!!!
Как проверить биполярный транзистор мультиметром
Существует множество приборов для проверки любых типов транзисторов. Ими можно проверить не только исправность транзистора, но и подобрать необходимый коэффициент усиления h31э.
Проверка транзистораОднако для ремонта бытовой техники и электроники вполне достаточно одного мультиметра. Чтобы понять сам процесс проверки транзистора, нелишне будет знать, что такое транзистор и как он работает. Транзистор можно представить как два встречно включенных диода имеющих p-n переходы. Для p-n-p транзисторов эквивалентная схема выглядит как два диода включенных катодами друг к другу, а для n-p-n структуры диоды включены анодами друг к другу.
Эквивалентные схемы транзисторовТак можно представить себе упрощенный эквивалентный вариант транзистора. В двух словах о принципе работы транзистора. При подаче переменного сигнала на базу транзистора (общий конец соединения диодов) меняется сопротивление переходов коллектор — база и эмиттер – база. Соответственно и общее сопротивление переходов меняется по закону входного сигнала. Постоянное напряжение источника питания, приложенное к коллектору и эмиттеру, будет также меняться по закону входного сигнала.
Но напряжение источника питания, приложенное к переходу эмиттер — коллектор транзистора значительно больше сигнала поступающего на базу. Выходной сигнал снимается с выводов эмиттера и коллектора. Так работает транзистор в режиме усиления. В ключевом режиме на базу подаётся минимальный сигнал, при котором транзистор закрыт и максимальный сигнал, который полностью открывает транзистор.
Как проверить p-n-p транзистор мультиметром
Биполярные транзисторы могут быть с прямой проводимости p-n-p и обратной проводимостью n-p-n. На схеме проводимость p-n-p переходов обозначается стрелкой по направлению к базе, а n-p-n переходы отражаются стрелкой указывающей направление от базы. Для проверки транзистора на мультиметре выбирают предел измерения сопротивления 2000 Ом или “прозвонку”.
Находим обратное сопротивление переходовМинус мультиметра прикладывают к базе транзистора, а плюс поочередно к выводам коллектора и эмиттера. Нормальное сопротивление перехода будет в пределах 400 — 1200 Ом. Чтобы проверить переходы коллектор — база и эмиттер — база на обратное сопротивление, плюс мультиметра прикладывают к базе, а минусы к эмиттеру и коллектору по очереди.
Обратное сопротивление коллектора и эмиттера должно быть большим, и мультиметр будет показывать “1”. Чтобы проверить транзистор с обратной полярностью n-p-n, к базе прикладывают плюс мультиметра, а в остальном методика такая же, как и при проверке полярности p-n-p. Этим же методом можно проверить работоспособность транзисторов, не выпаивая с платы.
Иногда переходы транзистора в схеме могут быть шунтированы небольшим сопротивлением. Тогда лучше отпаять базу или весь транзистор, так как показания мультиметра при проверке на целостность элемента будут неверными. Если переходы транзистора в обоих направлениях показывают ноль или близкое к нему, то это указывает на пробой переходов, а показания “1” на мультиметре говорят об обрыве переходов.
Как найти цоколевку транзистора мультиметром
Расположение выводов (цоколевка) транзистора можно найти по справочнику или по типу транзистора в интернете. Определить расположение выводов можно и мультиметром. Для этого плюс мультиметра прикладывают к правому выводу транзистора, а минус к среднему и левому контакту.
Как найти эмиттер и коллекторДопустим, что сопротивление в обоих измерениях составило бесконечность. Получается, что мы нашли обратное сопротивление двух переходов n-p-n. Таким образом, мы попали на базу. Для нахождения коллектора и эмиттера минусом становятся на базу, а плюсом касаемся двух оставшихся выводов по очереди.
На дисплее отобразились значения сопротивлений переходов 816 Ом и 807 Ом. Вывод с сопротивлением 807 Ом будет коллектором, потому что переход база — коллектор имеет меньше значение сопротивления, чем переход база — эмиттер. Существуют так же транзисторы средней и большой мощности, у них коллектор соединен с корпусом или с металлической пластиной, предназначенной для рассеивания тепла.
Как проверить мощный биполярный транзистор и его цоколевку!!!
Помогла вам статья?
Транзисторы и их проверка мультиметром; как проверить тестером транзистор, не выпаивая
Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.
- Типы транзисторов
- Биполярные приборы
- Полевые транзисторы
- Проверка мультиметром
- Приборы биполярного типа
- Полевые транзисторы
- Проверка приборов в схеме
Типы транзисторов
Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.
Биполярные приборы
Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.
Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.
Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.
Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.
Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.
На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.
Полевые транзисторы
Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).
Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными.
Проверка мультиметром
Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.
Приборы биполярного типа
Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.
Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное.
Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.
При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.
Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.
Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.
Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:
- определение типа прибора и схемы его выводов;
- проверка сопротивлений его «p — n» переходов в прямом направлении;
- смена полярности щупов и определение сопротивлений переходов при таком подключении;
- проверка сопротивления «коллектор — эмиттер» в обоих направлениях.
Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.
К признакам неисправности биполярных транзисторов можно отнести следующие:
- «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
- «p — n» переход не «прозванивается» в обе стороны.
В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.
Второй случай показывает внутренний обрыв в структуре прибора.
В обоих случаях данный экземпляр не может быть использован для работы в схеме.
Полевые транзисторы
Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.
Для проверки элемента первого типа необходимо выполнить следующие действия:
- определить сопротивление участка «сток — исток» закрытого транзистора;
- произвести открытие перехода;
- определить сопротивление открытого полевика;
- произвести закрытие перехода;
- повторно сделать замер сопротивления закрытого полевого транзистора.
Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».
Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).
Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.
Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.
При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.
Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя.
При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.
Проверка приборов в схеме
Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.
Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.
Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.
Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.
Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.
Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.
Как проверить транзистор без мультиметра (Решение 2023)
Привет! Ищете ответ, чтобы узнать, как проверить транзистор без мультиметра? Тогда вы попали в нужную статью.
В этой короткой статье мы вместе рассмотрим решение, с помощью которого вы можете попробовать проверить транзисторы без использования какого-либо мультиметра.
Тестируя, я также хочу сказать, хороший это транзистор или плохой. Если это хороший транзистор, то какова его правильная конфигурация контактов. Кроме того, мы также узнаем тип транзистора BJT, то есть, если это NPN или PNP.
Надеюсь, вам понравится эта статья и вы найдете ответы на свои вопросы.
Содержание
Зачем нам тестировать транзисторы?
Первый вопрос: зачем вообще нужно тестировать или проверять транзистор? Ответ прост, проверить, хороший это транзистор или плохой.
Потому что нет смысла использовать неисправный транзистор в схеме, так как это приведет к неточным результатам. Иногда это также может привести к повреждению других подключенных компонентов из-за перенапряжения или перегрузки по току.
А почему без мультиметра?
Ответ: просто потому, что мы можем, и мы старательно учимся. Я не могу придумать такой другой технической причины — например, если я электронщик, почему бы мне не иметь мультиметр.
Если у меня нет мультиметра, то я должен подумать, настоящий ли я электронщик или просто балуюсь.
Другим возможным ответом может быть то, что мы хотим знать, есть ли у нас другие варианты. Но опять же, как я уже сказал, мы увлеченные ученики.
Как проверить транзистор без мультиметра?
Знаете, если честно, я действительно не думаю, что можно эффективно проверить транзистор без времени мультиметра. Если вы не хотите использовать мультиметр, вам придется использовать другие альтернативные устройства.
Но у вас должен быть измерительный прибор, чтобы правильно проверить и протестировать любой тип транзистора.
Да, вы можете сконструировать какую-нибудь схему проверки транзистора, но я оставлю это для другой статьи в блоге.
Итак, для проверки транзистора без мультиметра есть два способа:
- 1- Использование осциллографа профессионального уровня с опцией проверки компонентов
- 2- Использование специального тестера транзисторов
Осциллограф с опцией проверки компонентов
Первый метод является дорогостоящим и лучше всего подходит для людей, которые являются профессионалами и работают с платами электроники с кучей транзисторов.
Этот метод действительно рекомендуется, когда вы хотите проверить транзисторы в схеме, не выпаивая их из платы.
Специальный тестер транзисторов
Этот метод действительно экономит время и надежен. Это сэкономит вам много времени, если вы работаете с транзисторами.
Чтобы этот метод был применим, вам нужен приличный тестер транзисторов. Вы можете купить где угодно, так как они не дорогие, и все тестеры транзисторов практически одинаковы.
Ниже приведен тестер транзисторов, который мне лично нравится. Это очень простой, но он делает свою работу очень хорошо.
Преимущество этого тестера в том, что его можно использовать и для других компонентов. Это как все в одном компонентном тестере.
Давайте посмотрим, как вы можете использовать этот инструмент для проверки любых транзисторов.
Как использовать тестер транзисторов для проверки транзистора?
Сначала возьмите транзистор, который хотите проверить. Допустим, вы хотите протестировать транзистор BJT и, допустим, вы не знаете, является ли он NPN или PNP. Вы не знаете его бета-значение постоянного тока. Вы также не знаете его правильную конфигурацию выводов, т. е. какой вывод выводов коллектор, эмиттер или база.
Чтобы знать все вышеперечисленные параметры транзистора, нам нужен специальный тестер транзисторов, о котором мы говорили выше.
Тестер транзисторов, который мы будем использовать, это тестер транзисторов M328 (ссылка на продукт) . Выполните следующие шаги:
- Сначала включите тестер транзисторов, вы должны увидеть, что экран загорится.
- Поместите гнездо компонента в нужное место в тестере транзисторов
- Теперь возьмите транзистор, который хотите проверить
- Поместите его в гнездо компонента в любой конфигурации
- Нажмите кнопку проверки
- И вы должны увидеть результаты на экране.
- В результатах будет указано, является ли это NPN или PNP, будет указано его бета-значение постоянного тока, а также будет показана правильная конфигурация контактов.
Видите ли, это маленькое устройство дает нам всю важную информацию о транзисторе в кратчайшие сроки, тем самым экономя наше драгоценное время.
Теперь, если транзистор неисправен, экран не покажет никаких результатов или сообщит, что компонент не найден. Это признак того, что вы работаете с неисправным транзистором. Вам нужно избавиться от него немедленно.
Заключение
Инженерам и студентам необходимо знать, как проверить транзистор без мультиметра. Нам нужно знать, сколько других способов мы можем использовать для проверки транзисторов любого типа.
Потому что для меня не имеет никакого смысла проверять транзистор без использования мультиметра. За исключением того, что мы увлечены учениками и хотим исследовать вещи.
Итак, сделать это можно тремя способами:
- Разработать схему проверки
- Использование осциллографа с функцией тестирования компонентов
- Используйте специальный тестер транзисторов
Первый технический и требует знания предметной области. Поэтому я решил создать об этом отдельную статью как-нибудь в другой раз.
Второй метод является дорогостоящим и ориентирован на работу более профессионального уровня. Кроме того, этот метод полезен, если вы хотите проверить транзисторы, пока они еще припаяны к схемам, т. е. внутрисхемное тестирование транзисторов.
Последний способ подходит большинству из нас. Так как это дешево и очень надежно в долгосрочной перспективе.
В этом методе мы используем специальный тестер транзисторов, который сообщает нам тип транзистора и различные полезные связанные параметры, но, что более важно, он сообщает нам, является ли транзистор плохим или хорошим.
В конце концов, я бы сказал. Я не идеален, как и эта статья. Но я намерен поделиться чем-то, что может быть полезно для некоторых из вас. Я изо всех сил старался, используя свои ограниченные знания, создать что-то. Я надеюсь, что это поможет вам как-то, может быть, немного. Но мне этого было бы достаточно.
Надеюсь, вам понравилось.
Спасибо и удачной жизни.
Другие полезные сообщения:
- Как проверить диод без мультиметра (Простые решения)
- Как проверить конденсатор без выпайки [при проверке схемы]
- Основы работы с мультиметром для начинающих — узнайте, как пользоваться мультиметром
- Безумно лучший тестер транзисторов (тестер компонентов)
Как проверить транзистор
Это самый быстрый и простой способ проверить транзистор. Не нужно возиться со схемами выводов или идентификацией базы, коллектора и эмиттера. Не нужно возиться с измерительным прибором и пытаться удерживать один провод на одном соединении, касаясь другого.
Если вы хотите узнать, как проверить транзистор с помощью мультиметра, я также показал этот метод позже в статье.
Проще всего использовать это устройство. LCR-T4 Измеритель ESR Транзистор Тестер Диод Триод Емкость Индуктивность SCR 328 ЖК-дисплей Дисплей MOS PNP NPN (батарейная пряжка с чехлом).
Это лучшее устройство, которое я когда-либо покупал для моего увлечения конструированием электронных проектов. Это также один из самых дешевых по цене менее пятнадцати фунтов.
Я купил его в комплекте, но вы также можете купить его в готовом виде. Вы можете прочитать о версии комплекта здесь. Это не особенно сложно и может быть собрано за несколько минут при тщательной пайке.
В итоге вы получите вот это, соберете ли вы его сами или купите уже готовое.
Есть несколько версий с тремя винтовыми клеммами для подключения. Я предпочитаю версию с нулевым усилием вставки только потому, что ее проще использовать.
Гнездо с нулевым усилием вставки имеет пронумерованные клеммы вокруг него, как показано на рисунке ниже.
Неважно, к каким терминалам вы подключаетесь. Просто убедитесь, что вы подключили каждую ногу транзистора к соединениям 1, 2 и 3. Тестер сделает все остальное и определит клеммы для вас, а также проверит и скажет вам, что такое транзистор. На нем будет указано, является ли устройство PNP или NPN, пороговое напряжение эмиттера и текущий коэффициент усиления.
Просто вставьте транзистор и бросьте ливер. Затем просто нажмите кнопку тестирования. Это так просто.
Здесь вы можете увидеть тестер с транзистором 2N3906 PNP. С этим устройством легко просто вставить его в правый верхний угол розетки, так как есть три контакта 1,2 и 3 рядом друг с другом. Как вы можете видеть, устройство работает и было идентифицировано как транзистор PNP с выводом из 1 E 2 B 3 C. «B = 284» во второй строке дисплея — это текущий коэффициент усиления или коэффициент усиления, поскольку он более известен. Я думаю, что «B» используется, поскольку это также греческая буква B или бета. Другое число «677 мВ» — это пороговое напряжение эмиттера.
Здесь вы видите тестер с транзистором 2N3904 NPN. Он идентифицирует вывод как 1 E 2 B 3 C. Просто чтобы доказать, что ему все равно, какие ножки соединяются, где я перевернул устройство и протестировал его повторно.
Как видите, распиновка теперь выглядит как 1 C 2 B 3 E.
Здесь тестируется 2N3819, обычный N-канальный JFET.
На дисплее показано, что это полевой транзистор N-типа с выводом 1 исток 2 затвор a и 3 сток. другие числа показывают емкость затвора и пороговое напряжение затвора.
Как проверить транзистор с помощью мультиметра
Как видите, нет ничего проще, чем это, однако, если вы ищете, как проверить транзистор, и у вас нет этого набора, вы можете сделать это с помощью мультиметр с проверкой диодов. Большинство мультиметров имеют эту функцию.
Прежде чем начать, вам необходимо кое-что узнать.
1 убедитесь, что вы знаете, что это за устройство. NPN является более распространенным, другой тип — PNP. Самый простой способ — посмотреть номер на устройстве и найти его в Интернете.
2 вам также необходимо знать пин-код устройства. Вот какие ноги являются коллектором базы и эмиттером. Самый простой способ — снова поискать в интернете.
3. После того, как вы вытащите булавку, нарисуйте ее. Это значительно облегчит выявление потенциальных клиентов при тестировании.
Если вы проверяете транзистор с помощью мультиметра, вам необходимо знать вывод.
Установите мультиметр на диодный диапазон. Это будет выглядеть примерно так, как показано ниже.
Тестирование NPN-транзистора
В целях тестирования мы тестируем транзистор, как если бы это были 2 диода, как показано на рисунке ниже. Возможно, вы уже слышали об этой аналогии.
Убедитесь, что провода правильно подключены к глюкометру. Я видел людей с красным проводом, подключенным к черному терминалу.
1. Подключите красный положительный провод к базе транзистора.
2. Коснитесь черного отрицательного вывода на эмиттере, и вы должны получить показания обрыва цепи.
3. Прикоснитесь к черному отрицательному проводу на коллекторе, и вы должны получить показания обрыва цепи.
Разомкнутая цепь будет читаться так же, как если бы она не была подключена к чему-либо разомкнутой цепи, как на этой картинке.
4. Теперь подключите черный отрицательный провод к базе транзистора.
5. Коснитесь красного положительного вывода эмиттера, и на этот раз вы должны получить показания.
6. Коснитесь красного положительного вывода на коллекторе, и вы также должны получить показания.
Под чтением я подразумеваю что-то вроде .740, как показано на рисунке ниже.
Последней проверкой является подключение щупов измерителя к коллектору и эмиттеру. Это также должно восприниматься как разомкнутая цепь в любом случае, когда провода подключены.
Тестирование PNP-транзистора
Еще раз убедитесь, что провода подключены к измерителю правильно.
1. Подсоедините черный отрицательный провод к базе транзистора.
2. Коснитесь красного положительного вывода эмиттера, и вы должны получить показания обрыва цепи.
3. Коснитесь красного положительного вывода на коллекторе, и вы должны получить показания обрыва цепи.
Разомкнутая цепь будет считаться равнозначной, если она не подключена ни к чему разомкнутому, как на этом рисунке.
4. Теперь подключите красный положительный провод к базе транзистора.
5. Коснитесь черного отрицательного вывода эмиттера, и на этот раз вы должны получить показания.
6. Коснитесь черного негатива на коллекторе, и вы также должны получить показания.
Под чтением я подразумеваю что-то вроде .740, как показано на рисунке ниже.
Последней проверкой является подключение щупов измерителя к коллектору и эмиттеру. Это также должно восприниматься как разомкнутая цепь в любом случае, когда провода подключены.
Самая большая проблема, с которой я столкнулся при использовании этого метода, заключается в попытке удерживать щупы мультиметра неподвижно во время проверки показаний.