Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Устройство и принцип работы импульсного блока питания, основные характеристики, конструктивные исполнения достоинства и область применения

Блок питания – это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.

Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.

Типовая схема традиционного источника электропитания состоит из следующих элементов:

  • силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
  • конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
  • стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.

Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.

Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.

Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.

Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.

КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ

Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

  • выпрямление входного напряжения;
  • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
  • трансформация высокочастотных импульсов до требуемого уровня;
  • выпрямление и фильтрация полученного напряжения.

Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

Тор обычно изготавливается штамповкой из пермаллоя – сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.

Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть.

Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи – при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.

Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.

Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

  • малые габариты и вес по сравнению с трансформаторными источниками питания;
  • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
  • возможность работы в широком диапазоне изменения значений входного напряжения.

ПРИМЕНЕНИЕ ИМПУЛЬСНЫХ БЛОКОВ

Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:

  • все виды компьютерной техники;
  • телевизионная и звуковоспроизводящая аппаратура;
  • пылесосы, стиральные машины, кухонная техника;
  • источники бесперебойного электроснабжения различного назначения;
  • системы видеонаблюдения, комплексы охранной сигнализации.

Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.

Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.

  *  *  *

© 2014-2023 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

чем отличается от обычного трансформаторного, где применяется

Содержание

  1. Отличия импульсного блока питания от обычного трансформаторного
  2. Какие бывают виды и где применяются
  3. Структурная схема и описание работы основных узлов ИБП
  4. Входные цепи
  5. Высоковольтный выпрямитель и фильтр
  6. Инвертор
  7. Выпрямитель
  8. Фильтр
  9. Цепи обратной связи
  10. Как устроен ШИМ контроллер

Импульсные источники питания (ИИП) заполонили мир. Кажется, что они применяются везде, полностью вытеснив традиционные. На самом деле, этот вопрос неоднозначный.

В обзоре речь пойдет именно об импульсных блоках питания (ИИП) – преобразователях переменного сетевого напряжения в постоянное. Следует отличать такие устройства от импульсных стабилизаторов (стабилизируют входное постоянное напряжение) и преобразователей DC/AC или AC/AC (например, 12VDC/220 VAC, преобразующих напряжение автомобильной бортсети в 220 вольт), хотя в этих устройствах применяются похожие принципы.

Отличия импульсного блока питания от обычного трансформаторного

Схема трансформаторного стабилизированного источника питания.

Традиционный «трансформаторный» блок питания строится по схеме: трансформатор — выпрямитель с фильтром — стабилизатор выходного напряжения (может отсутствовать). Схема несложна и отработана годами, но у нее есть существенный недостаток – при увеличении мощности опережающими темпами растут габариты и вес.

В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.

Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.

В видео-сравнение линейного и импульсного блоков питания.

К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.

Какие бывают виды и где применяются

Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:

  • однополярные с одним уровнем напряжения;
  • ондополярные с несколькими уровнями напряжения;
  • двухполярные.

Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.

Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:

  1. Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
  2. Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
  3. Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.

Читайте также

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

 

Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.

Также можно разделить ИИП по схемотехнике:

  • с импульсным трансформатором;
  • с накопительной индуктивностью.

В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.

Структурная схема и описание работы основных узлов ИБП

Структурная схема импульсника сложнее, чем у трансформаторного источника. Для понимания принципа работы импульсного блока питания в целом, надо разобрать функционирование каждого узла в отдельности.

Структурная схема импульсного блока питания.

Входные цепи

Входные цепи предназначены для защиты сети от перегрузки при неисправности БП и от импульсных помех, возникающих при работе устройства. В качестве примера можно рассмотреть фильтр и защиту промышленного компьютерного ИИП.

Входные цепи импульсника MAV-300W-P4.

Плавкий 5-амперный предохранитель перегорает при превышении номинального тока при аварийной ситуации в БП. Для защиты от повышения напряжения предусмотрен варистор V1. В штатном режиме он не влияет на работу устройства. При скачке в сети от открывается, его сопротивление резко увеличивается, ток через варистор возрастает. Это вызывает перегорание предохранителя.

Терморезистор с отрицательным коэффициентом сопротивления THR1 сначала имеет большое сопротивление и ограничивает ток, идущий на зарядку конденсаторов фильтра высоковольтного выпрямителя. Потом термистор прогревается проходящим через него током, его сопротивление падает, но к тому моменту емкости уже будут заряжены. Конденсаторы CX1, C11, C12, CY3 и синфазный дроссель FL1 защищают сеть от синфазных и дифференциальных помех.

Высоковольтный выпрямитель и фильтр

Высоковольтный выпрямитель обычно строится по традиционной мостовой двухполупериодной схеме и особенностей не имеет. Если в преобразователе применяется полумостовая схема, то фильтр выполняется из двух емкостей, включенных последовательно – так формируется средняя точка с напряжением, равным половине питания.

Участок схемы импульсника с высоковольтным выпрямителем D1-D4 и с емкостным делителем напряжения C1-C2.

Иногда параллельно конденсаторам ставят резисторы. Они нужны для разряда емкостей после выключения питания.

Инвертор

Преобразование постоянного напряжения в импульсное происходит с помощью инвертора на полупроводниковых ключах (часто на транзисторах). Открываясь и закрываясь, ключи подают в обмотку импульсы напряжения. Таким методом получается своеобразное переменное напряжение (однополярное), которое может быть трансформировано в напряжение другого уровня обычным способом.

Схемы транзисторных инверторов.

Самая простая схема преобразователя постоянного напряжения в импульсное – однотактная. Для ее реализации нужен минимум элементов. Недостаток такого узла – при росте мощности резко растут габариты и масса трансформатора. Связано это с принципом действия такого преобразователя. Он работает в два цикла – во время первого транзистор открыт, энергия запасается в индуктивности первичной обмотки. Во время второго запасенная энергия отдается в нагрузку. Чем больше мощность, тем больше должна быть индуктивность, тем больше должно быть витков в первичной обмотке (соответственно, увеличивается количество витков во вторичных обмотках).

От этого недостатка свободна двухтактная схема со средней точкой (пушпульная). Первичная обмотка трансформатора разделена на две секции, которые через ключи поочередно подключаются к минусовой шине. На рисунке красной стрелкой показано направление тока для одного цикла, а красной – для другого. Минусом является необходимость иметь удвоенное количество витков в первичке, а также наличие выбросов в момент коммутации. Их амплитуда может достигать двойного значения от напряжения питания, поэтому надо применять транзисторы с соответствующими параметрами. Сфера применения такой схемы – низковольтные преобразователи.

Выбросы отсутствуют, если инвертор выполнен по мостовой схеме. Из четырех транзисторов составлен мост, в диагональ которого включена первичная обмотка трансформатора. Транзисторы открываются попарно:

  • первый цикл – верхний левый и нижний правый;
  • второй цикл – нижний левый и верхний правый.

Обмотка подключается к плюсу питания то одним выводом, то другим. Минусом является применение 4 транзисторов вместо двух.

Компромиссным вариантом считается применение полумостовой схемы. Здесь коммутируется один конец первичной обмотки, а второй подключен к делителю из двух емкостей. В этой схеме также отсутствуют выбросы напряжения, но применено всего два транзистора. Недостаток такого решения – к первичной обмотке прикладывается только половина питающего напряжения. Вторая проблема – при создании мощных источников емкость конденсаторов делителя растет, и их стоимость становится нецелесообразной.


Фрагмент схемы промышленного импульсного источника – полумостовой инвертор на транзисторах Q1, Q2 управляется через промежуточный узел на транзисторах Q8, Q9 и трансформаторе T1.

В схемах всех преобразователей используются как полевые, так и биполярные транзисторы, а также IGBT, сочетающие свойства обоих типов.

Выпрямитель

Трансформированное во вторичные обмотки напряжение надо выпрямить. Если требуется выходное напряжение выше +12 вольт, можно применять обычные мостовые схемы (как и в высоковольтной части).

Схема импульсного блока питания с выходным напряжением до 30 вольт и мостовым двухполупериодным выпрямителем.

Если напряжение низкое, то выгодно применять двухполупериодные схемы со средней точкой. Их преимущество в том, что падение напряжение происходит только на одном диоде для каждого полупериода. Это позволяет сократить количество витков в обмотке. Для этой же цели используют диоды Шоттки и сборки на них. Недостаток такого решения – более сложная конструкция вторичной обмотки.

Схема выпрямителя со средней точкой и прохождение по ней тока.

Фильтр

Выпрямленное напряжение надо отфильтровать. Для этой цели применяются как традиционные емкости, так и индуктивности. Для используемых частот преобразования дроссели получаются небольшими, легкими, но работают эффективно.

Схема выходных фильтрующих цепей каналов импульсного компьютерного блока питания.

Цепи обратной связи

Цепи обратной связи служат для стабилизации и регулировки выходного напряжения, а также для ограничения тока. Если источник нестабилизированный, у него эти цепи отсутствуют. У устройств со стабилизацией тока или напряжения эти цепи выполняются на постоянных элементах (иногда с возможностью подстройки). У регулируемых источников (лабораторных и т.п.) в обратную связь включены органы управления для оперативной регулировки параметров.

Как устроен ШИМ контроллер

В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.

Принцип регулирования выходного напряжения методом широтно-импульсной модуляции.

Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия
шим контроллера блока питания.

Распиновка TL494.

Назначение выводов микросхемы указано в таблице.

НазначениеОбозначениеНомер выводаНомер выводаОбозначениеНазначение
Прямой вход усилителя ошибки 1IN1116IN2Прямой вход усилителя ошибки 1
Инверсный вход усилителя ошибки 1­IN1215IN2Инверсный вход усилителя ошибки 1
Выход обратной связиFB314VrefВыход опорного напряжения
Управление временем задержкиDTC413ОТСВыбор режима работы
Частотозадающий конденсаторC512VCCНапряжение питания
Частотозадающий резисторR611С2Коллектор 2-го транзистора
Общий проводGND710E1Эмиттер 1-го транзистора
Коллектор 1-го транзистораC189E2Эмиттер 2 -го транзистора

На выводы 7 и 12 подается напряжение питания +7. .40 вольт. На выходе микросхемы установлены два транзистора, которые можно использовать для управления внешними ключами. Коллекторы (выводы 8 и 11) и эмиттеры (10 и 9) выходных транзисторов никуда не подключены. Их можно включать по схеме с открытым коллектором или с открытым эмиттером. Микросхема оптимизирована для управления ключами на биполярных транзисторах, но с использованием немного усложненных схемотехнических решений можно переключать и полевые транзисторы.

Структурная схема TL494.

Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.

Читайте также: Подборка схем для самостоятельного изготовления импульсного БП

Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.

Схема ИИП на TL494.

В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.

Для наглядности рекомендуем серию тематических видеороликов.

Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.

Как работают импульсные блоки питания, блок за блоком

Введение

Хотя вы указываете и используете блоки питания в своих проектах, они могут быть «черным ящиком» с неизвестным внутренним устройством. Хотя вам не нужно быть экспертом по проектированию блоков питания, есть преимущества в понимании основных внутренних блоков блоков питания. В этой статье мы представим топологию источника питания и обсудим каждый из внутренних функциональных блоков, чтобы дать общее представление об основных цепях, внутренних для источников питания.

Внутри блоков питания

Блок-схема на рис. 1 представляет многие блоки питания переменного/постоянного или постоянного/постоянного тока. Разница в блок-схеме между входными источниками переменного и постоянного тока по сравнению с источниками постоянного тока заключается в выпрямителе с диодным мостом. Схема выпрямителя (диоды D1, D2, D3, D4) требуется в источниках питания переменного и постоянного тока и не требуется для источников питания постоянного и постоянного тока, в противном случае топологии источников питания могут быть идентичными.

Рис. 1: Упрощенная блок-схема импульсного источника питания переменного/постоянного тока

Фильтр EMI/EMC

Блок фильтра EMI/EMC может быть либо компонентом, размещенным внутри источника питания разработчиком источника питания, либо добавленным в качестве внешнего компонента пользователем источника питания. Компоненты EMI/EMC могут потребоваться для выполнения следующих функций:

  • Минимизация излучаемых и кондуктивных помех на входе источника питания
  • Свести к минимуму влияние переходных процессов напряжения от источника входного напряжения
  • Минимизировать входной импульсный ток при первой подаче напряжения на вход источника питания
  • Защита входного источника питания и проводников в случае отказа источника питания

Если компоненты EMI/EMC являются внутренними для источника питания, группа разработчиков источника питания выбирает компоненты на основе максимального номинального выходного тока при резистивной нагрузке. Ваше приложение, вероятно, не будет работать в тех условиях, в которых оценивалась команда разработчиков. Таким образом, может возникнуть необходимость в дополнительных внешних компонентах, чтобы ваша система соответствовала нормативным требованиям EMI/EMC, даже если в комплект поставки уже входят внутренние компоненты EMI/EMC.

Рис. 2: Входной фильтр EMI/EMC

Диодный мостовой выпрямитель

Как упоминалось ранее, диодный мостовой выпрямитель используется для преобразования входного переменного напряжения в постоянное напряжение для использования в источнике питания. Схема выпрямителя отсутствует в источнике питания, рассчитанном только на входное напряжение постоянного тока, поскольку постоянное напряжение уже присутствует. Однако многие источники питания, рассчитанные на входное напряжение переменного тока, также питаются от входного напряжения постоянного тока. Если постоянное напряжение подается с диодным мостом на входе источника питания, постоянное напряжение может быть подключено в любой полярности и будет проходить через диоды и появляться на входном объемном конденсаторе.

Рис. 3: Диодный мостовой выпрямитель

Входной конденсатор большой емкости

Входной конденсатор большой емкости фильтрует постоянное напряжение от диодов выпрямителя в источниках питания переменного/постоянного тока и действует как входной фильтр в источниках питания постоянного/постоянного тока. Когда входное напряжение впервые подается на источник питания, напряжение на входном конденсаторе большой емкости будет равно 0 В. Эта разница в напряжении между приложенным напряжением и напряжением на конденсаторе большой емкости может вызвать большой входной импульсный ток во время зарядки конденсатора большой емкости. к входному напряжению. Этот пусковой ток может быть проблемой, так как он может в 100 раз превышать нормальный входной рабочий ток. Часто ограничитель пускового тока, который может быть простым резистором небольшого номинала, подключается последовательно с клеммой входного напряжения для ограничения пускового тока.

При питании постоянным током входной объемный конденсатор может помочь компенсировать импеданс входных проводников и стабилизировать динамический входной импеданс источника питания. Эта веб-страница содержит более подробную информацию о входном сопротивлении источника питания и о том, как это может вызвать колебания источника питания.

Рис. 4: Входной объемный конденсатор

Входной переключатель питания

Электронный переключатель (нарисованный как полевой МОП-транзистор) преобразует входное постоянное напряжение в переменное, чтобы мощность могла проходить через изолирующие магниты (трансформатор или связанные катушки индуктивности). Рабочий цикл входного управляющего сигнала и, следовательно, выходного сигнала от ключа питания зависит от топологии источника питания, входного напряжения, выходного напряжения и выходного тока нагрузки. В источниках переменного/постоянного тока причиной преобразования входного переменного напряжения в постоянное, а затем обратно в переменное является то, что внутренняя частота переменного тока намного выше (от десятков килогерц до десятков мегагерц) и, следовательно, можно использовать меньшие магнитные изоляторы и компоненты выходного фильтра. выбрано. Кроме того, внутренняя форма волны переменного тока может модулироваться как часть топологии преобразования энергии.

Рис. 5: Входной выключатель питания

Магнитная изоляция

Обычным элементом, используемым для магнитной изоляции, является либо трансформатор, либо связанные катушки индуктивности. В случае трансформатора или связанных катушек индуктивности имеется одна или несколько обмоток как на первичной, так и на вторичной сторонах изолирующего барьера. В физической конструкции изолирующих магнитов будет паразитная емкость между первичной и вторичной обмотками. Эта паразитная емкость может быть источником проблем EMI/EMC, которые необходимо решить и которые будут обсуждаться в отдельной веб-статье. Диаграмма на рисунке 6 представляет паразитную емкость, связанную с обмотками. Следует отметить, что на практике емкость не является сосредоточенным элементом, как показано на диаграмме, а скорее распределяется по обмоткам и между ними.

Рис. 6: Изолирующие магниты с сосредоточенным конденсатором, представляющим паразитную емкость

Выходной выпрямитель

Выходное напряжение изолирующих магнитов имеет форму волны переменного тока и нуждается в выпрямлении для получения выходного напряжения постоянного тока. Для выпрямления можно использовать либо пассивную схему (диоды), либо активную схему (полевые транзисторы). Схема выпрямления может быть полуволновой, двухполупериодной или другой конфигурации, в зависимости от требований к выходному напряжению и конструкции изолирующего магнита. Диодные выпрямители недороги и просты в конструкции, но рассеиваемая мощность будет больше, чем если бы была реализована активная схема выпрямителя на полевых транзисторах.

Рис. 7: Выходной выпрямитель

Выходной фильтр

Выходной выпрямитель создает постоянное напряжение, на которое накладывается переменное напряжение. Без выходной фильтрации размах шума переменного тока будет равен напряжению постоянного тока, что неприемлемо для большинства приложений. Базовый выходной фильтр представляет собой один или несколько конденсаторов, помещенных параллельно выходному напряжению. Выходную фильтрацию можно улучшить, добавив последовательную катушку индуктивности для создания фильтра «L» или фильтра «Pi». Выходной фильтр иногда применяется для подавления электромагнитных помех/электромагнитных помех. Выходные фильтры наиболее эффективны, когда компоненты расположены близко к нагрузке источника питания. Размещение компонентов фильтра близко к нагрузке сводит к минимуму падение напряжения на проводниках, вызванное колебаниями тока нагрузки.

Рисунок 8: Конденсатор выходного фильтра

Контроль напряжения, тока и температуры

Цепи для регулирования выходного напряжения, выходного тока и максимальной температуры источника питания также включены в блоки питания переменного/постоянного и постоянного тока. Эти схемы управления имеют сложный набор характеристик и обсуждаются в отдельной веб-статье.

Заключение

В этом обсуждении на высоком уровне были рассмотрены внутренние функции источников питания переменного/постоянного и постоянного тока. В других статьях мы обсуждаем функции, включенные для регулирования выходной мощности источника питания, методы, используемые для защиты источника питания и нагрузки от аварийной работы, компоненты, необходимые для соответствия нормативным требованиям EMI и EMC, а также влияние модификаций на спецификации источника питания.

Если у вас есть вопросы относительно того, как они относятся к источнику питания, выбранному для вашего проекта, обратитесь в отдел продаж и поддержки клиентов CUI для получения дополнительной информации по темам, затронутым в этом обсуждении.

Категории: Основы , Выбор продукта

Вам также может понравиться

Вопросы электромагнитной совместимости для импульсных источников питания

Технический документ

Отрицательное сопротивление и почему ваш преобразователь постоянного тока может работать неправильно –

Блог о мощности

Сравнение изолированных и неизолированных преобразователей мощности

Блог о мощности


Есть комментарии по этому посту или темам, которые вы хотели бы видеть в будущем?
Отправьте нам письмо по адресу powerblog@cui. com

Импульсный блок питания Принцип работы и конструкция |

Работа импульсного источника питания сильно отличается от работы линейного источника питания. Несмотря на сложность, более высокую стоимость материалов и большее количество деталей, импульсный источник питания по-прежнему остается предпочтительной топологией на рынке в настоящее время. Основная причина – более высокий КПД и более высокая удельная мощность. Более высокая эффективность просто означает, что только небольшая часть входной мощности тратится впустую, в то время как более высокая плотность мощности означает, что более высокая мощность возможна при меньшем форм-факторе или размере.

Обзор линейного источника питания постоянного и переменного тока

 

Трансформатор 50/60 Гц

Это может быть шаг вверх или вниз в зависимости от использования. Обычно это понижающая версия, поскольку обычное требуемое выходное напряжение ниже, чем входной уровень.

Выпрямитель

Преобразует переменный ток в пульсирующий постоянный. Как показано на схеме, наиболее часто используемый выпрямитель представляет собой двухполупериодный мостовой выпрямитель.

Фильтр

Простой фильтр представляет собой электролитический конденсатор. Это повысит среднеквадратичное значение или уровень постоянного тока выпрямленного сигнала.

Регулятор

Поддерживает чистый постоянный ток на выходе, чтобы не создавать проблем для чувствительных нагрузок или системы.

Общие проблемы

Эффективность и размер являются общей проблемой, связанной с линейным источником питания AC-DC. Он также ограничен только для маломощных приложений. Для работы с большой мощностью трансформатор 50/60 Гц будет очень большим и дорогим. Отфильтрованное вторичное выпрямленное напряжение всегда должно быть значительно выше выходного, чтобы регулятор мог работать правильно. По этой причине избыточное напряжение будет поглощаться регулятором, что приведет к огромным потерям мощности при умножении на ток нагрузки. Вот почему эффективность очень низкая. Линейный источник питания AC-DC также не может обеспечить широкий входной диапазон. Например, трансформатор рассчитан на переменное напряжение от 220 В до 20 В переменного тока, вы больше не можете использовать его для 110 В переменного тока, так как вы больше не можете получить 20 В переменного тока на вторичной обмотке.

Обзор линейного источника питания постоянного тока

 

Выше приведена схема базового линейного источника постоянного тока постоянного тока. Это просто и очень просто, поскольку компонентов всего несколько. Однако его основным недостатком по-прежнему является эффективность, ограниченная только приложениями с низким энергопотреблением. Чтобы линейный регулятор регулировался должным образом, его входное напряжение должно быть выше его выходного напряжения с запасом. Разница во входном и выходном напряжении, кстати, называется падением напряжения. В настоящее время на рынке уже есть линейные регуляторы с низким падением напряжения. Низкое падение напряжения по-прежнему приведет к огромным потерям мощности при работе с более высоким током.

Блок-схема импульсного источника питания переменного/постоянного тока

Ниже представлена ​​блок-схема двухкаскадного импульсного источника питания переменного/постоянного тока. Первый блок представляет собой мостовой выпрямитель, предназначенный для преобразования переменного тока в пульсирующий постоянный. В отличие от линейного источника питания переменного/постоянного тока, этот мостовой выпрямитель требует высокого номинального напряжения, так как он непосредственно измеряет входное напряжение. Импульсный преобразователь первой ступени в большинстве случаев представляет собой повышающий преобразователь, который работает как схема коррекции коэффициента мощности или PFC. Повышающий преобразователь имеет выход выше, чем его вход. Коррекция коэффициента мощности необходима для коммутации силовых цепей, чтобы скорректировать форму тока и минимизировать гармоники. Повышающий преобразователь является лучшей схемой активной коррекции коэффициента мощности из-за его способности потреблять ток со входа в обоих состояниях Q1 (включено или выключено). Импульсный преобразователь второй ступени обычно называется секцией постоянного тока производителями или разработчиками источников питания. Для DC-DC доступно множество топологий, таких как резонансная (LLC, последовательная, параллельная), прямая (ITTF, TTF, один транзистор), мостовая и полная мостовая, и это лишь некоторые из них. На приведенной ниже схеме секция DC-DC представляет собой резонансный преобразователь LLC. Последний блок — это выходной выпрямитель и фильтр. Для приложений с высокой мощностью вместо диодов используются NMOS.

 

Приведенная ниже схема обычно используется для маломощных автономных адаптеров и зарядных устройств. В секции DC-DC используется только один импульсный преобразователь, который представляет собой обратноходовой преобразователь. Преобразователь обратного хода эффективен до номинальной мощности 100 Вт. В некоторых случаях Flyback используется до 200 Вт, если выполняются требования, особенно к эффективности. Ступени PFC больше нет, поскольку типичная или номинальная мощность этой конфигурации составляет около 80–120 Вт, а требования к коэффициенту мощности для этого диапазона мощности не такие строгие. Обратноходовой преобразователь очень популярен для маломощных автономных импульсных источников питания из-за его простоты и меньшего количества деталей.

 

Импульсный источник питания постоянного тока

Существует несколько топологий, которые можно использовать для создания импульсного источника питания постоянного тока. Ниже схема представляет собой понижающий преобразователь постоянного тока или широко известный как понижающий преобразователь. Понижающий преобразователь имеет выходное напряжение, которое ниже его входного.

 

Другим решением для источника питания с переключением постоянного тока является повышающий преобразователь, схема которого приведена ниже. Повышающий преобразователь имеет выход выше, чем его вход.

 

Комбинация понижающего и повышающего преобразователя также возможна в повышающе-понижающей топологии. Ниже приведено инвертирующее повышающе-понижающее решение. Его можно настроить на работу, когда его вход ниже, чем выход, или наоборот. Неинвертирующий повышающе-понижающий также является вариантом, но он имеет несколько компонентов, чем инвертирующий повышающе-понижающий.

 

Как работают импульсные источники питания

Выше мы показываем некоторые разновидности импульсных источников питания как в форме AC-DC, так и DC-DC. Что именно делает SMPS? Чем он отличается от обычного линейного источника питания?

Импульсный источник питания — это тип источника питания, в котором в качестве силовой части используется импульсный преобразователь. Это может быть несколько переключающих преобразователей в каскадной или параллельной работе или один. Импульсные преобразователи являются сердцем импульсных источников питания.

Импульсный преобразователь работает по принципу непрерывного включения и выключения полупроводникового переключателя. Включение означает работу полупроводникового переключателя, такого как MOSFET, в режиме насыщения, а выключение означает работу MOSFET в режиме отсечки. При насыщении не будет падения напряжения (в идеале) на канале MOSFET, поэтому потери мощности не будет. С другой стороны, при отключении ток не течет, поэтому потери мощности нет. Благодаря этому принципу достигается очень высокая эффективность.

В действительности потери мощности небольшие из-за сопротивления МОП-транзистора в открытом состоянии и задержки выключения, которая вызывает небольшое пересечение между напряжением и током.

Привод полупроводникового переключателя в режим насыщения и отсечки возможен с помощью ШИМ-контроллера. ШИМ-контроллер может быть аналоговой специализированной ИС (ASIC) или цифровым решением, таким как MCU, DSC и DSP. Контроллер также является тем, кто устанавливает регулирование и другие защиты цепи.

Как выход получает регулировку

Чтобы обсудить это хорошо, давайте рассмотрим понижающий преобразователь, как показано ниже. Принцип одинаков для всех импульсных преобразователей.

 

Возможно, вы уже слышали о системах с открытым и замкнутым контуром. Система с разомкнутым контуром не имеет возможности регулировки в зависимости от выходного поведения, а система с замкнутым контуром имеет. Например, в приведенной выше схеме (понижающий преобразователь) регулирование без обратной связи возможно за счет обеспечения фиксированного входного напряжения, фиксированной нагрузки и фиксированного рабочего цикла. Для понижающего преобразователя идеальное соотношение входного и выходного напряжения определяется рабочим циклом. Для понижающего преобразователя уравнение рабочего цикла равно 9.0005

 

Для получения подробной информации о расчете коэффициента заполнения понижающего преобразователя см. статью «Расчет рабочего цикла понижающего преобразователя».

Например, входное напряжение составляет 20 В, а желаемое выходное напряжение составляет 10 В, рабочий цикл можно установить на фиксированное значение 50%. Таким образом, сигнал ШИМ в приведенной выше схеме должен иметь 50% времени. Это может быть хорошо, пока вход фиксирован, а нагрузка также постоянна. Однако, когда есть небольшое возмущение, выход легко становится сумасшедшим, поэтому рекомендуется иметь замкнутый контур управления.

Для управления с обратной связью нужен хороший контроллер (стандартный контроллер), или, если вы очень хорошо разбираетесь в системе управления, вы можете разработать собственное аналоговое или цифровое управление.

Замкнутый контур для получения нормативных требований

Ниже приведена схема понижающего преобразователя постоянного тока, который может работать от входного напряжения 30-60 В с выходной мощностью 24 В, 75 Вт. Силовая часть включает NMOS Si7852, диод SS3H9 и дроссель 47мкГн. Резистор делителя 93,1 кОм и 4,99 кОм составляют цепь обратной связи для управления по замкнутому контуру. Напряжение на 4,9Резистор 9k сравнивается с внутренним эталоном на выводе V FB контроллера.

 

Выход не может отклоняться от установленного уровня из-за замкнутого контура. Выше приведено простое решение, благодаря доступным контроллерам на рынке в настоящее время. Принцип управления замкнутым контуром очень технический, но о нем забывают, поскольку на рынке доступно множество простых решений.

Для быстрой реакции контура необходима компенсационная сеть. В приведенной выше схеме компоненты, подключенные к V 9Вывод 0207 C составляют компенсационную сеть.

Подробнее об эксплуатации SMPS

Схемы, из которых состоят импульсные источники питания, представляют собой импульсные преобразователи. Понимание работы импульсного преобразователя также прояснит работу импульсного источника питания. Позвольте мне рассмотреть схему повышающего преобразователя ниже. Когда ШИМ имеет высокий уровень (MOSFET Q1 насыщается), переключатель Q1 включится, и на этот раз катушка индуктивности L1 будет заряжаться. Диод D1 будет смещен в обратном направлении, и нагрузка будет зависеть только от заряда конденсатора C1.

 

Когда сигнал ШИМ низкий, транзистор Q1 отключается. Индуктор будет сопротивляться внезапному изменению тока, поэтому он изменит свою полярность, чтобы поддерживать то же направление тока. В результате D1 будет смещен в прямом направлении, а C1 пополнит свой заряд, и нагрузка будет получать питание от входа. Изменение полярности катушки индуктивности создает уровень напряжения выше входного (буст-эффект). На приведенной ниже диаграмме показаны формы тока катушки индуктивности, диода и полевого МОП-транзистора в зависимости от состояния ШИМ.

 

Эффективность импульсного источника питания

Основной причиной популярности этого типа источника питания является способность обеспечивать более высокую эффективность. Ниже приведена таблица эффективности, достижимой для импульсного источника питания, согласно стандарту 80 plus.

 Присвойте это 80 Plus 

Эффективность рассчитывается как

 

Ploss – это общие потери источника питания. Ранее я упомянул нулевое рассеивание мощности, когда переключатель находится в состоянии насыщения или отсечки. В идеале, но такой идеальной системы не бывает. Потери питания в импульсном режиме происходят из-за RDSon полевого МОП-транзистора, потерь при переключении, потерь на диодах, потерь смещения и потерь, связанных с катушкой индуктивности.

Руководство по проектированию SMPS

1.Знание приложения

Определите приложение. Например. для какого приложения используется источник питания, каковы окружающие условия, рабочие температуры и определить, является ли принудительное воздушное охлаждение или естественная конвекция. Принудительный воздух и естественная конвекция имеют разный подход к проектированию.

2. Определение мощности

Если вашему приложению требуется 100 Вт, не проектируйте блок питания мощностью 100 Вт. Всегда включайте запас не менее 40 % на случай внезапных перегрузок. Если позволяет бюджет, вы можете спроектировать блок питания мощностью 200 Вт, чтобы ваша нагрузка всегда составляла половину мощности блока питания. По результатам испытаний импульсный блок питания имеет наибольшую эффективность при нагрузке 50-60%.

3. Выберите топологию

После получения целевой мощности выберите используемую топологию. Для номинальной мощности менее 150 Вт Flyback является экономичным решением. Однако для более высоких требований к эффективности Flyback не является хорошим вариантом. Вы можете рассмотреть резонансное решение. Для приложений с высокой мощностью, скажем, в киловаттном диапазоне, вы можете рассмотреть полный мост в секции DC-DC. Для приложений DC-DC используйте режим buck, если вы стремитесь к более низкому выходному напряжению, режим повышения для более высокого выходного напряжения или режим buck-boost, если необходимо объединить их.

4. Решите, нужно ли включать цепь коэффициента мощности

Это зависит от технических характеристик и приложений. Для зарядных устройств и маломощного адаптера нет необходимости в дополнительной ступени PFC. Для высокой мощности или если вы хотите конкурировать на рынке и иметь сертифицированный источник питания, вам необходимо включить схему PFC, такую ​​​​как повышающий преобразователь.

5. Вы хотите, чтобы продукт был сертифицирован органами EMC?

Если да, включите в конструкцию фильтр электромагнитных помех.

6. Используйте синхронные выпрямители, параллельные МОП-транзисторы

Если вам требуется очень высокий КПД, рассмотрите возможность использования синхронного выпрямителя. Вы также можете запараллелить полевые МОП-транзисторы, чтобы еще больше снизить потери проводимости, связанные с RDson.

7. Выберите Control

Вы можете использовать аналоговые контроллеры для конкретных приложений или выбрать цифровое решение, такое как MCU, DSC или DSP.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *