Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Конденсатор, катушка и резонанс в цепи переменного тока

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u=φ1−φ2=qC..

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

qC..=Umaxcos.ωt

Следовательно, заряд конденсатора меняется по гармоническому закону:

q=CUmaxcos.ωt

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i=q´=−CUmaxsin.ωt=CUmaxcos.(ωt+π2..)

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π2.. (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

Imax=UmaxCω

Примем, что:

1Cω..=XC

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Определение

I=UXC..

Величина XC, равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура qmax=10−6 Кл. Амплитудное значение силы тока в контуре Imax=10−3 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q2max2C..=LI2max2..

Отсюда:

LC=q2maxI2max..

√LC=qmaxImax..

T=2π√LC=2πqmaxImax..=2·3,1410−610−3..≈6,3·10−3 (с)

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см.

рисунки «а» и «б» ниже).

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока

.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля →Ei, порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля →Eк, создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства →Ei=−→Eк следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции ei) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

ei=−u

Напомним, что сила переменного тока изменяется по гармоническому закону:

i=Imaxsin. ωt

Тогда ЭДС самоиндукции равна:

ei=−Li´=−LωImaxcos.ωt

Так как u=−ei, то напряжение на концах катушки оказывается равным:

u= LωImaxcos.ωt=LωImaxsin.(ωt+π2..)=Umax(ωt+π2..)

Амплитуда напряжения равна:

Umax=LωImax

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π2.., или колебания силы тока отстают от колебаний напряжения на π2.., что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

Imax=UmaxLω..

Введем обозначение:

Lω=XL

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Определение

I=UXL..

Величина XL, равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Пример №2. Катушка с индуктивным сопротивлениемXL=500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения

U = 100 В. Определите амплитуду силы тока Imax в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

XL=Lω=2πνL

Отсюда:

Так как амплитуда напряжения связана с его действующим значением соотношением Umax=U√2, то для амплитуды силы тока получаем:

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление

R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

ω0=1√LC..

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

ω=ω0=1√LC..

Определение

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I2maxR2..=UmaxImax2..

Упростив это уравнение, получим:

ImaxR=Umax

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

Imax=UmaxR..

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур.

Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν0).

Но:

ν0=12π√LC..

Тогда:

ν=12π√LC..

Отсюда:

Задание EF22579

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.


Алгоритм решения

1.Установить, что вызывает увеличение амплитуды силы тока.

2.Объяснить, какие изменения вызвало уменьшение индуктивности.

3. Объяснить, при каком условии в течение всего эксперимента амплитуда силы тока может только расти.

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν0=12π√LC..

По мере увеличения внешней частоты от нуля до ν0 амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν0. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν0min=12π√LminC..

ν0max=12π√LmaxC..

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν0 всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22785

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

Ответ:

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке


Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

Ответ: ад

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18656

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные (определить по графику начальный период колебаний).

2.Перевести единицы измерения величин в СИ.

3.Записать формулу Томсона.

4.Выполнить решение в общем виде.

5.Установить, каким станет период колебаний после уменьшения емкости конденсатора.

Решение

Запишем исходные данные:

• Период колебаний (определяем по графику): T = 4 мкс.

• Емкость конденсатора в первом опыте: C1 = 4C.

• Емкость конденсатора во втором опыте: C2 = C.

4 мкс = 4∙10–6 с

Запишем формулу Томсона:

T=2π√LC

Применим формулу для обоих опытов и получим:

T1=2π√L4C=4π√LC

T2=2π√LC

Поделим первый период на второй:

T1T2..=4π√LC2π√LC..=2

Отсюда:

T2=T12..=4·10−62..=2·10−6 (с)=2 (мкс)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | Просмотров: 9.3k

Конденсатор в цепи переменного тока

Изучить поведение и особенности функционирования конденсатора, включенного в цепь переменного тока поможет простейшая цепь с генератором, который формирует синусоидальное напряжение. За начальный момент примем положение в цепи, при котором напряжение на выходе из генератора равно нулю. Исследуем особенности происходящих изменений в цепи после замыкания ключа.

Первая четверть периода

Первая четверть периода характеризуется возрастанием напряжения от нуля на зажимах генератора, что приводит к началу зарядки конденсатора. В цепи появляется электрический ток. Но в самом начале зарядки конденсатора напряжение на его пластинах только начинает формироваться, оставаясь незначительным. Чем сильнее заряжается конденсатор, тем меньшим становится ток в цепи. Ток доходит до нулевой отметки одновременно с полным зарядом конденсатора. Само напряжение, накопленное на пластинах конденсатора, становится максимальный, но характеризуется изменением направления на 180°, то есть становится прямо противоположным напряжению, поступающего от генератора.

Резюмируем: после появления тока в цепи он начинает с максимальной силой поступать в конденсатор. Однако сила тока достаточно быстро снижается по мере накопления напряжения на пластинах конденсатора. Ток становится равным нулю в момент полной зарядки конденсатора.

Для улучшения восприятия процессов, происходящих в цепи, сравним данное явление с особенностью перетекания воды в сообщающихся сосудах. Как только заслонка или краник будут открыты, в пустой сосуд вода побежит с максимальной скоростью и силой. Но напор воды тут же начинает ослабевать и постепенно доходит до нуля. Одновременно уровень жидкости в обоих сосудах выравнивается.

Вторая четверть периода

Вторая четверть периода характеризуется следующими явлениями:

— напряжение генератора убывает, сначала медленно, а затем все быстрее;

— конденсатор, получивший полный заряд, начинает разряжаться на генератор;

— в цепи появляется ток разряда.

Ток разряда возрастает параллельно со снижением напряжения на генераторе. Направление тока заряда на данном этапе (и это очень важно) остается прямо противоположным направлению тока заряда, протекавшего в первую четверть периода. На диаграмме можно увидеть, как кривая тока преодолевает нулевую отметку и переходит в положение ниже по оси времени.

Завершение второй четверти (или первого полупериода) характеризуется минимальными показателями напряжения как на генераторе, так и на конденсаторе. Оба показателя стремятся к нулевой отметке. Одновременно ток в цепи постепенно доходит до своих максимальных значений.

Третья четверть периода

Третья четверть периода начинается с того, что конденсатор вновь начинает заряжаться. Однако в цепи произошли существенные изменения. А именно: полярность пластин конденсатора, равно как и полярность генератора тока изменились на обратную. При этом электрический ток продолжает течь в заданном направлении и вновь начинает убывать по мере заряда конденсатора. Данный участок исследуемого периода характеризуется завершением заряда конденсатора, показатели напряжения на нем и на генераторе достигают максимума, а ток становится равным нулю.

В четвертой четверти периода происходит постепенное уменьшение напряжения в цепи, которое падает до нуля. Ток же, изменив направление движения достигает максимума.

На этом рассматриваемый период заканчивается и повторяется вновь и вновь, точно копируя все параметры и величины тока и напряжения, описанные выше.

Подведем итог: в электрической цепи переменного тока под воздействием напряжения в течение одного периода дважды происходит заряд конденсатора и 2 раза его разряд. Заряд до максимальных показателей происходит в 1 и 3 четверти, а полный разряд – во 2 и 4 четверти периода. Одновременно, учитывая тот факт, что заряды и разряды конденсаторов сопровождаются протеканием электрического тока (зарядного и разрядного) фиксируем: в исследуемой цепи протекает переменный электрический ток.

Убедительный пример

Чтобы наглядно продемонстрировать все вышесказанное и уяснить особенности протекания физических процессов в цепи проведем простой опыт. К сети переменного тока подключаем лампочку электрического освещения, мощность которой составляет 24 Вт. Включаем в цепь конденсатор емкостью 4-6 мкф. Как только цепь замкнется, лампочка включится и будет гореть. До тех пор, пока цепь не будет разорвана. Очевидно: по цепи с емкостью протекает переменный электрический ток. Но он представляет собой постоянно чередующийся ток заряда и разряда и, конечно же не проходит сквозь диэлектрик конденсатора.

Как ведет себя сопротивление. Этот параметр конденсатора, встроенного в цепь, зависит напрямую от двух параметров:

— величина емкости конденсатора;

— частота тока.

Чем емкость выше, тем больший заряд протекает по цепи в момент заряда и разряда конденсатора. Как следствие – увеличивается ток в цепи, что параллельно приводит к уменьшению ее сопротивления.

Выводы:

Таким образом, можно сделать 2 вывода:

  1. Чем выше емкость конденсатора, тем меньшим становится сопротивление цепи переменному току.
  2. Повышение частоты приводит к снижению уровня сопротивления конденсатора переменному току.

Емкость и импеданс в цепи переменного тока | Блог Advanced PCB Design

Ключевые выводы

  •  Узнайте об импедансе конденсатора.

  • Получите более полное представление о важности импеданса конденсатора при анализе цепей переменного тока.

  • Узнайте, как рассчитать импеданс конденсатора.

 

Конденсаторы — чрезвычайно распространенные компоненты почти в каждой электронной схеме.

Область электроники содержит различные параметры, которые измеряют, помогают и влияют на функциональность и производительность каждого электронного устройства. Одним из важнейших параметров является импеданс в цепи переменного тока. В процессе проектирования необходимо точно оценивать импеданс, вызванный различными компонентами, чтобы принимать обоснованные проектные решения.

Кроме того, такие параметры, как емкость и импеданс, должны оставаться в допустимых проектных пределах, иначе даже точные конструкции могут не обеспечить желаемую функциональность. Также бывают случаи, когда требуется преобразование одного параметра в эквивалент другого. Более того, преобразование таких параметров, как емкость, в импеданс необходимо при выполнении подробного анализа цепи переменного тока. Поэтому очень важно, чтобы разработчики понимали взаимосвязь между емкостью и импедансом в цепях переменного тока.

Что такое емкость?

Ниже приведено полезное определение емкости:

Емкость мы связываем, конечно же, с конденсаторами. Мы называем способность системы накапливать электрический заряд «емкостью». Однако в физике мы называем это отношением изменения электрического заряда в системе к изменению ее электрического потенциала. Фарад — стандартная единица измерения емкости.

Теперь, когда мы определили емкость, давайте посмотрим на роль конденсатора в цепи переменного тока.

Функция конденсатора в цепи переменного тока

Конденсаторы представляют собой пассивные электронные компоненты, обеспечивающие накопление энергии в виде электростатического поля. Конденсатор заряжается, когда переменный ток достигает своего пика в цепи переменного тока, и разряжается, когда переменный ток уменьшается. Такое поведение позволяет конденсатору действовать как временное хранилище, в котором ток опережает напряжение на 90 градусов.

Инженеры-электрики используют конденсаторы для улучшения коэффициента мощности в цепи переменного тока. Например, цепь переменного тока, питающая индуктивные нагрузки, такие как двигатель, приводит к запаздывающему току. Добавление конденсатора помогает компенсировать отстающий ток и приближает коэффициент мощности к единице. Коррекция коэффициента мощности повышает эффективность использования энергии и снижает счета за электроэнергию.

Конденсаторы в фильтрах нижних частот

В конструкции печатных плат конденсаторы часто используются в фильтрах нижних или верхних частот. Это связано с тем, что импеданс конденсатора зависит от частоты сигнала переменного тока, проходящего через него. Конденсатор обычно блокирует низкочастотные сигналы, пропуская более высокочастотные сигналы.

Фильтр низких частот RC. Источник

На приведенной выше диаграмме показан RC-фильтр нижних частот. Конденсатор зашунтирован на землю. Таким образом, высокочастотные сигналы направляются на землю. Это предотвращает попадание высокочастотного шума выше частоты среза на нагрузку.

Частота среза RC-фильтра нижних частот определяется следующим уравнением.

Вы можете лучше понять поведение фильтра по его передаточной функции с помощью следующего преобразования Лапласа.

Конденсаторы в фильтрах верхних частот

Конденсатор подключается последовательно с входным сигналом, образуя фильтр верхних частот. Судя по приведенной ниже диаграмме, конденсатор блокирует передачу постоянного тока или низкочастотных сигналов на нагрузку. Допускаются только сигналы выше частоты среза.

Фильтр высоких частот RC. Источник

Частота среза фильтра верхних частот RC следующая:

Передаточная функция RC-фильтра верхних частот определяется следующим уравнением.

Емкость конденсатора

.

Анатомия конденсатора.

Конденсатор состоит из двух проводящих пластин, разделенных изолирующим материалом, называемым диэлектриком. Емкость конденсатора прямо пропорциональна площади поверхности его пластины и обратно пропорциональна расстоянию между пластинами. Емкость также зависит от диэлектрической проницаемости вещества, разделяющего эти пластины.

Емкость выражается следующим уравнением:

Где C — емкость, q — электрический заряд, а V — дифференциальный потенциал между проводящими пластинами.

Теперь, когда мы лучше понимаем емкость, давайте взглянем на импеданс в цепи переменного тока.

Общие сведения об импедансе в цепи переменного тока

Полное сопротивление — это активное сопротивление электрической цепи или компонента переменному току, возникающее в результате комбинированного воздействия реактивного сопротивления и омического сопротивления. Другими словами, импеданс — это просто расширение принципов сопротивления в цепях переменного тока. Мы также определяем его как любое препятствие или меру противодействия электрического тока потоку энергии при подаче напряжения.

Более техническое определение – это противопоставление электрической цепи потоку переменного тока одной частоты. Таким образом, это комбинация реактивного сопротивления и сопротивления, которую мы измеряем в омах, представляя ее символом Z.

Однако реактивное сопротивление (X) выражает сопротивление компонента переменному току, тогда как полное сопротивление (Z) представляет собой сумму сопротивления реактивное сопротивление. Мы показываем его как комплексное число, используя следующую формулу:

Z = R + jX

Здесь комплексное сопротивление равно Z.

Обозначаем сопротивление как R (реальный аспект).

Мы представляем реактивное сопротивление как X (воображаемый аспект).

Имейте в виду, что реактивное сопротивление может быть как отрицательным, так и положительным, тогда как сопротивление всегда положительное. Кроме того, реактивное сопротивление накапливает энергию в магнитном или электрическом поле, а сопротивление внутри цепи рассеивает энергию в виде тепла.

Теперь, когда мы изучили импеданс в цепи переменного тока, давайте посмотрим, как рассчитать импеданс конденсатора.

Как рассчитать импеданс конденсатора

Конденсатор создает в цепи определенный уровень емкости. Функционально конденсатор обеспечивает временное хранение электрической энергии в виде электрического потенциала, при котором ток конденсатора опережает его напряжение на 90°. Формула импеданса конденсатора выглядит следующим образом:

Z C = -jX C

XC – емкостное реактивное сопротивление, характеризующее, какое сопротивление будет иметь конденсатор на определенной частоте.

Приведенное выше уравнение может быть дополнительно расширено следующим образом:

Z C = 1/j ω C

Здесь полное сопротивление конденсатора равно ZC.

Угловая частота равна ω, которую мы рассчитываем как:

ω = 2πf

Мы представляем частоту сигнала как f и емкость конденсатора как C.

С точки зрения параметров конденсатора, сопротивление идеального конденсатора равно нулю. Однако реактивное сопротивление и импеданс реального конденсатора отрицательны для всех значений емкости и частоты. Эффективное сопротивление (абсолютное значение) конденсатора зависит и уменьшается с частотой.

Из приведенных выше уравнений видно, что реактивное сопротивление конденсатора обратно пропорционально емкости и частоте. Следовательно, более высокая емкость и более высокая частота приводят к более низкому реактивному сопротивлению. Это позволяет использовать конденсаторы с другими компонентами в конструкциях фильтров нижних или верхних частот и блокирует избирательные частоты.

Хотя емкость в цепи переменного тока легко различима, параметр импеданса в цепи переменного тока требует тщательного анализа цепи. Имея это в виду, получение более глубокого понимания взаимосвязи между емкостью и импедансом имеет первостепенное значение.

Правильное использование конденсаторов и уверенность в том, что их влияние на импеданс в цепи переменного тока предсказуемо и приемлемо, требует хорошего программного обеспечения для проектирования и анализа печатных плат. Если вы хотите узнать больше о том, как у Cadence есть решение для вас, поговорите с нашей командой экспертов или подпишитесь на наш канал YouTube.

Свяжитесь с нами

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Подпишитесь на LinkedIn Посетите вебсайт Больше контента от Cadence PCB Solutions

УЗНАТЬ БОЛЬШЕ

Часть 3: Конденсатор — скрытая звезда электронных схем — роль № 2: Блокировка постоянного тока и прохождение переменного тока| Понимание типов и функций конденсаторов в пяти статьях

Часть 3: Конденсатор — скрытая звезда электронных схем — роль #2: Блокировка постоянного тока и прохождение переменного тока

  • фейсбук
  • твиттер
  • Линкедин

Эта статья представляет собой переиздание переработанного/переписанного контента из прошлого. Он может содержать устаревшую техническую информацию и ссылки на продукты, которые в настоящее время не доступны в TDK.

В дополнение к накоплению электрических зарядов, конденсаторы обладают важной способностью блокировать постоянный ток при пропускании переменного тока и используются различными способами в электронных схемах. Большинство шумов, вызывающих сбои в работе электронных устройств, представляют собой высокочастотные компоненты переменного тока, присутствующие в токах. Конденсаторы необходимы для подавления шума.
Конденсаторы имеют конструкцию, в которой полюса разделены изолятором (воздухом или диэлектриком). Мы можем понять, что они блокируют постоянный ток, но почему они могут пропускать переменный ток?

Может ли ток течь через диэлектрик (изолятор) конденсатора?

Нетрудно понять, как конденсатор блокирует постоянный ток. Например, если вы подключите конденсатор к сухой батарее — источнику питания постоянного тока — ток будет течь на мгновение, но быстро прекратится. Как только источник питания полностью зарядит конденсатор, постоянный ток через него больше не течет. Поскольку пластины электродов конденсатора разделены изолятором (воздухом или диэлектриком), постоянный ток не может протекать, пока изоляция не разрушится. Другими словами, конденсатор блокирует постоянный ток. Почему же тогда конденсатор пропускает переменный ток?

Изменения в электрических полях эквивалентны протеканию тока

В переменном токе полярность регулярно меняется с положительной на отрицательную. Конденсаторы многократно заряжаются и разряжаются по мере того, как меняется полярность тока, позволяя протекать переменному току.

Давайте объясним это, используя основные законы электромагнетизма. Когда электрический ток течет по проводнику, линии магнитного потока генерируются по часовой стрелке в направлении тока (магнитный эффект электрического тока, открытый Гансом Эрстедом). Когда направление тока меняется на противоположное, меняется и направление линий потока.

Так что же происходит, когда вы подключаете конденсатор к источнику переменного тока? При изменении направления тока изменяется и направление электрического поля, создаваемого между электродными пластинами конденсатора. Осциллирующие электрические поля генерируют осциллирующие магнитные поля, которые считаются эквивалентными протеканию электрического тока (теории электромагнетизма Джеймса Максвелла). Поэтому допустимо считать, что переменный ток «течет» внутри диэлектрика конденсатора, хотя диэлектрик является изолятором. Так мы объясняем способность конденсаторов «проводить» переменный ток. Однако это не означает, что ток течет через диэлектрик конденсатора так же, как он течет по проводнику. Точнее, ток, протекающий через проводник, называется кондуктивным током, а ток, протекающий через изолятор, называется током смещения.

Конденсаторы легче пропускают переменный ток на более высоких частотах

Напряжение ( В ) = Сопротивление ( R ) x Ток ( I ). Это знаменитый закон Ома, который мы изучаем на уроках естествознания в школе. Закон также распространяется на переменный ток, протекающий через резистор. Конденсатор также ведет себя как резистор по отношению к переменному току — свойство, известное как емкостное реактивное сопротивление. Однако конденсатор не проводит все формы переменного тока одинаково: его емкостное сопротивление обратно пропорционально частоте переменного тока.

Емкостное реактивное сопротивление ( Xc ) выражается как 1 / (2πfC) , где f — частота переменного тока, а C — емкость конденсатора. Другими словами, чем выше частота и чем больше емкость, тем меньше сопротивление (емкостное сопротивление) переменному току и, следовательно, тем легче проходит ток.

Причина, по которой конденсаторы используются для шумоподавления

Конденсаторы, используемые для шумоподавления, лучше пропускают высокочастотные переменные токи. Поскольку шум в значительной степени представляет собой набор переменных токов на высоких частотах, компонент, который плавно передает высокие частоты, может быть использован для уменьшения шума.

Например, при включении люминесцентного светильника по радио может быть слышен шум. Для освещения люминесцентной лампы требуется высокое напряжение (называемое ударным напряжением); он создается катушкой балласта и повторяющимся размыканием и замыканием контактов стартера выключателя накаливания. Когда свет включается и стартер начинает открываться и закрываться, ток течет и быстро останавливается. К таким резким изменениям относятся токи высокой частоты, которые мешают радиоприему и вызывают слышимые шумы. Чтобы облегчить проблему, параллельно пускателю подключен конденсатор для подавления помех. Неотъемлемое свойство конденсатора направляет шумы через конденсатор, уменьшая их внешнюю утечку.

Однако существует множество различных типов шума, и конденсаторы не могут устранить их все. Особенно в цепях, которые работают с небольшими токами и низкими напряжениями, шум может вызвать неисправности или даже повреждения. Вот почему принимается сложный набор мер противодействия шуму, таких как использование шумовых фильтров в сочетании с катушками индуктивности и электромагнитным экранированием.

Разнообразные LC-фильтры состоят из катушек индуктивности и конденсаторов

В электронных схемах свойство конденсаторов более плавно пропускать высокочастотные переменные токи используется множеством способов. Наиболее простой формой является схема, которая сочетает в себе конденсатор и резистор.

В цепи, когда конденсатор подключен параллельно, а резистор последовательно, высокочастотные компоненты переменного тока текут в землю (землю). Такое поведение по сути фильтр нижних частот (ФНЧ) , отсекающий высокочастотные компоненты и пропускающий низкочастотные компоненты (см. левую часть рисунка ниже).

И наоборот, когда конденсатор соединен последовательно, а резистор параллельно, компоненты постоянного тока блокируются, в то время как высокочастотные компоненты переменного тока проходят через цепь, эффективно создавая фильтр верхних частот (ФВЧ) (HPF) , который обрезает низкие частоты. частотные компоненты и пропускает более высокие частоты (см. правую часть рисунка ниже).

В реальных ФНЧ и ФВЧ катушки индуктивности (катушки) используются вместо резисторов для улучшения частотных характеристик и получения более крутых кривых отклика. Все вместе они называются LC-фильтрами, включая полосовые фильтры (BPF) , которые пропускают только определенные частотные диапазоны, потому что все они сочетают в себе катушки индуктивности (обозначаются как L ) и конденсаторы ( C ).

 

Конденсаторы связи, байпаса и развязки

В схемах, включающих ИС, широко используются конденсаторы, позиционируемые как разделительные, обходные и развязывающие конденсаторы.

На рисунке ниже показан пример обычной аналоговой схемы, в которой ток усиливается транзистором — ток слабого сигнала (AC) накладывается на постоянное напряжение и подается на следующий каскад. Однако, поскольку отдельные блоки схемы имеют разные условия работы, необходимо пропускать только сигнальный ток, блокируя постоянный ток, поэтому используется конденсатор. Это использование называется конденсатором связи.

Шунтирующий конденсатор используется для направления (шунтирования) помех и других компонентов переменного тока на землю. На схеме ниже он расположен между питанием и землей. Он обходит помехи, наложенные на источник питания постоянного тока, и подает стабильное напряжение на транзистор. Если напряжение, подаваемое на микросхему, колеблется, поведение схемы может стать нестабильным. Чтобы предотвратить это, между выводом питания микросхемы и землей помещается конденсатор (см. рисунок ниже). Это также пример обходного конденсатора. Его также называют развязывающим конденсатором, поскольку он отделяет переменный ток от постоянного, позволяя проходить только постоянному току. Иногда для улучшения характеристик в широком диапазоне частот конденсатор большой емкости подключают параллельно многослойному керамическому чип-конденсатору с устойчивыми высокочастотными характеристиками.

Новичкам может показаться, что терминология в этой статье трудна для восприятия, но не стоит заморачиваться. Все они являются приложениями одного и того же основного свойства конденсатора: блокировать постоянный ток, позволяя пропускать переменный ток, и легче на более высоких частотах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *