Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Проверка обмоток электродвигателя. неисправности и методы

Как проверить подшипники электродвигателя?

После осмотра прибора можно начинать его проверять и делать это нужно начиная с подшипников двигателя. Очень часто неисправности электродвигателя происходят вследствие их поломки. Они нужны для того, чтобы ротор плавно и свободно двигался в статоре. Расположены подшипники с обоих концов ротора в специальных нишах.

Для электродвигателей чаще всего используются такие типы подшипников, как:

Некоторые нуждаются в оснащении смазочными фитингами. а некоторые уже смазаны в процессе производства.

Проверять подшипники нужно следующим образом:

  • разместите двигатель на твердой поверхности и положите одну руку на его верхнюю часть;
  • второй рукой проверните ротор;
  • постарайтесь услышать царапающие звуки, трение и неравномерность движения – всего это сигнализирует о неисправности прибора. Исправный ротор двигается спокойно и равномерно;
  • проверяем продольный люфт ротора, для этого его нужно потолкать за ось из статора. Допускается люфт максимум до 3 мм, но не больше.

Если есть проблемы с подшипниками, то электродвигатель работает шумно, сами они перегреваются, что может привести к выходу прибора из строя.

Особенности ремонта коллекторных приводов

У данного типа электромашин чаще возникают механические неисправности. Например, стирание щеток или засорение контактов коллектора. В таких ситуациях ремонт сводится к чистке контактного механизма или замене графитовых щеток.

Тестирование электрической части сводится к проверке сопротивления обмотки якоря. В этом случае щупы прибора двум соседним контактам (ламелям) коллектора, после снятия показаний производится измерение далее по кругу.

Проверка обмотки якоря коллекторного электродвигателя

Отображенное сопротивление должно быть примерно одинаковым (с учетом погрешности прибора). Если наблюдается серьезное отклонение, то это говорит, что имеет место быть межвитковое КЗ или обрыв, следовательно, необходима перемотка.

Как прозвонить электродвигатель на обрыв обмоток и межвитковое замыкание

Межвитковое замыкание в обмотках можно проверить мультиметром на омах. Если имеется три обмотки, тогда достаточно сравнить их сопротивление. Отличие в сопротивлении одной обмотки указывает на межвитковое замыкание. Межвитковое замыкание однофазных двигателей определить труднее, так как имеются только разные обмотки — это пусковая и рабочая обмотка, которая имеет меньшее сопротивление.

Сравнивать их нет возможности. Выявить межвитковое замыкание обмоток трехфазных и однофазных двигателей можно измерительными клещами, сравнивая токи обмоток с их паспортными данными. При межвитковом замыкании в обмотках, их номинальный ток возрастает, а величина пускового момента уменьшается, двигатель с трудом запускается или совсем не запускается, а только гудит.

Проверка электродвигателя на обрыв и межвитковое замыкание обмоток

Измерять сопротивление обмоток мощных электродвигателей мультиметром не получится, потому что сечение проводов велико и сопротивление обмоток находится в пределах десятых долей ома. Определить разницу сопротивлений, при таких значениях мультиметром, не представляется возможным. В этом случае исправность электродвигателя лучше проверять токоизмерительными клещами.

Если нет возможности подключить электродвигатель к сети, сопротивление обмоток можно найти косвенным методом. Собирают последовательную цепь из аккумулятора на напряжение 12В с реостатом на 20 ом. С помощью мультиметра (амперметра) выставляют реостатом ток 0,5 — 1 А. Собранное приспособление подключают к проверяемой обмотке и замеряют падение напряжения.

Прозвонка электродвигателя на обрыв и сопротивление изоляции

Меньшее падение напряжения на катушке укажет на межвитковое замыкание. Если требуется знать сопротивление обмотки, его рассчитывают по формуле R = U/I. Неисправность электродвигателя можно также определить визуально, на разобранном статоре или по запаху горелой изоляции. Если визуально обнаружено место обрыва, его можно устранить, припаять перемычку, хорошо изолировать и уложить.

Замер сопротивлений обмоток трехфазных двигателей проводят без снятия перемычек на схемах соединений обмоток “звезда” и “треугольник”. Сопротивление катушек коллекторных электродвигаталей постоянного и переменного напряжения также проверяют мультиметром. А при большой их мощности проверка ведется с помощью приспособления аккумулятор — реостат, как указано выше.

Сопротивление обмоток этих двигателей проверяют отдельно на статоре и роторе. На роторе лучше проверять сопротивление непосредственно на щетках, прокручивая ротор. В этом случае можно определить неплотное прилегание щеток к ламелям ротора. Устраняют нагар и неровности на ламелях коллектора, их шлифовкой на токарном станке.

Вручную эту операцию сделать трудно, можно не устранить эту неисправность, а искрение щеток только увеличится. Пазы между ламелями также прочищают. В обмотках электродвигателей может быть установлен плавкий предохранитель, тепловое реле. При наличии теплового реле проверяют его контакты и при необходимости чистят их.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.

Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.

Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.

Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

{SOURCE}

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

  1. Термопредохранители: отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны. Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).
  2. Термореле: часто применяются вместо термопредохранителей. Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»). Если термореле сгорело, по его параметрам подбирают аналог.
  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Запитывается датчик через два крайних вывода. Если коснуться их щупами мультиметра в режиме омметра, в норме он отобразит мизерное сопротивление.

Проверка третьего вывода возможна только в рабочем режиме, когда присутствует магнитное поле. Попытка прозвонить датчик на ходу, то есть при включенной стиральной машине, может привести к травме. Рабочий режим безопаснее сымитировать, демонтировав двигатель и запитав датчик отдельно. Импульсы на выходе датчика формируют путем поворота ротора.

Мультиметр позволяет выявить пусть не все, но многие поломки электродвигателя. В основном при помощи прозвонки выявляются обрывы и короткие замыкания. Полную диагностику проводят на специальных стендах, для измерения сопротивления изоляции требуется мегомметр.

Коллекторные двигатели и основные неисправности якоря

Коллекторные электродвигатели рассчитаны на работу от бытовых сетей, напряжением 220В. Практически все они являются синхронными агрегатами. В отличие от асинхронных электродвигателей, коллекторные устройства состоят из неподвижного статора и вращающейся обмотки на валу – якоря. Напряжение на них подается с помощью щеточно-графитного устройства, которое и есть коллектор.

Основная причина, требующая проверки якоря и других деталей, состоит в появлении искр. Активное искрение свидетельствует об износе щеток и коллекторного узла или нарушении контактов. Кроме того, искры могут появиться в результате межвиткового замыкания, то есть, замыкания обмоток в коллекторе. Появление таких нарушений требует качественной диагностики, начиная с визуального осмотра и заканчивая проверкой мультиметром.

Первоначальный осмотр позволяет выявить оборванные или выгоревшие обмотки, а также выгорание в точках их подключения

Поэтому, в первую очередь следует обращать внимание на состояние обмоток и целостность витков. Если обмотки почернели полностью или частично, это уже указывает на определенные проблемы с якорем

Иногда изоляцию достаточно просто понюхать, чтобы определить характерный запах гари.

Более точную информацию можно получить путем проверки якоря мультиметром. Прозвонка выполняется поэтапно, захватывая все элементы двигателя:

  • Вначале прозваниваются попарные выводы обмоток статора к ламелям. Сопротивления на каждом из них должны иметь одинаковое значение.
  • Далее проверяется сопротивление между ламелями и корпусом якоря. В норме оно должно быть бесконечным.
  • Целостность обмотки проверяется путем прозвонки выводов.
  • После этого проверяется состояние цепи между корпусом статора и выводами якорной обмотки. При наличии пробоя на корпус, бытовое устройство категорически запрещается подключать к напряжению. В этом случае требуется обязательный ремонт или полная замена неисправных деталей.

После ремонта коллекторного электродвигателя нужно соединить все элементы между собой и подключить устройство к питанию 220В. Если агрегат работает нормально, значит ремонт выполнен правильно.

Какие электромоторы можно проверить мультиметром

Если в двигателе нет механических повреждений, что обычно определяется визуально, то его неисправность в большинстве случаев обусловлена следующим:

  • произошел обрыв внутренней цепи;
  • случилось замыкание, то есть появился контакт там, где его не должно быть.

Оба дефекта выявляются мультиметром. Сложности возникают только при проверке двигателей постоянного тока: у большинства из них обмотка имеет почти нулевое сопротивление и его приходится замерять косвенным методом, для чего понадобится собрать несложную схему.

  1. Трехфазные асинхронные двигатели работают и при однофазном питании.
  2. Асинхронные одно- и двухфазные с короткозамкнутым ротором конденсаторные. К этому типу относится большинство двигателей бытовых приборов.
  3. Асинхронные с фазным ротором. Такой ротор имеет трехфазную обмотку. Двигатели с фазным ротором применяются там, где требуется регулировка частоты вращения и понижение пускового тока: в крановом оборудовании, станках и пр.
  4. Коллекторные. Применяются в ручном электроинструменте.
  5. Асинхронные трехфазные с короткозамкнутым ротором.

Популярность моторов последнего типа объясняется рядом достоинств:

  • простота конструкции;
  • прочность;
  • надежность;
  • низкая стоимость;
  • неприхотливость (не требует ухода).

Все электродвигатели состоят из двух частей: неподвижной и вращающейся. Первая у моторов переменного тока называется статором, у постоянного — индуктором; вторая – соответственно ротором и якорем.

Советы по выбору электродвигателя

Главное при выборе электродвигателя – это подбор его в соответствии с теми условиями, где он будет использоваться. Например, для влажной среды следует выбирать брызгозащитные приборы, а приборы открытого типа категорически нельзя подвергать воздействию жидкости. Помните следующее:

  • двигатели брызгозащитного типа можно применять во влажных и сырых местах. Их конструкция такая, что жидкость не может попасть внутрь прибора под давлением силы тяжести или потока воды;
  • открытый двигатель предполагает, что все его детали будут находиться на виду. С торцов приборы имеют огромные отверстия и хорошо видны обмотки статора. Эти отверстия категорически нельзя блокировать. а сами электродвигатели подобного типа нельзя использовать во влажных помещениях, а также грязных и пыльных;
  • двигатели типа TEFC можно использовать везде, за исключением тех условий, на которые они не рассчитаны, о чем можно прочесть в руководстве пользователя к устройству.

Итак, мы перечислили наиболее распространенные проблемы, которые могут произойти с бытовыми электродвигателями. Практически всех их можно распознать и принять те или иные меры посредством проверки прибора

А как правильно его проверять и на какие детали при этом стоит обращать внимание прежде всего, мы и рассмотрели выше

Осмотр электродвигателя

Сначала проверка начинается с тщательного осмотра. При наличии тех или иных дефектов прибора, он может выйти из строя гораздо раньше установленного срока. Дефекты могут появиться вследствие неправильной эксплуатации двигателя или его перегрузкой. К их числу относят следующее:

  • сломанные подставки или монтажные отверстия;
  • краска посередине двигателя потемнела вследствие перегрева;
  • наличие грязи и других посторонних частиц внутри электродвигателя.

Также осмотр включает в себя проверку маркировки на электродвигателе. Она нанесена на металлический шильдик. который прикреплен снаружи двигателя. Табличка с маркировкой содержит важную информацию о технических характеристиках данного прибора. Как правило, это такие параметры, как:

  • сведения о компании-производителей двигателя;
  • название модели;
  • серийный номер;
  • количество оборотов ротора в минуту;
  • мощность прибора;
  • схема подключения двигателя к тем или иным напряжениям;
  • схема получения той или иной скорости и направления движения;
  • напряжение – требования в плане напряжения и фазы;
  • ток;
  • размеры и тип корпуса;
  • описание типа статора.

Статор на электродвигателе может быть:

  • закрытым;
  • обдуваемым посредством вентилятора;
  • брызгозащитным и прочих типов.

Ремонт асинхронных двигателей

Наиболее распространены асинхронные силовые агрегаты на две и на три фазы. Порядок их диагностики не совсем одинаков, поэтому следует остановиться на этом более подробно.

Трехфазный мотор

Существует два вида неисправностей электрических агрегатов, причем независимо от их сложности: наличие контакта в неположенном месте или его отсутствие.

В состав трехфазного мотора, работающего от переменного тока, входит три катушки, которые могут быть соединены в форме треугольника или звезды. Имеется три фактора, определяющих работоспособность этой силовой установки:

  • Правильность намотки.
  • Качество изоляции.
  • Надежность контактов.

Замыкание на корпус обычно проверяется при помощи мегомметра, но если его нет, можно обойтись обычным тестером, выставив на нем максимальное значение сопротивлений – мегаомы. Говорить о высокой точности измерений в этом случае не приходится, но получить приблизительные данные возможно.

Перед тем, как измерить сопротивление, убедитесь, что двигатель не подключен к электросети, иначе мультиметр придет в негодность. Затем нужно произвести калибровку, поставив стрелку на ноль (щупы при этом должны быть замкнуты). Проверять исправность тестера и правильность настроек, кратковременно касаясь одним щупом другого, необходимо каждый раз перед измерением величины сопротивление.

Приложите один щуп к корпусу электромотора и убедитесь, что контакт имеется. После этого снимите показания прибора, касаясь двигателя вторым щупом. Если данные в пределах нормы, соединяйте второй щуп с выводом каждой фазы поочередно. Высокий показатель сопротивления (500-1000 и более МОм) свидетельствует о хорошей изоляции.

Как проверить изоляцию обмоток показано в этом видео:

Затем необходимо убедиться, что все три обмотки целы. Проверить это можно, прозвонив концы, которые выходят в коробку выводов электродвигателя. Если обнаружен обрыв какой-либо обмотки, диагностику следует прекратить до устранения неисправности.

Следующий пункт проверки – определение короткозамкнутых витков. Довольно часто это можно увидеть при визуальном осмотре, но если внешне обмотки выглядят нормально, то установить факт короткого замыкания можно по неодинаковому потреблению электротока.

Двухфазный электрический двигатель

Диагностика силовых агрегатов этого типа несколько отличается от вышеописанной процедуры. При проверке мотора, оснащенного двумя катушками и запитывающегося от обычной электросети, его обмотки нужно прозвонить при помощи омметра. Показатель сопротивления рабочей обмотки должен быть на 50% меньше, чем у пусковой.

Обязательно должно измеряться сопротивление на корпус – в норме оно должно быть очень большим, как и в предыдущем случае. Низкий показатель сопротивления говорит о необходимости перемотки статора. Конечно, для получения точных данных такие измерения лучше проводить при помощи мегомметра, но такая возможность в домашних условиях имеется редко.

Проверка коллекторных электромоторов

Разобравшись с диагностикой асинхронных моторов, перейдем к вопросу о том, как прозвонить электродвигатель мультиметром, если силовой агрегат относится к коллекторному типу, и каковы особенности таких проверок.

Чтобы правильно проверить работоспособность этих двигателей при помощи мультиметра, нужно действовать в следующем порядке:

  • Включить тестер на Ом и попарно замерить сопротивление коллекторных ламелей. В норме эти данные различаться не должны.
  • Измерить показатель сопротивления, приложив один щуп прибора к корпусу якоря, а другой – к коллектору. Этот показатель должен быть очень высоким, стремиться к бесконечности.
  • Проверить статор на целостность обмотки.
  • Измерить сопротивление, прикладывая один щуп к корпусу статора, а другой – к выводам. Чем выше будет полученный показатель, тем лучше.

Проверить электродвигатель при помощи мультиметра на межвитковое замыкание не получится. Для этого используется специальный аппарат, с помощью которого производится проверка якоря.

Подробно проверка двигателей электроинструмента показана в этом видео:

Проверка коллекторного электродвигателя

Теперь перейдем к вышеупомянутым нюансам, ведь двигатели бывают разных видов. Как прозвонить коллекторный электродвигатель мультиметром? Схема его проверки выглядит следующим образом:

  • Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
  • Затем измерьте сопротивление между корпусом якоря и коллектором.
  • Проверьте обмотки статора.
  • Измерьте сопротивление между корпусом и выводами статора.

Межвитковое замыкание определяется только специальным прибором. Существует способ измерения сопротивления якоря. Снимите с него щетки и подведите к пластинам напряжение до 6в, измерьте падение напряжения между ними.

Для проверки однофазного двигателя прозвоните рабочую и пусковую обмотки. Сопротивление первой должно быть в полтора раза ниже, чем второй.

Для примера возьмем однофазный мотор с тремя выводами, использующийся в стиральных машинах (чаще старого образца). Если между концами очень большое сопротивление, значит катушки соединены последовательно. Остается найти среднюю точку и таким образом определить концы каждой из них в отдельности.

Поскольку электродвигатели встречаются в каждом доме в бытовых приборах – это и холодильник, и пылесос, и многое другое – и они периодически ломаются, знать, как проверить однофазный электродвигатель мультиметром, просто необходимо. Если поломка не слишком серьезная, нести прибор в ремонтную мастерскую нецелесообразно. И у вас появится возможность набраться опыта и получить навыки, работая с двигателями разных типов и модификаций.

Какие электромоторы можно проверить мультиметром?

Существуют разные модификации электрических двигателей, и перечень их возможных неисправностей достаточно велик. Большинство неполадок можно диагностировать, воспользовавшись обычным мультиметром, даже если вы не специалист в этой области.

Современные электродвигатели разделяются на несколько видов, которые перечислены ниже:

  • Асинхронный, на три фазы, с короткозамкнутым ротором. Этот тип электрических силовых агрегатов является самым популярным благодаря простому устройству, которое обеспечивает легкую диагностику.
  • Асинхронный конденсаторный, с одной или двумя фазами и короткозамкнутым ротором. Такой силовой установкой обычно оснащается бытовая техника, запитывающаяся от обычной сети на 220В, наиболее распространенной в современных домах.
  • Асинхронный, оснащенный фазным ротором. Это оборудование имеет более мощный стартовый момент, чем моторы с короткозамкнутым ротором, в связи с чем его используют как привод в крупных силовых устройствах (подъемники, краны, электростанки).
  • Коллекторный, постоянного тока. Такие двигатели широко используются в автомобилях, где они играют роль привода вентиляторов и насосов, а также стеклоподъемников и дворников.
  • Коллекторный, переменного тока. Этими моторами оснащается ручной электроинструмент.

Первый этап любой диагностики – визуальный осмотр. Если даже невооруженным взглядом видны сгоревшие обмотки или отломанные части мотора, понятно, что дальнейшая проверка бессмысленна, и агрегат нужно везти в мастерскую. Но зачастую осмотра недостаточно, чтобы выявить неполадки, и тогда необходима более тщательная проверка.

Различные схемы подключения асинхронных двигателей к сети 380 вольт

Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

Как правильно подключить трехфазный двигатель «звездой»


Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.

На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

Выполняем соединение по схеме «треугольник»


Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.

Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

Особенности проверки электромоторов с дополнительными элементами

Зачастую электрические силовые установки оснащаются дополнительными компонентами, предназначенными для защиты оборудования или оптимизации его работы. Наиболее распространенными элементами, встраивающимися в мотор, являются:

  • Термопредохранители. Они настроены на срабатывание при определенной температуре таким образом, чтобы избежать сгорания и разрушения изолирующего материала. Предохранитель убирается под изоляцию обмоток или фиксируется к корпусу электрического мотора стальной дужкой. В первом случае доступ к выводам не затруднен, и их без проблем можно проверить с помощью тестера. Также можно мультиметром или простой индикаторной отверткой определить, к каким разъемным ножкам выходит защитная схема. Если температурный предохранитель находится в нормальном состоянии, то он должен показывать при измерении короткое замыкание.
  • Термопредохранители могут быть с успехом заменены температурными реле, которые бывают как нормально разомкнутыми, так и замкнутыми (второй тип более распространен). Марка элемента проставляется на его корпусе. Реле для различных типов двигателей выбирается в соответствии с техническими параметрами, ознакомиться с которыми можно, прочитав эксплуатационные документы или найдя нужную информацию в интернете.
  • Датчики оборотов двигателя на три вывода. Обычно ими комплектуются моторы стиральных машин. Основой принципа работы этих элементов является изменение разности потенциалов в пластинке, через которую проходит слабый ток. Питание подается по двум крайним выводам, которые обладают небольшим сопротивлением и при проверке должны показывать короткое замыкание. Третий вывод проверяется только в рабочем режиме, когда на него действует магнитное поле. Не следует измерять величину электропитания датчика при включенном двигателе. Лучше всего вообще снять силовой агрегат и подать ток отдельно на датчик. Для возникновения импульсов на выходе датчика покрутите ось. Если ротор не оснащен постоянным магнитом, придется на время проверки установить его, сняв предварительно сенсор.

Обычного мультиметра, как правило, достаточно для диагностики большинства неполадок, которые могут возникать в электромоторах. Если установить причину неисправности этим прибором не представляется возможным, проверка производится с помощью высокоточных и дорогостоящих аппаратов, которые имеются только у специалистов.

В этом материале содержится вся необходимая информация о том, как правильно проверить электродвигатель мультиметром в бытовых условиях. При выходе любой электротехники из строя самое главное – прозвонить обмотку мотора, чтобы исключить его неисправность, поскольку силовая установка имеет наиболее высокую стоимость по сравнению с другими элементами.

Типы электродвигателей и особенности ремонта

Данные устройства производятся в разных конструктивных исполнениях. Выход из строя обмотки в промышленности ремонтируется отправкой двигателя в ремонтный цех, где двигатели разбирают, чистят, ревизируют.

Потом неисправные обмотки перематывать стараются на специальных намоточных установках
. После этого собирают и проверяют двигатели на рабочих оборотах с измерением тока холостого хода и под предполагаемой нагрузкой.

Электродвигатели подразделяются на два типа:

  • с короткозамкнутым ротором моторы представляют собой простоту изготовления, дешевизну и имеют высокий коэффициент полезного;
  • с фазным ротором, используют такое конструктивное решение при недостаточном напряжении питающей сети, если этого питания не хватает для запуска устройства.

Неисправность таких устройств в быту устраняется совместно с сервисной службой или сдачей этого мотора в мастерскую. Но, что же делать если поблизости нет сервиса и нет возможности отдать в ремонт профессионалам?

Единственный вариант попробовать разобрать в домашних условиях и обеспечить перемотку самостоятельными силами. Перематывать обмотки может человек, обладающий минимальными знаниями
о способе проведения перемотки.

Разборка электродвигателя

Перед разборкой необходимо обработать мотор влажной чисткой, затем очистить ветошью. Откручиваем крышку вентилятора
, снимаем последовательно все болты. После этого спрессовываем вентилятор, предварительно открутив его фиксирующий болт.

Откручиваем крепления подставки
и крепление фланцев. Отсоединяем борно электродвигателя с клеммником. Все крепления и болты надо складывать отдельно, чтобы не было проблем в дальнейшем со сборкой. Откручиваем передний фланец вместе с ротором и вытаскиваем.

Разное устройство электродвигателей заставляет предварительно задумываться: «Какая из обмоток вышла из строя роторная или статорная». С помощью приборов омметра и мегоомметра
проводим проверку обмоток.

Прозваниваем двигатель омметром между тремя фазными выводами на одинаковость сопротивления. Проверяем омметром каждую фазу на землю, сопротивление должно быть порядка нескольких мегоОм и выше. Затем берём мегоомметр и проверяем сопротивление изоляции
каждой обмотки на корпус.

Определились с неисправной обмоткой, в нашем случае неисправна обмотка статора
, а ротор имеет неразборную конструкцию. Демонтаж статора не совсем простая задача, как казалось бы на первый взгляд.

Если обмотка оплавилась очень сильно и электродвигатель вышел из строя от перегрева, то выбивать её не понадобится, она достаточно легко снимется
со своих мест крепления. Случилось так, что обмотка подгорела немного или она в обрыве, то лак очень хорошо будет держать, и даже попытки сбить зубилом не приведут к полному удалению старых частей.

Как вариант, можно развести костёр и нагреть корпус статора
чтобы весь лак внутри выгорел. После таких действий старые отложения высыпятся сами.

Необходимо дать остыть корпусу на воздухе, не прибегая к жидкостному охлаждению, в противном случае корпус не выдержит разности температур
и треснет. Зачистка внутренней поверхности требуется до состояния блеска. Не должно остаться окалин от оплавленного лака и меди.

Потребуется подсчёт количества витков и параметры провода. Подбираем для перемотки именно обмоточный провод
. Эта проводка имеет особенные свойства. По форме бывают округлые и прямоугольного сечения.

Проводка обладает очень малым сопротивлением изоляции
. В мастерских по ремонту имеются механические устройства намотки обмоток, провода берутся с повышенной прочностью изоляции, в маркировке добавляется буква М. Мы проводим перемотку своими руками, поэтому возьмём провод с обычной изоляцией с параметрами соответствующими предыдущей.

Как проверить обмотку электродвигателя с помощью мультиметра

Автор Alexey На чтение 5 мин. Просмотров 3.9k. Опубликовано Обновлено

При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно своими руками в домашних условиях проверить:

  • Асинхронный трёхфазный двигатель с короткозамкнутым ротором – наиболее лёгкий для проверки, из-за его простого внутреннего устройства, благодаря которому, данный тип электродвигателя имеет наибольшую популярность;
  • Асинхронный однофазный (двухфазный, конденсаторный) электродвигатель с короткозамкнутым ротором – часто используется в различной бытовой технике, подключаемой в сеть 220 В. (стиральные машины, пылесосы, вентиляторы).
  • Коллекторный электродвигатель постоянного тока – массово применяется в автомобилях в качестве привода для стеклоочистителей (дворников), стеклоподъёмников, насосов, вентиляторов;
  • Коллекторный электродвигатель переменного тока – используется в ручных электрических инструментах (дрели, перфораторы, болгарки и т.д.)
  • Асинхронный двигатель с фазным ротором – в сравнении с электродвигателем с короткозамкнутым ротором, обладает мощным стартовым моментом, поэтому используется в в качестве привода силового оборудования — подъёмников, лифтов, кранов, станков.

Испытание изоляции обмоток электродвигателя мегомметром

Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, по причине того, что нужно использовать высокое напряжение.

Мегомметр для измерения сопротивления изоляции

В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.

Паспорт асинхронного электродвигателя

Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения (она может сгореть), поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

Как правильно проверить обмотоку электродвигателя на обрыв и межвитковое замыкание мультиметром

Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить межвитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого электродвигателя.

Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

Видео: Как определить начало и конца обмоток трехфазного электродвигателя 

Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

Измерения можно производить любым мультиметром

Цифровой мультиметр Mastech MY61 58954

Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

Проверка асинхронных трёхфазных электродвигателей с короткозамкнутым якорем

У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях якоря наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

Осмотр статора на предмет межвиткового замыкания

Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.

Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда» или «треугольник».

«Звезда» «Треугольник»

Прозвонку можно сделать, даже не снимая перемычки – достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

Специальная перемычка

Проверка конденсаторных электродвигателей

Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

Трехфазный электромотор

Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

Схема двухфазного электродвигателя

Сопротивление рабочей обмотки всегда меньше, чем у пусковой

Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

Часто у таких электродвигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

Проверка коллекторных двигателей

Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

Сначала проверить целостность обмотки статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

Проверка электромоторов с фазным ротором

Асинхронный электромотор с фазным ротором отличается от обычного трёхфазного электродвигателя тем, что в роторе также имеются фазные обмотки, соединённые по типу «звезда», которые подключаются при помощи контактных колец на вале.

Статорные обмотки проверяются как у обычного трёхфазного электродвигателя.  

Фотографии позаимствованы с сайта http://zametkielectrika.ru

Как прозвонить электродвигатель мультиметром – полезные советы

При поломке бытового электроприбора приходится проверять по отдельности все его компоненты.

И если тестирование датчиков затруднений не вызывает — обычно достаточно проверить сопротивление, то с двигателем все не так просто.

Этот узел устроен куда сложнее, и чтобы выявить его неисправность, требуется знать методику проверки. Далее расскажем о том, как прозвонить электродвигатель мультиметром.

Какие электромоторы можно проверить мультиметром

Если в двигателе нет механических повреждений, что обычно определяется визуально, то его неисправность в большинстве случаев обусловлена следующим:

  • произошел обрыв внутренней цепи;
  • случилось замыкание, то есть появился контакт там, где его не должно быть.

Оба дефекта выявляются мультиметром. Сложности возникают только при проверке двигателей постоянного тока: у большинства из них обмотка имеет почти нулевое сопротивление и его приходится замерять косвенным методом, для чего понадобится собрать несложную схему.

Из двигателей переменного тока наиболее востребованы:
  1. Трехфазные асинхронные двигатели работают и при однофазном питании.
  2. Асинхронные одно- и двухфазные с короткозамкнутым ротором конденсаторные. К этому типу относится большинство двигателей бытовых приборов.
  3. Асинхронные с фазным ротором. Такой ротор имеет трехфазную обмотку. Двигатели с фазным ротором применяются там, где требуется регулировка частоты вращения и понижение пускового тока: в крановом оборудовании, станках и пр.
  4. Коллекторные. Применяются в ручном электроинструменте.
  5. Асинхронные трехфазные с короткозамкнутым ротором.

Популярность моторов последнего типа объясняется рядом достоинств:

  • простота конструкции;
  • прочность;
  • надежность;
  • низкая стоимость;
  • неприхотливость (не требует ухода).
Все электродвигатели состоят из двух частей: неподвижной и вращающейся. Первая у моторов переменного тока называется статором, у постоянного — индуктором; вторая – соответственно ротором и якорем.

Ремонт асинхронных двигателей

Из асинхронных моторов наиболее распространены двух- и трехфазные. Тестируются они по-разному. Рассмотрим каждую разновидность подробно.

Трехфазный мотор

Обмотка статора такого двигателя состоит из трех частей (фаз), разнесенных на 120 градусов и соединенных по схеме «звезда» или «треугольник». Двигатель работает при выполнении таких условий:

  • намотка выполнена в правильном порядке;
  • между витками, а также между токоведущими частями и корпусом есть надежная изоляция;
  • во всех соединениях имеется хороший электрический контакт.

Сначала проверяется сопротивление изоляции между токоведущими частями и корпусом. Правильнее это делать мегомметром — тестером, способным генерировать напряжение до 2500 В и измерять сопротивления до 300 ГОм. Подойдет и более распространенный мультиметр: точно замерять сопротивление он не позволит, но пробой выявить способен. Переключатель диапазонов измерений устанавливают на максимальное значение — 2 или 20 МОм.

Трехфазные асинхронные двигатели

Замеры выполняют в таком порядке:

  • проверяют работоспособность прибора, приложив щупы один к другому: в норме на дисплее отображается мизерное значение или число с двумя нулями впереди;
  • касаются обоими щупами корпуса двигателя: при наличии контакта мультиметр также покажет мизерное сопротивление;
  • продолжая удерживать один щуп на корпусе, вторым по очереди касаются выводов каждой фазы: в норме мегомметр показывает 500 – 1000 МОм или более, мультиметр — единицу (символизирует бесконечность).
Низкое сопротивление между обмоткой и корпусом говорит о замыкании, требуется перемотка статора.

Далее проверяют:

  1. Целостность обмотки: данную операцию удобно выполнять, переключив мультиметр в режим прозвонки. Если в цепи обрыва нет, прибор подаст звуковой сигнал, то есть пользователю не приходится вчитываться в показания на дисплее. Концы каждой обмотки находятся в коробке выводов. Отсутствие звукового сигнала или высокое значение сопротивления на дисплее говорит об обрыве цепи.
  2. Короткозамкнутые витки: их сопротивление (достаточно мультиметра) должно лежать в определенных пределах. Завышенное значение говорит об обрыве, низкое — о межвитковом замыкании.

В завершение замеряют сопротивление обмоток. Допускается разница не более 1 Ом.

При большем несоответствии, обмотка с меньшей индуктивностью подгорает из-за более высокой силы тока.

Двухфазный электрический двигатель

В статоре имеются две обмотки:

  1. рабочая;
  2. пусковая.

Замеряют мультиметром сопротивление каждой и сравнивают: в норме сопротивление пусковой вдвое выше, чем у рабочей.

Также двигатель проверяется на предмет замыкания между токоведущими частями и корпусом — по той же схеме, что и трехфазный.

Проверка коллекторных электромоторов

В месте прилегания щеток у коллекторных двигателей имеются секции или ламели.

Порядок проверки:

  1. Мультиметром определяют сопротивление между соседними ламелями. В норме значения для каждой пары одинаковы. При обрыве (бесконечно высокое сопротивление) или коротком замыкании (мизерное сопротивление) меняют таходатчик двигателя.
  2. Замеряется сопротивление между коллектором и корпусом ротора: в норме оно бесконечно высокое.
  3. Прозванивают обмотки статора на целостность.
  4. Проверяют сопротивление между корпусом статора и токоведущими частями: в норме — бесконечно высокое.

Далее определяют сопротивление катушки ротора. Оно крайне мало, потому замерить напрямую мультиметром нельзя — велика погрешность. Применяют косвенный метод:

  1. Последовательно с катушкой соединяют высокоточный резистор малого номинала (около 20 Ом). Высокоточными называют резисторы с допуском не более 0,05%. В цветовой маркировке у них присутствует серая полоса (не путать с серебряной).
  2. Цепь «катушка — резистор» подключается к источнику постоянного тока напряжением 12 В или выше. Чем больше напряжение, тем точнее измерения. В качестве источника на 12 В применяют автомобильный аккумулятор или компьютерный блок питания.
  3. Снимают мультиметром падение напряжения на катушке. Здесь важно соблюдать полярность: щуп, включенный в порт COM (отрицательный потенциал), коротят со стороны «минуса» или массы; второй (подсоединяется в разъем «V/Ω») — со стороны «плюса».

Напряжение, мультиметр измеряет намного точнее сопротивления — с верностью до 0,1 мВ. На этом и основан косвенный метод.

Затем рассчитывают сопротивление катушки по формуле: Rкат = Uкат * Rрез / (12 – Uкат), где

  • Rкат — сопротивление катушки, Ом;
  • Uкат — падение напряжения на катушке, В;
  • Rрез — сопротивление резистора, Ом;
  • 12 — напряжение источника питания, В.

Проверка двигателей постоянного тока

Порядок тестирования:

  1. Проверка сопротивления обмоток: у таких моторов они имеют низкое сопротивление, потому его также определяют косвенно — по напряжению и силе тока. Потребуется два мультиметра: один используется как вольтметр, другой одновременно — как амперметр. На обмотку подается питание от батареи напряжением 4 – 6 В.  Сопротивление рассчитывают по формуле: R = U / I.
  2. Замер сопротивления обмоток якоря и между пластинами коллектора. В норме мультиметр отображает равные значения.

Для сопротивления между пластинами коллектора максимально допустимая разница составляет 10%, при наличии уравнительной обмотки — 30%.

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

Чаще всего применяются:
  1. Термопредохранители: отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны. Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).
  2. Термореле: часто применяются вместо термопредохранителей. Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»). Если термореле сгорело, по его параметрам подбирают аналог.
  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Запитывается датчик через два крайних вывода. Если коснуться их щупами мультиметра в режиме омметра, в норме он отобразит мизерное сопротивление.

Проверка третьего вывода возможна только в рабочем режиме, когда присутствует магнитное поле. Попытка прозвонить датчик на ходу, то есть при включенной стиральной машине, может привести к травме. Рабочий режим безопаснее сымитировать, демонтировав двигатель и запитав датчик отдельно. Импульсы на выходе датчика формируют путем поворота ротора.

Мультиметр позволяет выявить пусть не все, но многие поломки электродвигателя. В основном при помощи прозвонки выявляются обрывы и короткие замыкания. Полную диагностику проводят на специальных стендах, для измерения сопротивления изоляции требуется мегомметр.

Как проверить электродвигатель мультиметром: полезне советы

В настоящее время используется множество бытовой техники, работа которой связана с электрическим двигателем. Его неисправность причиняет беспокойство и лишает привычного комфорта. Мультиметр — универсальный измерительный прибор, который позволяет самостоятельно провести первичную диагностику агрегата.

Какие инструменты нужны

В первую очередь потребуется непосредственно само устройство. Но перед тем как прозвонить электродвигатель мультиметром, нужно знать принципы работы этого прибора.

Основные функции стандартного измерителя позволяют измерить с достаточной точностью:

  • величину активного сопротивления цепи электрическому току;
  • постоянное напряжение;
  • напряжение переменного тока.

Некоторые модели дополнительно дают проверить:

  • целостность электрической цепи прозвонкой;
  • величину емкости конденсатора.

Для вскрытия корпусов техники и моторов нужны отвертки, гаечные ключи, пассатижи, молоток. Благодаря этому набору, а также минимальным знаниям в электротехнике вопрос, как проверить электродвигатель мультиметром, легко выявить неисправности, которые устраняются самостоятельно.

Сложные повреждения ликвидируются сервисными мастерскими, где есть точное оборудование.

Какие электромоторы можно проверить мультиметром?

Электрические машины используют принцип вращения подвижной части относительно статичной за счет магнитной индукции, возникающей в катушках, по которым протекает электрический ток. В зависимости от типа питания они делятся на следующие:

Конструктивный элементПитающий ток
ПеременныйПостоянный
НеподвижныйСтаторИндуктор
ПодвижныйРоторЯкорь

 

Электромоторы бывают с питанием от тока:

  • Постоянного, со схемными решениями упрощения регулировки мощности, оборотов.
  • Переменного, одно или трехфазного. Они разделены:
    • синхронные, у них обороты ротора совпадает с частотой изменения индукции статора;
    • асинхронные. Количество оборотов не зависит от сети. Роторы таких двигателей различаются схемой соединения обмоток, могут быть:
      • короткозамкнутые, где роль обмоток выполняют алюминиевые или медные стержни, залитые в поверхность под углом к оси вращения, соединенные на торцах ротора кольцами;
      • фазные: концы уложенной в пазы сердечника катушки соединены «звездой» или «треугольником» с контактными ламелями на валу ротора.

Фазный ротор более сложен, его пусковые характеристики лучше, регулировки шире. Но чаще используют короткозамкнутый ротор из-за простоты конструкции, высокой надежности, меньшей цены.

Проверка электродвигателя внешним осмотром

До того как проверить обмотку электродвигателя мультиметром, нужно исследовать отключенный от сети мотор вместе со шнуром питания для поиска механических повреждений, следов пробоя изоляции или перегрева. Ось двигателя должна вращаться в подшипниках легко, без заеданий или заклиниваний. Не должно быть запаха горелой изоляции, растеканий масла, наплывов.

Отсутствие видимых повреждений может потребовать разборки двигателя для осмотра графитовых щеток, контактных ламелей, состояния катушек, их выводов. Замыкание электрической цепи вызывает нагрев, что проявляется в хорошо видимых изменениях цвета вблизи пробоя изоляции.

Как найти обрыв или межвитковое замыкание

Если следов повреждения не видно, тогда пора приступать к измерениям при помощи цифрового тестера. Для этого нужно сделать следующее:

  1. Вставить измерительные щупы в гнезда на лицевой панели.
  2. Переключателем режима выбрать прозвонку, соединить оголенные концы щупов, измеритель запищит. Разрыв прекратит звук. Так проверяется наличие, исправность элемента питания, измерительных шнуров, гнезд. Этот режим позволяет прозвонить цепь не глядя на индикатор, на слух.
  3. Если прибор без пищалки, включается режим измерения сопротивления на самом нижнем пределе, обычно это «200» Ом. Совмещение наконечников шнура отразится на индикаторе мультиметра цифрами, обозначающими сопротивление провода щупов в пределах 0,6÷1,5 Ом.

Обрыв ищется прозвонкой или измерением сопротивления проводов, шнуров, всех катушек, предварительно разобрав соединение их концов. Ротор проверяется измерением каждой пары выводов.

Межвитковое замыкание обмоток, сделанных из относительно толстой проволоки с маленьким сопротивлением, мультиметром не определишь. Замыкание нескольких витков уменьшит общее сопротивление на доли ома, не отражаемые дисплеем.

Проверка изоляции обмоток относительно корпуса

Используя мультиметр в режиме измерения максимального сопротивления, можно убедиться, что нет плохой изоляции, замыканий на массу. Это опасно для жизни.

Все проверяется на отключенном от сети моторе. Один щуп прибора соединяется с корпусом, вторым касаются по всех выводов обмоток. Индикатор должен показывать обрыв, или большое, сотни мегаом, сопротивление во всех случаях.

Затем нужно проверить отсутствие пробоя изоляции между обмотками,  для чего щупы попарно подключают к выводам разных катушек. Индикатор не должен показывать сопротивление.

Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

Трехфазный двигатель мультиметром проверяется быстро. Разобрав концы, мультиметром измеряют сопротивление каждого из них. Разница в величинах должна быть меньше 10%. Попутно нужно убедиться, что нет пробоя на корпус между катушками.

Точно место межвиткового замыкания покажет приспособление, сделанное из понижающего трехфазного трансформатора, к выводам подключается статор разобранного двигателя. Подается питание, внутрь помещается металлический шарик, который при исправных обмотках катается по внутренней поверхности. Если есть короткое замыкание витков – шарик прилипнет в этом месте.
Мастера, занимающиеся ремонтом, используют токовые клещи. Каждая фазная катушка одинакового сопротивления пропускает равный ток, если нет перекоса напряжения фаз. Если в одной ток больше – вероятнее всего там межвитковая неисправность.

Проверка конденсаторных двигателей

Асинхронный двигатель, где последовательно с одной из катушек которого включена емкость для создания сдвига фазы тока, является конденсаторным. Тест такого электромотора, кроме прозвонки, включает в себя проверку емкости, которая подбирается для создания сдвига фаз между катушками равным 90 градусов, чтобы вращающий момент ротора был максимальным.

Емкость рабочего конденсатора относительно мала, проверить ее можно, если мультиметр может мерять емкость, подсоединив к выводам детали, отключенной от схемы двигателя, предварительно кратковременно закоротив ее выводы.

Проверка моторов с фазным ротором

Тестирование мотора с фазным ротором похоже на проверку обычного асинхронного двигателя, дополнительно измеряют обмотки ротора. Их схема соединения выполняется «звездой» для питающей трехфазной сети напряжением 380 вольт либо для сети 220 используется «треугольник».

Измерения мультиметром проводятся по той же методике, что для статора.

Проверка пускового конденсатора

Уверенный запуск электродвигателя происходит, когда в момент включения питания параллельно рабочей емкости кратковременно подключается пусковой конденсатор. Он служит для создания на старте кругового магнитного поля, после начала вращения ротора отключается. Пусковой конденсатор легко проверить мультиметром, даже если в нем нет режима измерения емкости:

  1. Конденсатор, предварительно разрядив замыканием выводов, отсоединяют от схемы электродвигателя, тщательно осматривают. Если есть трещины, вздутие корпуса, другие видимые повреждения — емкость можно менять на новую без проверки.
  2. Выставить на тестере режим измерения сопротивления на пределе 2000 килоом, проверить работоспособность кратковременным соединением измерительных щупов.
  3. Щупы соединить с выводами конденсатора. Разряженный, он начнет быстро заряжаться от щупов прибора. Емкость его относительно велика, много больше, чем у рабочего конденсатора. Индикатор мультиметра сначала покажет маленькое сопротивление, которое по мере заряжания емкости будет увеличиваться, потому что зарядный ток постепенно уменьшается. По окончании процесса мультиметр покажет бесконечно большое сопротивление, обрыв.
  4. Перевернуть полярность подключения щупов к конденсатору, увидеть рост сопротивление, с индикацией обрыва в конце измерения. Этим подтвердится, что конденсатор исправен.
  5. Проверить пробой пластин на корпус конденсатора, если он металлический, измеряя сопротивление между корпусом детали и каждым из выводов поочередно.

Индикатор тестера должен показать обрыв. Другие значения, это признак неисправности.

Ремонт асинхронных двигателей

Выявленные повреждения нужно устранять. Некоторые из них легко сделать дома, «на коленке», проверить электродвигатель мультиметром на 220 вольт достаточно просто. Другие потребуют обращения в ремонтную электротехническую мастерскую, где смогут устранить как механические повреждения, так и заменить или перемотать катушки.

Нельзя начинать сложный ремонт без условий, базы опыта и знаний.

Испытание изоляции обмоток

Эксплуатационная надежность электродвигателя обусловлена состоянием изоляции. Вибрация работающего двигателя, тепловые, химические процессы ухудшают электроизолирующие свойства. Поэтому при диагностике после ремонта нужно испытать в электротехнической лаборатории изоляцию.

Есть испытательный трансформатор, вторичное повышенное напряжение которого подается между одной из обмоток и остальными катушками, соединенными с корпусом электромотора. Величины испытательных напряжений:

Мощность электродвигателя, кВтИспытательное напряжение, В
До 1500+2Uноминальное
От 1, для номинального напряжения <100 вольт1000+2Uн
От 1, для номинального напряжения >100 вольт1000+2Uн, но не менее 1,5 кВ

Если ремонт выполнялся своими руками и нельзя проверить стендом, нужно испытать изоляцию мотора мегомметром. Он подает высокое напряжение, какого нет в мультиметре.

Проверяя электродвигатель мультиметром на 380 вольт, нужно учесть, что работы проводятся при отключенной сети. Работа с электричеством требует собранности, внимания, чтобы не получить удара током. Соблюдая меры безопасности, проверить исправность агрегата достаточно просто.

Проверка двигателя постоянного тока

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:
  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Наладку двигателей постоянного тока выполняют в следующем объеме: внешний осмотр, измерение сопротивлений обмоток постоянному току, измерение сопротивлений изоляции обмоток относительно корпуса и между собой, испытание междувитковой изоляции обмотки якоря, пробный пуск.

Внешний осмотр двигателя постоянного тока, как и осмотр асинхронного двигателя, начинают со щитка. На щитке двигателя постоянного тока должны быть указаны следующие данные:

  • наименование или товарный знак завода-изготовителя,
  • заводской номер машины,
  • номинальные данные (мощность, напряжение, ток, частота вращения),
  • способ возбуждения машины,
  • масса и ГОСТ машины.

Выводы обмотки двигателя постоянного тока должны быть надежно изолированы друг от друга и от корпуса, расстояние между ними и корпусом должно быть не менее 12—15 мм. Особое внимание при внешнем осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), так как их состояние в значительной мере влияет на коммутацию машины, а следовательно, и на устойчивость ее работы.

При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, а также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция между коллекторными пластинами должна быть выбрана на глубину 1—2 мм, с краев пластин должна быть снята фаска шириной 0,5—1 мм (в зависимости от мощности двигателя). Промежутки между пластинами должны быть совершенно чисты — в них не должно быть металлических стружек или опилок, пыли от графитовых щеток, масла, лака и т. п.

На работу двигателя постоянного тока, а особенно его щеточного механизма, влияют биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных двигателей предельно допустимая величина биения не должна превышать 0,02—0,025 мм. Величину амплитуды вибрации измеряют индикатором часового типа.

При проведении измерения наконечник индикатора прижимают к поверхности в том направлении, в котором необходимо произвести измерение вибрации. Так как поверхность коллектора прерывистая (чередуются пластины коллектора и впадины), используют хорошо притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в пределах определенного угла, величина которого и оценивается по шкале индикатора в сотых долях миллиметра. Однако этот прибор позволяет измерять вибрации при частоте вращения не более 750 об/мин. Для двигателей, частота вращения которых превышает 750 об/мин, необходимо пользоваться специальными приборами—виброметрами или вибрографами, которые позволяют измерять или записывать вибрацию тех или иных узлов машины.

Биение также измеряют с помощью индикатора. Биение коллектора измеряют как в холодном, так и в нагретом состоянии машины. При измерении обращают внимание на поведение стрелки индикатора. Плавное движение стрелки указывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, особенно опасной для щеточного механизма двигателя. Измерение биения носит условный характер, так как опыт работы оказывает, что есть двигатели, у которых при малых частотах вращения значения биений велики, а при номинальной скорости они работают удовлетворительно. Потому окончательное заключение о качестве работы коллектора можно дать лишь после проверки работы двигателя под нагрузкой.

Осматривая механическую часть двигателя постоянного тока, следует обращать внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном двигателе). Зазор, измеренный в диаметрально противоположных точках между якорем и главными полюсами двигателя, не должен отличаться от среднего значения более чем на 10% при зазорах менее 3 мм и не более чем на 5% при зазорах более 3 мм.

После проверки биений и вибраций приступают к регулировке щеточного механизма двигателя. Щетки в обоймах должны свободно перемещаться, но не должны пошатываться. Нормальный зазор между щеткой и обоймой в направлении вращения не должен превышать 0,1— 0,4 мм, в продольном направлении 0,2—0,5 мм.

Нормальное удельное давление щеток на коллектор в зависимости от марки материала щетки должно быть не менее 150—180 г/см2 для графитовых щеток, 220— 250 г/см2 для медно-графитовых. Во избежание неравномерного распределения тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом. Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183—66 первыми прописными буквами их наименования с добавлением после них цифры 1 — для начала обмотки и 2 — для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3—4, 5—6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N—п, S—s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

Рис. 1. Притирание щеток к коллектору: . а — неправильно; б — правильно

Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму — торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей.

При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

Точность обычных приборов невелика — в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

Полярность щеток определяется одним из следующих способов.

1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» — в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра—вольтметра, одинарного или двойного моста и микроомметром.

Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

2. Сопротивление обмотки якоря измеряют по методу амперметра—вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4—6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

Рис. 6. Схема проверки правильности установки щеток на нейтраль

Рис. 7. Схема определения полярности щеток

Рис. 8 Измерение сопротивления якоря с помощью двухконтактного щупа

Аналогичные измерения проводят для всех остальных пластин. Значения сопротивлений между каждыми соседними пластинами не должны отличаться друг от друга более чем на 10% от номинального значения (при наличии у машины уравнительной обмотки отличие может достигать 30%).

Измерение сопротивления изоляции обмоток и проверку электрической прочности изоляции обмоток проводят аналогично соответствующим пунктам проверки асинхронных двигателей.

Первоначальное включение двигателя постоянного тока проводят непосредственно после наладки двигателя с целью окончательной проверки его исправности. Аналогично асинхронным двигателям двигатели постоянного тока испытывают в режиме холостого хода при отсоединенном механизме и редукторе. Подобное испытание двигателя постоянного тока в режиме холостого хода необходимо для правильной настройки схемы управления.

Пуск двигателя на холостом ходу и под нагрузкой нужно проводить с большими предосторожностями. Непосредственно перед пуском необходимо убедиться в легкости вращения якоря, отсутствии задевания якоря о статор, в наличии смазки в подшипниках, а также проверить реле защиты. Ток срабатывания максимальной защиты не должен превышать 200% максимального тока двигателя. При пробном пуске двигателя постоянного тока контролируют качество коммутации, наблюдая за коллектором во время толчков пускового тока, а затем при работе двигателя вхолостую на максимальном напряжении и при максимальной частоте вращения.

Нагрузка не должна вызывать усиления степени искрения по сравнению с работой на холостом ходу. Допускается работа двигателя постоянного тока при степени искрения щеток 11/2 и даже 2. При более значительной степени искрения проводят наладку коммутации: установку щеток на нейтраль, проверку правильности включения обмотки дополнительных полюсов, проверку нажатия щеток на коллектор и степени прилегания щеток к коллектору.

Следует помнить, что недопустимое искрение на коллекторе может быть связано с неисправностью схемы управления, так как от схемы зависит скорость изменения тока в цепях якоря и возбуждения, максимальные значения толчков тока, соотношение тока якоря и магнитного потока машины в различные моменты времени. После наблюдения работы под нагрузкой и настройки коммутации двигателя постоянного тока процесс наладки можно считать законченным.

Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.

Как прозвонить: условия

Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.

Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.

Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.

Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.

Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя.
    Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу».
    Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.

Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.

Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Для того чтобы правильно прозвонить данный тип двигателя, необходимо осуществить проверку возможной утечки электрического тока на «массу».

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.

Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

После того как будет произведены все диагностические мероприятия, и электродвигатель будет отремонтирован, производится испытание устройства прежде чем устанавливать его в бытовой прибор или инструмент.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

Как прозвонить однофазный двигатель

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.

Как прозвонить: условия

Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.

Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.

Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.

Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.

Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя.
    Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу».
    Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.

Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.

Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Для того чтобы правильно прозвонить данный тип двигателя, необходимо осуществить проверку возможной утечки электрического тока на «массу».

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.

Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

После того как будет произведены все диагностические мероприятия, и электродвигатель будет отремонтирован, производится испытание устройства прежде чем устанавливать его в бытовой прибор или инструмент.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

Как проверить (прозвонить) мультиметром обмотку двигателя пылесоса

Визуальный контроль состояния обмоток, сегментов мотора выявил участки с потемневшей проводкой или характерным запахом. Следствием разрушения обмоток, выводов, неплотного прилегания ламелей или замыкания на корпус бывает искрение, запах горелого пластика, возможен пожар или удар электрическим током работающего. Найти неисправность можно, если проверить цепь двигателя пылесоса на обрыв или замыкание мультиметром. Мы расскажем, как безопасно, правильно, в нужной последовательности провести диагностику.

Как проверить двигатель пылесоса на исправность

Еще до того, как приступить к трудоемкой операции по разбору двигателя в поисках неисправности, проверьте, есть ли напряжение на двигателе пылесоса. Для этого нужно снять крышку и измерить мультиметром нагрузку на входной клемме. Проверка работы пусковой кнопки, исправность семистора и плавкого предохранителя на корпусе мотора поможет предотвратить глубокую разборку узла.

В пылесосах установлены синхронные коллекторные двигатели. Работают они от однофазного тока напряжением 220 В. Устройство состоит из вращающейся части, совмещенной с валом – ротором (якорем) и неподвижной – статором. Коллектор  принимает напряжение от сети через передаточный узел, от графитовыех щеток. При нормальной работе двигателя щетки искрят умеренно. Повышенное образование искр – повод для ревизии технического состояния двигателя пылесоса. Как самостоятельно проверить двигатель пылесоса мультиметром?

Проверка ведется визуальным и инструментальным методом. В качестве тестера используют мультиметр – универсальный аппарат для проверки любого устройства, использующего электрический ток. Им можно измерить сопротивление двигателя пылесоса в контуре. Это удобный способ найти обрыв в линии, используя замкнутую цепь.

Смысл другой операции, прозвонки, заключается в определение наличия контакта между двумя проводами. Перед тем, как прозвонить двигатель пылесоса мультиметром переключатель режимов устанавливается в режим «зуммер». При замерах, на положительный результат подается звуковой сигнал. Так проверяют исправность предохранителей и исправность схем. Этим способом находят короткое замыкание – когда 2 или несколько проводов спаялись.

Для того чтобы найти сопротивление обмотки двигателя пылесоса нужно измерить показатель между соседними ламелями и он должен быть одинаковым. В этом случае сопротивление полоски исчезающее мало, для измерения используется двумя приборами, амперметром и вольтметром. Оба они работают в мультиметре. Для этого устанавливается последовательно с объектом измерения резистор на 20 Ом. Результат определяют, одновременно снимая показания с амперметра и вольтметра. Подсчет сопротивления ведется по формуле R=U/I.

Чтобы измерить целостность обмотки двигателя пылесоса, ищут пару и прозванивают каждую по очереди, измеряя сопротивление. Показание «бесконечность» означает обрыв, установить место повреждения невозможно – прозвонка двигателя пылесоса показала его непригодность к дальнейшей эксплуатации. Если один вывод работает в разных парах, значит найдено КЗ.

Есть и добавочные способы, как проверить двигатель пылесоса на исправность. Пробой на корпус определяется, если хотя бы один провод в контакте с корпусом покажет 0. Измерение между корпусом и медными пластинами должно равняться бесконечности. Если при измерении сопротивления между ламелями ротора, в двух соседних пластинах сопротивление больше в 2 раза, чем в других контактах – нужно искать обрыв.

Межвитковое замыкание в домашних условиях не определяется. Но если все замеры проведены, а электродвигатель не запускается, возможно, это именно тот случай, когда неисправность определяют специальным прибором.

Видео

Практический урок – как проверить на обрыв обмотки коллекторного двигателя

Базовое испытание двигателя с помощью мультиметров и амперметров

Когда электродвигатель не запускается, работает с перебоями, перегревается или постоянно отключает устройство защиты от сверхтока, может быть множество причин. Иногда проблема заключается в источнике питания, в том числе в проводниках параллельной цепи или контроллере мотора. Другая возможность заключается в том, что ведомая нагрузка заклинивает, заедает или не соответствует требованиям. Если неисправен сам двигатель, неисправность может быть связана с обгоревшим проводом или соединением, неисправностью обмотки, включая повреждение изоляции, или неисправным подшипником.

Переносной мультиметр

Ряд диагностических инструментов – токоизмерительные клещи, датчик температуры, мегомметр или осциллограф – могут помочь прояснить проблему. Предварительные (часто окончательные) тесты обычно проводятся с использованием универсального мультиметра. Этот тестер может предоставить диагностическую информацию для всех типов двигателей.

Если двигатель полностью не отвечает, нет гудения переменного тока или ложных запусков, снимите показания на клеммах двигателя. Если нет напряжения или пониженное напряжение, вернитесь к восходящему потоку.Снимайте показания в доступных точках, включая разъединители, контроллер мотора, любые предохранители или распределительные коробки и т. Д., Обратно на выход устройства защиты от перегрузки по току на входной панели. То, что вы ищете, – это, по сути, тот же уровень напряжения, который измеряется на главном выключателе входной панели.

При отсутствии электрической нагрузки на обоих концах проводников ответвленной цепи должно быть одинаковое напряжение. Когда электрическая нагрузка цепи близка к мощности цепи, падение напряжения не должно превышать 3% для оптимального КПД двигателя.При трехфазном подключении все ветви должны иметь практически одинаковые показания напряжения без выпадения фазы. Если эти показания различаются на несколько вольт, их можно выровнять, прокручивая соединения, стараясь не реверсировать вращение. Идея состоит в том, чтобы согласовать напряжения питания и импедансы нагрузки, чтобы сбалансировать три ноги.

Если электроснабжение удовлетворительное, проверьте сам двигатель. Если возможно, отключите груз. Это может восстановить работу двигателя. При отключенном и заблокированном питании попробуйте провернуть двигатель вручную.Во всех двигателях, кроме самых больших, вал должен вращаться свободно. В противном случае имеется препятствие внутри или заедание подшипника. Довольно новые подшипники подвержены заклиниванию из-за более жестких допусков. Это особенно актуально, если окружающая влажность или двигатель какое-то время не использовался. Часто хорошую работу можно восстановить, смазав передние и задние подшипники без разборки двигателя.

Если вал вращается свободно, установите мультиметр на функцию измерения сопротивления. Обмотки (все три в трехфазном двигателе) должны иметь низкое сопротивление, но не ноль.Чем меньше двигатель, тем выше будет это показание, но он не должен открываться. Обычно он будет достаточно низким (менее 30 Ом) для включения звукового индикатора целостности цепи.

Для правильной работы двигателя все обмотки должны иметь МОм относительно земли, то есть корпуса двигателя. Если обмотка заземлена, изоляция обмотки нарушена или якорь касается статора, за исключением случаев, когда внутри имеется возможность ослабить или натереть провод.

Малые универсальные двигатели, как и переносные электродрели, могут содержать обширную схему, включая переключатель и щетки.В режиме омметра подключите измеритель к вилке и следите за сопротивлением, пока вы поворачиваете шнур в том месте, где он входит в корпус. Переместите переключатель из стороны в сторону и, закрепив курковый переключатель, чтобы он оставался включенным, нажмите на щетки и поверните коммутатор рукой. Любые колебания цифровых показаний могут указывать на неисправность. Часто для восстановления работы требуется новый набор щеток.

Показания силы тока

полезны при всех видах электронных и электрических работ. По показаниям напряжения вы знаете электрическую энергию, доступную на клеммах, но не знаете, сколько тока течет.У мультиметров всегда есть текущая функция, но с этим есть две проблемы. Во-первых, исследуемая цепь должна быть отключена (а затем восстановлена), чтобы подключить прибор последовательно с нагрузкой. Другая трудность заключается в том, что мультиметр не способен обрабатывать ток, присутствующий даже в небольшом двигателе. Весь ток должен протекать через измеритель, мгновенно сжигая провода зонда, если не разрушая весь инструмент.

Цифровые и аналоговые клещи амперметры.

Отличным инструментом для измерения тока двигателя являются клещи-клещи (торговое название Amprobe). Он позволяет обойти такие трудности, измеряя магнитное поле, связанное с этим током, и отображая результат в цифровом или аналоговом отсчете, калиброванном в амперах.

Токоизмерительные клещи абсолютно удобны в использовании. Просто откройте подпружиненные зажимы, вставьте провод под напряжением или нейтраль, затем отпустите зажимы. Проволоку не нужно центрировать в отверстии, и это нормально, если она проходит под углом.Однако таким способом нельзя измерить весь кабель, содержащий горячий и нейтральный проводники. Это потому, что электрический ток, протекающий по двум проводам, движется в противоположных направлениях, поэтому два магнитных поля компенсируются. Следовательно, невозможно измерить ток в шнуре питания, как это часто требуется. Чтобы разобраться в этой ситуации, сделайте разветвитель. Это короткий удлинитель подходящего номинала с удаленным примерно шестидюймовым кожухом, чтобы можно было отделить один из проводов и измерить его.

Цифровые и аналоговые клещи

работают хорошо и способны измерять ток до 200 А, что достаточно для большинства моторных работ.

Основная процедура заключается в измерении пускового и рабочего тока для любого двигателя, когда он подключен к нагрузке. Сравните показания с задокументированными или паспортными данными. По мере старения двигателей потребляемый ток обычно возрастает из-за падения сопротивления изоляции обмотки. Избыточный ток вызывает тепло, которое должно рассеиваться. Деградация изоляции ускоряется до схода лавины, вызывающей перегорание двигателя.

Показания амперметра подскажут вам, где вы находитесь в этом континууме. На промышленном объекте в рамках планового технического обслуживания электродвигателя можно снимать периодические показания тока и заносить их в журнал, размещенный поблизости, чтобы можно было заранее определить тенденции к разрушению и избежать дорогостоящих простоев.

Как проверить обмотки двигателя

Если вы считаете, что у вас плохие обмотки двигателя шпинделя, важно знать наверняка. Если у вас есть доступ к мультиметру, легко определить, есть ли у вас немедленная проблема.Вот базовая информация о том, как проверить обмотки двигателя с помощью мультиметра. Имейте в виду, что это всего лишь быстрый способ определить, нуждается ли ваш двигатель в дальнейшем тестировании или полной перемотке. Мы рекомендуем этот тест мегагара только в качестве начала для выяснения того, что может быть не так с вашим двигателем, и всегда выполняйте импульсный тест.

Как проверить двигатель шпинделя на замыкание на землю
  1. Установите мультиметр на Ом.
  2. Начните с полного отключения двигателя шпинделя от всех источников питания.
  3. Проверьте каждый провод, включая T1, T2, T3 и заземляющий провод. Если показание бесконечно, с вашим мотором все в порядке. Если вы получаете нулевое показание или какое-либо показание целостности цепи, у вас проблема либо с двигателем, либо с кабелем.
  4. Предполагая, что вы не получили бесконечное показание, отсоедините двигатель от кабеля и проверьте каждый отдельно. Во время тестирования убедитесь, что выводы на каждом конце не касаются других выводов или чего-либо еще. Это должно позволить вам изолировать вашу проблему.

Как проверить двигатель шпинделя на обрыв или короткое замыкание в обмотках
  1. Установите мультиметр на Ом.
  2. Испытание T1 – T2, T2 – T3 и T1 – T3. Каждый раз вы должны получить значение около 0,8 Ом, хотя приемлемо значение от 0,3 до 2. Если вы получили показание 0, у вас короткое замыкание между фазами. Если ваше показание бесконечно или значительно превышает 2 Ом, вероятно, у вас обрыв.
  3. Если двигатель шпинделя не прошел проверку, возможно, вы захотите убедиться, что проблема не в разъеме, на котором может быть охлаждающая жидкость, которая мешает вашим результатам. Если вы просушите и повторно протестируете, вы можете получить лучший результат.
  4. Проверьте свои вставки. Если на вставках двигателя есть следы ожогов, это может быть причиной короткого замыкания, и вам следует заменить их. Вы также должны проверить на износ там, где трос движется через трекинг.

Проверка двигателя постоянного тока на наличие неисправностей

Если у вас возникли проблемы с двигателем постоянного тока, проверьте щетки:

  1. Снимите круглые колпачки вокруг двигателя и проверьте пружину и механизм щетки внизу, чтобы убедиться, что щетка не изношена и не нуждается в замене.
  2. Проверить коллектор – деталь, с которой работают щетки – на износ. При необходимости вытрите его.

Если у вас возникли проблемы с определением проблем, с которыми вы сталкиваетесь с двигателями, если замена отдельных деталей невозможна или не имеет никакого эффекта, или если ваш двигатель нуждается в перемотке, вы можете отправить свой двигатель в Global Electronic Services для ремонт. Мы обслуживаем все модели и производители двигателей, промышленной электроники и гидравлики. Мы можем протестировать, диагностировать и быстро найти решение вашей проблемы. Посмотрите видео ниже, чтобы увидеть, как именно мы выполняем полную перестройку двигателя, включая полную перемотку, балансировку и динамометрический тест!

Мы выполняем большую часть ремонтных работ за пять дней или меньше и можем даже предоставить одно или двухдневное бесплатное срочное обслуживание, если вам это нужно. Вы получите точную оценку ремонта до того, как мы начнем работу, чтобы вы точно знали, чего ожидать, а на наши работы распространяется 18-месячная гарантия без обслуживания.

Если вам нужна помощь в тестировании или определении того, что не так с вашими двигателями, свяжитесь с Global Electronic Services сегодня, мы также можем помочь со всей вашей промышленной электроникой, серводвигателем, двигателями переменного и постоянного тока, гидравлическими и пневматическими системами – и не делайте этого. Не забудьте поставить отметку «Мне нравится» и подписаться на нас на Facebook !

TL; DR : Вы можете проверить обмотки двигателя с помощью мультиметра для проверки на замыкание на массу, обрыв или замыкание обмоток.

Запросить цену

Как тестировать трехфазные двигатели переменного тока ~ Изучение электротехники

Основные этапы проверки исправности трехфазного двигателя переменного тока приведены ниже:
(а) Общие инспекции
(b) Тест на непрерывность и сопротивление заземления
(c) Тест источника питания
(d) Проверка целостности обмотки двигателя переменного тока
(e) Испытание сопротивления обмотки двигателя переменного тока
(f) Испытание сопротивления изоляции
(g) Тест рабочего тока

Общие проверки
Для трехфазного двигателя выполните следующие действия:

(1) Проверьте внешний вид двигателя.Убедитесь в отсутствии ожогов и повреждений корпуса, вентилятора или вала системы охлаждения.
(2) Вручную проверните вал двигателя, чтобы проверить состояние подшипников. Следите за плавным и свободным вращением вала. Если вал вращается свободно и плавно, возможно, подшипник в хорошем состоянии, в противном случае рассмотрите возможность замены, ремонта или проведения дальнейшей диагностики.
(3) Как и при всех проверках и проверках, на паспортной табличке двигателя содержится ценная информация, которая поможет установить истинное состояние двигателя. Тщательно проверьте заводскую табличку и сравните значения проверки рабочего тока (см. Ниже) со значением на заводской табличке

Проверка целостности и сопротивления заземления
С помощью мультиметра измерьте сопротивление между корпусом двигателя и массой.Хороший мотор должен показывать менее 0,5 Ом. Любое значение больше 0,5 Ом указывает на неисправность двигателя. Может потребоваться дальнейшее устранение неисправностей.

Проверка источника питания
Для трехфазных двигателей ожидаемое напряжение для системы 230/400 В составляет 230 В между фазой и нейтралью и 400 В между каждой из трех фазных линий питания. Убедитесь, что на двигатель подается правильное напряжение, используя мультиметр. Убедитесь, что клемма источника питания находится в хорошем состоянии. Проверьте соединительную планку на наличие клеммы (U, V и W).Для трехфазных двигателей тип подключения – звезда (Y) или треугольник.

Проверка целостности обмотки двигателя переменного тока
С помощью мультиметра проверьте целостность обмотки двигателя от фазы к фазе (от U к V, V к W, W к U). Каждая фаза должна иметь непрерывность, если обмотка в порядке. Если какая-либо конкретная фаза не проходит проверку целостности, вероятно, ваш двигатель сгорел.
Пожалуйста, посмотрите, как идентифицировать трехфазные обмотки для правильной идентификации обмотки. U, V, W – европейское обозначение обмотки.

Проверка сопротивления обмотки электродвигателя переменного тока
Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра или омметра для фазной клеммы (U-V, V-W, W-U). должны быть одинаковыми (или почти одинаковыми). Помните, что у трех фаз одинаковые обмотки или почти одинаковые!

Проверка сопротивления изоляции
Нарушение сопротивления изоляции электродвигателя является одним из первых признаков того, что электродвигатель вот-вот выйдет из строя.Для трехфазного двигателя сопротивление изоляции обычно измеряется между каждой обмоткой или фазой двигателя и между каждой фазой двигателя и корпусом двигателя (землей) с помощью тестера изоляции или мегомметра. Установите напряжение на измерителе сопротивления изоляции на 500 В. Проверьте от фазы к фазе (U к V, V к W, W к U). Проверьте от фазы к корпусу двигателя (заземлению) (U к E, V к E, W к E). Минимальное испытательное значение сопротивления изоляции двигателя составляет 1 МОм (1 МОм). Узнайте, как измерить сопротивление изоляции электродвигателя.

Тест рабочего тока
При работающем двигателе проверьте ток полной нагрузки (FLA) подходящим измерителем или, лучше всего, клещами на измерителе и сравните с заводской табличкой FLA.Отклонения от номинального значения FLA могут означать проблемы с тестируемым двигателем.

Как проверить обмотки трехфазного двигателя с помощью омметра ~ Изучение электротехники

Пользовательский поиск

Каждый трехфазный двигатель имеет шесть (6) клемм, при этом напряжение питания подключено к трем (3) из этих клемм. Наиболее распространенная конфигурация трехфазного двигателя – это конфигурация треугольника (∆) – звезды (звезда), при этом сторона треугольника подключена к источнику питания. Конфигурация клемм 3-фазного двигателя показана ниже:

Клеммы Конфигурация трехфазного двигателя

Набор клемм W2U2V2 – это сторона звезды трехфазного двигателя, а U1VIW1 – сторона треугольника двигателя, подключенного к напряжению питания.

Трехфазный двигатель – это прочное оборудование, но, как и все, что создано человеком, наступает время, когда этот красивый механизм выходит из строя из-за старости, неправильного использования, неправильной работы или любой другой неблагоприятной причины.

Наиболее частым видом отказа трехфазного двигателя переменного тока является перегоревшая обмотка или короткое замыкание обмотки, что приводит к повреждению двигателя. Часто требуется проверить обмотку трехфазных обмоток с помощью мультиметра или омметра, чтобы определить, исправен ли двигатель, сгорел или закорочен.

Как проверить обмотку трехфазного двигателя

Чтобы определить, исправен ли трехфазный двигатель или вышел из строя, простой тест омметром на обмотках двигателя покажет его истинное состояние. Как показано ниже, указанная матрица клемм ( синие линии ) показывает способ проверки обмоток трехфазного двигателя с помощью омметра:

Как проверить обмотки трехфазного двигателя с помощью омметра


Первое, что нужно сделать перед испытанием обмоток двигателя, – это снять перемычки, соединяющие клеммы W2U2V2 и отключить двигатель от питания (L1, L2, L3).Клеммы мультиметра, размещенные на этой матрице клемм, будут показывать следующие показания для исправного трехфазного двигателя:

(a) Клеммы W1W2 , U1U2 , V1V2 укажут на целостность для исправного двигателя

(b) Любые другие комбинации клемм должны указывать Открыто для исправного двигателя

(c) Показания между любой из шести (6) клемм и корпусом двигателя, обозначающие заземление

(E) должен указывать открыт для исправного двигателя.

Показания омметра для неисправного трехфазного двигателя

В случае сгоревшего или неисправного 3-фазного двигателя эта матрица клемм должна указывать противоположные показания для неисправного двигателя:

(a) Если любая из комбинаций клемм W1W2, U1U2, V1V2 должна указывать открыто , тогда

мотор плохой.

(b) Если любые другие комбинации клемм должны указывать целостность вместо разомкнут , то

мотор плохой.

(c) Если показание между любой из шести (6) клемм и корпусом двигателя (E) должно составлять

указать обрыв , значит мотор не работает.

Проверка обмоток двигателя шпинделя – как определить неисправные обмотки в шпинделях


Как проверить наличие плохих обмоток в двигателе шпинделя

Чтобы проверить двигатель шпинделя на наличие плохих обмоток, вы можете использовать несколько различных методов.Как всегда, обязательно отключите все питание от машины, прежде чем делать что-либо . Мы настоятельно рекомендуем использовать квалифицированного, опытного поставщика, такого как TigerTek, для ремонта вашего шпиндельного двигателя. Наши специалисты по ремонту имеют многолетний опыт и неизменно обеспечивают лучшее в отрасли качество по очень конкурентоспособным ценам, при этом на все это распространяется комплексная 12-месячная гарантия. Чтобы узнать о преимуществах TigerTek, позвоните нам по телефону 1. или свяжитесь с нами для получения бесплатного предложения.

Проверка на замыкание на массу

С помощью омметра: Отключите все питание от машины. Проверьте все три провода по отдельности T1, T2, T3 (все три фазы) на провод заземления. Показания должны быть бесконечными. Если его ноль или читается непрерывность вообще, значит проблема либо с двигателем, либо с кабелем. Если это так, идите прямо к двигателю, отсоедините его от кабеля и проверьте двигатель и кабель отдельно. Убедитесь, что выводы на обоих концах ничего не касаются, включая другие выводы. Большинство коротких замыканий серводвигателей можно прочитать с помощью обычного измерителя качества. Убедитесь, что вы используете качественный измеритель с сопротивлением не менее 10 МОм. Используя мегомметр: Отключите все питание от машины. Проверьте все три провода по отдельности T1, T2, T3 (все три фазы) на провод заземления. Показания обычно находятся в диапазоне от 600 до 2000 МОм. Большинство шорт будет ниже 20 МОм. Соблюдайте осторожность, чтобы не прикасаться к выводам или проводам ни к чему при чтении. Это может дать ложные и неповторимые показания, заставляя вас гоняться за своим рассказом. Вышеупомянутое является средним значением для трехфазных двигателей 230 В переменного тока. Эмпирическое правило, с которым я сталкивался в других справочных материалах, – это сопротивление около 1000 Ом на каждый вольт входящей мощности.Хотя 230 мегабайт для цепи 230 В переменного тока, по моему опыту, кажется невысоким. Используйте это только как практическое правило. Только помните, что от 230 до 600 мегабайт часто наблюдается некоторое ухудшение изоляции кабелей или двигателя.

Испытания на обрыв или короткое замыкание обмоток

С помощью омметра: Отключите все питание от машины. Поставить измеритель на ом: От Т1 до Т2 От Т2 до Т3 От Т1 до Т3 Обычно ожидаемый диапазон составляет от 0,3 до 2,0 Ом, хотя большинство из них составляет около 0,8 Ом. Если вы читаете ноль, значит существует короткое замыкание между фазами.Обычно, если он разомкнут, он бесконечно или значительно превышает 2 кОм. Примечания к кабелям и вилкам Часто в разъем на кабеле двигателя попадает охлаждающая жидкость. Попробуйте просушить и повторить тест. Если он по-прежнему плохой, на самих вставках иногда появляются следы прожога, вызывающие небольшое короткое замыкание. В этом случае вставки следует заменить. Также ищите области, где кабель движется через отслеживание. Провода со временем изнашиваются. Если это двигатель постоянного тока, проверьте щетки. Вокруг мотора должно быть 3-4 круглых заглушки.Под ними вы найдете пружину с квадратным блоком (щеткой). Посмотрите, сколько осталось, возможно, потребуется заменить. Также проверьте коммутатор, по которому движутся щетки, на предмет износа; попробуйте протереть поверхность.

Как проверить, выходит ли из строя электродвигатель

На протяжении веков мы наблюдали огромные инновации в промышленных операциях. Наши предки усердно работали, чтобы найти решения для медленных процессов, которые они испытали, что в конечном итоге привело нас к разработке двигателей и автоматизации.Сегодня бесчисленное количество компаний полагаются на электродвигатели для повышения эффективности своей работы. Хотя двигатели, безусловно, значительно улучшили работу предприятий, компании также должны обслуживать свои двигатели, чтобы избежать простоев. Чтобы предотвратить простои и неэффективность в будущем, вы должны знать, как проверить, выходит ли из строя электродвигатель. Если вы знаете, как и что искать в двигателе, вы можете принять меры как можно раньше и предотвратить его выход из строя и потенциальные повреждения.Если вы хотите узнать больше, вы можете прочитать наше подробное руководство ниже.

Проверка подшипников и вала

Подшипники двигателя являются одним из наиболее распространенных компонентов, которые выходят из строя. Подшипники подвержены регулярному износу, поэтому со временем их необходимо заменять. Вы должны регулярно проверять подшипники, потому что, если вы продолжите использовать двигатель с изношенными подшипниками, это может привести к повреждению механизма и снижению эффективности двигателя.

Подшипники легко проверить. Все, что вам нужно сделать, это повернуть подшипники, чтобы они вращались плавно и свободно.Другой способ проверить подшипники – это толкать и тянуть вал, к которому прикреплены подшипники. Подшипники должны вращаться плавно, и вал также должен двигаться плавно. Тем не менее, если вы услышите царапание или почувствуете трение, возможно, вам потребуется заменить подшипники. Если трение незначительное, подшипники могут нуждаться только в смазке.

Проверьте обмотки двигателя с помощью мультиметра

Неудивительно, что обмотки электродвигателя жизненно важны для его механики.Вы должны регулярно проверять обмотки на износ, но, что более важно, вам нужно анализировать их сопротивление. В первую очередь вам понадобится мультиметр для проверки обмоток. Для начала установите мультиметр на показания в омах, а затем проверьте провода и клеммы двигателя. Вы должны проверить обмотки на «короткое замыкание на массу» в цепи и , обрыв или короткое замыкание в обмотках.

Чтобы проверить двигатель на замыкание на массу, вам необходимо установить мультиметр на сопротивление и отключить двигатель от источника питания.Затем осмотрите каждый провод и ищите бесконечные показания. В качестве альтернативы, если вы получите показание 0, у вас может быть проблема с кабелем. Чтобы определить, неисправен ли кабель, вы должны проверить каждый кабель по отдельности и убедиться, что ни один из выводов не соприкасается. Индивидуальное тестирование позволит вам найти кабель, вызывающий проблему. С другой стороны, если каждый кабель обеспечивает бесконечное считывание, это означает проблему с двигателем, поэтому вам следует нанять профессиональную ремонтную службу.

Чтобы проверить обмотки на обрыв или короткое замыкание, вы должны проверить T1 – T2, T2 – T3 и, наконец, T1 – T3.Примечание: некоторые двигатели будут иметь разные обозначения, например, от U до V, от V до W и от W до U – вы можете найти конфигурацию вашего двигателя в руководстве пользователя. В общем, вам нужно показание от 0,3 до 2 Ом. Если вы в конечном итоге получите показание 0, вам следует выполнить тест еще раз, чтобы увидеть, снова ли вы получите 0. Значение 0 означает, что у вас нехватка фаз. Нехватка означает замыкание проводов на массу, что обычно приводит к обрыву провода. Если ваше значение намного больше 2, у вас, вероятно, открытая обмотка.Обрыв обмотки просто указывает на обрыв провода.

Проверка мощности с помощью мультиметра

Очевидно, электродвигатель эффективен ровно настолько, насколько эффективен его источник питания. Вы можете проверить источник питания с помощью мультиметра, который вы использовали в предыдущем пункте. Процесс и идеальные характеристики для тестирования источников питания могут варьироваться в зависимости от типа двигателя. Каждый двигатель будет иметь ожидаемый диапазон напряжений, и вам нужно проверить провода, чтобы убедиться, что они соответствуют этим диапазонам. Ваше руководство пользователя предоставит необходимые сведения для проверки мощности вместе с руководством.Тестирование компонентов электродвигателя быстро усложняется, и в процессе легко допустить ошибку, если у вас нет опыта.

Убедитесь, что вентилятор находится в хорошем состоянии и закреплен

Слишком много людей забывают проверять и обслуживать вентилятор своего электродвигателя. Вентилятор жизненно важен для производительности вашего двигателя, потому что он поддерживает охлаждение двигателя, что позволяет ему работать более длительное время. Как вы могли догадаться, вентилятор легко забивается пылью и мусором, что снижает поток воздуха и сохраняет тепло.Хотя внешняя поверхность вентилятора может казаться относительно чистой, в других местах может скопиться пыль и мусор, которые замедлят работу вентилятора. Когда вы снимаете крышку вентилятора для очистки, вы также должны проверить вентилятор и убедиться, что он вращается свободно. Кроме того, вентилятор должен оставаться прикрепленным к двигателю; в противном случае вентилятор не будет двигаться должным образом, двигатель перегреется и, в конечном итоге, обязательно выйдет из строя.

Хотя некоторые из упомянутых нами превентивных мер относительно просты, вам все же нужно знать , как проверять, выходит ли из строя электродвигатель.Некоторые методы тестирования двигателя могут потребовать помощи профессионала, и очень важно, чтобы у вас был надежный специалист, с которым можно связаться, когда вам понадобится обслуживание. Тем не менее, существует множество автомастерских, и все они заявляют, что являются экспертами, но на самом деле мало кто таковыми является. Так как же вы могли узнать, с какой компанией работать? Ответ кроется в истории, опыте и честности компании.

Если вы ищете надежного автосервиса, Moley Magnetics – это компания для вас.Наша семейная компания начиналась как автомастерская , и мы ремонтируем двигатели по сей день. Мы безмерно гордимся тем, что предоставляем нашим клиентам услуги высочайшего качества. Кроме того, поскольку мы являемся семейным предприятием, мы всегда относимся к нашим клиентам, как к членам семьи Моли. Другими словами, если вы решите работать с Moley Magnetics, вы получите отличное обслуживание клиентов, отличные продукты и ремонт, потому что мы верим в качество. Если у вас есть какие-либо вопросы или вы готовы запросить обслуживание, свяжитесь с нами сегодня.Более того, если ваш мотор не подлежит ремонту, мы будем честны и скажем вам об этом, но не волнуйтесь – мы поставляем и новые моторы.

Как проверить свои обмотки 101

Обмотки двигателя представляют собой токопроводящие провода, намотанные на магнитопровод; они обеспечивают путь прохождения тока для создания магнитного поля для вращения ротора. Как и любая другая часть мотора, обмотка может выйти из строя. Когда обмотки двигателя выходят из строя, сами проводники выходят из строя очень редко, скорее, это происходит из-за полимерного покрытия (изоляции), окружающего проводники.Полимерный материал является органическим по своему химическому составу и может изменяться из-за старения, карбонизации, нагрева или других неблагоприятных условий, которые вызывают изменение химического состава полимерного материала. Эти изменения невозможно обнаружить визуально или даже с помощью традиционных инструментов для электрических испытаний, таких как омметры или мегомметры.

Внезапный отказ какой-либо части двигателя приведет к потере производительности, увеличению затрат на техническое обслуживание, потере или повреждению капитала и, возможно, к травмам персонала.Поскольку большая часть нарушений изоляции происходит со временем, технология MCA обеспечивает измерения, необходимые для выявления этих небольших изменений, которые определяют состояние системы изоляции обмотки. Знание того, как проверять свои обмотки, позволит вашей команде проявить инициативу и предпринять соответствующие действия, чтобы предотвратить нежелательный отказ двигателя.

Как проверить изоляцию грунтовых стен

Замыкание на землю или короткое замыкание на землю происходит, когда значение сопротивления изоляции заземленной стены уменьшается и позволяет току течь на землю или открытую часть машины.Это создает проблему безопасности, поскольку обеспечивает путь питающего напряжения от обмотки до рамы или других открытых частей машины. Для проверки состояния изоляции грунтовых стен производятся измерения от выводов обмоток Т1, Т2, Т3 до земли.

Передовой опыт проверяет извилистый путь к земле. Этот тест обеспечивает подачу постоянного напряжения на обмотку двигателя и измеряет, сколько тока проходит через изоляцию на землю:

1) Проверить двигатель без напряжения с помощью исправно работающего вольтметра.

2) Подключите оба измерительных провода прибора к заземлению и проверьте надежность соединения провода прибора с землей. Измерьте сопротивление изоляции относительно земли (IRG). Это значение должно быть 0 МОм. Если отображается любое значение, отличное от 0, повторно подключите измерительные провода к земле и повторите тестирование, пока не будет получено нулевое показание.

3) Снимите один из тестовых проводов с земли и подключите к каждому из проводов двигателя. Затем измерьте значение сопротивления изоляции каждого вывода относительно земли и убедитесь, что значение превышает рекомендованное минимальное значение для напряжения питания двигателя.

NEMA, IEC, IEEE, NFPA предоставляют различные таблицы и инструкции по рекомендуемому испытательному напряжению и минимальным значениям изоляции относительно земли в зависимости от напряжения питания двигателя. Этот тест определяет любые слабые места в системе изоляции грунтовых стен. Коэффициент рассеяния и проверка емкости относительно земли обеспечивают дополнительную индикацию общего состояния изоляции. Процедура испытаний для этих испытаний такая же, но вместо подачи напряжения постоянного тока применяется сигнал переменного тока, чтобы обеспечить лучшую индикацию общего состояния изоляции заземляющей стены.

Как проверить свои обмотки на наличие проблем с подключением, обрыва или короткого замыкания

Проблемы с подключением: Проблемы с подключением создают дисбаланс тока между фазами в трехфазном двигателе, что вызывает чрезмерный нагрев и преждевременное нарушение изоляции.

Обрыв : Обрыв происходит, когда проводник или проводники разрываются или разъединяются. Это может помешать запуску двигателя или привести к его работе в «однофазном» состоянии, которое потребляет избыточный ток, перегрев двигателя и преждевременный выход из строя.

Короткое замыкание: Короткое замыкание возникает при разрыве изоляции, окружающей проводники обмотки между проводниками. Это позволяет току течь между проводниками (короткими), а не через проводники. Это вызывает нагрев в месте повреждения, что приводит к дальнейшему разрушению изоляции между проводниками и, в конечном итоге, к выходу из строя.

Испытание на наличие повреждений обмотки требует выполнения серии измерений переменного и постоянного тока между выводами двигателя и сравнения измеренных значений, если измерения выполнены сбалансированной, обмотка в порядке, если указаны несимметричные повреждения.

Рекомендуемые размеры:

1) Сопротивление

2) Индуктивность

3) Импеданс

4) Фазовый угол

5) Частотная характеристика тока

Проверьте состояние обмотки, проверив следующие соединения:

Показание должно быть от 0,3 до 2 Ом. Если 0, значит короткое замыкание. Если оно больше 2 Ом или бесконечно, есть обрыв. Вы также можете высушить разъем и повторно протестировать его, чтобы получить более точные результаты.Проверьте вставки на наличие следов пригорания, а кабели на износ.

Несимметрия сопротивления указывает на проблемы с подключением, если эти значения не сбалансированы более чем на 5% от среднего, это указывает на слабое соединение с высоким сопротивлением, коррозию или другие отложения на клеммах двигателя. Очистите провода двигателя и повторите тест.

Обрыв обозначается бесконечным значением сопротивления или импеданса.

Если фазовый угол или частотные характеристики тока не сбалансированы более чем на 2 единицы от среднего, это может указывать на короткое замыкание обмотки.На эти значения может повлиять положение ротора с короткозамкнутым ротором во время испытаний. Если полное сопротивление и индуктивность не сбалансированы более чем на 3% от среднего, рекомендуется повернуть вал примерно на 30 градусов и провести повторную проверку. Если дисбаланс следует за положением ротора, дисбаланс может быть результатом положения ротора. Если дисбаланс остается прежним, указывается неисправность статора.

Традиционные приборы для испытания двигателей не могут эффективно тестировать или проверять обмотки двигателя

Традиционными приборами, используемыми для проверки двигателей, были мегомметр, омметр или иногда мультиметр.Это связано с наличием этих инструментов на большинстве заводов. Мегомметр используется для проверки безопасности электрического оборудования или систем, а мультиметр используется для выполнения большинства других электрических измерений. Однако ни один из этих инструментов по отдельности или вместе не предоставляет информацию, необходимую для правильной оценки состояния системы изоляции двигателя. Мегомметр может определить слабые места в изоляции заземления двигателя, но не может определить общее состояние системы изоляции.Он также не дает информации о состоянии системы изоляции обмоток. Мультиметр выявляет проблемы с подключением и обрыв в обмотках двигателя, но не предоставляет информации об изоляции между обмотками.

Испытательные обмотки с анализом цепи двигателя (MCA ™)

Анализ цепи двигателя (MCA ™) – это метод обесточивания, который позволяет тщательно оценить состояние вашего двигателя путем проверки обмоток и других деталей. Он прост в использовании и быстро дает точные результаты. ALL-TEST PRO 7 ™, ALL-TEST PRO 34 ™ и другие продукты MCA ™ можно использовать на любом двигателе, чтобы выявить потенциальные проблемы и избежать дорогостоящего ремонта. MCA полностью проверяет систему изоляции обмотки двигателя и выявляет раннее повреждение системы изоляции обмотки, а также неисправности в двигателе, которые приводят к отказу. MCA также диагностирует неплотные и неисправные соединения, когда тесты выполняются с контроллера мотора.

Запросите ценовое предложение на оборудование для испытаний двигателей сегодня

Тестирование двигателей необходимо, поскольку двигатели выходят из строя, и тестирование может выявить проблемы, которые помогут предотвратить отказ.В ALL-TEST Pro у нас есть широкий выбор продуктов для тестирования двигателей, подходящих для многих отраслей промышленности. Мы работали с техниками из пищевой промышленности, небольших моторных мастерских, электротехники и многого другого. По сравнению с конкурентами наши машины являются самыми быстрыми и легкими, обеспечивая при этом ценные результаты без необходимости дополнительной интерпретации данных.

Запросите предложение на нашем веб-сайте сегодня, чтобы получить информацию о ценах на нашу продукцию для испытаний двигателей. Для получения дополнительной информации о том, как проверить свои обмотки, свяжитесь с нашей командой онлайн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *