Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Заземление и зануление- в чём разница?

20 Ноя 2014 База знаний электрика

Даже опытные электрики иной раз затрудняются ответить на казалось бы простой вопрос: а в чём разница между заземлением и занулением?

Замечательно объяснил суть заземления и зануления Михаил Ванюшин в своём видеокурсе, очень рекомендую всем электрикам к изучению.

Предлагаю все таки определиться что такое заземление, что такое зануление и выяснить что у них общего и что именно отличает эти понятия.

Как говорил товарищ Сталин- “Есть мнение”   что:

Разница в физике защитного действия: заземление призвано снизить напряжение прикосновения до безопасных значений, а зануление должно вызвать срабатывание защиты и, таким образом отключить аварийную установку.
В большинстве случаев мы имеем дело с занулением, которое ошибочно называют заземлением.

Однако есть один нюанс: всё вышенаписанное относится к системам TN-..; если системы TT или IT, то там РЕ-проводник “живёт своей жизнью”.

А так как самая распространённая система заземления у нас является именно TN, то и рассуждать я буду исходя из применения именно систем типа TN.

Если строго говоря то понятие “заземление” согласно правил это только действие, то есть соединение с помощью заземляющего проводника- электродов заземляющего устройства с шиной ГЗШ (РЕ). Тут правильнее говорить наверное “провод заземления” или “защитный нулевой проводник”.

Если мы речь ведем о РЕ-проводнике то понимаем, что у нас где то выполнено разделение PEN на РЕ и N и у нас обязательно есть ну по крайней мере должен быть контур повторного заземления в ВРУ. Там организована ГЗШ (ну или шина РЕ) куда и подключен ноль с вводного кабеля (PEN- проводник).

В этом случае у нас все токопроводящие части заземлены. А может занулены? Или это одно и тоже?

Давайте разберемся что такое понятие “зануление”

. Я сейчас по памяти попытаюсь сформулировать это понятие как я его понимаю, если не прав то вы друзья- коллеги электрики меня поправите.

Зануление– это преднамеренное соединение (то есть не аварийное, а мы специально соединяем) всех токопроводящих частей электроустановки с глухозаземленной нейтралью источника питания, то есть трансформатора, причем именно трехфазного трансформатора, так как у однофазного естественно никакой нейтрали нет.

А приходит к нам в ВРУ или щит учета эта нейтраль именно по PEN-проводнику, к которому есть определенные требования.

То есть для зануления нам надо все токопроводящие части нашего дома или квартиры, а это корпуса электроприборов там например стиралки или компа или холодильника- соединить с этим PEN-проводником. Ну если у нас электропроводка трехпроводная, то естественно что мы соединяем желто-зеленым проводом РЕ с PEN-проводом в ЩУ который у нас как мы помним прикручен на ГЗШ или шину РЕ.

Так получается что это одно и то же что заземление что зануление?? В обоих приведенных мною примерах схема получается абсолютно одинаковая!

Значит это как говаривали раньше- “Говорим партия подразумеваем Лениин, говорим Ленин подразумеваем партия” так и у нас тут получается говорим заземление, подразумеваем зануление, говорим зануление– подразумеваем заземление?

Разницы то получается совсем никакой и нет?

Достал тут из своих закромов ПУЭ-6 от 1985 года и что там нарыл по данному вопросу.

п.1.1.32: Безопасность обслуживающего персонала и посторонних лиц должна обеспечиваться путем:
-применения двойной изоляции

-соблюдения соответствующих расстояний до токоведущих частей или путем закрытия, ограждения токоведущих частей

-применения блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям

надежного и быстродействующего автоматического отключения частей электрооборудования, случайно оказавшегося под напряжением, и поврежденных участков сети, в том числе защитного отключения

-заземления или занулениякорпусов электрооборудования и элементов электроустановок, которые могут оказаться под напряжением вследствии повреждения изоляции

-применения разделительных трансформаторов

-применения напряжения 42 В и ниже переменного тока частотой 50Гц и 110 В и ниже постоянного тока

-применение предупреждающей сигнализации, надписей и плакатов;

-применения устройств, снижающих напряженность электрических полей;

-использование средств защиты и приспособлений, в том числе для защиты от воздействия электрического поля в электроустановках, в которых его напряженность превышает допустимые нормы.

Важные для нас моменты выделил жирным.

То есть в старых правилах небыло такого понятия как прямое или косвенное прикосновение, а речь велась просто о безопасности людей, в случае ухудшения или повреждения изоляции поврежденный участок должен был обязательно автоматически отключен, а электроустановка должна быть заземлена или занулена.

Переходим к главе 1.7 “Заземление и защитные меры электробезопасности”

Вот определение заземления по ПУЭ-6:

п.1.7.6: Заземлением какой либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
п.1.7.7: Защитным заземлением называется заземление частей электроустановки

с целью обеспечения электробезопасности.

Отличие от ПУЭ-7 в том, что в новых правилах добавлено что заземление- это преднамеренное соединение какой либо точки сети, а в остальном осталось по старому.

А сейчас самое важное- определение зануления по ПУЭ-6:

п.1.7.9: Занулением в электроустановках до 1кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью трансформатора или генератора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.

Отличие этого определения от определения зануления по новым ПУЭ-7 заключается во первых в том, что в новых правилах зануление названо

защитным занулением, а не просто занулением как в ПУЭ-6, а во вторых в новых ПУЭ нет слов “нормально не находящихся под напряжением”.

Больше отличий между старыми и новыми ПУЭ нет! То есть это в принципе осталось как и раньше- все токопроводящие корпуса электроприемникой соединяются с глухозаземленной нейтралью источника тока, например в этажном щите раньше присоединяли к нулевой жиле вводного кабеля.

По ПУЭ-6 не было таких определений как PEN, PE, и N- проводники, а было просто нулевой защитный и нулевой рабочий проводник, а в п.1.7.18 было уточнение что:
“В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника”

Отличие в определении нулевого защитного проводника между ПУЭ-6 и ПУЭ-7 заключается в том, что по ПУЭ-6 этот проводник соединяет с глухозаземленной нейтралью

“зануляемые части” в электроустановках, а в ПУЭ-7 защитный нулевой проводник соединяет с глухозаземленной нейтралью трансформатора “открытые проводящие части электроустановки”.

Вот эти определения:

ПУЭ-6 п.1.7.17: Нулевым защитным проводником в электроустановках до 1кВ называется проводник, соединяющий зануляемые части с глухозаземленной нейтралью трансформатора или генератора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухоаземленной средней точкой в источнике постоянного тока.

ПУЭ-7 п.1.7.34: Защитный (РЕ) проводник- проводник, предназначенный для целей электробезопасности.
Защитный заземляющий проводник- защитный проводник, предназначенный для защитного заземления.
Защитный проводник уравнивания потенциалов- защитный проводник, предназначенный для защитного уравнивания потенциалов.

Нулевой защитный проводник- защитный проводник в электроустановках до 1кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.

Заслуживает внимание в ПУЭ-6 тот момент, что запрещалось использовать электроустановки без зануления:

п.1.7.39: В электроустановках до 1кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а так же с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполненно зануление.
Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Так же по старым правилам разрешалось использовать нулевой рабочий провод для зануления, об этом говорит п.1.7.73:

“В качестве нулевых защитных проводников должны быть в первую очередь использованы нулевые рабочие проводники…”

Однако это не означало что это можно было для переносных электроприемников, об этом четко говорил п. 1.7.82:
“Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофазного и постоянного тока. Для зануления таких электроприемников должен быть применен отдельный третий проводник, присоединяемый во втычном соединителе ответвительной коробки, в щите, щитке, сборке и т.п. к нулевому рабочему или нулевому защитному проводнику.”

Еще в старых ПУЭ-6 был интересный пункт 1.7.84, согласно которому можно было использовать рабочий нулевой провод осветительной линии для зануления электрооборудования, питающегося от других линий.

То есть можно было тупо найти нулевой провод от светильника и использовать его для зануления корпусов электрооборудования, правда при этом должны были выполняться следующие условия указанные в этом пункте:

“п.1.7.84: Нулевые защитные проводники линий не допускается использовать для зануления электрооборудования, питающегося по другим линиям.
Допускается использовать нулевые рабочие проводники осветительных линий для зануления электрооборудования, питающегося по другим линиям, если все указанные линии питаются от одного трансформатора, проводимость их удовлетворяет требованиям настоящей главы и исключена возможность отсоединения нулевых рабочих проводников во время работы других линий.
В таких случаях не должны применяться выключатели, отключающие нулевые рабочие проводники вместе с фазными”

Если говорить о жилых помещениях, то п.7.1.59 пояснял что должно было зануляться по старым правилам:

“п. 7.1.59: В жилых и общественных зданиях должны зануляться металлические корпуса стационарных электрических плит, кипятильников и т.п., а так же переносных бытовых электрических приборов и машин мощностью более 1,3кВт и металлические трубы электропроводок.
Для зануления корпусов стационарных однофазных электрических плит, бытовых кондиционеров воздуха, электрополотенец и т.п., а так же переносных бытовых приборов и машин мощностью более 1,3кВт должен прокладываться от стояка, этажного или квартирного щитка отдельный проводник сечением, равный сечению фазного проводника.
Этот проводник присоединяется к нулевому защитному проводнику питающей сети перед счетчиком (со стороны ввода) и до отключающегося аппарата (при его наличии).”

Однако перемычку с рабочего нуля на заземление для электроплиты и по старым правилам запрещено было делать!- вот этот пункт:

п.7.1.60: Зануление трехфазной электроплиты следует осуществлять самостоятельным проводником, начиная от группового щитка (распределительного пункта). Использование нулевого рабочего проводника для зануления трехфазной электроплиты запрещается.

Итак, сейчас можно сделать некоторые выводы.

1. И заземление и зануление выполняется в целях электробезопасности.
2. Такие понятия как заземление и зануление были как в старых правилах ПУЭ-6 так и в новых ПУЭ-7.
3. Зануление от заземления отличается тем, что при занулении мы соединяем заземляемые части не только с заземляющим устройством, но и с глухозаземленной нейтралью источника тока.

То есть если у нас электропроводка в доме сделана по новым правилам, есть разделение на РЕ и N, то подключая корпус электрообогревателя к шинке РЕ мы таким образом и заземляем и зануляем! Так как в итоге шинка РЕ все равно соединена у нас или в ВРУ или в щите учета с PEN- проводом на вводе в дом. А PEN- проводник в свою очередь соединяется с глухозаземленной нейтралью трансформатора на подстанции.

Вот и получается что это одно и тоже понятие- защитное заземление и защитное зануление.

Говорим- заземление, подразумеваем зануление, говорим зануление, подразумеваем заземление

У некоторых может возникнуть вопрос- ну если это одно и тоже, тогда для чего мы вообще делаем зануление, то есть соединяем заземляемые части с глухозаземленной нейтралью трансформатора?

Отвечаю: это делается для того, что бы при замыкании фазного провода на корпус электроприбора возник ток короткого замыкания и его значение было очень высоким, таким что бы его значения хватило для срабатывания защиты- автоматического выключателя.

Сами представьте- при замыкании фазы источника питания на свою же глухозаземленную нейтраль этот источник замыкается накоротко, то есть сам на себя или что бы было еще понятнее- на минимальное сопротивление нагрузки, а раз нагрузки нет то и ток короткого замыкания стремится практически к бесконечности и ограничивается только активным внутренним сопротивлением самого трансформатора и соединительных проводов.

Поэтому например при нагрузке в 25 ампер ток короткого замыкания в электропроводке может достигнуть и 500 и 1000 ампер, что вполне достаточно для срабатывания автоматического выключателя.

Автомат с характеристикой “С” (самый распространенный) отключается при КЗ с кратностью в 5-10 от номинального тока, то есть например автомат на 25 ампер отключится при от 125 до 250 и выше ампер, а если ток КЗ будет 500 ампер то этот автомат надежно сработает и отключит поврежденный участок, так как этого значения более чем достаточно для срабатывания электромагнитного расцепителя автомата.

А что будет если зануление не делать, а просто соединить с заземляющим устройством, спросите вы. А вот тогда тока короткого замыкания мы можем и не получить и наш защитный автомат просто напросто не отработает и не отключит поврежденный участок что может привести не только к выходу из строй электрооборудования, электропроводки, но и к пожару…

Дело в том, что сопротивление заземляющего устройства очень велико, по крайней мере значительно выше внутренного сопротивления источника тока- трансформатора со всеми присоединенными проводами.

В этом случае при замыкании фазного провода на корпус электроприбора ток будет стекать через заземляющее устройство в землю и при этом значение электрического тока увеличится незначительно (ну если конечно у вас заземлитель не глубоководная скважина с сопротивлением меньше 1 Ома )

Допустим у вас контур повторного заземления сопротивлением в 10 Ом, тогда ток будет протекать:

I=U/R=230:10=23 ампера

Даже автомат на 16 ампер при таком токе отключится далеко не сразу, а может и вовсе не отключиться и это при том что автомат будет совершенно исправный, просто он устроен так, что этого значения тока ему недостаточно для отключения. Согласно ГОСТу автомат должен выдерживать ток 1,42 от номинального в течении часа и не отключаться, а для этого автомата это и получается:

16*1,42=22,72 ампер

Вот и получается что без зануления вроде и повреждение будет (замыкание фазы на корпус) и защитная аппаратура будет исправная, а поврежденный участок автоматически не отключится, что прямо противоречит требованиям ПУЭ-7.

Автор: Технарь (с форума http://ceshka.ru/forum/)

Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- ФОРУМ.

Подписывайтесь на мой канал на Ютубе

Свежее видео с канала “Советы электрика”:

Смотрите еще много видео по электрике для дома!

Узнайте первыми о новостях сайта!

Просто заполни форму:

Теги: заземление, зануление, системы заземления

ПУЭ Раздел 7 => Зануление и заземление.

Молниезащита и защита от статического электричества . Глава 7.4. Электроустановки в…

ЗАНУЛЕНИЕ И ЗАЗЕМЛЕНИЕ

 

7.3.132. На взрывоопасные зоны любого класса в помещениях и на наружные взрывоопасные установки распространяются приведенные в 1.7.38 требования о допустимости применения в электроустановках до 1 кВ глухозаземленной или изолированной нейтрали. При изолированной нейтрали должен быть обеспечен автоматический контроль изоляции сети с действием на сигнал и контроль исправности пробивного предохранителя.

7.3.133. Во взрывоопасных зонах классов B-I, B-Iа и B-II рекомендуется применять защитное отключение (см. гл. 1.7). Во взрывоопасных зонах любого класса должно быть выполнено уравнивание потенциалов согласно 1.7.47.

7.3.134. Во взрывоопасных зонах любого класса подлежат занулению (заземлению) также:

а) во изменение 1.7.33 – электроустановки при всех напряжениях переменного и постоянного тока;

б) электрооборудование, установленное на зануленных (заземленных) металлических конструкциях, которые в соответствии с 1. 7.48, п. 1 в невзрывоопасных зонах разрешается не занулять (не заземлять). Это требование не относится к электрооборудованию, установленному внутри зануленных (заземленных) корпусов шкафов и пультов.

В качестве нулевых защитных (заземляющих) проводников должны быть использованы проводники, специально предназначенные для этой цели.

7.3.135. В электроустановках до 1 кВ с глухозаземленной нейтралью зануление электрооборудования должно осуществляться:

а) в силовых сетях во взрывоопасных зонах любого класса – отдельной жилой кабеля или провода;

б) в осветительных сетях во взрывоопасных зонах любого класса, кроме класса B-I, – на участке от светильника до ближайшей ответвительной коробки – отдельным проводником, присоединенным к нулевому рабочему проводнику в ответвительной коробке;

в) в осветительных сетях во взрывоопасной зоне класса B-I – отдельным проводником, проложенным от светильника до ближайшего группового щитка;

г) на участке сети от РУ и ТП, находящихся вне взрывоопасной зоны, до щита, сборки, распределительного пункта и т. п., также находящихся вне взрывоопасной зоны, от которых осуществляется питание электроприемников, расположенных во взрывоопасных зонах любого класса, допускается в качестве нулевого защитного проводника использовать алюминиевую оболочку питающих кабелей.

7.3.136. Нулевые защитные проводники во всех звеньях сети должны быть проложены в общих оболочках, трубах, коробах, пучках с фазными проводниками.

7.3.137. В электроустановках до 1 кВ и выше с изолированной нейтралью заземляющие проводники допускается прокладывать как в общей оболочке с фазными, так и отдельно от них.

Магистрали заземления должны быть присоединены к заземлителям в двух или более разных местах и по возможности с противоположных концов помещения.

7.3.138. Использование металлических конструкций зданий, конструкций производственного назначения, стальных труб электропроводки, металлических оболочек кабелей и т. п. в качестве нулевых защитных (заземляющих) проводников допускается только как дополнительное мероприятие.

7.3.139. В электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка проводимость нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (без выдержки времени), следует руководствоваться требованиями, касающимися кратности тока КЗ и приведенными в 1.7.79.

7.3.140. Расчетная проверка полного сопротивления петли фаза – нуль в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью должна предусматриваться для всех электроприемников, расположенных во взрывоопасных зонах классов B-I и B-II, и выборочно (но не менее 10% общего количества) для электроприемников, расположенных во взрывоопасных зонах классов B-Iа, B-Iб, B-Iг и ВIIа и имеющих наибольшее сопротивление петли фаза – нуль.

7.3.141. Проходы специально проложенных нулевых защитных (заземляющих) проводников через стены помещений со взрывоопасными зонами должны производиться в отрезках труб или в проемах. Отверстия труб и проемов должны быть уплотнены несгораемыми материалами. Соединение нулевых защитных (заземляющих) проводников в местах проходов не допускается.

 

МОЛНИЕЗАЩИТА И ЗАЩИТА ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

 

7.3.142. Защита зданий, сооружений и наружных установок, имеющих взрывоопасные зоны, от прямых ударов молнии и вторичных ее проявлений должна выполняться в соответствии с РД 34.21.122-87 “Инструкция по устройству молниезащиты зданий и сооружений” Минэнерго СССР.

7.3.143. Защита установок от статического электричества должна выполняться в соответствии с действующими нормативными документами.

Глава 7.4

 

ЭЛЕКТРОУСТАНОВКИ В ПОЖАРООПАСНЫХ ЗОНАХ

 

ОБЛАСТЬ ПРИМЕНЕНИЯ

 

7.4.1. Настоящая глава Правил распространяется на электроустановки, размещаемые в пожароопасных зонах внутри и вне помещений. Эти электроустановки должны удовлетворять также требованиям других разделов Правил в той мере, в какой они не изменены настоящей главой.

Выбор и установка электрооборудования (машин, аппаратов, устройств) и сетей для пожароопасных зон выполняются в соответствии с настоящей главой Правил на основе классификации горючих материалов (жидкостей, пылей и волокон).

Требования к электроустановкам жилых и общественных зданий приведены в гл. 7.1, а к электроустановкам зрелищных предприятий, клубных учреждений и спортивных сооружений – в гл. 7.2.

 

ОПРЕДЕЛЕНИЯ. ОБЩИЕ ТРЕБОВАНИЯ

 

7.4.2. Пожароопасной зоной называется пространство внутри и вне помещений, в пределах которого постоянно или периодически обращаются горючие (сгораемые) вещества и в котором они могут находиться при нормальном технологическом процессе или при его нарушениях.

Классификация пожароопасных зон приведена в 7.4.3-7.4.6.

7.4.3. Зоны класса П-I – зоны, расположенные в помещениях, в которых обращаются горючие жидкости с температурой вспышки выше 61°С (см. 7.3.12).

7.4.4. Зоны класса П-II- зоны, расположенные в помещениях, в которых выделяются горючие пыль или волокна с нижним концентрационным пределом воспламенения более 65 г/м3 к объему воздуха.

7.4.5. Зоны класса П-IIа – зоны, расположенные в помещениях, в которых обращаются твердые горючие вещества.

7.4.6. Зоны класса П-III -расположенные вне помещения зоны, в которых обращаются горючие жидкости с температурой вспышки выше 61°С или твердые горючие вещества.

7.4.7. Зоны в помещениях и зоны наружных установок в пределах до 5 м по горизонтали и вертикали от аппарата, в которых постоянно или периодически обращаются горючие вещества, но технологический процесс ведется с применением открытого огня, раскаленных частей либо технологические аппараты имеют поверхности, нагретые до температуры самовоспламенения горючих паров, пылей или волокон, не относятся в части их электрооборудования к пожароопасным. Класс среды в помещениях или среды наружных установок за пределами указанной 5-метровой зоны следует определять в зависимости от технологических процессов, применяемых в этой среде.

Зоны в помещениях и зоны наружных установок, в которых твердые, жидкие и газообразные горючие вещества сжигаются в качестве топлива или утилизируются путем сжигания, не относятся в части их электрооборудования к пожароопасным.

7.4.8. Зоны в помещениях вытяжных вентиляторов, а также в помещениях приточных вентиляторов (если приточные системы работают с применением рециркуляции воздуха), обслуживающих помещения с пожароопасными зонами класса П-II, относятся также к пожароопасным зонам класса П-II.

Зоны в помещениях вентиляторов местных отсосов относятся к пожароопасным зонам того же класса, что и обслуживаемая ими зона.

Для вентиляторов, установленных за наружными ограждающими конструкциями и обслуживающих пожароопасные зоны класса П-II и пожароопасные зоны любого класса местных отсосов, электродвигатели выбираются как для пожароопасной зоны класса П-III.

7.4.9. Определение границ и класса пожароопасных зон должно производиться технологами совместно с электриками проектной или эксплуатационной организации.

В помещениях с производствами (и складов) категории В электрооборудование должно удовлетворять, как правило, требованиям гл. 7.4 к электроустановкам в пожароопасных зонах соответствующего класса.

7.4.10. При размещении в помещениях или наружных установках единичного пожароопасного оборудования, когда специальные меры против распространения пожара не предусмотрены, зона в пределах до 3 м по горизонтали и вертикали от этого оборудования является пожароопасной.

7.4.11. При выборе электрооборудования, устанавливаемого в пожароопасных зонах, необходимо учитывать также условия окружающей среды (химическую активность, атмосферные осадки и т.п.).

7.4.12. Неподвижные контактные соединения в пожароопасных зонах любого класса должны выполняться сваркой, опрессовкой, пайкой, свинчиванием или иным равноценным способом. Разборные контактные соединения должны быть снабжены приспособлением для предотвращения самоотвинчивания.

7.4.13. Защита зданий, сооружений и наружных установок, содержащих пожароопасные зоны, от прямых ударов молнии и вторичных ее проявлений, а также заземление установленного в них оборудования (металлических сосудов, трубопроводов и т. п.), содержащего горючие жидкости, порошкообразные или волокнистые материалы и т. п., для предотвращения искрения, обусловленного статическим электричеством, должны выполняться в соответствии с действующими нормативами по проектированию и устройству молниезащиты зданий и сооружений и защиты установок от статического электричества.

В пожароопасных зонах любого класса должны быть предусмотрены меры для снятия статических зарядов с оборудования.

7.4.14. Заземление электрооборудования в пожароопасных зонах должно выполняться в соответствии с гл. 1.7.

 

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

 

7.4.15. В пожароопасных зонах любого класса могут применяться электрические машины с классами напряжения до 10 кВ при условии, что их оболочки имеют степень защиты по ГОСТ 17494-72* не менее указанной в табл. 7.4.1.

В пожароопасных зонах любого класса могут применяться электрические машины, продуваемые чистым воздухом с вентиляцией по замкнутому или разомкнутому циклу. При вентиляции по замкнутому циклу в системе вентиляции должно быть предусмотрено устройство для компенсации потерь воздуха и создания избыточного давления в машинах и воздуховодах.

Допускается изменять степень защиты оболочки от проникновения воды (2-я цифра обозначения) в зависимости от условий среды, в которой машины устанавливаются.

До освоения электропромышленностью крупных синхронных машин, машин постоянного тока и статических преобразовательных агрегатов в оболочке со степенью зашиты IP44 допускается применять в пожароопасных зонах класса П-IIа машины и агрегаты со степенью защиты оболочки не менее IP20.

7.4.16. Воздух для вентиляции электрических машин не должен содержать паров и пыли горючих веществ. Выброс отработавшего воздуха при разомкнутом цикле вентиляции в пожароопасную зону не допускается.

 

Таблица 7.4.1

 

Минимальные допустимые степени защиты оболочек электрических машин в зависимости от класса пожароопасной зоны

 

Вид установки и условия работы

Степень защиты оболочки для пожароопасной зоны класса

 

П-I

П-II

П-IIа

П-III

Стационарно установленные машины, искрящие или с искрящими частями по условиям работы

IP44

IP54*

IP44

IP44

Стационарно установленные машины, не искрящие и без искрящих частей по условиям работы

IP44

IP44

IP44

IP44

Машины с частями, искрящими и не искрящими по условиям работы, установленные на передвижных механизмах и установках (краны, тельферы, электротележки и т.п.)

IP44

IP54*

IP44

IP44

____________

* До освоения электропромышленностью машин со степенью защиты оболочки IP54 могут применяться машины со степенью защиты оболочки IP44.

 

7.4.17. Электрооборудование переносного электрифицированного инструмента в пожароопасных зонах любого класса должно быть со степенью защиты оболочки не менее IP44; допускается степень защиты оболочки IP33 при условии выполнения специальных технологических требований к ремонту оборудования в пожароопасных зонах.

7.4.18. Электрические машины с частями, нормально искрящими по условиям работы (например, электродвигатели с контактными кольцами), должны располагаться на расстоянии не менее 1 м от мест размещения горючих веществ или отделяться от них несгораемым экраном.

7.4.19. Для механизмов, установленных в пожароопасных зонах, допускается применение электродвигателей с меньшей степенью защиты оболочки, чем указано в табл. 7.4.1, при следующих условиях:

электродвигатели должны устанавливаться вне пожароопасных зон;

привод механизма должен осуществляться при помощи вала, пропущенного через стену, с устройством в ней сальникового уплотнения.

 

ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ПРИБОРЫ

 

7.4.20. В пожароопасных зонах могут применяться электрические аппараты, приборы, шкафы и сборки зажимов, имеющие степень защиты оболочки по ГОСТ 14255-69* не менее указанной в табл. 7.4.2.

 

Таблица 7.4.2

 

Минимальные допустимые степени защиты оболочек электрических аппаратов, приборов, шкафов и сборок зажимов в зависимости от класса пожароопасной зоны

 

Вид установки и условия работы

Степень защиты оболочки для пожароопасной зоны класса

 

П-I

П-II

П-IIа

П-III

Установленные стационарно или на передвижных механизмах и установках (краны, тельферы, электротележки и т.п.), искрящие по условиям работы

IP44

IP54

IP44

IP44

Установленные стационарно или на передвижных механизмах и установках, не искрящие по условиям работы

IP44

IP44

IP44

IP44

Шкафы для размещения аппаратов и приборов

IP44

IP54*

IP44**

IP44

IP44

Коробки сборок зажимов силовых и вторичных цепей

IP44

IP44

IP44

IP44

__________

* При установке в них аппаратов и приборов, искрящих по условиям работы. До освоения электропромышленностью шкафов со степенью защиты оболочки IP54 могут применяться шкафы со степенью защиты оболочки IP44.

** При установке в них аппаратов и приборов, не искрящих по условиям работы.

 

Допускается изменять степень защиты оболочки от проникновения воды (2-я цифра обозначения) в зависимости от условий среды, в которой аппараты и приборы устанавливаются.

7.4.21. Аппараты и приборы, устанавливаемые в шкафах, могут иметь меньшую степень защиты оболочки, чем указано в табл. 7.4.2 (в том числе исполнение IP00), при условии, что шкафы имеют степень защиты оболочки не ниже указанной в табл. 7.4.2 для данной пожароопасной зоны.

7.4.22. В пожароопасных зонах любого класса могут применяться аппараты, приборы, шкафы и сборки зажимов, продуваемые чистым воздухом под избыточным давлением.

7.4.23. В пожароопасных зонах любого класса могут применяться аппараты и приборы в маслонаполненном исполнении (за исключением кислородных установок и подъемных механизмов, где применение этих аппаратов и приборов запрещается).

7.4.24. Щитки и выключатели осветительных сетей рекомендуется выносить из пожароопасных зон любого класса, если это не вызывает существенного удорожания и расхода цветных металлов.

Электроустановки запираемых складских помещений, в которых есть пожароопасные зоны любого класса, должны иметь аппараты для отключения извне силовых и осветительных сетей независимо от наличия отключающих аппаратов внутри помещений. Отключающие аппараты должны быть установлены в ящике из несгораемого материала с приспособлением для пломбирования на ограждающей конструкции из несгораемого материала, а при ее отсутствии – на отдельной опоре.

Отключающие аппараты должны быть доступны для обслуживания в любое время суток.

7.4.25. Если в пожароопасных зонах любого класса по условиям производства необходимы электронагревательные приборы, то нагреваемые рабочие части их должны быть защищены от соприкосновения с горючими веществами, а сами приборы установлены на поверхности из негорючего материала. Для защиты от теплового излучения электронагревательных приборов необходимо устанавливать экраны из несгораемых материалов.

В пожароопасных зонах любого класса складских помещений, а также в зданиях архивов, музеев, галерей, библиотек (кроме специально предназначенных помещений, например буфетов) применение электронагревательных приборов запрещается.

 

ЭЛЕКТРИЧЕСКИЕ ГРУЗОПОДЪЕМНЫЕ МЕХАНИЗМЫ

 

7.4.26. Степень защиты оболочки электрооборудования, применяемого для кранов, талей и аналогичных им механизмов, должна соответствовать табл. 7.4.1-7.4.3.

7.4.27. Токоподвод подъемных механизмов (кранов, талей и т. п.) в пожароопасных зонах классов П-I и П-II должен выполняться переносным гибким кабелем с медными жилами, с резиновой изоляцией, в оболочке, стойкой к окружающей среде. В пожароопасных зонах классов П-IIа и П-III допускается применение троллеев и троллейных шинопроводов, но они не должны быть расположены над местами размещения горючих веществ.

 

Таблица 7.4.3

 

Минимальные допустимые степени защиты светильников в зависимости от класса пожароопасной зоны

 

Источники света, устанавливаемые в светильниках

Степень защиты светильников для пажароопасной зоны класса

П-I

П-II

П-IIа, а также П-II при наличии местных нижних отсосов и общеобменной вентиляции

П-III

Лампы накаливания

IP53

IP53

2’3

2’3

Лампы ДРЛ

IP53

IP53

IP23

IP23

Люминесцентные лампы

5’3

5’3

IP23

IP23

 

Примечание. Допускается изменять степень защиты оболочки от проникновения воды (2-я цифра обозначения) в зависимости от условий среды, в которой устанавливаются светильники.

Зануление и заземление. Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний]

Зануление и заземление

Вопрос. Какие электроустановки и электрооборудование подлежат заземлению во взрывоопасных зонах любого класса?

Ответ. Подлежат заземлению:

электроустановки при всех напряжениях переменного и постоянного тока;

электрооборудование, установленное на зануленных (заземленных) металлических конструкциях, которые в соответствии с п. 1.7.48 Правил (п. 1) в невзрывоопасных зонах разрешается не занулять (не заземлять). Это требование не относится к электрооборудованию, установленному внутри зануленных (заземленных) корпусов шкафов и пультов (7.3.134).

Вопрос. Для какого электрооборудования должно осуществляться зануление в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью?

Ответ. Должно осуществляться:

в силовых сетях во взрывоопасных зонах любого класса – отдельной жилой кабеля или провода;

в осветительных сетях во взрывоопасных зонах любого класса, кроме класса В-Й, на участке от светильника до ближайшей ответвительной коробки – отдельным проводником, присоединенным к нулевому рабочему проводнику в ответвительной коробке;

в осветительных сетях во взрывоопасной зоне класса В-Й – отдельным проводником, проложенным от светильника до ближайшего группового щитка;

на участке сети от РУ и ТП, находящихся вне взрывоопасной зоны, до щита, сборки, распределительного пункта и т. п., также находящихся вне взрывоопасной зоны, от которых осуществляется питание электроприемников, расположенных во взрывоопасных зонах любого класса, допускается в качестве нулевого защитного проводника использовать алюминиевую оболочку питающих кабелей (7.3.135).

Вопрос. Какой должна быть выбрана проводимость нулевых защитных проводников в электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка?

Ответ. Должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от него характеристику (7.3.139).

Вопрос. Как должны выполняться проходы специально проложенных нулевых защитных (заземляющих) проводников через стены помещений со взрывоопасными зонами?

Ответ. Должны выполняться в отрезках труб или в проемах. Отверстия труб и проемов должны быть уплотнены несгораемыми материалами. Соединение нулевых защитных (заземляющих) проводников в местах проходов не допускается (7.3.141).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Заземление, зануление | Школа электрика

Все действия в электроустановках должны выполняться при строгом соблюдении условий безопасности.Несоблюдение правил, приемов выполнения работ угрожает несчастным случаем. Соблюдение безопасности обязательно для владельцев бытовых установок.

Чтобы уберечь человека от травмы, разработаны специальные мероприятия. Действенным средством является защитное заземление электрической сети. Используется для трехфазных цепей до 1000 Вольт с изолированным нейтральным проводом, сетей 1000 Вольт и более с разной схемой нейтрального проводника.

Заземление для защиты людей выполняется созданием электрической связи между частями, которые не предназначены проводить ток, и контуром. Связь с «землей» уменьшает разность потенциала до величин, безопасных для человека. Потому прикосновение не приведет к травме или гибели.

Напряжение на оборудовании при нарушении изоляции тем ниже, чем менее сопротивление заземляющего устройства.

Чтобы безопасно работать, обслуживать оборудование, нужно, чтобы проводники не находились под опасным потенциалом при обычном режиме, а также при аварийной ситуации, когда пробит защитный слой.

Требования к заземлению излагают «Правила устройства электроустановок» (ПУЭ»), глава 1.7. Документ утвержден Министерством энергетики РФ.

Для жилых, офисных строений Государственный комитет архитектуры разработал документ «Электрооборудование жилых, общественных зданий. Нормы проектирования». В документе перечислены требования по охране человека.

Способом защититься от удара током является зануление частей оборудования. Мера достигается созданием металлосвязи между нетоковедущими элементами оборудования и заземленной нейтралью вторичной обмотки генератора, трансформатора.

При нарушении изоляции, попадании напряжения на нетоковедущую часть происходит короткое замыкание, включается защита (плавкие предохранители, автоматический выключатель). Соединение с «нулем» применяется как защита для сетей до 1000 Вольт с глухим заземлением нейтрального проводника. Проводник, связывающий зануляемые элементы с глухозаземленной нейтралью, называется защитным нулевым.

Сети 220/380 Вольт соответственно ПУЭ выполняют с заземлением нейтрали (сеть переменного тока) либо нулевой точки (сеть постоянного тока) генератора либо трансформатора.

Соединение с «нулем» обеспечивает отключение части оборудования (линии), где произошло повреждение изоляции. Прикосновение вызывает замыкание, быстрое срабатывание защиты, отключение опасного участка. Время отсечения равняется скорости срабатывания защитной автоматики, это не позволяет человеку попасть под аварийный потенциал.

Ток прикосновения снижается до величин, не представляющих опасность для здоровья.

Выбор, применение защитных мер выполняются согласно ПУЭ.

Для сетей напряжением 380 Вольт и более переменного тока, либо 440 Вольт и выше постоянного тока связь с землей (контуром) либо зануление обязательно. При выборе метода следует учитывать схему сетевой нейтрали.

Для установок, работающих в условиях повышенной опасности или под открытым небом, меры обязательны при напряжениях от 42 Вольт и выше переменного тока либо 110 Вольт и выше постоянного тока.

В сетях 220 Вольт допускается не применять соединение с «землей» либо нулевым защитным проводом. Исключение составляют помещения с повышенной опасностью, что оговорено ПУЭ.

Безопасные условия эксплуатации оборудования, приборов напрямую зависят от соблюдения охранных мер. Практика показывает, что несчастные случаи, поражения током происходят там, где нарушаются правила обслуживания приборов, оборудования. Это одинаково относится к промышленным и бытовым условиям.

Зануление в электроустановках – Статьи об энергетике





Занулением называется электрическое соединение металлических нетоковедущих частей электроустановок с заземленной нейтралью вторичной обмотки трехфазного понижающего трансформатора или генератора, с заземленным выводом источника однофазного тока, с заземленной средней точкой в сетях постоянного тока.

Принцип действия зануления основан на возникновении короткого замыкания при пробое фазы на нетоковедущую часть часть прибора или устройства, что приводит к срабатыванию системы защиты (автоматического выключателя или перегоранию плавких предохранителей).

Зануление — основная мера защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Нулевым защитным проводником называется проводник, соединяющий зануляемые части (корпуса, конструкции, кожухи и т.п.) с заземленной нейтралью источника питания (трансформатора, генератора).

В сетях 380/220 В в соответствии с требованиями ПУЭ применяется заземление нейтралей (нулевых точек) трансформаторов или генераторов.

Рассмотрим вначале сеть 380 В с заземленной нейтралью. Такая сеть изображена на рис. 1.

Если человек прикоснется к проводнику этой сети, то под воздействием фазного напряжения образуется цепь поражения, которая замыкается через тело человека, обувь, пол, землю, заземление нейтрали (см. стрелки). Та же цепь образуется, если человек прикоснется к корпусу с поврежденной изоляцией. Однако просто выполнить заземление корпуса электроприемника нельзя.

Рис. 1. Прикосновение к проводнику в сети с заземленной нейтралью


Рис. 2. Заземление электроприемника в сети с заземленной нейтралью

Чтобы это понять, допустим, что такое заземление все же выполнено (рис. 2) и на установке произошло замыкание на корпус двигателя. Ток замыкания будет протекать через два заземлителя – электроприемника Rз и нейтрали Rо (см. стрелки).

По закону Ома фазное напряжение сети Uф распределится между заземлителями Rз и Ro пропорционально их величинам, т. е. чем больше сопротивление заземлителя, тем больше будет падение напряжения в нем.

Если, например, сопротивление Rо = 1 ом, Rз = 4 ом и Uф = 220 В, то падение напряжения распределится так: на сопротивлении Rз будем иметь 176 В, а на сопротивлении Rо будем иметь = 44 В.

Таким образом, между корпусом электродвигателя и землей возникает достаточно опасное напряжение. Человек, прикоснувшийся к корпусу, может быть поражен электрическим током. Если будет иметь место обратное соотношение сопротивлений, т. е. Rо будет больше, чем Rз, опасное напряжение может возникнуть между землей и корпусами оборудования, установленного возле трансформатора и имеющими общее заземление с его нейтралью.

Рис. 3. Зануление электроприемника в сети с заземленной нейтралью

По указанной причине в установках с заземленной нейтралью напряжением 380/220 В применяется система заземления иного вида: все металлические корпуса и конструкции связываются электрически с заземленной нейтралью трансформатора через нулевой провод сети или специальный зануляющий проводник (рис. 3). Благодаря этому любое замыкание на корпус превращается в короткое замыкание, и аварийный участок отключается предохранителем или автоматическим выключателем. Такая система заземления и называется занулением.

Таким образом, обеспечение безопасности при занулении достигается путем отключения участка сети, в котором произошло замыкание на корпус.

Защитное действие зануления заключается в автоматическом отключении участка цепи с поврежденной изоляцией и одновременно – в снижении потенциала корпуса на время от момента замыкания до момента отключения. После прикосновения человека к корпусу не отключившегося, по какой-либо причине, электроприемника в схеме появится ветвь тока через тело человека.

Кроме того, если в этой линии установлено УЗО, то оно так же срабатывает, но не от большой величины силы тока, а потому, что сила тока в фазном проводе становится неравна силе тока в нулевом рабочем проводе, так как большая часть тока имеет место в цепи защитного зануления мимо УЗО. Если на этой линии установлены и УЗО и автоматический выключатель, то сработают либо они оба, либо что-то одно, в зависимости от их быстродействия и величины тока замыкания.

Так же как не всякое заземление обеспечивает безопасность, не всякое зануление пригодно для обеспечения безопасности. Зануление должно быть выполнено так, чтобы ток короткого замыкания в аварийном участке достигал значения, достаточного для расплавления плавкой вставки ближайшего предохранителя или отключения автомата. Для этого сопротивление цепи короткого замыкания должно быть достаточно малым.

Если отключения не произойдет, то ток замыкания будет длительно протекать по цепи и по отношению к земле возникнет напряжение не только на поврежденном корпусе, но и на всех зануленных корпусах (так как они электрически связаны). Это напряжение равно по величине произведению тока замыкания на сопротивление нулевого провода сети или зануляющего проводника и может оказаться значительным по величине и, следовательно, опасным особенно в местах где отсутствует выравнивание потенциалов. Чтобы предупредить подобную опасность, необходимо точно выполнять требования ПУЭ к устройству зануления.

Защитное действие зануления обеспечивается надежным срабатыванием максимальной токовой защиты на быстрое отключение участка сети с поврежденной изоляцией. По ПУЭ время автоматического отключения поврежденной линии для сети 220/380В не должно превышать 0,4 с.

Для этого необходимо, чтобы ток короткого замыкания в цепи фаза – нуль отвечал условию Iк >k Iном, где k — коэффициент надежности, Iном – номинальный ток уставки отключающего аппарата (плавкий предохранитель, автоматический выключатель).

Коэффициент надежности k согласно ПУЭ должен быть не менее: 3 – для плавких предохранителей или автоматов с тепловым расцепителем (тепловое реле) для нормальных помещений и 4 – 6 – для взрывоопасных помещений, 1,4 – для автоматических выключателей с электромагнитным расцепителем во всех помещениях.

Сопротивление растеканию заземляющего устройства нейтрали Ro (рабочее заземление) должно быть не более 2, 4 и 8 Ом соответственно при номинальных напряжениях 660, 380 и 220 В электроустановки трехфазного тока.




Всего комментариев: 0


Защитное зануление. работа и устройство. применение и особенности

Для чего необходимо заземление

Заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях

В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая – TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Схемы подключения заземленной нейтрали

Существует несколько схем глухозаземленной нейтрали.

  • TN-C. Самая простая и наиболее распространенная в сельской местности схема. Четырехпроводная воздушная линия – три фазных и одна нейтраль, которая заземляется сначала у трансформатора, а потом на промежуточных столбах. Используется для питания одно- и трехфазных потребителей.
  • ТТ. Улучшенный вариант глухозаземленной нейтрали TN-C. Отличается от нее независимым заземляющим контуром, устраиваемым в здании или рядом с ним. К нему присоединяются корпуса бытовых электроприборов. Используется при подключении вновь построенных частных домов к четырехпроводным воздушным линиям электроснабжения.
  • TN-S. Применяется при прокладке подземных электролиний в пределах жилых кондоминиумов. Пять жил. Три токоведущих, одна нейтраль «звезды» (технологический 0) и защитный заземляющий проводник PE. Последние две соединены с заземлителем силовой подстанции. Применяется для подачи электричества группам однофазных потребителей.
  • TN-C-S. Используется при индивидуальном питании однофазных потребителей от подъездного распределительного щитка. Три линии – фазная, технологический ноль N и защитный проводник PE. Место подключения провода PE – к нейтрали подстанции или к независимому заземляющему контуру – не имеет значения.

Подробнее с системами заземления можно ознакомиться здесь.

Сеть с глухозаземленной нейтралью

Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.

Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.

Особенности конструктива

Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.

По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.

√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.

Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.

Контур заземления ТП

Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.

От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.

Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.

Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.

Эффективно заземленная нейтраль

При эффективном и глухо заземлении нейтрали всякое замыкание одной фазы является однофазным КЗ, сопровождающимся значительным током через место повреждения, и должно привести к срабатыванию защитных устройств, отключающих поврежденный участок от системы. На мощных подстанциях токи замыкания на землю могут достигать десятков килоампер. Чтобы частые отключения линий из-за замыканий на землю не нарушали надежности питания потребителей, на таких линиях применяют однофазное или трехфазное автоматическое  повторное включение (АПВ).

Наибольшее распространение среди систем высокого напряжения получили системы с эффективно заземленными нейтралями. У таких систем нейтрали трансформаторов и автотрансформаторов заземлены наглухо или через реакторы с небольшим индуктивным сопротивлением с таким расчетом, чтобы при замыкании напряжения неповрежденных фаз относительно земли не превышали 1,4 Uф, а однофазный ток КЗ в любой точке системы был не менее 60 % тока трехфазного КЗ в той же точке. В системах с эффективно заземленной нейтралью кратность внутренних перенапряжений (k = Uвн / Uф) в момент замыкания не превышает 2,5.

Системы с эффективно и глухозаземленной нейтралью относят к системам с большими токами замыкания на землю (Iз > 500 А).

Для ограничения токов замыкания на землю искусственно увеличивают сопротивление нулевой  последовательности Zо за счет заземления только части нейтралей трансформаторов (одного или двух) на подстанции или заземления нейтралей через сопротивления. Однако такое увеличение приводит к дополнительному повышению напряжения на неповрежденных фазах при несимметрии КЗ.

Рассмотрим систему с глухозаземленной нейтралью при однофазном замыкании на землю фазы (рисунок а)). В этом случае напряжения на неповрежденных фазах определяют из выражений:

Ub’ = — ((3*Zо + j√3*(Zо + 2*Z2) / (2*(Z1+Z2+Zо)) * Еэ;

Uc’ = — ((3*Zо — j√3*(Zо + 2*Z2) / (2*(Z1+Z2+Zо)) * Еэ,

где Еэ — ЭДС эквивалентного генератора, численно равная напряжению в месте КЗ перед его возникновением.

Ток однофазного замыкания определяется суммой токов прямой, обратной и нулевой последовательностей, то есть:

Iз = Ia1+Ia2+Iaо = 3*Ia1,

где Ia1 = Ia2 = Iaо

На рисунке б) представлена векторная диаграмма при КЗ фазы L1 для системы с индуктивными сопротивлениями.

Векторная диаграмма получается симметричной, поскольку IUc’I = IUb’I, а концы векторов Uc’ и Ub’ скользят по прямым, параллельным вектору Uл.

Внутренние перенапряжения в системе зависят от числа заземленных нейтралей трансформаторов. Чем больше это число, тем меньше значения перенапряжений. Однако заземление большого количества нейтралей приводит к значительному увеличению тока однофазного КЗ. Поэтому, например, в системах напряжением 110 В заземляют столько нейтралей трансформаторов, сколько необходимо для создания эффективного режима работы нейтрали в системе. Иногда для уменьшения однофазного тока КЗ нейтрали трансформаторов заземляют через активное или индуктивное сопротивление. При заземлении нейтрали через индуктивное сопротивление ток в месте повреждения будет значительно больше емкостного тока замыкания на землю, но не более допустимых значений, ограниченных появлением устойчивого дугового замыкания на землю. Такое заземление нейтрали повышает устойчивость системы при однофазных замыканиях на землю и ограничивает коммутационные перенапряжения до допустимых пределов.

При заземлении нейтрали через активное сопротивление ток в месте повреждения будет больше емкостного тока замыкания на землю, но меньше, чем при заземлении нейтрали через индуктивное сопротивление. Напряжения на неповрежденных фазах при этом достигают значений (1,73 — 1,9) Uф. При правильно выбранном значении активного сопротивления устойчивость системы при однофазных замыканиях выше, чем при глухом заземлении нейтрали. Надежность заземления нейтрали через активное сопротивление выше, чем через индуктивное. Однако введение в нейтраль индуктивного сопротивления (реактора) для ограничения тока однофазного  КЗ является более экономичным, чем заземление нейтрали через активное сопротивление. Последнее находит применение при заземлении нейтралей генераторов.

Зануление: назначение и характеристики

Зануление вместо заземления часто используется в квартирах, где отсутствует традиционная система заземления или она имеет устаревший вид. Такой тип защиты подразумевает соединение металлических деталей, не проводящих ток с глухозаземленным нулевым проводником. Устроен этот механизм для того, чтобы на момент повреждения изоляции и выхода тока на корпус приборов, осуществлялось короткое замыкание, вследствие чего происходило срабатывание автоматических выключателей и УЗО.

Важно! Практикуя вместо заземления зануление — обязательно устанавливайте автоматы и устройства защитного отключения. Следует внимательно и регулярно проверять провод нейтрали, так как в случае выхода высокого тока, под напряжением оказываются все приборы, на которые выполнено зануление

Эта ситуация объясняется автоматическим переключением зануленных приспособлений к фазе. Поэтому в целях безопасности не рекомендуется подключать к нулю автоматы и другие средства защиты. Тем не менее, полностью обезопасить себя от удара током, можно лишь установив повторные заземлители на каждые 200 м электрической сети

Следует внимательно и регулярно проверять провод нейтрали, так как в случае выхода высокого тока, под напряжением оказываются все приборы, на которые выполнено зануление. Эта ситуация объясняется автоматическим переключением зануленных приспособлений к фазе. Поэтому в целях безопасности не рекомендуется подключать к нулю автоматы и другие средства защиты. Тем не менее, полностью обезопасить себя от удара током, можно лишь установив повторные заземлители на каждые 200 м электрической сети.

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Принцип работы глухозаземленной нейтрали

Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.

Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.

Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.

Плюсы и минусы способа

Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:

  • Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
  • Отпадает необходимость в использовании специальных защитных схем.
  • Эффективно справляется с подавлением перенапряжения.

Через низкоомное сопротивление

Заземление нейтрали с помощью небольшого по номинальной величине резистора широко практикуется лишь в нескольких странах (в России и Белоруссии, в частности). При этом более логичным кажется использование в этих цепях высокоомного резистора (RB-режим), обеспечивающего низкий уровень перенапряжений в режиме ОЗЗ.

Другие типы заземления нейтрали предполагают использование комбинированных вариантов её подключения с использованием индуктивности (LB плюс RB-режимы).

Но при внимательном исследовании этих подходов выясняется, что высокоомные резисторы отличаются не только значительными габаритами, но и имеют приличную массу и стоимость. Рассмотренный выше вариант установки дугогасящих реакторов также имеет свои особенности и характерные д

Зануление это просто, что такое защитное зануление

Не все понимают разницу между такими понятиями, как зануление и заземление, хотя, в принципе, это одно и то же. Защитное зануление – это соединение нейтрали трансформатора с металлическим корпусом бытового прибора. А так как система электроснабжения с глухозаземленной нейтралью – основная схема подачи электричества в дома, соответственно схема зануления присутствует в каждом доме.

При всей непонятности названия: глухозаземленная нейтраль – в реалии все достаточно просто. Электроснабжение домов производится от электрической подстанции, в которой установлен трансформатор. Фазные обмотки трансформатора соединены в одной точке, данная схема называется звездой. Разность потенциалов в данной точке равна нулю, то есть, напряжение здесь отсутствует. Именно эта точка соединяется с заземляющим контуром, который расположен внутри подстанции. И от этой точки в дома проводится провод, который называется нулевым. То есть, в каждую квартиру или дом входит два проводника: фазный и нулевой, которые и подают напряжение в 220 вольт.

Теперь, что такое зануление? Современные бытовые приборы в процессе производства комплектуются заземляющим проводом, который соединяет их металлический корпус с вилкой. В последней установлена третья клемма заземления. Соответственно современные розетки также снабжены третьим заземляющим контактом. При установке вилки в розетку происходит замыкание заземляющих контактов, то есть, бытовой прибор подключается к заземляющему контуру, расположенному в подстанции, через нулевой провод. И хотя эта одна из разновидностей заземления, название она получила от нулевого проводника.

Как работает система

Принцип действия зануления очень простой. Он основан на правилах устройства электроустановок (ПУЭ). В них регламентированы нормативы, в которых обозначено, что при появлении короткого замыкания в сети защитное устройство (автомат) должно среагировать за 0,4 секунды. За этот небольшой промежуток времени человек останется в живых, если он коснулся корпуса прибора, который находится под напряжением в виду пробивки изоляции внутри электроустановки.

Есть два тонких момента, которые определяют принцип действия защитного зануления.

  1. При ее использовании значительно уменьшается сопротивление петли «фаза-ноль».
  2. Увеличивается значение тока короткого замыкания, которое становится причиной срабатывания защитного автоматического выключателя.
По второму пункту необходимо дать пояснения. У каждого автомата есть свой определенный предел реагирования на величину тока. Он обычно обозначается на корпусе прибора, к примеру, 16 А. То есть, автомат будет реагировать на силу тока, равную или выше 16 ампер. Все величины ниже данного значения автомат пропускает, то есть, на них он не реагирует, а значит, и не отключает подачу электричества в помещения. Поэтому зануление дома — это защита, которая повышает значение тока короткого замыкания, чтобы автоматы в распределительном щитке срабатывали в независимости от реального пониженного значения.

Внимание! Есть одно требование, которое зафиксировано в ПУЭ. Нельзя изготавливать своими руками отдельный заземляющий контур на улице и подключать к нему заземляющий провод, если в доме используется сеть с глухозаземленной нейтралью. Все дело в том, что самодельный контур может иметь более значительное сопротивление, чем зануляющая система через нейтраль. А это снижение силы тока короткого замыкания, на который не отреагируют защитные автоматы в распределительном щитке.

Это же самое касается создания заземляющего контура через отопление или водопроводные металлические трубы.

Область применения зануления обширна. К ней на промышленных объектах подключаются все электроустановки: электродвигатели, генераторы, трансформаторы, конструкции распределительных устройств и прочие. В быту к ней подключаются бытовые приборы, электрические инструменты и станки, светильники, распределительные щиты.

Назначение защитного зануления – это безопасная эксплуатация электроустановок. Но насколько оно эффективнее настоящей заземляющей сети. Во-первых, необходимо отметить, что отдельно устанавливаемый заземляющий контур – это провод, который проложен от распределительного щитка в доме к трансформатору и подключен к заземляющей сети внутри подстанции.

Во-вторых, могут возникнуть ситуации, когда нулевой проводник по каким-то причинам отгорит. То есть, при коротком замыкании внутри бытового прибора весь потенциал будет направлен на его корпус. А так как при занулении нулевой провод соединен с заземляющим, то последний также не будет задействован в системе безопасности. Последствия при соприкосновении с корпусом прибора – удар током. В заземлении такого не произойдет, потому что оба проводника: ноль и земля – это два отдельно проведенных контура.

Обобщение по теме

Требования ПУЭ точно определяют нормативы, при которых питающая электрическая цепь должна сработать на отключение при возникновении короткого замыкания. Для этого сила тока короткого замыкания должна быть в три раза больше, чем номинальный, обозначенный на автоматическом выключателе. Это касается жилых домов и офисных зданий, где установлены автоматические выключатели с плавкими вставками. Для защитных устройств с электромагнитными расцепителями повышающий коэффициент равен 1,4. Для взрывоопасных помещений используется коэффициент 4-6.

Чтобы ток такой силы мог спокойно растекаться по зануляющей сети, необходимо, чтобы ее сопротивление при 220 вольт было 8 Ом, при 380 вольтах – 4 Ома. Это может обеспечить медный провод сечением 4 мм², не меньше. Этот размер применяется в бытовых сетях, где используется напряжение 220 В.

Обобщая информацию, можно дать окончательное определение зануляющей системе. Итак, занулением называется соединение нетоковедущих металлических частей электроустановок (бытовых приборов) с нейтралью трансформатора. Последняя соединяется с заземлением. Добавим, что заземляющие и зануляющие провода имеют один окрас – желто-зеленый. Это делается для облегчения монтажа и для легкости определения проводников в процессе проводимого ремонта.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Влияние заземления на воспаление, иммунный ответ, заживление ран, а также профилактику и лечение хронических воспалительных и аутоиммунных заболеваний

J Inflamm Res. 2015; 8: 83–96.

Джеймс Л. Ошман

1 Nature’s Own Research Association, Дувр, Нью-Хэмпшир, США

Гаэтан Шевалье

2 Кафедра биологии развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния, США

Ричард Браун

3 Кафедра физиологии человека, Орегонский университет, Юджин, Орегон, США

1 Nature’s Own Research Association, Довер, Нью-Хэмпшир, США

2 Кафедра биологии развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния, США

3 Кафедра физиологии человека, Орегонский университет, Юджин, штат Орегон, США

Для переписки: Гаэтан Шевалье, Департамент развития и клеточной биологии, Калифорнийский университет в Ирвине, 2103 Макго-Холл, Ирвин, Калифорния, 92697 -2300, США, тел. + 1760815 9271, факс +1858225 3514, электронная почта десять.labolgcbs @ cgobld Авторские права © 2015 Oschman et al. Эта работа опубликована Dove Medical Press Limited и находится под лицензией Creative Commons Attribution – Non Commercial (unported, v3.0) License. Полные условия лицензии доступны по адресу http://creativecommons.org/licenses/by-nc/3.0 / Некоммерческое использование работы разрешено без какого-либо дополнительного разрешения Dove Medical Press Limited при условии надлежащей атрибуции работы. Эта статья цитируется в других статьях PMC.

Abstract

Многопрофильные исследования показали, что токопроводящий контакт человеческого тела с поверхностью Земли (заземление или заземление) оказывает интригующее воздействие на физиологию и здоровье.Такие эффекты относятся к воспалению, иммунным ответам, заживлению ран, а также к профилактике и лечению хронических воспалительных и аутоиммунных заболеваний. Этот отчет преследует две цели: 1) проинформировать исследователей о том, что представляется новым подходом к изучению воспаления, и 2) предупредить исследователей о том, что продолжительность и степень (сопротивление заземлению) заземления экспериментальных животные – важный, но обычно упускаемый из виду фактор, который может повлиять на результаты исследований воспаления, заживления ран и туморогенеза.В частности, заземление организма вызывает измеримые различия в концентрациях лейкоцитов, цитокинов и других молекул, участвующих в воспалительной реакции. Мы представляем несколько гипотез для объяснения наблюдаемых эффектов, основанных на текущих результатах исследований и нашем понимании электронных аспектов физиологии клеток и тканей, клеточной биологии, биофизики и биохимии. Экспериментальное повреждение мышц, известное как мышечная болезненность с отсроченным началом, использовалось для мониторинга иммунного ответа в заземленных и необоснованных условиях.Заземление уменьшает боль и изменяет количество циркулирующих нейтрофилов и лимфоцитов, а также влияет на различные циркулирующие химические факторы, связанные с воспалением.

Ключевые слова: хроническое воспаление, иммунная система, заживление ран, белые кровяные тельца, макрофаги, аутоиммунные заболевания

Введение

Заземление означает прямой контакт кожи с поверхностью Земли, например, босиком или руками , или с различными системами заземления. Субъективные сообщения о том, что ходьба босиком по Земле укрепляет здоровье и дает чувство благополучия, можно найти в литературе и практиках различных культур со всего мира. 1 По разным причинам многие люди не хотят выходить на улицу босиком, если только они не отдыхают на пляже. Опыт и измерения показывают, что постоянный контакт с Землей приносит устойчивые выгоды. Доступны различные системы заземления, позволяющие часто контактировать с Землей, например, во время сна, сидя за компьютером или прогулок на открытом воздухе. Это простые токопроводящие системы в виде листов, циновок, повязок на запястья или щиколотки, липких пластырей, которые можно использовать в доме или офисе, и обуви.Эти приложения подключаются к Земле через шнур, вставленный в заземленную розетку или прикрепленный к заземляющему стержню, помещенному в почву снаружи под окном. При использовании обуви в подошве обуви на подушечке стопы, под плюсневыми костями, в точке акупунктуры, известной как почка 1, размещается токопроводящая заглушка. С практической точки зрения эти методы предлагают удобный, рутинный и удобный в использовании. подход к заземлению или заземлению. Их также можно использовать в клинических ситуациях, как будет описано в разделе, озаглавленном «Краткое изложение результатов на сегодняшний день». 1

Недавно группа из примерно десятка исследователей (включая авторов этой статьи) изучала физиологические эффекты заземления с различных точек зрения. По результатам этого исследования в рецензируемых журналах опубликовано более десятка исследований. Хотя в большинстве этих пилотных исследований было задействовано относительно небольшое количество субъектов, вместе взятых, исследование открыло новые и многообещающие рубежи в исследованиях воспалений с широкими последствиями для профилактики и общественного здравоохранения.Полученные данные заслуживают рассмотрения сообществом исследователей воспаления, у которого есть средства для проверки, опровержения или уточнения интерпретаций, которые мы сделали до сих пор.

Заземление уменьшает или даже предотвращает основные признаки воспаления после травмы: покраснение, жар, отек, боль и потерю функции (и). Быстрое исчезновение болезненного хронического воспаления было подтверждено в 20 тематических исследованиях с использованием медицинских инфракрасных изображений (). 2 , 3

Фотографические изображения, подтверждающие ускоренное улучшение 8-месячной незаживающей открытой раны, перенесенной 84-летней женщиной, страдающей диабетом.

Примечания: ( A ) Показывает открытую рану и бледно-серый оттенок кожи. ( B ) Снимок, сделанный после недели процедур заземления, показывает заметный уровень заживления и улучшения кровообращения, на что указывает цвет кожи. ( C ) Снимок, сделанный после 2 недель лечения заземлением, показывает, что рана зажила, а цвет кожи значительно улучшился. Лечение состояло из ежедневного 30-минутного сеанса заземления с помощью пластыря с электродом, когда пациент сидел удобно.Причиной раны, прилегающей к левой щиколотке, стал плохо подогнанный ботинок. Через несколько часов после ношения ботинка образовался волдырь, который затем превратился в стойкую открытую рану. Пациент проходил различные процедуры в специализированном раневом центре без каких-либо улучшений. Визуализация сосудов нижних конечностей показала плохое кровообращение. При первом осмотре она слегка хромала и испытывала боль. После первых 30 минут контакта с заземлением пациент сообщил о заметном уменьшении боли.По ее словам, после 1 недели ежедневного заземления ее уровень боли уменьшился примерно на 80%. В то время у нее не было никаких признаков хромоты. По прошествии 2 недель она сказала, что полностью избавилась от боли.

Быстрое выздоровление после серьезной раны с минимальным отеком и покраснением, ожидаемым при такой серьезной травме.

Примечания: Велосипедист получил травму на соревнованиях Тур де Франс – цепное колесо выбило ему ногу. ( A ) Пластыри заземления помещали выше и ниже раны как можно скорее после травмы.Фото любезно предоставлено доктором Джеффом Спенсером. ( B ) 1-е сутки после травмы. ( C ) 2-е сутки после травмы. Покраснение, боль и припухлость были минимальными, и велосипедист смог продолжить гонку на следующий день после травмы. ( B и C ) Авторские права © 2014. Перепечатано с разрешения Basic Health Publications, Inc. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-е изд. Лагуна-Бич: Основные публикации в области здравоохранения; 2014 г. 1

Уменьшение воспламенения с помощью заземления, документированное с помощью медицинского инфракрасного изображения.

Примечания: Тепловизионные камеры регистрируют крошечные изменения температуры кожи для создания карты с цветовой кодировкой горячих участков, указывающих на воспаление. На панели A показано уменьшение воспаления после сна в заземленном состоянии. Медицинское инфракрасное изображение показывает теплые и болезненные области (стрелки в верхней части панели A ). Сон на земле в течение 4 ночей разрешил боль, а горячие области охладились.Обратите внимание на значительное уменьшение воспаления и возврат к нормальной термической симметрии. На панели B показаны инфракрасные изображения 33-летней женщины, получившей гимнастическую травму в 15 лет. Пациентка долгое время страдала хронической болью в правом колене, отеком и нестабильностью и не могла стоять в течение длительного времени. Простые действия, такие как вождение, усиливали симптомы. Ей приходилось спать с подушкой между колен, чтобы уменьшить боль. Периодическое лечение и физиотерапия на протяжении многих лет приносили минимальное облегчение.17 ноября 2004 г. она обратилась с жалобой на сильную болезненность правого медиального колена и легкую хромоту. Верхние изображения на панели B были сделаны в положении ходьбы, чтобы показать внутреннюю часть обоих колен. Стрелка указывает на точное место боли у пациента и указывает на выраженное воспаление. Нижние изображения на панели B , сделанные через 30 минут после заземления с помощью электродной накладки. Пациент сообщил о легком уменьшении боли. Обратите внимание на значительное уменьшение воспаления в области колен. После 6 дней заземления она сообщила об уменьшении боли на 50% и сказала, что теперь она может дольше стоять без боли и ей больше не нужно спать с подушкой между ног.После 4 недель лечения она почувствовала себя достаточно хорошо, чтобы играть в футбол, и впервые за 15 лет не почувствовала нестабильности и небольшой боли. К 12 неделям она сказала, что ее боль уменьшилась почти на 90% и отека не было. Впервые за много лет она научилась кататься на водных лыжах. Пациентка обратилась в офис после 6 месяцев лечения, чтобы сообщить, что она завершила полумарафон, о чем она даже не мечтала, что когда-либо сможет это сделать до лечения.

Наша основная гипотеза заключается в том, что соединение тела с Землей позволяет свободным электронам с поверхности Земли распространяться по телу и внутрь тела, где они могут оказывать антиоксидантное действие.В частности, мы предполагаем, что мобильные электроны создают антиоксидантную микросреду вокруг области восстановления повреждений, замедляя или предотвращая появление реактивных форм кислорода (АФК), доставляемых окислительным взрывом, от причинения «побочного повреждения» здоровой ткани, а также предотвращения или уменьшения образования так – так называемая «воспалительная баррикада». Мы также предполагаем, что электроны с Земли могут предотвратить или устранить так называемое «тихое» или «тлеющее» воспаление. В случае подтверждения эти концепции могут помочь нам лучше понять и исследовать воспалительную реакцию и заживление ран, а также получить новую информацию о том, как иммунная система функционирует в условиях здоровья и болезней.

Сводка результатов на сегодняшний день

Заземление улучшает сон, нормализует ритм кортизола день-ночь, уменьшает боль, снижает стресс, переводит вегетативную нервную систему с симпатической на парасимпатическую активацию, увеличивает вариабельность сердечного ритма, ускоряет заживление ран и снизить вязкость крови. Резюме было опубликовано в журнале Journal of Environmental and Public Health . 4

Влияние на сон

В одном из первых опубликованных исследований заземления изучалось влияние заземления на сон и циркадные профили кортизола. 5 В исследовании приняли участие 12 человек, которые страдали от боли и имели проблемы со сном. Они спали заземленными в течение 8 недель, используя систему, показанную на рисунке. В течение этого периода их дневные профили кортизола нормализовались, и большинство испытуемых сообщили, что их сон улучшился, а уровень боли и стресса снизился.

Заземленная система сна.

Примечания: Заземленная система сна состоит из хлопкового полотна с вплетенными в него проводящими углеродными или серебряными нитями. Нити соединяются с проводом, который выходит из окна спальни или через стену к металлическому стержню, вставленному в землю рядом со здоровым растением.В качестве альтернативы его можно подключить к заземляющей клемме электрической розетки. Сон в этой системе соединяет тело с Землей. Люди, использующие эту систему, часто сообщают, что заземленный сон улучшает качество сна и уменьшает боли по разным причинам.

Результаты эксперимента привели к следующим выводам: 1) заземление тела во время сна дает количественные изменения в суточных или циркадных уровнях секреции кортизола, которые, в свою очередь, 2) вызывают изменения сна, боли и стресса (тревога, депрессия, и раздражительность), согласно субъективным оценкам.Эффекты кортизола, описанные Ghaly и Teplitz 5 , особенно важны в свете недавних исследований, показывающих, что длительный хронический стресс приводит к устойчивости к глюкокортикоидным рецепторам. 6 Такая устойчивость приводит к неспособности подавлять воспалительные реакции, что может, таким образом, увеличивать риски различных хронических заболеваний. Этот эффект дополняет результаты, описанные в разделе «Влияние на боль и иммунный ответ».

Влияние на боль и иммунный ответ

Пилотное исследование влияния заземления на боль и иммунного ответа на травму использовало мышечную болезненность с отсроченным началом (DOMS). 7 DOMS – это мышечная боль и скованность, которая возникает от нескольких часов до дней после напряженных и незнакомых упражнений. DOMS широко используется в качестве исследовательской модели физиологами, занимающимися физическими упражнениями и спортом. Болезненность DOMS вызвана временным повреждением мышц, вызванным эксцентрическими упражнениями. Фаза сокращения, которая происходит, когда мышца укорачивается, как при поднятии гантели, называется концентрической, тогда как фаза сокращения, когда мышца удлиняется, как при опускании гантели, называется эксцентрической.

Восемь здоровых испытуемых выполнили незнакомое эксцентрическое упражнение, которое вызвало боль в икроножных мышцах. Для этого им предложили выполнить два подхода по 20 подъемов пальцев ног со штангой на плечах и подушечками стоп на деревянной доске размером 2 × 4 дюйма. 7

Все субъекты ели стандартизированную пищу в одно и то же время дня и придерживались одного и того же цикла сна в течение 3 дней. Ежедневно в 17.40 у четверых испытуемых на икроножных мышцах и ступнях ног были прикреплены проводящие заземляющие пластыри.Они отдыхали и спали на системах заземления, подобных показанной на рисунке. Они оставались на заземленных простынях, за исключением посещения туалета и приема пищи. В качестве контроля четыре субъекта следовали одному и тому же протоколу, за исключением того, что их пластыри и листы не заземлялись. Перед тренировкой и через 1, 2 и 3 дня после нее были проведены следующие измерения: уровни боли, магнитно-резонансная томография, спектроскопия, содержание кортизола в сыворотке и слюне, химический анализ крови и ферментов, а также количество клеток крови. 7

Боль контролировалась двумя методами.Субъективный метод включал использование визуальной аналоговой шкалы утром и днем. Во второй половине дня на правую икроножную мышцу накладывали манжету для измерения кровяного давления и накачивали до уровня острого дискомфорта. Боль была задокументирована с точки зрения максимально допустимого давления. У заземленных испытуемых было меньше боли, о чем свидетельствует как аналоговая шкала болезненности (), так и их способность выдерживать более высокое давление манжеты для измерения кровяного давления (). 7

Изменения в отчетах по визуальной аналоговой шкале боли после обеда.

Изменение уровня боли после полудня (после полудня) с помощью манжеты для измерения кровяного давления.

Отчет об обосновании DOMS 7 содержит обзор литературы по изменениям химического состава крови и содержания форменных элементов (эритроцитов, лейкоцитов и тромбоцитов), ожидаемых после травмы. Иммунная система обнаруживает патогены и повреждение тканей и реагирует, инициируя каскад воспаления, отправляя нейтрофилы и лимфоциты в область. 8 12 Как и ожидалось, количество лейкоцитов увеличилось у необоснованных или контрольных субъектов.Количество лейкоцитов у заземленных субъектов неуклонно снижалось после травмы (). 7

Сравнение количества лейкоцитов, сравнение предварительного и пост-теста для каждой группы.

Предыдущие исследования показали увеличение нейтрофилов после травмы. 13 16 Это происходило как с заземленными, так и с необоснованными субъектами (), хотя количество нейтрофилов всегда было ниже у заземленных субъектов. 7

Сравнение количества нейтрофилов до и после теста для каждой группы.

Ожидается, что по мере увеличения количества нейтрофилов количество лимфоцитов будет уменьшаться. 17 19 В исследовании DOMS количество лимфоцитов у заземленных субъектов всегда было ниже, чем у необоснованных (). 7

Сравнение количества лимфоцитов до и после теста для каждой группы.

Обычно нейтрофилы быстро проникают в поврежденную область 8 , 20 22 , чтобы разрушить поврежденные клетки и посылать сигналы через сеть цитокинов для регулирования процесса восстановления.Производство нейтрофилами АФК и активных форм азота (РНС) называется «окислительным взрывом». 21 В то время как АФК уничтожают патогены и клеточный мусор, чтобы ткань могла регенерировать, АФК также могут повреждать здоровые клетки, прилегающие к области восстановления, вызывая так называемое побочное повреждение. Тот факт, что у заземленных субъектов было меньше циркулирующих нейтрофилов и лимфоцитов, может указывать на то, что первоначальное повреждение разрешилось быстрее, побочное повреждение уменьшилось, а процесс восстановления ускорился.Это могло бы объяснить уменьшение основных признаков воспаления (покраснение, жар, отек, боль и потеря функции) после острой травмы, как задокументировано, например, в и, а также быстрое уменьшение хронического воспаления, задокументированное в.

Наша рабочая гипотеза включает такой сценарий: подвижные электроны Земли проникают в организм и действуют как естественные антиоксиданты; 3 они частично проходят через матрикс соединительной ткани, в том числе через воспалительную преграду, если таковая имеется; 23 нейтрализуют АФК и другие окислители при ремонте; и они защищают здоровые ткани от повреждений.Тот факт, что у заземленных субъектов меньше циркулирующих нейтрофилов и лимфоцитов, может быть полезным из-за вредной роли, которую, как считается, эти клетки играют в продлении воспаления. 24 Мы также поднимаем вероятность того, что воспалительная баррикада на самом деле формируется у необоснованных субъектов в результате побочного повреждения здоровых тканей, как было предположено Селье в первом и последующих изданиях его книги The Stress of Life (). 25

Формирование воспалительной баррикады.

Примечания: Copyright © 1984, Селье Х. Воспроизведено из Селье Х. Стресс жизни . Пересмотренное изд. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. 25 ( A ) Нормальная соединительнотканная территория. ( B ) Та же ткань после травмы или воздействия раздражителя. Сосуд расширяется, клетки крови мигрируют к раздражителю, клетки соединительной ткани и волокна образуют толстую непроницаемую преграду, которая предотвращает распространение раздражителя в кровь, но также препятствует проникновению регенеративных клеток, которые могут восстанавливать ткань и замедлять проникновение антиоксидантов в нее. поле ремонта.В результате может образоваться длительный очаг не полностью разрешенного воспаления, из которого в конечном итоге могут попадать токсины в систему и нарушаться функционирование органа или ткани. Это называется «тихим» или «тлеющим» воспалением. ( C ) Воспалительный мешок, мешочек Селье или гранулема, как первоначально описано Selye, 30 , широко используется в исследованиях воспаления.

Хотя могут быть и другие объяснения, мы предполагаем, что быстрое разрешение воспаления происходит потому, что поверхность Земли является обильным источником возбужденных и подвижных электронов, как описано в другой нашей работе. 1 Мы также предполагаем, что контакт кожи с поверхностью Земли позволяет электронам Земли распространяться по поверхности кожи и внутрь тела. Один из путей внутрь тела может лежать через точки акупунктуры и меридианы. Известно, что меридианы представляют собой пути с низким сопротивлением для прохождения электрических токов. 26 28 Другой путь – через слизистые оболочки дыхательных и пищеварительных трактов, которые проходят через поверхность кожи. Sokal и Sokal 29 обнаружили, что электрический потенциал на теле, на слизистой оболочке языка и в венозной крови быстро падает примерно до -200 мВ.Когда тело отключено от Земли, потенциал быстро восстанавливается. Эти эффекты показывают изменения во внутренней электрической среде внутри тела. 29

Селье 30 изучали гистологию стенки воспалительного мешка или баррикады (). Он состоит из фибрина и соединительной ткани. Наша гипотеза состоит в том, что электроны могут частично проходить через барьер и затем нейтрализовать активные формы кислорода (свободные радикалы). 30 Путь или коридор полупроводникового коллагена может объяснить, как электроны с Земли быстро ослабляют хроническое воспаление, не устраняемое диетическими антиоксидантами или стандартной медицинской помощью, включая физиотерапию ().Баррикада, вероятно, ограничивает проникновение циркулирующих антиоксидантов в ремонт.

В совокупности эти наблюдения показывают, что заземление человеческого тела значительно изменяет воспалительную реакцию на травму.

Анатомические и биофизические аспекты

Представление о том, что воспалительная баррикада образуется из побочного повреждения здоровой ткани, окружающей место повреждения, подтверждается классическими исследованиями Селье, опубликованными вместе с его описанием гранулемы или мешочка Селье (). 25 , 30 Более того, исследования в области клеточной биологии и биофизики показывают, что человеческое тело оснащено коллагеновой, жидкокристаллической полупроводниковой сетью, известной как живая матрица, 31 или, другими словами, a система наземной регуляции 32 , 33 или матричная система тканевого тенсегрити (). 34 Эта сеть, охватывающая все тело, может доставлять подвижные электроны к любой части тела и, таким образом, регулярно защищать все клетки, ткани и органы от окислительного стресса или в случае травм. 23 , 31 Живая матрица включает внеклеточные и соединительнотканные матрицы, а также цитоскелеты всех клеток. 31 Считается, что интегрины на поверхности клетки обеспечивают полупроводимость электронов внутрь клетки, а связи через ядерную оболочку позволяют ядерной матрице и генетическому материалу быть частью схемы. 23 Наша гипотеза состоит в том, что эта электронная схема, охватывающая все тело, представляет собой первичную систему антиоксидантной защиты.Эта гипотеза является центральным пунктом данного отчета.

Живая матрица, система регуляции почвы или матрица тенсегритичности тканей – это непрерывная волокнистая паутина или сеть, которая проникает в каждую часть тела. Внеклеточные компоненты этой сети состоят в основном из коллагена и основного вещества. Это самая большая система в организме, так как это единственная система, которая затрагивает все остальные системы.

Внеклеточная часть матричной системы состоит в основном из коллагена и основных веществ (и).Цитоскелет состоит из микротрубочек, микрофиламентов и других волокнистых белков. Ядерный матрикс содержит другую белковую ткань, состоящую из гистонов и родственных материалов.

Коллаген и основное вещество.

Примечания: (A) Коллаген, основной белок внеклеточного матрикса соединительной ткани, представляет собой тройную спираль с гидратной оболочкой, окружающей каждую полипептидную цепь. Белок может переносить электроны посредством полупроводников, а протоны (H + ) и гидроксилы (OH ) мигрируют через гидратную оболочку.Эти движения заряда могут быть очень быстрыми и жизненно важны. ( B ) Авторские права © 2005. Р. Пол Ли Воспроизведено с разрешения Lee RP. Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. 67 Основное вещество – это сильно заряженный полиэлектролитный гель, огромный резервуар электронов. Обратите внимание на фибриллы коллагена, встроенные в единицы основного вещества, известные как матрисомы (термин, введенный Гейне). 33 Деталь матрицы справа ( b ) показывает огромные запасы электронов.Электроны из основного вещества могут мигрировать через сеть коллагена в любую точку тела. Мы предполагаем, что они могут поддерживать антиоксидантную микросреду вокруг области заживления травм, замедляя или препятствуя реактивным формам кислорода, доставляемым окислительным взрывом, вызывать побочное повреждение здоровой ткани, а также предотвращать или уменьшать образование так называемой «воспалительной баррикады». ».

Не принято считать, что коллаген и другие структурные белки являются полупроводниками.Эта концепция была представлена ​​Альбертом Сент-Дьерди на лекции в память о Корани в Будапеште, Венгрия, в 1941 году. Его доклад был опубликован в журналах Science (На пути к новой биохимии?) 35 и Nature (Исследование уровней энергии) в биохимии). 36 Идея о том, что белки могут быть полупроводниками, была немедленно и решительно отвергнута биохимиками. Многие современные ученые продолжают отвергать полупроводимость в белках, потому что живые системы имеют только следовые количества силикона, германия и соединений галлия, которые являются наиболее широко используемыми материалами в электронных полупроводниковых устройствах.Однако существует множество способов изготовления органических полупроводников без использования металлов. Одним из источников путаницы было широко распространенное мнение, что вода – это просто наполнитель. Теперь мы знаем, что вода играет решающую роль в ферментативной активности и полупроводимости. Гидратированные белки на самом деле являются полупроводниками и стали важными компонентами мировой индустрии микроэлектроники. Для некоторых приложений предпочтительнее использовать органические микросхемы, поскольку они могут быть очень маленькими, самосборными, прочными и с низким энергопотреблением. 37 , 38

Один из лидеров в области молекулярной электроники, NS Hush, поблагодарил Альберта Сент-Дьерди и Роберта С. Малликена за предоставление двух концепций, фундаментальных для промышленного применения: теории биологической полу- проводимость и теория молекулярных орбиталей соответственно. 39 В недавних исследованиях, получивших награды Общества исследования материалов в Европе и США, ученые из Израиля создали гибкие биоразлагаемые полупроводниковые системы, используя белки из крови, молока и слизи человека. 40 Кремний, наиболее широко используемый полупроводниковый материал, является дорогим в чистом виде, необходимым для полупроводников, негибким и экологически опасным. По прогнозам, органические полупроводники приведут к появлению нового ряда гибких и биоразлагаемых компьютерных экранов, сотовых телефонов, планшетов, биосенсоров и микропроцессорных чипов. Мы прошли долгий путь с тех времен, когда полупроводимость в белках так решительно отвергалась. 41 , 42 , 43

Молекулы полиэлектролита основного вещества, связанные с матрицей коллагеновой соединительной ткани, являются резервуарами заряда ().Таким образом, матрица представляет собой обширную окислительно-восстановительную систему всего тела. Гликозаминогликаны имеют высокую плотность отрицательных зарядов из-за сульфатных и карбоксилатных групп на остатках уроновой кислоты. Таким образом, матрица представляет собой систему, охватывающую все тело, способную поглощать и отдавать электроны везде, где они необходимы для поддержания иммунного функционирования. 44 Внутренние части клеток, включая ядерный матрикс и ДНК, являются частями этой биофизической электрической системы хранения и доставки. Продолжительность воздействия заземления на восстановление травм можно оценить по-разному.Во-первых, мы знаем из медицинских инфракрасных изображений, что воспаление начинает спадать в течение 30 минут после соединения с землей через проводящий участок, помещенный на кожу. 2 , 3 Во-вторых, в этот же период увеличивается метаболическая активность. В частности, наблюдается увеличение потребления кислорода, частоты пульса и дыхания, а также снижение оксигенации крови в течение 40 минут заземления. 45 Мы подозреваем, что «заполнение» резервуаров с зарядом происходит постепенно, возможно, из-за огромного количества заряженных остатков в полиэлектролитах и ​​из-за того, что они расположены по всему телу.Когда резервуары с зарядом насыщены, организм находится в состоянии, которое мы называем «подготовленностью к воспалительным процессам». Это означает, что основное вещество, пронизывающее каждую часть тела, готово быстро доставить антиоксидантные электроны к любому месту повреждения через полупроводниковую коллагеновую матрицу (см.).

Резюме центральной гипотезы этого отчета: сравнение иммунного ответа у необоснованного и заземленного человека.

Примечания: ( A ) После травмы незаземленный человек (мистер Ботус) образует воспалительную баррикаду вокруг места травмы.( B ) После травмы заземленный человек (г-н Бэрфут) не образует воспалительную преграду, потому что активные формы кислорода, которые могут повредить близлежащие здоровые ткани (побочное повреждение), немедленно нейтрализуются электронами, полупроводниками из насыщенного электронами основного вещества. через коллагеновую сеть.

Эти соображения также подразумевают антивозрастные эффекты заземления, поскольку доминирующая теория старения подчеркивает кумулятивный ущерб, вызванный АФК, образующимися во время нормального метаболизма или возникающими в ответ на загрязняющие вещества, яды или травмы. 46 Мы предполагаем антивозрастной эффект заземления, основанный на том, что живая матрица достигает каждой части тела и способна доставлять антиоксидантные электроны к участкам, где целостность ткани может быть нарушена реактивными окислителями из любого источника. 47 , 48

Молекулы, образующиеся во время иммунного ответа, также отслеживались в исследовании DOMS. 7 Параметры, которые постоянно различались на 10% или более между заземленными и незаземленными субъектами, нормализованные до исходного уровня, включали креатинкиназу, соотношение фосфокреатин / неорганический фосфат, билирубин, фосфорилхолин и глицеринфосфорилхолин.Билирубин – природный антиоксидант, который помогает контролировать АФК. 49 53 Хотя уровни билирубина снизились как в обоснованных, так и в необоснованных группах, разница между испытуемыми была большой (). 7

Сравнение уровней билирубина до и после теста для каждой группы.

Маркеры воспаления менялись одновременно с изменением показателей боли. Это было выявлено как с помощью визуальной аналоговой шкалы боли, так и путем измерения давления на правой икроножной мышце (и).Авторы исследования DOMS предположили, что билирубин мог использоваться в качестве источника электронов у незаземленных субъектов. 7 Возможно, меньшее снижение уровня циркулирующего билирубина у заземленных людей было связано с наличием в поле восстановления свободных электронов с Земли.

Другие маркеры подтверждают гипотезу о том, что заземленные субъекты более эффективно устраняют повреждение тканей: показатели боли, соотношение неорганического фосфата и фосфокреатина (Pi / PCr) и креатинкиназа (CK).Повреждение мышц широко коррелировали с КК. 54 56 Как видно, значения КК у необоснованных испытуемых постоянно были выше, чем у заземленных испытуемых. 7 Различия между Pi / PCr двух групп контролировали с помощью магнитно-резонансной спектроскопии. Эти соотношения указывают на скорость метаболизма и повреждение клеток. 57 60 Уровни неорганических фосфатов указывают на гидролиз PCr и аденозинтрифосфата.Незаземленные субъекты имели более высокие уровни Pi, в то время как заземленные субъекты демонстрировали более высокие уровни PCr. Эти результаты показывают, что митохондрии заземленных субъектов не производят столько метаболической энергии, вероятно, потому, что потребность в ней меньше из-за более быстрого достижения гомеостаза. Различия между группами показаны в.

Уровни креатинкиназы до и после теста для каждой группы.

Отношения неорганического фосфата / фосфокреатина (Pi / PCr) до теста по сравнению с пост-тестом для каждой группы.

Пилотное исследование 7 о влиянии заземления на ускорение выздоровления от боли DOMS обеспечивает хорошую основу для более крупного исследования. Представленные здесь концепции резюмируются в сравнении между «мистером Ботинсом» (необоснованный человек) и «мистером Бэрфут» (обоснованным лицом).

Обсуждение

Текущие объемные исследования коррелируют воспаление с широким спектром хронических заболеваний. Поиск по запросу «воспаление» в базе данных Национальной медицинской библиотеки (PubMed) выявил более 400 000 исследований, из которых только в 2013 году было опубликовано более 34 000 исследований.Наиболее частой причиной смерти и инвалидности в США являются хронические заболевания. Семьдесят пять процентов национальных расходов на здравоохранение, которые в 2008 году превысили 2,3 триллиона долларов США, идут на лечение хронических заболеваний. Болезни сердца, рак, инсульт, хроническая обструктивная болезнь легких, остеопороз и диабет являются наиболее распространенными и дорогостоящими хроническими заболеваниями. 61 Другие включают астму, болезнь Альцгеймера, расстройства кишечника, цирроз печени, муковисцидоз, рассеянный склероз, артрит, волчанку, менингит и псориаз.Десять процентов всех долларов здравоохранения тратится на лечение диабета. Остеопороз поражает около 28 миллионов стареющих американцев. 61 , 62 Однако существует несколько теорий о механизмах, связывающих хроническое воспаление с хроническим заболеванием. Обобщенные здесь исследования заземления представляют собой логичную и проверяемую теорию, основанную на различных доказательствах.

Описание иммунного ответа в учебнике описывает, как большие или маленькие повреждения заставляют нейтрофилы и другие лейкоциты доставлять большое количество ROS и RNS для разрушения патогенов и поврежденных клеток и тканей.Классические описания в учебниках также относятся к «воспалительной баррикаде», которая изолирует поврежденные ткани, чтобы препятствовать перемещению патогенов и мусора из поврежденной области в соседние здоровые ткани. Селье описал, как мусор коагулирует, образуя воспалительную баррикаду (). Этот барьер также препятствует перемещению антиоксидантов и регенеративных клеток в заблокированную зону. Восстановление может быть неполным, и это неполное восстановление может создать порочный воспалительный цикл, который может сохраняться в течение длительного периода времени, что приводит к так называемому тихому или тлеющему воспалению, которое, в свою очередь, со временем может способствовать развитию хронического заболевания.

Каким бы примечательным это ни казалось, наши открытия предполагают, что эта классическая картина воспалительной баррикады может быть следствием отсутствия заземления и, как следствие, «недостатка электронов». Раны заживают по-разному, когда тело заземлено (и). Заживление происходит намного быстрее, а основные признаки воспаления уменьшаются или устраняются. Профили различных маркеров воспаления с течением времени сильно различаются у здоровых людей.

Те, кто исследует воспаление и заживление ран, должны знать, как заземление может изменить временной ход воспалительных реакций.Им также необходимо знать, что экспериментальные животные, которых они используют для своих исследований, могут иметь очень разные иммунные системы и реакции, в зависимости от того, были ли они выращены в заземленных или незаземленных клетках. Стандартная исследовательская практика состоит в том, чтобы исследователи тщательно описывали свои методы и вид животных, которых они используют, чтобы другие могли повторить исследования, если захотят. Предполагается, что, например, все крысы линии Вистар будут генетически и физиологически похожи. Однако сравнение новообразований у крыс Sprague-Dawley (первоначально аутбредных от крысы Wistar) из разных источников выявило весьма значимые различия в частоте эндокринных опухолей и опухолей молочной железы.Частота опухолей мозгового вещества надпочечников также варьировала у крыс от одних и тех же поставщиков, выращенных в разных лабораториях. Авторы «подчеркнули необходимость крайней осторожности при оценке исследований канцерогенности, проводимых в разных лабораториях и / или на крысах из разных источников». 63

С нашей точки зрения, эти вариации вовсе не удивительны. Животные будут сильно различаться по степени насыщения их зарядовых резервуаров электронами. Их клетки сделаны из металла, и если да, то заземлен ли этот металл? Насколько близко их клетки находятся к проводам или трубопроводам, по которым проходит электричество 60/50 Гц? Согласно нашим исследованиям, эти факторы будут иметь измеримое влияние на иммунные реакции.Фактически, они представляют собой «скрытую переменную», которая могла повлиять на результаты бесчисленных исследований, а также могла повлиять на способность других исследователей воспроизвести конкретное исследование.

Доминирующие факторы образа жизни, такие как изоляционная обувь, высотные здания и возвышающиеся кровати, отделяют большинство людей от прямого контакта кожи с поверхностью Земли. Связь с землей была повседневной реальностью в прошлых культурах, которые использовали шкуры животных для обуви и сна. Мы предполагаем, что процесс уничтожения болезнетворных микроорганизмов и очистки участков повреждений с помощью ROS и RNS эволюционировал, чтобы воспользоваться преимуществом постоянного доступа организма к практически безграничному источнику мобильных электронов, который Земля обеспечивает, когда мы находимся в контакте с ней.Антиоксиданты являются донорами электронов, и мы твердо верим, что лучший донор электронов находится прямо у нас под ногами: поверхность Земли с ее практически неограниченным хранилищем доступных электронов. Электроны с Земли на самом деле могут быть лучшими антиоксидантами с нулевыми отрицательными вторичными эффектами, потому что наше тело эволюционировало, чтобы использовать их в течение эонов физического контакта с землей. Наша иммунная система прекрасно работает до тех пор, пока доступны электроны для уравновешивания АФК и активных форм азота (РНС), используемых при борьбе с инфекциями и повреждениями тканей.Наш современный образ жизни застал организм и иммунную систему врасплох, внезапно лишив их изначального источника электронов. Это планетарное разделение стало ускоряться в начале 1950-х годов с появлением обуви с изоляционной подошвой вместо традиционной кожи. Вызовы образа жизни для нашей иммунной системы происходили быстрее, чем могла приспособиться эволюция.

Отключение от Земли может быть важным, коварным и упускаемым из виду вкладом в физиологическую дисфункцию и вызывающий тревогу глобальный рост неинфекционных хронических заболеваний, связанных с воспалительными процессами.Недостаток электронов также может привести к ненасыщению цепей переноса электронов в митохондриях, что приведет к хронической усталости и замедлению клеточных миграций и других важных действий клеток иммунной системы. 64 На этом этапе даже легкая травма может привести к долгосрочным проблемам со здоровьем. Когда подвижные электроны недоступны, воспалительный процесс принимает ненормальное течение. Области с дефицитом электронов уязвимы для дальнейшего повреждения – они становятся положительно заряженными, и им будет сложно предотвратить инфекции.В результате иммунная система постоянно активируется и в конечном итоге истощается. Клетки иммунной системы могут не различать различные химические структуры организма (называемые «я») и молекулы паразитов, бактерий, грибков и раковых клеток (называемые «чужими»). Эта потеря иммунологической памяти может привести к атаке некоторых иммунных клеток на собственные ткани и органы тела. Примером может служить разрушение продуцирующих инсулин бета-клеток островков Лангерганса у больного диабетом.Другой пример – иммунная система, атакующая хрящи в суставах, вызывая ревматоидный артрит. Красная волчанка – это крайний пример аутоиммунного состояния, вызванного атакой иммунной системы организма на ткани и органы хозяина. Волчанка, например, может поражать множество различных систем организма, включая кожу, почки, клетки крови, суставы, сердце и легкие. Со временем иммунная система ослабевает, и человек становится более уязвимым для воспалений или инфекций, которые могут не зажить, как это часто бывает с ранами пациентов с диабетом.В частности, какая часть или части тела ослабленная иммунная система атакует первой, зависит от многих факторов, таких как генетика, привычки (сон, еда, напитки, упражнения и т. Д.), А также токсины в организме и в окружающей среде. 65 , 66 Повторное наблюдение показывает, что заземление уменьшает боль у пациентов с волчанкой и другими аутоиммунными заболеваниями. 1

Заключение

Накопленный опыт и исследования по заземлению указывают на появление простой, естественной и доступной стратегии здравоохранения против хронического воспаления, требующей серьезного внимания клиницистов и исследователей.Живая матрица (или наземная регуляция, или система тканевого тенсегрити-матрица), сама ткань тела, по-видимому, служит одной из наших основных систем антиоксидантной защиты. Как объясняется в этом отчете, для оптимальной эффективности этой системы требуется периодическая подзарядка за счет проводящего контакта с поверхностью Земли – «батареи» для всей планетарной жизни.

Благодарности

Авторы признательны Мартину Цукеру за очень ценные комментарии к рукописи. Клинтон Обер из EarthFx Inc.обеспечивает постоянную поддержку и поощрение исследований, которые были проведены для изучения науки о заземлении, с особым вниманием к иммунной системе.

Сноски

Раскрытие информации

G Chevalier и JL Oschman являются независимыми подрядчиками EarthFx Inc., компании, спонсирующей исследования в области заземления, и владеют небольшой долей акций компании. Ричард Браун – независимый подрядчик EarthFx Inc., компании, спонсирующей исследования в области заземления.Авторы не сообщают о других конфликтах интересов.

Ссылки

1. Ober CA, Sinatra ST, Zucker M. Заземление: самое важное открытие в области здравоохранения? 2-й. Лагуна-Бич: Основные публикации в области здравоохранения; 2014. [Google Scholar] 3. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. J Altern Complement Med. 2007. 13: 955–967. [PubMed] [Google Scholar] 4. Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Обзорная статья: Заземление: последствия для здоровья повторного соединения человеческого тела с электронами на поверхности Земли.J Environ Public Health. 2012; 2012: 291541. [Бесплатная статья PMC] [PubMed] [Google Scholar] 5. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. J Altern Complement Med. 2004. 10 (5): 767–776. [PubMed] [Google Scholar] 6. Коэн С., Яницки-Девертс Д., Дойл В. Дж. И др. Хронический стресс, резистентность к рецепторам глюкокортикоидов, воспаление и риск заболеваний. Proc Natl Acad Sci U S. A. 2012; 109 (16): 5995–5999.[Бесплатная статья PMC] [PubMed] [Google Scholar] 7. Браун Д., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. J Altern Complement Med. 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 8. Баттерфилд ТА, Лучшая ТМ, Меррик Массачусетс. Двойная роль нейтрофилов и макрофагов в воспалении: критический баланс между повреждением и восстановлением тканей. J Athl Train. 2006. 41 (4): 457–465. [Бесплатная статья PMC] [PubMed] [Google Scholar] 9. Такмакидис С.П., Коккинидис Е.А., Симилиос И., Дуда Х.Влияние ибупрофена на отсроченную болезненность мышц и мышечную работоспособность после эксцентрических упражнений. J Strength Cond Res. 2003. 17 (1): 53–59. [PubMed] [Google Scholar] 10. Закройте Г.Л., Эштон Т., Кейбл Т., Доран Д., Макларен Д.П. Эксцентрические упражнения, изокинетический момент мышц и отсроченное начало болезненности мышц: роль активных форм кислорода. Eur J Appl Physiol. 2004. 91 (5–6): 615–621. [PubMed] [Google Scholar] 11. Макинтайр Д.Л., Рид В.Д., Листер Д.М., Сас И.Дж., Маккензи, округ Колумбия. Наличие лейкоцитов, снижение силы и отсроченная болезненность в мышцах после эксцентрических упражнений.J. Appl Physiol (1985) 1996; 80 (3): 1006–1013. [PubMed] [Google Scholar] 12. Франклин М.Э., Карриер Д., Франклин Р.С. Влияние одной тренировки мышечной болезненности, вызывающей поднятие тяжестей, на количество лейкоцитов, креатинкиназу сыворотки и объем плазмы. J Orthop Sports Phys Ther. 1991. 13 (6): 316–321. [PubMed] [Google Scholar] 13. Пик Дж, Носака К., Судзуки К. Характеристика воспалительных реакций на эксцентрические упражнения у людей. Exerc Immunol Rev.2005; 11: 64–85. [PubMed] [Google Scholar] 14. Макинтайр Д.Л., Рид В.Д., Маккензи, округ Колумбия.Отсроченная болезненность мышц: воспалительный ответ на мышечное повреждение и его клинические последствия. Sports Med. 1995. 20 (1): 24–40. [PubMed] [Google Scholar] 15. Смит Л.Л., Бонд Дж. А., Холберт Д. и др. Дифференциальное количество лейкоцитов после двух серий бега с горы. Int J Sports Med. 1998. 19 (6): 432–437. [PubMed] [Google Scholar] 16. Смит Л.Л. Цитокиновая гипотеза перетренированности: физиологическая адаптация к чрезмерному стрессу? Медико-спортивные упражнения 2000322317–331. [PubMed] [Google Scholar] 17. Ascensão A, Rebello A, Oliveira E, Marques F, Pereira L., Magalhães J.Биохимическое воздействие футбольного матча: анализ окислительного стресса и повреждения мышц на протяжении восстановления. Clin Biochem. 2008. 41 (10–11): 841–851. [PubMed] [Google Scholar] 18. Смит Л.Л., Маккаммон М., Смит С., Чамнесс М., Израиль Р.Г., О’Брайен К.Ф. Реакция лейкоцитов на ходьбу в гору и бег трусцой при одинаковых метаболических нагрузках. Eur J Appl Physiol. 1989. 58 (8): 833–837. [PubMed] [Google Scholar] 19. Бродбент С., Руссо Дж. Дж., Торп Р.М., Чоат С.Л., Джексон Ф.С., Роулендс Д.С. Вибрационная терапия снижает уровень IL6 в плазме и болезненность мышц после бега с горы.Br J Sports Med. 2010. 44 (12): 888–894. [PubMed] [Google Scholar] 20. Глисон М., Алми Дж., Брукс С., Кейв Р., Льюис А., Гриффитс Х. Гематологические и острофазовые реакции, связанные с отсроченной болезненностью мышц. Eur J Appl Physiol Occup Physiol. 1995. 71 (2–3): 137–142. [PubMed] [Google Scholar] 21. Tidball JG. Воспалительные процессы при повреждении и восстановлении мышц. Am J Physiol Regul Integr Comp Physiol. 2005; 288 (2): R345 – R353. [PubMed] [Google Scholar] 22. Чжан Дж., Клемент Д., Тонтон Дж. Эффективность Фараблока, электромагнитного щита, в ослаблении отсроченной мышечной болезненности.Clin J Sport Med. 2000. 10 (1): 15–21. [PubMed] [Google Scholar] 23. Oschman JL. Перенос заряда в живой матрице. J Bodyw Mov Ther. 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 24. Бест ТМ, Хантер К.Д. Травма и восстановление мышц. Phys Med Rehabil Clin North Am. 2000. 11 (2): 251–266. [PubMed] [Google Scholar] 25. Селье Х. Жизненный стресс. Пересмотрено. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. [Google Scholar] 26. Мотояма Х. Измерения энергии Ki: диагностика и лечение. Токио: Human Science Press; 1997 г.[Google Scholar] 27. Колберт А.П., Юн Дж., Ларсен А., Эдингер Т., Грегори В.Л., Тонг Т. Измерения импеданса кожи для исследования акупунктуры: разработка системы непрерывной записи. Evid Based Complement Altern Med. 2008. 5 (4): 443–450. [Бесплатная статья PMC] [PubMed] [Google Scholar] 28. Райхманис М, Марино А.А., Беккер РО. Электрические корреляты точек акупунктуры. IEEETrans Biomed Eng. 1975. 22 (6): 533–535. [PubMed] [Google Scholar] 29. Сокал К., Сокал П. Заземление организма человека влияет на биоэлектрические процессы.J Altern Complement Med. 2012. 18 (3): 229–234. [PubMed] [Google Scholar] 30. Селье Х. О механизме воздействия гидрокортизона на устойчивость тканей к травмам; экспериментальное исследование с техникой мешка гранулемы. ДЖАМА. 1953. 152 (13): 1207–1213. [PubMed] [Google Scholar] 31. Ошман Дж.Л., Ошман Н.Х. Материя, энергия и живая матрица. Рольф Лайнс. 1993. 21 (3): 55–64. [Google Scholar] 32. Пишингер А. Внеклеточный матрикс и основная регуляция: основа целостной биологической медицины.Беркли: Североатлантические книги; 2007. [Google Scholar] 33. Heine H. Lehrbuch der biologischen Medizin. Grundregulation und Extrazellulare Matrix. [Справочник по биологической медицине. Внеклеточный матрикс и наземная регуляция] Штутгарт: Hippokrates Verlag; 2007. Немецкий. [Google Scholar] 34. Пиента К.Дж., Коффи Д.С. Передача клеточной гармонической информации через систему тканевого тенсегрити-матрикса. Мед-гипотезы. 1991. 34 (1): 88–95. [PubMed] [Google Scholar] 35. Сент-Дьёрдьи А. К новой биохимии? Наука.1941; 93: 609–611. [PubMed] [Google Scholar] 36. Сент-Дьёрдьи А. Исследование уровней энергии в биохимии. Природа. 1941; 148 (3745): 157–159. [Google Scholar] 38. Сарпешкар Р. Биоэлектроника со сверхнизким энергопотреблением. Основы, биомедицинские приложения и биологические системы. Кембридж: Издательство Кембриджского университета; 2010. [Google Scholar] 39. Тише NS. Обзор молекулярной электроники за первые полвека. Ann N Y Acad Sci. 2003; 1006: 1–20. [PubMed] [Google Scholar] 40. Ментович Э., Белгородский Б, Гозин М, Рихтер С, Коэн Х.Легированные биомолекулы в миниатюрных электрических переходах. J Am Chem Soc. 2012. 134 (20): 8468–8473. [PubMed] [Google Scholar] 41. Куэвас Дж. К., Шеер Э. Молекулярная электроника: Введение в теорию и эксперимент. Vol. 1. World Scientific Publishing Co; Сингапур: 2010. (Сингапур; World Scientific Series in Nanoscience and Nanotechnology). [Google Scholar] 42. Реймерс-младший, United Engineering Foundation (США) и др. Молекулярная электроника III. Vol. 1006. Нью-Йорк, штат Нью-Йорк: Анналы Нью-Йоркской академии наук; 2003 г.[Google Scholar] 43. Иоахим C, Ратнер MA. Молекулярная электроника: некоторые взгляды на транспортные соединения и не только. Proc Natl Acad Sci USA. 2005. 102 (25): 8801–8808. [Бесплатная статья PMC] [PubMed] [Google Scholar] 44. Heine H. Система гомотоксикологии и наземной регуляции (GRS) Баден-Баден: Aurelia-Verlag; 2000. [Google Scholar] 45. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут.J Altern Complement Med. 2010. 16 (1): 81–87. [PubMed] [Google Scholar] 46. Мива С., Бекман КБ, Мюллер Флорида, редакторы. Окислительный стресс при старении: от модельных систем к болезням человека. Тотова: Humana Press; 2008. [Google Scholar] 47. Oschman JL. Митохондрии и клеточное старение. В: Клац Р., Голдман Р., редакторы. Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2008. 2009. С. 275–287. [Google Scholar] 48. Кесслер WD, Oschman JL. Противодействие старению с помощью основ физики. В: Клац Р., Голдман Р., редакторы.Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2009. С. 185–194. [Google Scholar] 49. Штокер Р. Антиоксидантная активность желчных пигментов. Антиоксидный окислительно-восстановительный сигнал. 2004. 6 (5): 841–849. [PubMed] [Google Scholar] 50. Paschalis V, Nikolaidis MG, Fatouros IG, et al. Равномерные и продолжительные изменения окислительного стресса в крови после мышечных нагрузок. In Vivo. 2007. 21 (5): 877–883. [PubMed] [Google Scholar] 51. Николаидис М.Г., Пасхалис В., Гиакас Г. и др. Снижение окислительного стресса в крови после повторяющихся упражнений, повреждающих мышцы.Медико-спортивные упражнения. 2007. 39 (7): 1080–1089. [PubMed] [Google Scholar] 52. Флорчик У. М., Йожкович А., Дулак Дж. Биливердин-редуктаза: новые свойства старого фермента и его потенциальное терапевтическое значение. Pharmacol Rep. 2008; 60 (1): 38–48. [Бесплатная статья PMC] [PubMed] [Google Scholar] 53. Sedlak TW, Salehb M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Билирубин и глутатион выполняют взаимодополняющие антиоксидантные и цитопротекторные функции. Proc Natl Acad Sci U S. A. 2009; 106 (13): 5171–5176. [Бесплатная статья PMC] [PubMed] [Google Scholar] 54.Close GL, Ashton T., McArdle A, MacLaren DP. Растущая роль свободных радикалов в отсроченном возникновении мышечной болезненности и мышечных повреждений, вызванных сокращениями. Comp Biochem Physiol A Mol Integr Physiol. 2005. 142 (3): 257–266. [PubMed] [Google Scholar] 55. Хиросе Л., Носака К., Ньютон М. и др. Изменения медиаторов воспаления после эксцентрической нагрузки сгибателей локтя. Exerc Immunol Rev.2004; 10: 75–90. [PubMed] [Google Scholar] 56. Hartmann U, Mester J. Маркеры тренировок и перетренированности в отдельных спортивных соревнованиях.Медико-спортивные упражнения. 2000. 32 (1): 209–215. [PubMed] [Google Scholar] 57. Маккалли К.К., Аргов З., Боден Б.П., Браун Р.Л., Банк В.Дж., Шанс Б. Обнаружение мышечных травм у людей с помощью магнитно-резонансной спектроскопии 31-Р. Мышечный нерв. 1988. 11 (3): 212–216. [PubMed] [Google Scholar] 58. Маккалли К.К., Познер Дж. Измерение адаптации и травм, вызванных физической нагрузкой, с помощью магнитно-резонансной спектроскопии. Int J Sports Med. 1992; 13 (S1): S147 – S149. [PubMed] [Google Scholar] 59. Маккалли К.К., Шеллок Ф.Г., Банк В.Дж., Познер Д.Д. Использование ядерного магнитного резонанса для оценки мышечных травм.Медико-спортивные упражнения. 1992. 24 (5): 537–542. [PubMed] [Google Scholar] 60. Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Дальнейшее снижение гликогена во время раннего восстановления после эксцентрических упражнений, несмотря на высокое потребление углеводов. Eur J Nutr. 2004. 43 (3): 148–159. [PubMed] [Google Scholar] 63. Мак Кензи WF, Гарнер FM. Сравнение новообразований в шести источниках крыс. J Natl Cancer Inst. 1973; 50 (5): 1243–1257. [PubMed] [Google Scholar] 64. Oschman JL. В кн .: Митохондрии и клеточное старение. Антивозрастная терапия, том XI.Клац Р., Гольдман Р., редакторы. Чикаго, штат Иллинойс: Американская академия антивозрастной медицины; 2008. С. 285–287. [Google Scholar] 65. Биаджи Э., Кандела М., Фэйрвезер-Тейт С., Франчески С., Бриджиди П. Старение человеческого метаорганизма: микробный аналог. Возраст (Дордр) 2012; 34 (1): 247–267. [Бесплатная статья PMC] [PubMed] [Google Scholar] 66. Франчески С., Бонафе М., Валенсин С. и др. Воспаление-старение. Эволюционная перспектива иммунного старения. Ann N Y Acad Sci. 2000; 908: 244–254. [PubMed] [Google Scholar] 67. Ли РП.Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. [Google Scholar]

Как заземлить себя | 9 эффективных методов заземления

Обзор : Это подробное руководство исследует научные аспекты и преимущества заземления и заземления, включая девять эффективных способов заземления.

______________

Вы идете босиком по пляжу.

Почувствуйте, как тепло солнца контактирует с вашей кожей. Слушайте ритм грохочущих волн.Почувствуйте запах океанского ветра, который пронизывает вас.

Теперь обратите внимание на свои ноги. Вы чувствуете покалывание в ступнях или ногах, когда по телу поднимается тепло?

Возможно, вы замечали подобное ощущение, когда ходили босиком по траве. В такие моменты вы заземлены. Это одна из причин, по которой многих людей привлекает океан.

Быть заземленным может означать две вещи:

  1. Полностью присутствовать в вашем теле и / или
  2. Чувство связи с землей.

Мы все пережили то, что нас заземлили. Мы чувствуем себя «как дома». Но это мимолетный опыт.

К счастью, существуют методы заземления, которые помогают нам укорениться в нашем теле. Методы заземления, описанные в этом руководстве, могут:

Таким образом, упражнения на заземление могут улучшить вашу общую работоспособность.

Но сначала давайте посмотрим, что происходит, когда вас не обвиняют.

13 признаков необоснованности

Вы не обоснованы, если вы:

  • Легко отвлекаться
  • Пространство
  • Задумываться или размышлять
  • Участие в личной драме
  • Испытывать тревогу и постоянное беспокойство

Вы также лишены основания, если вы:

  • Одержимый желанием материальных вещей
  • Легко обмануть себя или других
  • Одержимый своим личным имиджем

Физические признаки отсутствия заземления включают:

  • Воспаление
  • Плохой сон
  • Хроническая боль
  • Усталость
  • Плохое кровообращение

Отсутствие заземления – всемирная эпидемия.Эта эпидемия настолько укоренилась, что мало кто из нас даже осознает проблему.

Отсутствие заземления – коренная причина многих человеческих страданий.

Доказательства того, что упражнения по заземлению работают

Хотя основные преимущества методов заземления проистекают из самого опыта, наши умы часто ищут доказательства заранее.

Исследования заземления начали проводиться в последние 15 лет. Он все еще находится в зачаточном состоянии, но результаты многообещающие.

Заземление:

Все эти исследования обнадеживают, но вам не нужны внешние научные доказательства. Если вы примете образ мыслей ученого, вы можете позволить своему телу стать вашей лабораторией. Затем вы можете сами оценить результаты.

ЧАСТЬ I: Заземление в корпусе

Первая часть заземления – это укорениться в вашем физическом теле.

Заземление аналогично с центрированием . Центр обширен, включая ваше тело, а также ваш разум, сердце и дух.

Когда вы научитесь заземляться, вам будет легче найти свой Центр. Техники заземления предназначены для перераспределения энергии из головы или разума в тело. Это дает почти мгновенный успокаивающий эффект.

Большая часть нашего стресса и беспокойства возникает из-за разрыва связи с нашим телом. Чем больше вы укоренились в своем теле, тем меньше вы испытываете стресса и беспокойства.

Как заземлить себя: 5 методов заземления

Попробуйте прямо сейчас один из следующих способов заземления, чтобы увидеть эффекты.

Покройте свою корону

Я не совсем понимаю, почему это упражнение на заземление так эффективно, но оно почти всегда работает. Когда вы не заземлены, положите одну руку на макушку головы. Вот и все. Если это поможет, закройте глаза, чтобы не отвлекаться.

Время : от 30 секунд до 1 минуты.

Feel Your Feet

Я часто использую эту технику со своими клиентами, потому что она очень быстрая и эффективная. Сидя или стоя, сосредоточьте все свое внимание на ступнях.Обратите внимание на любые ощущения.

Время : от 30 секунд до 1 минуты.

Следуй своему дыханию

Закройте глаза и на вдохе проследите, как воздух входит в нос и попадает в легкие. На выдохе следите за тем, как воздух выходит из легких и выходит через нос или рот.

Этот метод заземления становится более эффективным с практикой. Ключ в том, чтобы наблюдать за дыханием, а не заставлять его умом. Пусть ваше тело ведет за собой, а ваш разум будет следовать за вами.

Время : от 1 минуты до 10 минут.

Стоять как дерево

Мы обсуждали эту мощную технику заземления в предыдущем руководстве по древней медитации стоя.

Встаньте, поставив ступни параллельно друг другу на ширине плеч. Голова должна парить над телом, подбородок опущен, а спина прямая. Положите руки на бок или положите их на пупок.

Погрузите весь вес и напряжение вашего тела в ступни (не нарушая осанки), позволяя им погрузиться в землю.Чтобы поддержать этот процесс заземления, представьте, что корни вырастают из подошвы ваших ног и уходят глубоко в землю под вами.

Время : от 1 минуты до 10 минут.

Чтобы получить полное руководство о том, как исправить осанку и накапливать энергию в положении стоя, щелкните здесь.

Примите холодный душ

Этот метод заземления имеет много преимуществ для здоровья. Было показано, что воздействие холода повышает иммунитет, уменьшает жир и улучшает настроение (за счет активации дофамина).Если вы не привыкли принимать холодный душ, в конце горячего душа сделайте воду теплой / прохладной в течение 30 секунд.

В течение следующих трех недель сделайте воду немного прохладнее и оставайтесь под ней дольше. К концу трех недель ваше тело привыкнет к холоду. Это бодрящий и заземляющий опыт. Я рекомендую это, если у вас нет высокого кровяного давления.

Время : от 30 секунд до 5 минут.

ЧАСТЬ 2: Заземление на Землю

Категория упражнений по заземлению называется «заземление».«Когда я прочитал книгу« Заземление »(аудиокнига) несколько лет назад, я был очарован этой идеей.

Заземление означает соединение вашего физического тела (слоя кожи) с Землей. Каждая бытовая розетка имеет заземляющий провод. (Это третий штырь; это полукруглое отверстие под двумя другими штырями).

В случае короткого замыкания заземляющий провод обеспечивает путь для поглощения электрического тока землей. Без заземляющего провода ваше тело, касающееся устройства (распределительной коробки, прибора, электроинструмента и т. Д.)) может завершить наземный путь. Это вызывает шок, если не поражение электрическим током.

С точки зрения заземления, в наших телах уже происходит короткое замыкание, что приводит к распространению физических, эмоциональных и психических расстройств. Подключение к Земле заземляет нас, перебалансируя нашу электрическую систему.

Польза заземления для здоровья

Теория состоит в том, что заземление позволяет переносить отрицательно заряженные электроны с поверхности Земли в тело. Эти электроны нейтрализуют положительно заряженные свободные радикалы, вызывающие хроническое воспаление.

Избыток свободных радикалов повреждает клеточные мембраны и ДНК, что приводит к раку и другим заболеваниям. Поскольку заземление снижает вязкость (толщину) крови и уменьшает воспаление, оно может поддерживать здоровье сердечно-сосудистой системы.

У большинства из нас сверхактивная симпатическая нервная система (чрезмерное эмоциональное напряжение). Предварительные исследования показывают, что заземление оказывает успокаивающее и уравновешивающее действие на нервную систему.

Биофизик Джеймс Ошман объясняет:

В тот момент, когда ваша ступня касается Земли или вы подключаетесь к Земле через провод, ваша физиология меняется.Начинается немедленная нормализация. И включается противовоспалительный переключатель. Люди остаются воспаленными, потому что они никогда не связываются с Землей, источником свободных электронов, которые могут нейтрализовать свободные радикалы в организме, вызывающие болезни и разрушение клеток. Заземление – это самое простое и самое глубокое изменение образа жизни, которое может сделать каждый.

Все больше исследований показывают, что заземление помогает естественным образом исцелять людей от самых разных недугов.

Велосипедисты на Тур де Франс часто страдают от болезней, тендинита и плохого сна из-за сильнейшего физического и психического стресса, вызванного гонкой.

Американская команда экспериментировала с заземлением после ежедневных соревнований. Они сообщили о лучшем сне, меньшем количестве болезней, отсутствии тендинита и более быстром выздоровлении. По моему опыту, преимущества заземления выходят далеко за рамки лечения болезней.

Я считаю, что заземление имеет негласные умственные и эмоциональные преимущества, необходимые для психологического развития и максимальной производительности.

Биоэлектрическое тело

Люди – существа энергии. Электрические токи и связанные с ними магнитные поля заполняют и окружают человеческий организм.

Эти токи составляют сеть или систему интерактивных энергетических полей, которые управляют функционированием тела. В энергетической медицине это называется биополем человека.

источник

Эта тонкая энергия называется прана, в аюрведической медицине и ци в китайской медицине. Однако эти древние термины, вероятно, включают другие формы энергии помимо электромагнитных полей (например, звуковую энергию).

В этих древних индийских и китайских традициях понимается, что энергия жизненной силы течет через тело (выходя за его пределы).Блокировки и дисбаланс в потоке этой энергии приводят к болезни.

Современные формы энергетической терапии, такие как Рейки, работают по схожему принципу.

Электромагнитная Земля

Согласно китайской мысли, ци нашего тела происходит от Небесной ци и Земной ци.

Небесная ци относится к энергии солнца и космоса. Ци Земли образуется из естественной энергетической паутины Земли, ее магнитного поля и естественного тепла.

Оказывается, Земля также имеет энергетическую анатомию, совместимую с нашей.Энергетические центры, энергетические каналы, магнитные поля исходят от Земли.

Земля похожа на массивную батарею, восполняемую солнечным излучением, молнией и теплом от ее расплавленного ядра. Он заряжается каждую минуту от 5000 ударов молнии где-нибудь в мире.

Подключиться к Земле

В то время как некоторые ранние версии обуви были сделаны из папируса, большая часть обуви была сделана из воловьей кожи, медвежьей шкуры, оленьей кожи, дерева и холста.

Войдите в индустриальную эпоху.Первые туфли на резиновой подошве появились в Англии в 1876 году. К началу Второй мировой войны обувь на синтетической подошве была обычным явлением. Мы, как народ, с тех пор не поправились.

Если вы помните из школьной физики, вещества, называемые проводниками, позволяют электричеству легко проходить через них. Другие вещества, называемые , изоляторы препятствуют прохождению электричества.

Если вы находитесь на улице во время грозы, лучше сесть в машину, потому что шины резиновые.Резина – изолятор; он защитит вас от ударов молнии в землю. Обувь на резиновой подошве нарушила нашу связь с Землей .

Эксперт в области здравоохранения Дэвид Вулф называет обычную обувь «самым опасным изобретением в мире».

Авторы Заземления объясняют:

Заземление естественным образом защищает хрупкие биоэлектрические цепи организма от статических электрических зарядов и помех. Что наиболее важно, это облегчает прием свободных электронов и стабилизирующие электрические сигналы и энергию Земли.Заземление устраняет электрическую нестабильность и дефицит электронов, о которых вы даже не подозревали. Он наполняет и заряжает ваше тело чем-то, о чем вы даже не подозревали … или что вам нужно.

С современной точки зрения ходьба босиком по земле может показаться примитивной. Однако с инстинктивной точки зрения мы должны путешествовать босиком.

Как заземлить себя: 4 упражнения на заземление

Упражнения по заземлению, позволяющие связать вас с Землей, очень просты: просто снимите обувь и носки и выйдите на улицу.

Стой на Земле: лучше всего подходят трава, камень, песок или грязь. Вы можете стоять на одном месте, ходить или лечь.

Как и в любой электрической цепи, для заземления требуется только одна точка контакта.

Одна нога на земле заземлит вас, но я обнаружил, что две ноги на земле обеспечивают более сильный заземляющий эффект.

Для исцеления исследователи движения «Заземление» рекомендуют оставаться босиком на Земле не менее 20 минут два раза в день.

Но даже если вы можете подключиться к Земле всего на 10 минут во время обеда, она вам пригодится.

  • Избегайте опрыскивания травы пестицидами, так как они будут впитываться через ваши ступни.
  • Будьте осторожны в местах, где может быть разбитое стекло или мусор.
  • Не ходите босиком по асфальту.

Если вы не можете ходить босиком, я рекомендую надеть обувь для заземления.

Вот четыре метода заземления, которые помогут вам повторно подключиться к Земле:

Осознанная ходьба

Просто гуляйте и оставайтесь рядом со своим окружением.

Мой любимый способ заземления – ходить босиком по своей собственности и окрестным лесам. В зависимости от того, насколько активен мой ум, может пройти всего несколько минут, прежде чем я стану более умственно спокойным и сосредоточенным. Ходьба босиком дает дополнительное преимущество в виде массажа акупунктурных точек на ступнях, как в рефлексотерапии.

Особый интерес представляет точка Почки-1 (K-1) или «пузырящаяся скважина» в центре стопы. Ходьба босиком помогает стимулировать эту точку. Обязательно используйте при ходьбе всю ступню: пятку, подушечку пальцев, пальцы ног.

Время : от 10 до 20 минут.

Катиться, как кошка

Вы когда-нибудь замечали, как по Земле катаются кошки и собаки?

Я часто задавался вопросом, знают ли они инстинктивно, как разрядить отрицательную энергию. Попробуйте испачкаться и кататься по Земле. Вы поймете, почему это делают кошки. Хорошее настроение .

Время : Сколько хотите.

Стоять как дерево

Мы рассмотрели эту технику заземления выше.

Эта стоячая медитация под названием Чжань Чжуан лучше всего работает на природе (на свежем воздухе) и даже лучше, когда выполняется босиком на Земле.

Китайцы даже делают туфли для тайцзи на хлопковой подошве (но я обнаружил, что они наполнены полиэстером, что противоречит цели).

Лучшая альтернатива – заземляющие башмаки.

Время : от 1 минуты до 10 минут.

Визуализация заземления

Почувствуйте землю под собой и сосредоточьтесь на себе.Теперь сосредоточьтесь на своем сердце.

Почувствуйте энергию жизни, исходящую из вашего сердца. Теперь представьте себе центр Земли. Это может быть ядро ​​магмы, круг света или что угодно, что придет в голову.

Затем визуализируйте изогнутый луч света или энергии, идущий от вашего сердца к ядру Земли. Дополнительный изогнутый энергетический луч проходит от ядра к вашему сердцу (завершая заостренный овал). Почувствуйте связь между вашим сердцем и ядром Земли.

Время : от 2 до 5 минут.

Заземление и заземление

Когда я впервые прочитал о заземлении, это было зимой. Я не был готов ходить по мерзлой земле, поэтому купил ряд продуктов для заземления.

В основе движения «Заземление» лежит новая отрасль производства продуктов, предназначенных для заземления путем подключения продукта к заземляющему проводу в вашем доме.

Вы можете приобрести:

Эти продукты, похоже, работают, но сообщенные положительные результаты могут быть эффектом плацебо.Честно говоря, я не знаю наверняка, но предварительные исследования показывают, что они действительно полезны для здоровья.

Я лично использую многие из этих продуктов. Например, у меня есть универсальный коврик для заземления под клавиатурой, с которой я сейчас печатаю.

Универсальный коврик для заземления на рабочем столе

Комплект чехла для матраса Elite с заземлением

Коврик для заземления

Повязки для заземления запястья и тела

Минималистские башмаки и сандалии для заземления

Хотя обувь с заземлением не дает мне того же ощущения, что и прогулка босиком, я, , может, , по-прежнему ощущать эффект заземления.

Вы также можете заземлить себя дома без каких-либо продуктов. В помещении керамическая плитка и бетонный пол могут заземлить вас, если вы ходите босиком.

Ковролин, винил и паркет не пойдет. Но эффекты не такие мощные, как прямой контакт с самой Землей.

( Заявление об отказе от ответственности : партнерские ссылки выше.)

Действительно ли заземляющие устройства работают?

Если бы я попытался заземлить десять с лишним лет назад, уверен, я бы ничего не почувствовал.У меня была небольшая чувствительность к движениям и ощущениям в моем теле.

Однако после многих лет практики цигун я стал лучше осознавать свое тело. Когда я соединяю ноги с Землей, я могу наблюдать различные ощущения. Я также могу обнаружить легкую вибрацию, исходящую от земли, когда я в центре.

Несколько месяцев пользовался прокладками и простынями. За исключением заземляющих башмаков, я мог обнаружить очень незначительные эффекты от их использования. Конечно, это не означает, что заземляющие устройства не работают.

Если бы я еще не оптимизировал свой сон для шишковидной железы, возможно, я испытал бы на себе преимущества заземляющих листов, как сообщают многие другие.

4/17/19 Обновление: У меня был обширный обмен мнениями с Мартином Цукером, соавтором книги «Заземление». Он также предположил, что, вероятно, из-за моего текущего состояния здоровья я не чувствую последствий.

Кроме того, я живу в лесу, где вся электропроводка находится под землей и поблизости нет вышек сотовой связи.Мой интернет-модем отключен вечером, и в спальне нет электронных устройств.

Все это означает сверхнизкие уровни электромагнитных частот (ЭМП). Как следствие, в чем-то вроде заземляющих листов нет необходимости.

Но когда я работаю перед компьютером, я использую универсальную заземляющую площадку под клавиатурой, а также медную заземляющую пластину, которую я построил для своих ног. Я считаю, что использование этих инструментов для заземления помогает мне оставаться спокойнее и сосредоточенным, когда я работаю.


Заземлите себя с помощью цифрового приложения?

Хорошо, то, что я собираюсь поделиться с вами сейчас, может звучать как научная фантастика.

Эрик Томпсон – основатель компании Subtle Energy Sciences.

Используя технологию квантового резонанса, Эрик разработал метод кодирования цифровых изображений и звуковых файлов с определенными энергетическими сигнатурами.

В результате получилось то, что он назвал цифровыми мандалами, в которых прекрасное цифровое искусство сочетается со слоями различных звуковых технологий, связанных с энергией.

Если вы открыты для изучения новых технологий, обратите внимание на Earth Pulse .

Эта цифровая медиапрограмма транслирует усиленную энергетическую сигнатуру резонанса Шумана через ваши электронные устройства.

По сути, вы можете использовать его, чтобы превратить устройства, производящие вредные ЭМП, во что-то, что защитит вас от вредных ЭМП – и заставит вас почувствовать себя более заземленным!

У меня всегда есть хотя бы одна из мандал Эрика, работающая на моем компьютере и других устройствах (обычно более одной).

Используйте код CEOSAGE30 для скидки 30%.

Так вот, если у вас нет чувствительности к энергии, вы можете сначала ничего не почувствовать. В таком случае Эрик предлагает различные способы усиления и оптимизации эффектов.

(отказ от ответственности: партнерская ссылка)


Максимально эффективные упражнения по заземлению

Если вы сознательно заземляете себя в своем теле (Часть I), а затем укореняетесь в Земле (Часть II), вы можете усилить эффекты заземления.

Чем больше времени вы проводите за компьютером или подключенным к своему смартфону, тем больше пользы вы получите от техники заземления и упражнений на заземление.

Некоторые люди считают, что нет достоверных доказательств того, что электромагнитные частоты (ЭМП) и радиационные волны от электронных устройств, таких как мобильный телефон, вредны.

Однако доказательства продолжают расти.

В конце концов, вам нужно только больше укорениться в своем теле, чтобы положить конец спорам.Воздействие как ЭМП, так и / или излучения этих устройств становится заметным в вашем энергетическом теле.

Вопрос не в том, действуют ли на вас эти электромагнитные и радиационные волны; в какой степени вы их чувствуете.

Тем не менее, заземление себя в своем теле и ежедневное заземление могут быть важным выбором в образе жизни для тех, кто заинтересован в долгой и яркой жизни.

Изучение цигун или практика Метода Мастерства (если у вас мало времени) могут научить вас чувствовать и перемещать энергию в своем теле.

Резюме: как заземлить себя

Методы заземления предоставляют мощные методы повышения осведомленности о своем теле. Эти упражнения обладают разнообразной пользой для здоровья.

Заземление – это упражнение по заземлению, которое восстанавливает вашу связь с Землей. Исследования показывают, что заземление уменьшает воспаление, удаляя свободные радикалы.

Для творческих профессионалов техники заземления и упражнения по заземлению – это способы:

  • Успокоение и очищение ума,
  • Подзарядка вашей энергии, и
  • Успокаивает эмоции.

Таким образом, упражнения на заземление помогут повысить общую умственную и физическую работоспособность. Ходить по Земле босиком – это успокаивающее и радостное занятие.

Эти техники заземления помогают пробудить ваши инстинкты и приблизить вас к себе.

Читать далее

7 мощных инструментов для медитации, которые помогут вам тренировать свой ум для более высокой производительности

Полный обзор 4 лучших очков, блокирующих синий свет

Детоксифицируйте шишковидную железу, увеличьте мощность мозга и увеличьте жизнеспособность с помощью этих 11 пищевых добавок и продуктов

Листы заземления: действительно ли они помогают улучшить ваш сон?

Что вы думаете?

Добавьте свои комментарии ниже.

Предотвращение удара с помощью надлежащих методов заземления – охрана труда и безопасность

Предотвращение поражения электрическим током с помощью надлежащих методов заземления

Восемьдесят процентов всех проблем с качеством электроэнергии обнаруживаются в системе распределения электроэнергии и заземления.

  • Чад Рейнольдс
  • 1 ноября 2003 г.

AN по оценкам, 58 человек каждую неделю теряют жизнь в результате поражения электрическим током.В электрической системе система заземления является основной защитой от поражения электрическим током. Он обеспечивает заземление с низким сопротивлением для защиты от электрических повреждений. Использование надлежащих методов заземления, проверка и поддержание хорошего электрического заземления, а также установка защитных устройств – лучший способ защитить людей и оборудование от поражения электрическим током.

Поддержание качественного заземления начинается с правильного подключения цепи. Национальный электрический кодекс (NEC) требует, чтобы удаление любого устройства не могло прервать путь заземления.Производители розеток отреагировали, поставив розетки только с одним заземляющим контактом. Это запретило бы электрикам подключать устройство последовательно с цепью заземления.



= “центр”>

Распространенным методом обеспечения целостности заземления является использование гибкого кабеля. Чтобы сделать косичку, возьмите оба заземляющих провода и соедините их 6-дюймовым проводом того же цвета, который был зачищен с обоих концов.Крепко возьмите все три и свяжите их вместе проволочным соединителем. Обязательно используйте разъем, размер которого соответствует размеру и количеству проводов.

Доступны специальные соединители, облегчающие эту работу. В одном из них через отверстие в верхней части разъема вставляется неизолированный медный провод. Затем все провода связывают, скручивая разъем до упора. Готовые косички становятся все более популярными из-за экономии времени. Например, в некоторых разъемах теперь совмещен скручивающийся провод с предварительно обжатым жгутом.Сверхгибкий 6-дюймовый провод обеспечивает беспроблемное размещение в распределительной коробке, а заземляющие кабели оснащены предварительно обжатым вилочным соединением для быстрой и простой установки устройства.


Эта статья была впервые опубликована в ноябрьском номере журнала «Охрана труда и безопасность» за 2003 год.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *