Lite-CalcIT
Программное обеспечение, предназначенное для расчёта импульсных трансформаторов двухтактных push-pull, мостовых и полумостовых преобразователей напряжения источников питания.
Из основных достоинств Lite-CalcIT стоит отметить удобный и понятный графический интерфейс, контроль и учет различных особенностей рассматриваемых электромагнитных устройств, а также формирование довольно достоверных результатов.
Рассматриваемое ПО дает возможность рассчитать диаметры обмоточных проводов (учитывая скин-эффект – глубину проникновения тока в массив проводника на определенной частоте), мощность потерь в магнитопроводе, количество витков в обмотках трансформатора и его габаритную мощность, ток намагничивания первичной обмотки и её индуктивность, перегрев магнитопровода, а также многое другое. Важной особенностью Lite-CalcIT является возможность выбора схемы выпрямления и наличие различных вариантов ШИМ-контроллеров: TL494, SG3525, IR2153 и подобных им. Также предлагается два способа охлаждения трансформатора: принудительное и естественное. Форма сердечника может быть E, ER, EI, ETD или R типа, кроме этого база магнитопроводов является пополняемой. Данные на изделия других образцов необходимо вносить самостоятельно согласно документации производителя. При добавлении нового сердечника в поле комбинированного списка программа автоматически дописывает к его названию префикс формы и название материала. Lite-CalcIT предлагает рассчитать до четырех вторичных обмоток одного трансформатора, причем для каждой вторичной обмотки в соответствии с рисунками указывается своя схема выпрямления. При выводе результатов работы данный софт приводит не только диаметры проводов, но и во сколько жил должна производиться намотка этими проводами. При наличии двухполярного питания со средней точкой число витков для каждого плеча будет указано через значок «+».
На отдельных результатах расчета и полях ввода размещены всплывающие подсказки. Кроме этого, если ряд параметров выйдет за разумные пределы (например, нагрев сердечника), то данное ПО предупредит об этом пользователя и самостоятельно ограничит ряд установленных значений. Все данные предыдущего расчета сохраняются при перезапуске программы.
Данное ПО является упрощенной версией программы ExcellentIT и подходит для тех, кто не желает возиться с огромным количеством различных специфичных параметров (которые по умолчанию берутся усредненными). Однако следствием этого является более высокая погрешность расчетов. Основные отличия от полной версии – отсутствие возможности рассчитать индуктивность выходного дросселя, а также сохранять, загружать и распечатывать результаты работ. При работе с Lite-CalcIT нельзя забывать, что диаметр провода по лаку будет больше вводимого диаметра по меди.
Автором данного ПО является отечественный программист Владимир Денисенко (Starichok), проживающий в городе Пскове. Помимо ExcellentIT и Lite-CalcIT он написал еще несколько других программ для определения моточных компонентов различных устройств: Booster (заточенный на расчет понижающих и повышающих импульсных стабилизаторов), Forward (трансформаторы прямоходовых однотактных преобразователей) и Flyback (дроссель-трансформаторы обратноходовых преобразователей). Автор следит за пожеланиями пользователей и постоянно дорабатывает вышеприведенное ПО. Его программы получили известность не только в странах бывшего СССР, но и за рубежом.
Программа Lite-CalcIT распространяется абсолютно бесплатно. Инсталляция при установке не требуется.
Язык интерфейса рассматриваемого калькулятора импульсных трансформаторов – русский.
Размер программы составляет менее 1 MB. Платформа для работы – операционные системы Microsoft Windows XP, Vista и 7 (работоспособность проверена в 32- и 64-разрядных версиях). Lite-CalcIT функционирует и в среде Linux при запуске под Wine.
Распространение программы: бесплатная
Скачать Lite-CalcIT
Обсуждение программы на форуме
Онлайн расчет трансформатора за 6 простых шагов
Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.
Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).
Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.
Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.
Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².
Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.
Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.
В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.
Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.
Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:
Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.
Число витков первичной обмотки трансформатора определяется по формуле:
Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.
Число витков вторичной обмотки определяется формулой:
Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.
Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:
Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.
Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.
Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.
Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.
Расчёт трансформатора на калькуляторе в домашних условиях
Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50 72х Расчет трансформатора с магнитопроводом типа ШЛ32х50 72х18 показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна. Программный он-лайн расчет, позволит налету экспериментировать с параметрами и сократить время на разработку.
Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета — исходные данные для расчёта, поле жёлтого цвета — данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета — рассчитанное значение.
Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;. Расчёт сечения провода для каждой из обмоток для I1 и I2 ;. В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами. Формула для расчёта максимальной мощности которую может отдать магнитопровод;.
Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц. О нас Обратная связь Карта сайта. YouTube Instagram Instagram. Расчет трансформатора с тороидальным магнитопроводом. Юра Гость. Нужно сделать расчёт для каждой из обмоток. Потом сложить рассчитанные мощности. Далее сравниваем сложенную мощность с габаритной мощностью сердечника. Если габаритная мощность больше, то всё нормально. Если нет, то трансформатор с нагрузкой не справится.
Юрий Гость. Большое спасибо за ваш ответ но не совсем понимаю. Мои данные. В сумме все обмотки 76 Вольт. Если не трудно По моим данным покажите правильность расчёта.
Олег Николаевич Гость. Мы делаем на службе электронный стабилизатор на семисторах на 4кВт и столкнулись с тем что нам нужен тороидальный трансформатор на соответствующюю мощность Как бы нам получить правильные расчётные данные у вас по намотке такого трансформатора?
У нас есть старый тороидальный трансформатор. По паспорту к изделию на котором он работал его мощность составляет 4,5кВт Однообмоточные трансформаторы такого типа это ЛАТРы автотрансформаторы , мы ещё пока на практике такие не делали.
Тема интересная может как нибудь попробуем. Но к сожалению пока ни чем помочь не можем. Sintetik Гость. Pc max — это максимальная мощность магнитопровода, которую сердечник может передать от первичной обмотки к вторичным? Jurij Гость. У меня что-то не получается. Вторички 64 В 6А, 13 В 3А. Тор D d Мне надо сложить P2 обоих вторичек и Pгаб обоих вторичек, и сравнить? У меня получилось общая PВт, Pгаб общая,1Вт. Транс не подойдёт? Как рассчитать какой тор мне нужен? Я пробовал в Вашем калькуляторе в полях D,d,h менять размеры, но цифры в полях P2 и Pг не меняются.
Помогите пожалуйста, что я не так делал? Заранее благодарен. Владимир Гость. Добрый день! К сожалению данная программа не имеет оболочки для обычного запуска на компьютере.
Если найдёте какие недочёты пишите, исправим. В принципе-то норм, но как же частота? Такой важный параметр, а его нет От частоты многое зависит, поэтому считаю калькулятор не удобным. Мы создавали данный калькулятор для намотки сетевого трансформатора вольт 50 герц по этому частота фиксированная.
На будущее учтём, может и доработаем или создадим новую версию. Вячеслав Гость. Мне нужно знать какой провод нужен для намотки первичной намотки диаметр и сколько грамм не витков для намотки первичной обмотки на В? С уважением Вячеслав Вячеслав, где вы нашли такое железо. Может быть размеры у вас все же в милл иметрах? У меня нашлось еще одно тороидальное железо,которое нужно намотать.
Мне нужно знать какого диаметра провод нужен для намотки первичной обмотки и сколько грамм будет весить общее количество витков первичной обмотки? Весовые характеристики в данной версии калькулятора не расчитываются.
Анатоль Гость. А этот метод подойдёт для расчёта сварочного трансформатора? Михаил Гость. А в чем считать? Еденицы не подписаны. Например, диаметр трансформатора, диаметр проволоки? В чем будет выражена расчетная площадь магнитопровода? Иван Гость. Запомнить меня. Подписаться на рассылку о публикациях новых статей.
Рекомендации по сборке и намотке
При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.
Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.
При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.
По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.
Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД — коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.
Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.
В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора. Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.
Просмотр и ввод комментариев к статье
Как правильно провести расчет трансформаторов разных видов, формулы и примеры
Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы. Расчет трансформатора, онлайн калькулятор позволит вам рассчитать параметры трансформатора, такие как мощность, ток, количество витков и диаметр провода в обоих обмотках, по его размерам, входному и выходному напряжению. Входное напряжение: В Габаритный размер a: см Габаритный размер b: см Габаритный размер c: см Габаритный размер h: см Выходное напряжение: В Трансформатор — это статическое электромагнитное устройство, состоящее из двух или более индуктивно-связанных обмоток, намотанных на общий ферромагнитный сердечник, предназначенное для преобразования напряжения переменного тока посредством электромагнитной индукции.
Принцип работы устройства
Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:
- сердечника;
- обмотки;
- каркаса для расположения обмоток;
- изолятора;
- дополнительных элементов, обеспечивающих жёсткость устройства.
В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.
В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.
Читать также: Как собрать простой электрогенератор своими руками
Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.
Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.
От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.
Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.
Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.
Расчет трансформатора, онлайн калькулятор
Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи. Любая энергосистема, установка, особенно в сети трехфазного 3ф тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор.
Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом.
Расчет трансформатора на стержневом сердечнике в онлайн
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом. А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами. При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус. Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.
Использование онлайн калькулятора для расчета трансформатора
Ведь не всегда найдётся, например, готовый сетевой трансформатор. Более актуальным этот вопрос становится, когда нужен анодно-накальный или выходной трансформатор для лампового усилителя. Здесь остаётся лишь запастись проволокой и подобрать хорошие сердечники. Достать нужный магнитопровод порой оказывается непросто и приходится выбирать из того, что есть. Для быстрого расчёта габаритной мощности был написан приведённый здесь онлайн калькулятор. По размерам сердечника можно быстро провести все необходимые расчёты, которые выполняются по приведённой ниже формуле, для двух типов: ПЛ и ШЛ.
Онлайн расчёт мощности ленточного сердечника Ведь не всегда найдётся , например, готовый сетевой трансформатор. Более.
Как сделать расчет трансформатора. Расчёт и изготовление силового трансформатора
ВИДЕО ПО ТЕМЕ: Как определить мощность трансформатора, несколько способов
Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет. Прочитал статью ; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc см.
Такая методика расчета трансформаторов конечно очень приблизительная но для радиолюбительской практики вполне подходит.
Как выбрать ферритовый кольцевой сердечник?
Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в «Дополнительных материалах».
Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.
Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.
Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.
В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.
Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».
Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.
Вернуться наверх к меню.
Онлайн калькулятор расчета трансформатора
Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого? Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания.
Выбор типа магнитопровода.
Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/
Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.
На картинке изображён ферритовый магнитопровод М2000НМ.
Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.
D – внешний диаметр кольца.
d – внутренний диаметр кольца.
H – высота кольца.
В справочниках по ферритовым магнитопроводам эти размеры обычно указываются в таком формате: КDxdxH.
Пример: К28х16х9
Вернуться наверх к меню.
Содержание: В электронике и электротехнике широко используются различные типы трансформаторов. Это дает возможность применения электронных систем во многих областях производственной и хозяйственной деятельности. Поэтому наряду с основными расчетами, большое значение приобретает расчет импульсного трансформатора. Данные устройства являются важными элементами, которые используются во всех схемах современных блоков питания. Назначение и действие импульсного трансформатораИмпульсные трансформаторы применяются в системах связи и различных автоматических устройствах. Их основной функцией является внесение изменений в амплитуду и полярность импульсов. Основным условием нормальной работы этих устройств считается минимальное искажение передаваемых ими сигналов. Принцип действия импульсного трансформатора заключается в следующем: при поступлении на его вход прямоугольных импульсов напряжения с определенным значением, в первичной обмотке происходит постепенное возникновение электрического тока и дальнейшее увеличение его силы. Подобное состояние, в свою очередь, приводит к изменению магнитного поля во вторичной обмотке и появлению электродвижущей силы. В этом случае сигнал практически не искажается, а небольшие потери тока ни на что не влияют. При выходе трансформатора на проектную мощность, обязательно появляется отрицательная часть импульса. Его воздействие вполне возможно сделать минимальным, путем установки во вторичную обмотку простого диода. В результате, в этом месте импульс также максимально приблизится к прямоугольной конфигурации. Главным отличием импульсного трансформатора от других аналогичных технических систем считается его исключительно ненасыщенный режим работы. Для изготовления магнитопровода применяется специальный сплав, обеспечивающий высокую пропускную способность магнитного поля. Расчет исходных данных и выбор элементов устройстваВ первую очередь необходимо правильно выбрать наиболее подходящий магнитопровод. К универсальным конструкциям относятся броневые сердечники с Ш-образной и чашеобразной конфигурацией. Установка необходимого зазора между частями сердечника делает возможным применение их в любых импульсных блоках питания. Однако, если собирается полумостовой двухтактный преобразователь, можно обойтись обычным кольцевым магнитопроводом. При расчетах необходимо учитывать внешний диаметр кольца (D), внутренний диаметр кольца (d) и высота кольца (Н). Существуют специальные справочники по магнитопроводам, где размеры кольца представлены в формате КDxdxH. Перед тем как производить расчет импульсного трансформатора необходимо получить определенный набор исходных данных. Сначала нужно определиться с питающим напряжением. Здесь имеются свои сложности, в связи с возможными . Поэтому для расчетов берется максимальное значение в 220 В + 10%, к которому применяются специальные коэффициенты:
Значение индукции и частоты определяется с помощью таблиц: 1. Марганец-цинковые ферриты.
2. Никель-цинковые ферриты.
Намотка импульсных трансформаторовПри намотке импульсных трансформаторов необходимо учитывать особенности этих устройств. В первую очередь следует обращать внимание на равномерное распределение обмотки по всему периметру магнитопровода. В противном случае произойдет значительное снижение мощности устройства, а в некоторых случаях – его выход из строя. В случае намотки провода своими руками, используется обмотка «виток к витку», выполненная в один слой. Исходя из такой технической характеристики, выполняется и расчет импульсного трансформатора в части определения необходимого количества витков. Диаметр провода, используемого для обмотки, нужно подобрать таким образом, чтобы весь провод точно уложился в один слой, а количество витков в этом случае будет совпадать с расчетными данными. Разница между и результатом, полученным с помощью формулы, может составлять от 10 до 20%, что позволяет делать обмотку, не обращая внимания на точное количество витков. Для выполнения расчетов существует формула: W = n (D – 10 S – 4 d ) / d , в которой W -является количеством витков в первичной обмотке, n – постоянная величина, равная 3,1416, D – внутренний диаметр кольца магнитопровода, S – толщина изоляционной прокладки, d – диаметр изолированного провода. Максимальный допуск ошибок при вычислениях составляет от -5 до +10% в зависимости от плотности укладки проводов. |
Онлайн расчет трансформатора за 6 простых шагов
Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.
Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.
Содержание статьи
Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.
Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.
Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.
От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
Подготовка исходных данных за 6 простых шагов
Шаг №1. Указание формы сердечника и его поперечного сечения
Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.
Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:
- Ширину пластины под катушкой с обмоткой.
- Толщину набранного пакета.
Вставьте эти данные в соответствующие ячейки таблицы.
Шаг №2. Выбор напряжений
Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.
Заполните указанные ячейки.
Шаг №3. Частота сигнала переменного тока
По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.
Их создают из других материалов сердечника и рассчитывают иными способами.
Шаг №4. Коэффициент полезного действия
У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
Но, вы можете откорректировать его значение вручную.
Шаг №5. Магнитная индуктивность
Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.
По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.
Шаг №6. Плотность тока
Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.
Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.
Выполнение онлайн расчета трансформатора
После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
ŋ = S1 / S2
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
n = W1 / W2
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Этап №3. Как вычислить диаметры медного провода для каждой обмотки
При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.
Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.
Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.
Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.
Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.
При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.
Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.
Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.
Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).
ω’=45/Qc (виток/вольт)
В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.
Этап №5. Учет свободного места внутри окна магнитопровода
На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.
Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.
Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.
Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.
Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.
4 практических совета по наладке и сборке трансформатора: личный опыт
Сборка магнитопровода
Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.
Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.
Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.
Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.
Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.
Расчет провода по плотности тока
Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.
Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.
Способы намотки витков
Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.
Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.
Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.
Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.
Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).
Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.
Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.
Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.
Замер тока на холостом ходу трансформатора
Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.
Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.
Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.
Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.
Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.
Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.
Расчет и намотка импульсного трансформатора
Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.
Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.
Расчет импульсного трансформатора.
Для начала загружаем себе программу расчета импульсного трансформатора Lite-CalcIT и запускаем её.
Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт” схема преобразования –полумостовая.
Напряжение питания указываем постоянное. Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.
Тип контроллера указываем ir2153, частоту генерации 50кГц.
Стабилизации выходов – нет.Принудительное охлаждение – нет.
Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.
Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.
Схема выпрямления – двухполярная со средней точкой.
Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.
Далее выбираем параметры сердечника, в моем случае это “R” – тороидальный сердечник, с размерами 40-24-20 мм.
Нажимаем кнопочку “Рассчитать!”. В результате получаем количество витков и количество жил первичной и вторичной обмоток.
Намотка импульсного трансформатора.
Итак, вот мое колечко с размерами 40-24-20 мм.
Теперь его нужно изолировать каким-либо диэлектриком. Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов. Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.
Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.
Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.
Далее мотаем первичку, в моем случае 33 витка проводом диаметра 0,85мм двумя жилами (это я перестраховался). Мотайте по часовой стрелке, как показано на картинке ниже.
Выводы первичной обмотки скручиваем и залуживаем.
Далее надеваем сверху несколько сантиметров термоусадки и подогреваем.
Следующим шагом вновь изолируем диэлектриком еще пару слоев.
Теперь начинаются самые “непонятки” и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?
В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.
Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.
Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.
Соединили начало одного провода с концом другого. Залудили. Надели термоусадку. Далее вновь обмотаем лавсановой пленкой.
Напомню, что мне нужно было две вторичных обмотки, если вам нужен трансформатор с одной вторичной обмоткой, то на этом этапе финиш. Вторую вторичную обмотку мотаем аналогично.
После чего сверху опять обматываем лавсановой пленкой, чтобы крайняя обмотка плотно прилегала и не разматывалась.
В результате получили вот такой аккуратный бублик.
Таким образом, можно рассчитать и намотать любой трансформатор, с двумя или одной вторичной обмоткой, с отводом или без отвода от середины.
Программа расчета импульсного трансформатора Lite-CalcIT СКАЧАТЬ
Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.
Программы расчета импульсных трансформаторов.
ExcellentIT – узкоспециализированная программа для расчета импульсного трансформатора двухтактного преобразователя.
Главное окно состоит из трех основных блоков. В первом необходимо ввести начальные данные: амплитуда индукции, частота преобразования, рабочее время, сопротивление канала и др. Здесь же необходимо ввести выходные данные – напряжение, ток, диаметр и стандарт провода и т. д.
Во втором блоке выбирается тип преобразователя – Пуш-пул, полумостовая или мостовая. Здесь же выводятся все результаты расчетов – габаритная мощность трансформатора, число витков, минимальное напряжение и т. д.
В третьем блоке можно выбрать тип сердечника, материал форму и т.д. В базе данных ExcellentIT содержится большое количество готовых сердечников, но при необходимости вы можете вручную ввести данные (размеры, эффективная проницаемость, площадь сечения и др.). Заданные вами параметры сохраняются в программе, и при повторном расчете вам не придется вводить их снова. После указания всех данных кликните на «Рассчитать», и ExcellentIT сразу же выдаст вам результаты.
Особенности программы
Быстрый расчет различных физических показателей.Всплывающие подсказки по каждому параметру.
Справочная информация в виде схем преобразования и выпрямления.
Выбор размера окна – большой или маленький.
Интерфейс на русском языке.
Поддержка Windows XP и выше.
Программу ExcellentIT можно скачать совершенно бесплатно.
Всем привет! Много лазил по сайту, а особенно по своей ветке и нашёл много чего интересного. В общем в этой статье хочу собрать всевозможные радиолюбительские калькуляторы, чтобы народ сильно не искал, когда возникнет необходимость в расчётах и проектировании схем.
1. Калькулятор расчета индуктивности – . За представленную программу говорим спасибо краб
2. Универсальный калькулятор радиолюбителя – . Опять спасибо краб
3. Программа расчёта катушек Тесла – . Снова спасибо краб
4. Калькулятор расчета GDT в SSTC – . Предоставлено [)еНиС
5. Программа для расчета контура лампового УМ – . Благодарности за информацию краб
6. Программа опознавания транзисторов по цвету – . Благодарности краб
7. Калькулятор для расчета источников питания с гасящим конденсатором – . Спасибо посетителям форума
8. Программы расчета импульсного трансформатора – . Спасибо ГУБЕРНАТОР . Примечание – автором ExcellentIT v.3.5.0.0 и Lite-CalcIT v.1.7.0.0 является Владимир Денисенко из г. Пскова, автором Transformer v.3.0.0.3 и Transformer v.4.0.0.0 – Евгений Москатов из г. Таганрога.
9. Программа для расчета однофазных, трехфазных и автотрансформаторов – . Спасибо reanimaster
10. Расчет индуктивности, частоты, сопротивления, силового трансформатора , цветовая маркировка – . Спасибо bars59
11. Программы для разных радиолюбительских расчетов и не только – и . Спасибо reanimaster
12. Помощник Радиолюбителя – радиолюбительский калькулятор – . Тема на . Спасибо Antracen , т.е. мне:)
13. Программа по расчёту DC-DC преобразователя – . Благодарности краб
В сети можно найти множество программ для расчета импульсных трансформаторов, и каждая из них имеет свои достоинства и недостатки, но, как говорится, на вкус и цвет……. Поэтому в этой статье мы остановимся на нескольких бесплатных программах, предназначенных для этих целей, которыми пользуются многие радиолюбители.
“Расчет импульсных трансформаторов. Версия 2.6”.
Одной из них является программа Владимира Денисенко “Расчет импульсных трансформаторов. Версия 2.6”. Как уже говорилось выше, она бесплатна и имеет статус свободного распространения, не требует установки.
Просто извлеките файл запуска программы из архива (Расчет ИТ(2.6.0).exe) , запустите его, и пользуйтесь на здоровье.
Вот так выглядит интерфейс программы “Расчет импульсных трансформаторов. Версия 2.6”:
Во вкладке “Показать схемы выпрямления” вы можете посмотреть возможные варианты выпрямителей, стоящих на выходе импульсного источника питания. Вкладка выглядит вот так:
Если возникают какие то вопросы, загляните во вкладку “Помощь”.
Программа “Transformer”.
Эта программа также позволяет рассчитывать трансформаторы для импульсных источников питания. Как утверждает автор, она не содержит шпионских модулей, отсутствует реклама и всплывающие окна, бесплатна.
При запуске файла “Transformer_1.0.0.1.exe” из архива, запускается мастер установки программы:
Жмем “Next”, открывается окно, где можно прописать путь, куда будет установлена программа. По умолчанию она установится в: c:\Program Files (x86)\Transformer\*.*
В этой же папке вы сможете найти документацию на программу (файл в формате *.chm), прочитать раздел “Работа с программой”, и архив с исходниками. Окно документации выглядит так:
Интерфейс программы TRANSFORMER выглядит следующим образом:
Программа “Lite – CalcIT v. 1.5”.
Следующая программа для расчета импульсных трансформаторов двухтактных преобразователей, на которую мы хотели обратить ваше внимание, называется “Lite – CalcIT”. Установки программа не требует, поэтому распакуйте папку “Lite-CalcIT(1500)” куда хотите, запускайте файл “Lite-CalcIT(1500).exe”, и пользуйтесь.
Внешний вид окна программы следующий:
Выбирайте тип сердечника, вводите исходные данные, и жмите “Рассчитать!”
К сожалению программа не содержит вкладки “Помощь” или справочной информации. Наверно автор предполагал, что программой будут пользоваться более-менее опытные радиолюбители.
Программа “ExcellentIT v.3.2”.
Бесплатная, установки не требует. Интерфейс чем то напоминает Lite-CalcIT, только здесь уже можно сохранить полученный расчет в файл формата *.sav , а в последствии открыть уже ранее сохраненные расчеты. Также полученный расчет можно сохранить в обычный текстовый файл с расширением *.txt
Программа позволяет добавлять в базу и удалять не нужные типоразмеры магнитопроводов.
Маленькая программа для расчёта трансформатора по данным напряжения первичной и вторичной обмоток и по величине тока вторичной обмотки. Программа бесплатная. Работает в DOS (в том числе в DOS-live CD) и в 32-х битных системах Windows 97/XP/7 – в сеансе командной строки. Для выполнения вычислений распакуйте архив и кликните на файле программы мышкой. Далее следуйте интерактивной инструкции на русском языке. Программа не инсталлируется и работает с любого носителя.
Скачать бесплатно программу расчёта трансформатора(для dos/windows(32-bit)) архив.zip 23,5кб
Скачать бесплатно программу расчёта трансформатора (для windows 7 – 64bit) архив zip 134 kb
Программа для упрощенного расчёта силового трансформатора по данным напряжения первичной и вторичной обмоток и по величине тока вторичной обмотки для Debian 6.0 GNU/Linux – i386 (686) – в других дистрах не проверял:-)
Скачать бесплатно программу расчёта трансформатора (для Linux) архив.zip 0,5mb
для запуска распакуйте файл transf в каталог /bin или в /usr/local/bin , присвойте ему права 777 командой
#chmod 777 /bin/transf или
#chmod 777 /usr/local/bin/transf
$transf в первом варианте или
$/usr/local/bin/transf во втором варианте
Более никакой справки не потребуется – вводите желаемые величины напряжений и получаете параметры трансформатора. Всё на русском языке.
Скачать программу расчёта трансформатора по данным магнитопровода – для DOS/windows 32bit архив zip 14 kb
Скачать программу расчёта трансформатора по данным магнитопровода – для windows 7/64bit архив zip 134 kb
Скачать программу расчёта трансформатора по данным магнитопровода – для Debian 6.0 GNU/Linux – i386(686) архив zip 490 kb
Справка по программе для Linux:
для запуска распакуйте файл deftransf в каталог /bin или в /usr/local/bin , присвойте ему права 777 командой
#chmod 777 /bin/deftransf или
#chmod 777 /usr/local/bin/deftransf
после чего можете запустить программу командой:
$deftransf в первом варианте или
$/usr/local/bin/deftransf во втором варианте
Более никакой справки не потребуется – вводите желаемые величины напряжений и получаете параметры трансформатора. Всё на русском языке.
сопротивления цепи параллельно соединённых резисторов:
Программа для расчёта сопротивления цепи, набранной параллельно соединёнными резисторами. Особенностью программы является возможность интерактивно добавляя сопротивления в параллельное соединение моментально получать значение общего сопротивления цепи. Ограничений или предустановок по количеству включаемых параллельно элементов нет. Работает в DOS и Windows 97/XP/7 (32-х битных) – в сеансе командной строки. Программа бесплатна. Для вычисления распакуйте архив, кликните на файле программы мышкой и следуйте инструкции на русском языке. Программа не инсталлируется и работает с любого носителя.
Скачать бесплатно программу для DOS/Windows 32-bit архив.zip 22,3 кб
Для Windows 7 – 64 bit(132 kb)
Для Linux – zip 488 kb Примечание о запуске программы для Linux:
для запуска распакуйте файл paralsop в каталог /bin или в /usr/local/bin , присвойте ему права 777 командой#chmod 777 /bin/paralsop или
#chmod 777 /usr/local/bin/paralsop
после чего можете запустить программу командой:
$paralsop в первом варианте или
$/usr/local/bin/paralsop во втором варианте
для вычисления длины стороны квадрата равного площадью данному кругу и наоборот:
Программа для вычисления периметра и длины стороны квадрата по данным круга. Иногда приходится соединять геометрически разные изделия (например: воздуховоды круглого и квадратного сечесения), при этом требуется сохранить площадь неизменяемой. Вот эта программа и вычисляет через площадь фигуры значения сторон квадрата или длину окружности – в зависимости от того, что Вам требуется узнать. Как и предыдущие программы, она работает в DOS и Windows 97/XP/7 – 32 бит. Халява. Для вычислений распакуйте архив, ну и далее мышкой на exe… Инсталляция не требуется, работает с любого носителя.
Скачать бесплат но программу для расчёта квадрата равного по площади данному кругу архив.zip 24 кб
для вычисления площади сечения по данному диаметра и наоборот:
Программа для вычисления площади
поперечного сечения по данному диаметру и для определения диаметра по
данному площади поперечного сечения.
Не секрет, что принятое
обозначение номинала провода имеет два типа: первый – по диаметру,
второй – по площади поперечного сечения. Торгующие организации не
заморачиваются переводом одного в другое и предлагают выбрать провод по
площади поперечного сечения. Но часто Вам известен диаметр требуемого
провода, но неизвестна его площадь поперечного сечения, а между тем и
этим есть однако разница. В конечном счёте эта разница выражается в
рублях и в том случае если Вы возьмёте бОльшее и переплатите, и в том –
когда купленный провод не будет соответствовать реальному току и провод
этот придётся покупать заново (или обменивать на большего сечения).
Собсно для этого и написал я такую программку – простенько, но деньги
экономит.
Программа работает в DOS & Windows 97/XP/7 – 32 bit , халява.
Для работы – распакуйте и кликните на.exe – файл.
Скачать бесплатно программу для определения площади поперечного сечения провода zip-архив 23,4 кб
для расчёта размера регулярных выплат и общей суммы выплат по кредиту:
Программа для вычисления выплат по кредиту. Иногда требуется при планировании финансовых затрат и для представления того, в какую примерно сумму уложится переплата банку.
Скачать бесплатно для Windows 7/XP программу для вычисления выплат по кредитам zip-архив 3 кб
Скачать бесплатно для Linux x86 программу вычисления выплат по кредитам (архив regpay.zip)
Инструкция для Linux
Программа для вычисления простых чисел:
Вычисление простых чисел – приятное занятие для математика. Но с технической точки зрения оказывается не всё так возможно, как представляется. Размер регистров процессора ограничен, да и частота ставит предел скорости вычисления.
Трансформаторы постоянно используются в различных схемах, при устройстве освещения, питании цепей управления и прочем электронном оборудовании. Поэтому довольно часто требуется вычислить параметры прибора, в соответствии с конкретными условиями эксплуатации. Для этих целей вы можете воспользоваться специально разработанным онлайн калькулятором расчета трансформатора. Простая таблица требует заполнения исходными данными в виде значения входного напряжения, габаритных размеров, а также выходного напряжения.
Преимущества онлайн калькулятора
В результате расчета трансформатора онлайн, на выходе получаются параметры в виде мощности, силы тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотке.
Существуют , позволяющие быстро выполнить расчеты трансформатора. Однако они не дают полной гарантии от ошибок при проведении вычислений. Чтобы избежать подобных неприятностей, применяется программа онлайн калькулятора. Полученные результаты позволяют выполнять конструирование трансформаторов для различных мощностей и напряжений. С помощью калькулятора осуществляются не только расчеты трансформатора. Появляется возможность для изучения его устройства и основных функций. Запрошенные данные вставляются в таблицу и остается только нажать нужную кнопку.
Благодаря онлайн калькулятору не требуется проводить каких-либо самостоятельных подсчетов. Полученные результаты позволяют выполнять перемотку трансформатора своими руками. Большинство необходимых расчетов осуществляется в соответствии с размерами сердечника. Калькулятор максимально упрощает и ускоряет все вычисления. Необходимые пояснения можно получить из инструкции и в дальнейшем четко следовать их указаниям.
Конструкция трансформаторных магнитопроводов представлена тремя основными вариантами – броневым, стержневым и . Прочие модификации встречаются значительно реже. Для расчета каждого вида требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждого магнитопровода.
Программа расчета импульсного трансформатора – RadioRadar
Из всех современных программ для расчета импульсных трансформаторов нашла действительную популярность лишь одна, под названием ExcellentIT.
Данная программа расчета импульсного трансформатора отличается не только простотой в освоении, но и своей функциональностью. Рабочее окно разделено на три зоны, в каждой из которых содержится соответственная информация. В самом первом участке слева необходимо внести начальные данные, которые понадобятся для расчета.
Программа постоянно выдает подсказки в виде всплывающих окон, что очень удобно при начале работы и ознакомлении с данным софтом. Разработчик ПО настоятельно рекомендует ознакомиться с файловым документом, который вложен в основной папке. Там описаны принципы работы программы для расчета импульсного трансформатора, которые помогут быстрее освоиться пользователю и сэкономить массу времени.
Особенности ПО
Помимо представленного ряда магнитопроводов имеется возможность создавать свои собственные, указав габариты и характеристики, чем не отличается практически ни одна русскоязычная программа. Также при помощи программы можно вычислить потребляемую мощность трансформатора, который рассчитывается, а также потери мощности в магнитопроводе, с учетом его перегрева. Отдельно показывается КПД преобразования, индуктивность обмотки, ток потребления и другие стандартные характеристики.
Магнитопровод можно выбирать не только по типу изготовления, но и по его форме, а также материалу, из которого он изготовлен. Собственно, по таким же параметрам создать можно и своё изделие, с последующим его использованием при расчетах.
Отдельной особенностью программы ExcellentIT будет выбор стандарта проводов, с заданием их размера.
При вводе начальных данных могут возникнуть незначительные трудности, что предусмотрено разработчиком, и поэтому пользователя постоянно сопровождают подсказки.
Программа не требует установки на компьютер и является бесплатной в распространении. Потребуется лишь скачать файл. Разрабатывалась под Windows, но можно использовать и на Linux, при использовании дополнительного ПО.
Стоит обратить внимание, что была выпущена и более упрощенная версия программы под названием Lite-CalcIT, которая не обладает такой функциональностью и точностью расчетов, но упрощает процесс ввода информации и экономит время, при работе с несложными проектами, которые не требуют большой точности расчета и подбора трансформатора.
При возникновении вопросов, всегда можно заглянуть на форумы, где активно обсуждается пользование этой программой, с 2010 года и по сей день. На многие вопросы уже есть ответы, а разработчик программы постоянно помогает всем желающим освоиться в пользовании его продуктом.
Расчет витков ферритового трансформатора на примере
Из этой статьи вы узнаете, как рассчитать коэффициент трансформации трансформатора с ферритовым сердечником для высокочастотных импульсных инверторов питания. Трансформаторы с высоким ферритовым сердечником используются почти во всех схемах силовой электроники, например, в инверторах и инверторах с синусоидальной волной . Они используются для повышения или повышения низкого постоянного напряжения батареи и других источников постоянного тока, таких как солнечные батареи. Трансформаторы с ферритовым сердечником также используются в изолированных преобразователях постоянного тока для повышения или понижения постоянного напряжения.Например, в изолированном понижающем преобразователе он используется для понижения постоянного напряжения, а в изолированном повышающем преобразователе они используются для повышения постоянного напряжения. В этой статье мы узнаем, как рассчитать коэффициент трансформации высокочастотного трансформатора с ферритовым сердечником на примерах.
Расчет коэффициента вращения ферритового сердечникаНапример, в повышающем каскаде у нас есть два варианта использования преобразователей силовой электроники: двухтактная топология и полный мост. Я объясню оба метода один за другим.Формула и концепция расчета коэффициента трансформации остаются одинаковыми для обеих топологий. Единственное различие между двухтактной топологией и конструкцией полностью мостового трансформатора состоит в том, что двухтактный ферритовый сердечник трансформатора требует центрального отвода в первичной обмотке. Другими словами, двухтактный трансформатор имеет в два раза больший виток первичной обмотки, чем полный мостовой трансформатор.
Расчет соотношения витков ферритового сердечника с двухтактной топологией на примереНачнем с примера.Например, мы хотим разработать повышающий преобразователь постоянного тока в постоянный на 250 Вт. Мы используем топологию push pull для этой конструкции. Мы используем аккумулятор на 12 вольт. Мы хотим увеличить постоянное напряжение с 12 до 310 вольт. Частота переключения конструкции 50 кГц. Мы используем ферритовый сердечник ETD39 мощностью 250 Вт. О том, как выбрать ферритовый сердечник в соответствии с номинальной мощностью, выходит за рамки данной темы. Я постараюсь написать об этом отдельную статью. На выходе ферритового сердечника всегда будет высокочастотная прямоугольная волна 50 кГц.Нам нужно использовать полный выпрямитель, чтобы преобразовать его в постоянный ток 310 вольт. Вам также может потребоваться использовать LC-фильтр для гармоник или компонентов переменного тока на выходе.
Расчет витков ферритового трансформатораРасчет витков первичной обмотки ферритового трансформатора
Как вы знаете, напряжение батареи не всегда одинаково. По мере увеличения нагрузки на батарею напряжение батареи будет меньше 12 вольт. Без нагрузки с полностью заряженной батареей напряжение батареи будет около 13,5 вольт. Поэтому входное напряжение не является постоянным, это необходимо учитывать при расчете коэффициента трансформации трансформатора с ферритовым сердечником.Напряжение отключения аккумулятора обычно составляет 10,5 В. Мы можем принять это минимально возможное значение входного напряжения для повышения преобразователя постоянного тока. Итак, теперь у нас есть следующие параметры:
Vinput = 10,5 вольт
Vout = 310 вольт
Как известно, формула расчета коэффициента трансформации в трансформаторе
N = Npri / Nsc = Vin / Vout
Где Npri – количество витков первичной обмотки, а Nsc – количество витков вторичной обмотки. У нас есть три известные переменные, такие как коэффициент трансформации, который можно рассчитать по приведенному выше уравнению, входное и выходное напряжение.4 Гуасс. Значение максимальной магнитной индукции обычно указывается в паспорте ферритового сердечника. Обычно мы принимаем значение Bmax от 1300G до 2000G. Обычно это приемлемый диапазон для всех трансформаторов с ферритовым сердечником. Примечание. Высокое значение плотности потока приведет к насыщению сердечника, а низкое значение плотности потока приведет к недостаточному использованию сердечника. Например, мы возьмем 1500G для примера преобразователя постоянного тока в постоянный.
Следовательно, Npri = 3,2 Но мы не можем использовать дробные витки. Таким образом, нам нужно округлить рассчитанное значение первичных витков до ближайшего целого числа 3. Ближайшее возможное целое число равно 3. Первичное число витков для ферритового сердечника равно 3. Но перед этим нам нужно проверить, что Npri = 3 Bmax находится в допустимом диапазоне. или нет. Как я уже упоминал выше, приемлемый диапазон для Bmaz составляет 1300-2000G. Но вопрос в том, зачем нам снова проверять значение Bmax? Потому что мы регулируем значение первичных витков с 3.8/5 * 50000 * 3 * 1,25 = 1600 г
Таким образом, рассчитанное значение Bmax составляет 1600 Гс, что находится в пределах допустимого диапазона максимальной плотности потока. Это означает, что для дальнейших вычислений мы можем принять Npri = 3. Первичное количество витков двухтактного ферритового трансформатора с центральным ответвлением составляет 3 + 3 витка. В любом дизайне вам нужно будет отрегулировать значение Npri, если оно дробное. Вы легко можете это отрегулировать. Но вам нужно каждый раз проверять значение Bmax. Начнем с предполагаемого значения Bmax и рассчитанного Npri. Но вы также можете начать с предполагаемого значения Npri и проверить значение максимальной плотности потока Bmax.Например, предположим, что значение Npri = 1, проверьте значение Bmax и продолжайте повторять этот процесс, пока оно не станет в приемлемом диапазоне.
Расчет вторичных витков ферритового трансформатора
Теперь перейдем к вторичному витку ферритового сердечника. В нашей конструкции выход преобразователя постоянного тока в постоянный составляет 310 вольт при любом входном напряжении. Входное напряжение изменяется от 10,5 до 13,5 вольт. Нам нужно будет реализовать
Обратная связь для регулирования 310 выходного напряжения. Поэтому мы возьмем немного большее значение выходного напряжения, чтобы при минимально возможном входном напряжении мы могли получить выходное напряжение 310 вольт, изменяя рабочий цикл ШИМ.Поэтому нам следует разработать трансформатор с ферритовым сердечником и вторичной обмоткой на 330 вольт. Обратная связь будет регулировать значение выходного напряжения, изменяя рабочий цикл ШИМ. Также следует позаботиться о потерях и падениях напряжения на коммутационных аппаратах и учитывать их при проектировании трансформатора.
Таким образом, трансформатор должен обеспечивать выходное напряжение 330 вольт при входном напряжении от 13,5 до 10,5 вольт. Максимальный рабочий цикл для ШИМ составляет 98%, а оставшиеся 2% остаются мертвыми. При минимально возможном входном напряжении рабочий цикл будет максимальным.При максимальном рабочем цикле 98% входное напряжение трансформатора составляет 0,98 * 10,5 = 10,29 вольт.
Используя формулу соотношения напряжений трансформатора = соотношение напряжений = 330 / 10,29 = 32,1. Коэффициент напряжения и коэффициент трансформации в трансформаторе равны друг другу. Следовательно, N = 32.
Итак, мы знаем все значения для расчета вторичных витков трансформатора с ферритовым сердечником.
N = 32, Npri = 3
Nsec = N * Npri = 32 * 3 = 96
Таким образом, количество витков первичной обмотки равно 3, а число витков вторичной обмотки равно 96.Итак, все дело в расчете коэффициента трансформации высокочастотных трансформаторов. Если у вас возникнут проблемы, дайте мне знать в комментариях.
Расчет и применение трансформаторов– Европейский институт пассивных компонентов
Как показано на эквивалентной схеме трансформатора, трансформаторы обладают множеством паразитных свойств, которые могут отрицательно влиять на сигнал. Поэтому в этой главе объясняется, почему и где применяются трансформаторы. В дополнительном разделе рассматриваются требования к трансформаторам сигналов.В заключение главы описаны некоторые стандартные трансформаторы, имеющиеся в продаже.
3.1 Функции и области применения трансформаторовБлагодаря своей функциональности трансформаторы могут использоваться для различных задач:
- Изоляция: трансформаторы состоят из нескольких обмоток. В зависимости от дополнительной изоляции различные потенциалы могут быть разделены или изолированы друг от друга
- Преобразование напряжения: преобразование напряжения пропорционально соотношению витков
- Преобразование тока: токи преобразуются обратно пропорционально соотношению витков (см. Главу I / 1.9)
- Согласование импеданса: импедансы преобразуются как квадрат отношения витков
Это дает основания для различных применений трансформаторов:
- Источники напряжения (питания): здесь основными функциями трансформатора являются преобразование напряжения и изоляция.
- Преобразователи тока: здесь основная функция заключается в преобразовании больших токов в малые измеримые токи.
- Импульсные трансформаторы, например приводные трансформаторы для транзисторов: основная функция – изоляция; иногда для управления транзистором также требуются более высокие напряжения.
- Преобразователи данных: здесь также основная функция – изоляция.Кроме того, иногда приходится согласовывать разные импедансы или увеличивать напряжения.
используются в линиях передачи данных в основном для развязки и согласования импеданса. В этом случае сигнал не должен измениться. Из главы I / 1.9 мы знаем, что ток намагничивания не передается на вторичную обмотку. По этой причине трансформатор должен иметь максимально возможную главную индуктивность.
Профили сигналов обычно представляют собой прямоугольные импульсы, т.е. они содержат большое количество гармоник. Для трансформатора это означает, что его трансформационные свойства должны быть как можно более постоянными вплоть до высоких частот. Взглянув на эквивалентную схему трансформатора (глава I / 2.3, стр. 81 и далее), становится очевидным, что индуктивности рассеяния вносят вклад в дополнительное частотно-зависимое затухание сигнала. Следовательно, индуктивность рассеяния должна быть как можно ниже. Поэтому в сигнальных трансформаторах обычно используются кольцевые сердечники с высокой проницаемостью.Обмотки как минимум бифилярные; намотать скрученными проводами еще лучше. Поскольку передаваемая мощность довольно мала, DCR имеет второстепенное значение.
Прямые параметры, такие как индуктивность рассеяния, межобмоточная емкость и т. Д., Обычно не указываются в технических характеристиках сигнальных трансформаторов, а скорее указываются соответствующие параметры, такие как вносимые потери, возвратные потери и т. Д.
Наиболее важные параметры определены следующим образом:
• Вносимые потери IL: Измерение потерь, вызванных трансформатором.
U o = выходное напряжение; U i = входное напряжение
• Обратные потери RL: Измерение энергии, отраженной обратно от трансформатора из-за несовершенного согласования импеданса.
Z S = полное сопротивление источника; Z L = сопротивление нагрузки
• Подавление синфазного сигнала: мера подавления помех постоянного тока
• Общее гармоническое искажение: соотношение между полной энергией гармоник и энергией основной гармоники.
• Полоса пропускания: диапазон частот, в котором вносимые потери менее 3 дБ
3.3 Влияние трансформатора на возвратные потери Обратные потериОбратные потери – это выражение в децибелах (дБ) мощности, отраженной в линии передачи от несовпадающей нагрузки, в зависимости от мощности передаваемого падающего сигнала. Отраженный сигнал нарушает полезный сигнал и, если он достаточно сильный, вызовет ошибки передачи данных в линиях передачи данных или ухудшение качества звука в речевых цепях.
Уравнение для расчета возвратных потерь на основе характеристического комплексного полного сопротивления линии Z O и действительной комплексной нагрузки Z L показано ниже:
Разложив уравнение обратных потерь на сопротивление и реактивное сопротивление, мы получим следующую формулу:
Поскольку обратные потери являются функцией полного сопротивления линии и нагрузки, характеристическое сопротивление трансформатора, катушки индуктивности или дросселя будет влиять на обратные потери.Простая развертка импеданса магнитного компонента показывает, что импеданс изменяется по частоте, следовательно, обратные потери меняются по частоте. Мы обсудим влияние трансформатора на возвратные потери позже. Теперь давайте исследуем связь возвратных потерь с другими распространенными терминами отражения.
Коэффициент отражения
Хотя возвратные потери обычно используются для обозначения отражений линий в магнитной промышленности; Более распространенным термином в электронной промышленности для обозначения отражений является комплексный коэффициент отражения, гамма, который обозначается либо латинским символом G, либо, чаще, эквивалентным греческим символом Γ (гамма).Комплексный коэффициент отражения Γ имеет часть величины, называемую ρ (rho), и часть угла фазы Φ (Phi). Те из вас, кто знаком с диаграммой Смита, знают, что радиус круга, охватывающего диаграмму Смита, равен единице.
Коэффициент отражения, гамма, определяется как отношение сигнала отраженного напряжения к сигналу падающего напряжения. Уравнение для гаммы:
Имейте в виду, что так же, как импеданс – это комплексное число, так и гамма может быть выражена либо в полярном формате с помощью rho и Phi, либо в прямоугольном формате:
Обратные потери, выраженные в единицах гаммы, показаны в уравнении ниже:
Коэффициент стоячей волны
Отражения на линии передачи, вызванные рассогласованием импеданса, проявляются в огибающей комбинированных форм падающей и отраженной волны.Коэффициент стоячей волны, КСВ, представляет собой отношение максимального значения результирующей огибающей РЧ E MAX к минимальному значению E MIN .
Рис. 2.63: Коэффициент стоячей волны
Коэффициент стоячей волны, выраженный через коэффициент отражения, показан ниже:
Потери передачи
Последнее выражение отражения сигнала, которое мы обсудим, – это потери передачи. Потери при передаче – это просто отношение мощности, передаваемой нагрузке, к мощности падающего сигнала.Потери при передаче в сети без потерь, выраженные через коэффициент отражения, показаны ниже:
Не забывайте, что величина гаммы (| Γ |) равна rho (ρ), и любую форму можно найти в публикациях и документах, касающихся отражений.
Связанные термины
Просматривая формулу комплексного коэффициента отражения, мы видим, что чем ближе импеданс нагрузки Z L к характеристическому сопротивлению линии ZO, тем ближе к нулю коэффициент отражения.По мере увеличения несоответствия между двумя импедансами коэффициент отражения увеличивается до максимальной величины, равной единице.
В таблице ниже показано, как изменяющийся комплексный коэффициент отражения соотносится с КСВ, обратными потерями и потерями при передаче. Как можно видеть, идеальное совпадение приводит к КСВ, равному 1, и бесконечным обратным потерям. Точно так же обрыв или короткое замыкание в нагрузке приведет к бесконечному КСВ и возвратным потерям 0 дБ.
Табл. 2.32: Связь между коэффициентом отражения и коэффициентом стоячей волны
При отображении на диаграмме Смита взаимосвязь становится еще более очевидной, поскольку постоянные значения всех четырех параметров изображены на диаграмме в виде кружков.
Рис. 2.64: Диаграмма Смита
Максимальная передача мощности
Максимальная передача мощности достигается от источника к нагрузке, когда полное сопротивление источника равно комплексно сопряженному сопротивлению нагрузки. Это не только максимизирует мощность, но и минимизирует энергию отражения назад к источнику.
Рис. 2.65: Комплексный источник и загрузка
Обратные потери при согласованной нагрузке
Давайте возьмем пример согласованной строки и загрузки.Предположим, что Z O = 100 Ом в приложении ADSL и что оно завершено чисто резистивной нагрузкой 100 Ом.
Рис. 2.66: Возвратные убытки
где:
Z O = 100 + 0j Ом; Z L = 100 + 0j Ом
Поскольку нагрузка и источник являются чисто резистивными, обратные потери будут одинаковыми на любой частоте. Подстановка и вычисление показывают, что RL = ∞.
Обратные потери при несоответствующей нагрузке
Давайте возьмем тот же самый пример идеального трансформатора, но с немного несоответствующей нагрузкой.Предположим, что Z O = 100 + 0j Ом, как и раньше, но теперь мы рассчитаем возвратные потери для ряда чисто резистивных сопротивлений нагрузки, чтобы показать, как на возвратные потери влияет рассогласование. Снова используется резистивная нагрузка, так что обратные потери не зависят от частоты.
Табл. 2.33: Возвратные потери при несовпадении
Результаты показывают, что обратные потери являются функцией несоответствия и независимо от направления несоответствия. Если мы посмотрим на случай слегка несовпадающей линии по сравнению с нагрузкой, мы увидим, что она не зависит от частоты, если линия и нагрузка чисто резистивный.Также обратите внимание, что если бы совпадение было идеальным, возвратные потери были бы бесконечными.
Рис. 2.67: Возвратные убытки
Обратные потери с почти идеальным трансформатором
Теперь давайте возьмем тот же пример согласованной линии и нагрузки, но добавим трансформатор 1: 1, который идеально подходит, за исключением того, что индуктивность первичной обмотки составляет L P = 600 мкГн. Мы снова предполагаем, что полное сопротивление линии равно 100 Ом, как и полное сопротивление нагрузки.
Когда у нас был идеальный трансформатор с полностью резистивным импедансом как линии, так и нагрузки, наши возвратные потери не изменялись по частоте и были одинаковыми на любой частоте.Однако теперь индуктивность будет изменяться по частоте, в результате чего эффективная нагрузка будет изменяться по частоте. Расчет обратных потерь также становится более сложным из-за сложного сопротивления нагрузки.
Вместо того, чтобы выполнять все сложные вычисления импеданса, я покажу шаги, необходимые для расчета обратных потерь.
Шаг 1 : Используя вычисления преобразования импеданса, преобразуйте импеданс на той же стороне идеального трансформатора, что и индуктивность первичной обмотки.В этом случае идеальным трансформатором является трансформатор 1: 1, и нагрузка не изменяется.
Рис. 2.68: Обратные потери трансформатора
Шаг 2 : Объедините X L текущий Z L = R L + 0j с результирующим Z L ’, который является комплексным.
Рис. 2.69: Обратные потери с импедансом ZL ‘
Шаг 3 : Рассчитайте обратные потери, используя результирующую нагрузку и исходное сопротивление резистивной линии.
Результаты : Глядя на результаты по частоте, мы видим, что индуктивность на нижнем конце несоответствует из-за индуктивности, замыкающей нагрузку. Чем ниже индуктивность первичной обмотки, тем больше будет шунтироваться нагрузка. Глядя на графики, мы видим, что возвратные потери из-за первичной индуктивности будут вести себя так же, как фильтр, поскольку у него есть изгиб, который будет изменяться в зависимости от индуктивности, а наклон после изгиба составляет 20 дБ за декаду.
Табл.2.34: Обратные потери при 600 мкГн L pri на идеальном трансформаторе
Рис. 2.70: Обратные потери при 600 мкГн L pri
Обратные потери с добавленной индуктивностью рассеяния
Рис. 2.71: Обратные потери с индуктивностью рассеяния
Теперь добавим индуктивность рассеяния 1 мкГн к тому же трансформатору при тех же условиях нагрузки. Эффективная нагрузка рассчитывается таким же образом, как ZL ’- реактивное сопротивление первичной обмотки параллельно импедансу нагрузки после преобразования.ZL ’’ – это ZL ’с добавленным к нему последовательным реактивным сопротивлением индуктивности рассеяния.
Рис. 2.72: Обратные потери с индуктивностью рассеяния и Z L ‘
Используя ту же формулу возвратных потерь, мы можем затем рассчитать наши возвратные потери на различных частотах. Из представленных на графике результатов видно, что на возвратные потери на высоких частотах влияет индуктивность рассеяния
Табл. 2.35: Обратные потери с 600 мкГн L pri при индуктивности рассеяния 1 мкГн
Фиг.2.73: Обратные потери при 600 мкГн L pri и индуктивности рассеяния 1 мкГн
Для большинства трансформаторов индуктивность первичной обмотки и индуктивность рассеяния будут иметь наибольшее влияние на возвратные потери, при условии, что выбранное соотношение витков эффективно согласовывает сопротивление нагрузки с полным сопротивлением линии.
Обратные потери с неидеальным трансформатором
С помощью модели линейного трансформатора, которая обычно используется при проектировании низкочастотных трансформаторов, мы можем рассчитать теоретические возвратные потери на основе анализа сосредоточенных параметров.За исключением межобмоточной емкости, мы можем уменьшить модель линейного трансформатора до импеданса нагрузки, комбинируя элементы параллельно или последовательно. Имейте в виду, что вторичное сопротивление постоянному току и Z L должны быть преобразованы путем деления на n2, когда они подведены к линейной стороне модели.
Рис. 2.74: Обратные потери реальных трансформаторов
Емкость между обмотками не может быть смоделирована так просто, потому что она не находится ни на стороне линии, ни на стороне нагрузки модели и не может быть преобразована в эквивалентную нагрузку.На низких частотах межобмоточная емкость действует как разрыв трансформатора, и обычно ею можно пренебречь. Фактически, большинство программ моделирования трансформаторов игнорируют межобмоточную емкость, поскольку индуктивность рассеяния и индуктивность первичной обмотки являются доминирующими элементами. Однако в некоторых конструкциях, где межобмоточная емкость довольно велика, а рабочие частоты высоки, она может стать очень важным фактором. Достаточно сказать, что если в модель необходимо включить межобмоточную емкость, было бы разумно использовать более сложную программу анализа, такую как LTspice.
Давайте теперь посмотрим на модель линейного трансформатора для теоретического трансформатора ADSL, показанного ниже, с нагрузкой, которая немного отличается от идеальных 25 Ом для идеального согласования. Мы возьмем это и смоделируем влияние различных элементов, смотря на это параметр за параметром.
Рис. 2.75: Обратные потери трансформатора ADSL
Эффект обратных потерь DCR
Эффект обратных потерь сопротивления постоянному току в приведенном ниже примере выделяет два наблюдения.Во-первых, даже несмотря на то, что сопротивление вторичной обмотки ниже 1,5 Ом по сравнению с сопротивлением первичной обмотки 3,0 Ом, влияние на возвратные потери намного больше. Причина этого в том, что вторичная обмотка 1,5 Ом при отражении от первичной обмотки трансформатора воспринимается как 6,0 Ом.
Также обратите внимание, что на меньшее число возвратных потерь лишь незначительно влияют другие элементы, которые имеют значительно лучшие возвратные потери в одиночку. Обратные потери, связанные только с сопротивлением вторичной обмотки, составляют примерно 30 дБ, в то время как обратные потери из-за сопротивления первичной обмотки составляют примерно 37 дБ.В совокупности чистый эффект – это возвратные потери 27 дБ.
Рис. 2.76: Возвратные убытки
Эффект обратных потерь индуктивности рассеяния и распределенной емкости
Также интересно сравнить влияние на возвратные потери индуктивности рассеяния и параметров распределительной емкости трансформатора. Из приведенного ниже примера видно, что эффекты, обусловленные исключительно индуктивностью рассеяния, показывают уменьшающиеся возвратные потери со скоростью 20 дБ за декаду.Теперь, глядя на распределенную емкость, мы видим, что она вызывает затухание высоких частот с той же скоростью, что и колено, на более высокой частоте.
Сравнение становится интересным, когда мы рассматриваем комбинированный аффект. В совокупности чистый результат – улучшение возвратных убытков. Почему это? Если вы помните в нашем предыдущем обсуждении, обратные потери являются функцией рассогласования независимо от того, в каком направлении находится рассогласование. В этом примере рассогласование происходит в противоположных направлениях, поэтому добавление эффекта распределенной емкости фактически улучшает общие возвратные потери.
Если подумать об этом с аналитической точки зрения, что происходит в эквивалентной схеме? Отраженная нагрузка увеличивается на реактивное сопротивление из-за индуктивности рассеяния, вызывая рассогласование. Однако реактивное сопротивление распределенной емкости параллельно за счет уменьшения рассогласования до оптимальной отраженной нагрузки 100 Ом.
Рис. 2.77: Обратные потери с индуктивностью рассеяния
Эффект обратных потерь межобмоточной емкости
Как упоминалось ранее, влияние межобмоточной емкости очень сложно рассчитать с помощью простых преобразований эквивалентного импеданса.Проблема в том, что межобмоточная емкость разделяется обеими обмотками и не явно находится на одной стороне идеального трансформатора или другой. Таким образом, влияние на модель схемы не так однозначно и требует более сложных методов моделирования. Пример ниже был смоделирован с помощью PSPICE, а не с помощью простых вычислений.
Однако обычно межобмоточная емкость очень мало влияет на возвратные потери по сравнению с индуктивностью рассеяния, и ею можно пренебречь.Однако следует сделать предупреждение, поскольку в случаях, когда индуктивность рассеяния очень мала, а межобмоточная емкость очень высока, межобмоточная емкость может стать фактором, с которым нужно считаться.
Рис. 2.78: Обратные потери и межобмоточная емкость
Эффект обратных потерь из-за потерь в резистивном сердечнике и индуктивности
В этом примере мы сравниваем возвратные потери из-за индуктивности первичной обмотки, а также с резистивными потерями в сердечнике, предполагая, что коэффициент потерь в сердечнике R cAlpha равен 0.44. Как видно из обратных потерь из-за комбинированного эффекта, резистивные потери в сердечнике имеют очень минимальное влияние. В приложениях с очень низкими частотами, таких как аудио, резистивные потери в сердечнике могут иметь значение.
Рис. 2.79: Обратные потери и потери в сердечнике / L-значение
Эффект обратных потерь всех параметров
Наконец, глядя на влияние всех параметров вместе, мы можем определить, какие факторы являются существенными в типичном применении трансформатора.Как видно из результатов ниже, индуктивность рассеяния и индуктивность первичной обмотки являются движущими факторами. В то время как другие паразитные параметры действительно играют роль в формировании реакции на возвратные потери, они играют относительно незначительную роль в типичной конструкции трансформатора.
Рис. 2.80: Обратные потери со всеми параметрами
Более пристальный взгляд на доминирующие параметры
В заключение мы более подробно рассмотрим основные параметры трансформатора.На верхнем графике показаны возвратные потери различных моделей в сравнении с идеальным трансформатором с немного несовпадающей нагрузкой. Затем нижний график просто увеличивает масштаб неидеальных трансформаторов.
Практический совет:
Эти графики подчеркивают тот факт, что первичная индуктивность и индуктивность рассеяния являются параметрами, которые обычно определяют возвратные потери, и что в большинстве приложений есть основания игнорировать межобмоточную емкость.
Фиг.2.81: Обратные потери и влияние доминирующих параметров L первичный / L утечка
ABC CLR: Глава L Индукторы
Применения для трансформаторов
Лицензионный контент EPCI: Würth Elektronik eiSos, Trilogy of Magnetics, распечатки справочника можно заказать здесь.
Содержание этой страницы находится под международной лицензией Creative Commons Attribution-Share Alike 4.0.
– Электронные проекты Схемы
Расчет трансформатора v0.1 – программа для расчета количества витков и толщины проволоки. Если у вас есть опыт сборки трансформаторов, то эта программа идеально вам подойдет. Если вы ничего не знаете о сборке трансформаторов, пожалуйста, не используйте … Electronics Projects, Transformer Calculator Program “электронные программные средства”, Дата 2019/08/02
Transformer Calculation v0.1 – это программа для расчет количества витков и толщины проволоки. Если у вас есть опыт сборки трансформаторов, то эта программа идеально вам подойдет.Если вы ничего не знаете о сборке трансформаторов, пожалуйста, не используйте расчеты из этой программы для сборки собственного трансформатора! Неправильный расчет может повредить ваше электрическое устройство, подключенное к электросети, а ОН МОЖЕТ УБИТЬ ВАС !!! Вы по-прежнему можете использовать эту программу, чтобы определить размер сердечника EI трансформатора, если вы планируете покупать трансформатор. Обратите внимание, что существует множество гибридных трансформаторов, поэтому, если вам нужен трансформатор для усилителя, купите трансформатор подходящего размера. Гибридные трансформаторы обычно имеют небольшие размеры и при высокой нагрузке могут перегреться.
Текущая версия может рассчитывать значения только для стандартного сердечника трансформатора, то есть профиля сердечника «W» и «U». Тороидальные трансформаторы (кольцевой профиль сердечника) и другие не поддерживаются. Как я решил написать эту программу? Ну все просто, я делаю расчет для нового трансформатора, и у меня не было того тонкого провода для катушки. Поэтому я теряю несколько часов на пересчет нового напряжения и силы тока для провода, который у меня есть. Я начал собирать проволоку на катушке и понял, что проволока недостаточно длинная. Затем я пишу эту программу и теряю 3 минуты, чтобы сделать новый расчет для этого трансформатора с новым проводом.Трансформатор закончен и отлично работает в моем усилителе 2 × 7 Вт. 🙂
Думаю, что вам пригодится эта программа. Вы можете писать мне предложения, исправления и другие вещи по электронной почте: [email protected]
Вот список того, что еще я могу добавить в программу:
Добавить возможность редактирования для входного напряжения.
Исправьте ошибку, если она обнаружена.
Программа для пересчета, если рассчитанные провода не подходят к катушке.
Программа для расчета по площади жилы, толщине проволоки и сопротивлению проволоки характеристика трансформатора (входное / выходное напряжение и сила тока).
Авторские права Авторские права © Silvio Klaic 1999.
При повторном распространении в двоичной форме должно воспроизводиться указанное выше уведомление об авторских правах, этот список условий и / или другие материалы, поставляемые с распространением. Имена участников не могут использоваться для поддержки или продвижения продуктов, созданных на основе этого программного обеспечения, без специального предварительного письменного разрешения.
Примеры расчетов трансформаторов
Вот некоторые расчеты, которые я сделал и из своих трансформаторов.
Трансформатор: 220В – 2×27В 8А
Входное напряжение 220 Вольт.
Выходное напряжение два раза по 27 В 8 ампер, симметричное для усилителя. Площадь пересечения жил
EI составляет 50 на 48 миллиметров.
Расчетные значения:
Вход 220 Вольт 2,258 Ампер
443 катушки 1,05 мм толщиной провода
Здесь я использую провод толщиной 1 мм, потому что сердечник достаточно большой, а нагрев при такой толщине невелик. Истинная причина в том, что у меня не было провода 1,05 миллиметра. 🙂
Выход 2 x 27 В 8 ампер
2 x 54 катушки по 1.Округление от 98 миллиметров до 2 миллиметров.
При сборке использую для вывода два провода по 2 миллиметра на одной игле. Начальная точка двух проводов соединена и это выходная земля, конечная точка – два выхода по 27 Вольт. Я построил этот трансформатор, и он отлично работает.
Калькулятор трансформатора Скачать программу:
СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-4605.zip
Электронные трансформаторы – Проектирование импульсных трансформаторов
(A) Требования. Характеристики импульсного трансформатора обычно указываются следующим образом:
- Импульсное напряжение.
- Коэффициент напряжения.
- Длительность импульса.
- Частота повторения.
- Уровень мощности или сопротивления.
- Наклон фронта.
- Обвес сверху.
- Величина допустимого замаха.
- Тип нагрузки.
Расчетные данные для обеспечения выполнения этих требований представлены в предыдущих разделах в виде нескольких наборов кривых.Ниже описаны шаги, которые необходимо выполнить при использовании этих кривых в целях проектирования.
(B) Начало проектирования. Первый шаг в разработке дизайна – это выбор сердечника. Полезно, если существует какая-либо предыдущая конструкция, близкая по номиналу к трансформатору, который будет разработан.
После выбора сердечника, который будет использоваться, разработчик должен определить количество витков. В импульсных трансформаторах, предназначенных для высоких напряжений, ограничивающим фактором обычно является плотность магнитного потока.Если да, то для однонаправленных импульсов количество витков может быть получено следующим образом:
[138] |
Для прямоугольной волны e = E и
или же
[139] |
куда
E = импульсное напряжение
τ = длительность импульса в секундах
B = допустимая плотность потока в гауссах
A c = сечение жилы в квадратных дюймах
N = количество витков.
Во многих конструкциях количество провалов или обратных колебаний, которые допускаются в конце импульса, определяет количество витков из-за их отношения к OCL трансформатора.
После определения витков следует оценить соответствующее чередование обмоток и рассчитать индуктивность и емкость рассеяния.
После оценки индуктивности рассеяния и емкости обмотки характеристики входного каскада для линейных нагрузок можно найти на рис.230 и 231. Аналогичным образом, из OCL и емкости обмотки формы верхней и задней кромки показаны на фиг. 234 и 235. Если характеристики по этим кривым удовлетворительны и катушка подходит к сердечнику, расчет завершен.
(C) Окончательные расчеты. Предварительные расчеты могут показать слишком большой наклон на переднем фронте импульса (как это часто бывает с новыми конструкциями). Два коэффициента демпфирования R 1 / 2L S и 1 / 2R 2 C 2 влияют на наклон передней кромки, и предварительные расчеты показывают, какой из них является преобладающим.Иногда можно увеличить индуктивность или емкость рассеяния без значительного увеличения постоянной времени T , и это можно использовать для уменьшения крутизны.
Если после этих регулировок наклон передней кромки все еще слишком велик, вероятно, выбранный сердечник не соответствует требованиям. Небольшие размеры сердечника желательны для низкой индуктивности рассеяния и емкости обмотки. Малая площадь сердечника A o может потребоваться слишком много витков для размещения сердечника. Эти два соображения работают друг против друга, поэтому правильный выбор сердечника является проблемой в любом дизайне.
Если рассчитанный наклон передней кромки почти достаточно хорош, его можно улучшить одним из следующих способов:
- Измените количество поворотов.
- Уменьшить размер ядра.
- Изменить чередование.
- Увеличьте толщину изоляции.
- Уменьшите диэлектрическую проницаемость изоляции.
Высокая емкость – частая причина плохой работы, и элементы (b) – (e) часто могут быть изменены для уменьшения емкости.Иногда можно изменить схему в лучшую сторону и тем самым сделать неисправный трансформатор приемлемым. Одним из примеров этого является окончание линии передачи. Оконечное сопротивление линии может быть размещено как на первичной, так и на вторичной стороне. Если он размещен на первичной стороне, как правило, передний край значительно улучшается. На рисунке 231 это улучшение не показано, поскольку оно было построено для рисунка 229. Для сопротивления на первичной стороне коэффициент демпфирования сводится к единственному члену.
[140] |
Улучшение характеристик задней кромки обычно сопровождается улучшением передней кромки.
Проницаемость керна важна, поскольку для получения необходимого OCL с материалом керна с высокой проницаемостью требуется меньше витков. Проницаемость в начале задней кромки (точка b ‘, рис. 236) является наиболее важной по двум причинам: спад в этой точке зависит от OCL, , так что при заданной величине спада повороты включаются. сердечник фиксируется; Кроме того, данные о нормальной проницаемости применимы к таким точкам, как b ‘. Плотность потока выбирается с двумя целями: она должна быть как можно большей для небольших размеров, но не настолько высокой, чтобы приводить к чрезмерному току намагничивания и обратному напряжению.
Калькулятор катушек и трансформаторов
Калькулятор катушек и трансформаторовВернуться к оглавлению.
Калькулятор катушек и трансформаторов.
С помощью этого калькулятора катушек вы можете спроектировать и рассчитать свойства катушки.
или трансформатор.
Введите параметры в поля желтого цвета и
затем нажмите кнопки расчета.
Ниже калькулятора вы найдете более подробные пояснения к вычислениям.
Используйте десятичную точку (не запятую), если
вы хотите ввести десятичные дроби.
рекомендую
вы также можете прочитать эту веб-страницу
о катушках и трансформаторах, многие вещи, которые я использую в этом калькуляторе, имеют
Я там учился.
Он объясняет это очень ясно.
Пояснения к некоторым терминам, используемым в этом калькуляторе
Индуктивность: L
Индуктивность катушки – это свойство, которое описывает соотношение между напряжением, индуцированным в катушке, и изменением тока через катушку.
L = V L / (di / dt)
Где:
L = индуктивность катушки в Генри (Гн).
В L = Напряжение, индуцированное в катушке в вольтах.
di / dt = изменение тока через катушку в амперах в секунду.
Магнитный поток: Φ
Магнитный поток, обычно обозначаемый как Φ, равен
измеряется в единицах Вебера (Вб).
Если у вас есть петля из провода, и вы подаете на нее 1 Вольт в течение 1 секунды, магнитный
поток в петле изменится на 1 Вебера.
Неважно, какого размера или формы петля, или из какого материала внутри
петля есть.
Вы можете представить себе единицу Wb как количество силовых линий магнитного поля, проходящих через
петля.
Для одиночного контура применяется:
Φ = Vt
Если катушка имеет более одного витка, мы можем использовать следующую формулу:
Φ = Vt / N
Где:
Φ = изменение магнитного потока в катушке в Weber
V = напряжение на катушке в вольтах
t = время в секундах
N = количество витков катушки
Плотность магнитного потока: B
Плотность магнитного потока B измеряется в единицах
Тесла (Т).
Плотность магнитного потока указывает магнитный поток через определенную область.
Один Tesla – это один Вебер на квадратный метр
Или по формуле:
B = Φ / A
Где:
B = плотность магнитного потока в теслах
Φ = магнитный поток в Weber
A = площадь в квадратных метрах
Максимальная плотность магнитного потока при низкой частота: Bmax = Bsat
Магнитные материалы, используемые в сердечниках катушек и трансформаторов, могут использоваться до
определенная максимальная плотность магнитного потока.
Для низкочастотных приложений (включая постоянный ток) максимальная плотность потока ограничена магнитным
насыщение материала сердечника, эта плотность потока называется: Bsat.
В насыщенном состоянии все магнитные области в материале направлены одинаково.
направление.
Однако теоретически возможно увеличить плотность потока выше насыщения,
из-за проницаемости вакуума.
Но для этого требуется большой ток через катушку и чрезмерные потери мощности в
обмотки.
Выше насыщения катушка потеряет большую часть своей индуктивности и запустится.
действует как катушка без материала катушки.
Итак, держите плотность потока ниже Bsat.
Значение Bsat указано в спецификации материала сердечника.
Например, Bsat составляет около 0,3 Тл для ферритового материала и около 1,3 Тл для
кремнистая сталь.
Значение Bsat зависит от температуры, чем выше температура, тем больше
в большинстве случаев ниже Bsat.
В этом калькуляторе я использую значение Bsat при 100 ° C,
которое автоматически появляется в поле Bmax при выборе материала сердцевины.
Итак, это наиболее безопасное значение, при более низкой температуре, однако Bsat может быть
выше.
Максимальная плотность магнитного потока
на более высокой частоте: Bmax
Для высокочастотных приложений максимальный поток
плотность в ядре ограничена потерями мощности в ядре, а не ядром
насыщенность.
На более высоких частотах нам нужно уменьшить значение Bmax ниже
Значение Bsat, чтобы избежать перегрева сердечника из-за потери собственной мощности.
Чем выше частота, тем ниже значение Bmax.
Для сердечников большего размера необходимо соблюдать плотность потока Bmax.
ниже, чем для сердечников меньшего размера, чтобы избежать перегрева сердечника.
Это потому, что объем сердечника (который производит тепло) увеличивается.
быстрее, чем внешняя часть сердечника (которая должна рассеивать тепло).
Мой калькулятор катушек и трансформаторов не рассчитывает для вас потери в сердечнике.
Вместо этого вы должны ввести определенную максимальную плотность потока в калькулятор,
что сохранит потери в сердечнике ниже желаемого уровня.
Потери в сердечнике в сердечниках из кремнистой стали
На следующих рисунках показаны некоторые примеры потерь в сердечнике в кремнистой стали (также
называется: электротехническая сталь или трансформаторная сталь).
Рисунок 1. Потери в сердечнике в кремнистой стали.
На рисунке 1 приведены некоторые примеры потерь в сердечнике при различной толщине ламинирования.
и частоты.
Чем выше частота, тем больше потери.
А более толстая ламинация дает большие потери.
Чтобы преобразовать толщину ламинирования из “мил” в “мм”, умножьте на 0,0254.
Однако потери в сердечнике (в ватт / кг) выше на более высоких частотах,
Сердечник трансформатора можно сделать меньше на более высоких частотах.
И вы можете получить высокочастотный трансформатор с меньшими потерями в сердечнике (в ваттах),
по сравнению с низкочастотным трансформатором той же номинальной мощности.
Для трансформаторов линий электропередачи при 50 или 60 Гц потери в сердечнике обычно очень велики.
ниже потери в обмотках при полной нагрузке.
При 50 или 60 Гц вы можете использовать в конструкции трансформатора, плотность потока в
ядро равно: Bsat.
Для аудиопреобразователя вы разрабатываете самую низкую частоту в аудиосигнале.
сигнал, если он не превышает примерно 100 Гц, вы можете использовать Bsat в качестве
максимальная плотность потока в сердечнике.
Для более высоких звуковых частот ток намагничивания и плотность потока в
ядро автоматически уменьшается.
Рисунок 2, потери в сердечнике в кремнистой стали при различных частотах.
Эти данные относятся к неориентированной кремнистой стали марки М-19 толщиной 14 мил или
Толщина 0,36 мм.
О, а 1 фунт равен 0,45359 кг.
Потери в ферритовых сердечниках
Ферритовые сердечники имеют гораздо меньшие потери мощности на высоких частотах, чем кремниевые
стальные сердечники.
Информация о максимальной плотности потока на определенной частоте может быть
в техническом описании ферритового материала, вот два примера:
Рисунок 3. Потери в сердечнике феррита N27.
На рисунке 3 показано соотношение между частотой, плотностью потока и потерями мощности в
сердечник для ферритового материала N27, который насыщается при 0,41 Тл при 100
C.
Предположим, мы хотим, чтобы максимальная потеря мощности в активной зоне составляла 100 кВт / м.
, что равно 100 мВт / см, я обозначил это значение красной линией.
Для сигнала 10 кГц (зеленая линия) мы находим максимальное пиковое значение для
поток 300 мТл (= 0,3 Тл) при 100 C.
А для 200 кГц (синяя линия) мы находим максимум 50 мТл (= 0.05 Тесла).
Рисунок 4. Потери в сердечнике феррита 3C90.
На рисунке 4 показаны потери в сердечнике для ферритового материала 3C90, здесь данные
представлен немного иначе.
Для потерь в сердечнике 100 кВт / м (= 100 мВт / см) мы
найдите на частоте 200 кГц максимальную пиковую плотность потока 70 мТл (= 0,07 Тл).
Эффективная площадь поперечного сечения сердечника: Ae
Эффективная площадь поперечного сечения сердечника может быть найдена в
лист данных ядра, это предпочтительный метод.
Или можете измерить.
Но только магнитный материал является частью эффективной площади поперечного сечения, поэтому не
любое изолирующее покрытие, которое может покрывать сердцевину.
Рисунок 5: В сердечнике трансформатора EI эффективная площадь поперечного сечения (Ae),
это площадь центральной ножки.
Обе внешние ноги обычно имеют площадь 1/2 Ae.
Когда вы уложили несколько жил, общая эффективная площадь поперечного сечения
Ae (всего), равно значению Ae одного ядра, умноженному на количество
ядра
Максимальный магнитный поток в сердечнике: Φmax
Максимальный магнитный поток в сердечнике рассчитывается по формуле:
Φmax = Bmax.Ae (всего)
Где:
Φmax = максимальный магнитный поток в сердечнике в Weber
Bmax = максимальная плотность магнитного потока в сердечнике в Tesla
Ae (total) = Общая эффективная площадь поперечного сечения сердечника в квадратных метрах
Относительная проницаемость керна:
μr.
Относительная проницаемость
мкр жилы
Материал показывает, насколько больше индуктивности будет у вашей катушки по сравнению с
катушка с вакуумом в сердечнике.
Вакуум имеет проницаемость (μ0)
около 1.2566. 10 -6 Гн / м (Генри на метр).
Относительная проницаемость не имеет единицы.
Air имеет значение μr 1.00000037, поэтому
практически равняется вакууму.
Относительная проницаемость материала керна μr часто
зависит от плотности магнитного потока в сердечнике.
В этом калькуляторе я использую значение μr, близкое к нулю.
плотность потока, в таблицах это обозначается как μi
(относительная начальная проницаемость).
Еще один параметр, который вы можете найти в таблицах данных: μa
(относительная амплитудная проницаемость), которая является значением μr
при более высокой плотности потока.
Эффективная проницаемость керна: мкэ
Если у вас есть катушка, намотанная на кольцевой сердечник, сердечник полностью состоит из сердечника
материал, и полностью закрыт ..
Тогда эффективная проницаемость равна относительной проницаемости
основной материал.
Но многие сердечники состоят из двух частей, которые соединены вокруг катушки.
бывший с обмотками на нем.
Две основные части всегда будут иметь некоторый промежуток или воздушный зазор в
между ними, что, кажется, снижает проницаемость ядра.
У вас есть керн с эффективной проницаемостью, которая меньше, чем
относительная проницаемость материала сердечника.
Иногда в сердечнике намеренно делают воздушный зазор, чтобы уменьшить
эффективная проницаемость.
При этом увеличивается максимальный ток через катушку, но не магнитный поток.
плотность в ядре.
Дает тот же эффект, что и при использовании другого материала сердцевины с меньшей проницаемостью.
Эффективная проницаемость сердечника с воздушным зазором составляет:
мкэ = мкр.le / (le + (g .μr))
Где:
μe = эффективная проницаемость керна.
мкм = относительная проницаемость материала сердцевины.
le = эффективная длина магнитного пути в сердечнике
g = длина воздушного зазора (измеряется в тех же единицах, что и le)
Эффективная длина магнитного пути в сердечнике: le
Эффективная длина магнитного путь в ядре можно найти в
даташит ядра.
Или можно прикинуть по габаритам сердечника.
Это длина линии магнитного поля в центре материала сердечника.
поедет.
Не включайте воздушный зазор в эту длину пути, а только путь в сердечнике
сам материал.
Воздушный зазор: g
Воздушный зазор – это слой воздуха на магнитном пути сердечника.
Рисунок 6: воздушный зазор в центральной ножке сердечника трансформатора EI.
На рис. 6 показан воздушный зазор, вызванный укорочением центральной стойки трансформатора.
затем две внешние ножки.
Пунктирными линиями обозначены силовые линии магнитного поля длиной: le
Рис. 7: воздушный зазор во всех выводах сердечника трансформатора EI.
На рис. 7 показан еще один сердечник трансформатора ЭУ с воздушным зазором.
Здесь все ножки трансформатора имеют одинаковую длину, а воздушный зазор создается
слегка раздвинув части «E» и «I».
Видите ли, теперь силовые линии должны дважды перепрыгивать через слой воздуха, чтобы сформировать
замкнутый цикл.
Это означает, что мы должны рассчитывать с воздушным зазором, который вдвое превышает расстояние
между частями «Е» и «И».
Воздушный зазор необязательно заполнять воздухом или другими немагнитными материалами.
как бумага или пластик, тоже пригодятся.
В трансформаторах воздушный зазор в сердечнике приведет к снижению связи между
обмотки, которые могут быть нежелательными.
Коэффициент индуктивности: AL.
Коэффициент индуктивности AL сердечника равен
индуктивность одной обмотки вокруг этого сердечника.
Если у вас более одной обмотки, индуктивность катушки будет:
L = N.AL
Где:
L = индуктивность катушки
N = количество витков
AL = коэффициент индуктивности сердечника
Если вам неизвестен коэффициент AL сердечника, это может быть рассчитано из эффективной проницаемости и размеров керна:
AL = μ0. мкэ. Ae (всего) / le
Где:
AL = коэффициент индуктивности в Гн / Н
μ0 = проницаемость вакуума = 1,2566. 10 -6 Гн / м
μe = эффективная проницаемость сердечника
Ae (total) = Общая эффективная площадь поперечного сечения сердечника в м
le = эффективная длина магнитного пути в сердечнике в м.
Укладка сердечников
Укладка сердечников означает использование нескольких сердечников и пропускание обмоток через все
эти ядра.
По сравнению с катушкой с одним сердечником, индуктивность умножается на количество
ядра сложены.
Рисунок 8: катушка на стопке из 5 сердечников
Сопротивление провода
Провод, который вы используете для наматывания катушки или трансформатора, будет иметь некоторое сопротивление.
Это сопротивление рассчитывается с помощью:
R = ρ.l / A
Где:
R = сопротивление провода
ρ = удельное сопротивление материала провода в Ом · м, для меди это около
1,75. 10 -8 Ом · м
l = длина провода в метрах
A = площадь поперечного сечения провода в квадратных метрах
Общая площадь котла обмотки.
Расчетное значение площади меди, как говорится, только для меди
обмотки.
На практике также приходится иметь дело с изоляцией проводов, воздух между витками
и, вероятно, формирователь катушки.
Итак, на практике вам нужно больше места для обмотки, скажем в 2,5 или 3 раза
расчетное значение для меди.
Максимальный ток (пиковый или переменный ток) через катушку
Максимальный ток через катушку – это ток, который дает максимум допустимый магнитный поток в сердечнике.
Imax = Φmax. Н / д
Где:
Imax = максимальный ток через катушку (пик постоянного или переменного тока)
Φmax = максимальный магнитный поток в сердечнике в Weber
N = количество витков
L = индуктивность катушки в Henry
Зарядка время до максимального тока.
Когда вы подключаете катушку к источнику постоянного напряжения V, ток I будет увеличиваться с
время.
Другими словами, вы заряжаете катушку.
Пока катушка не имеет сопротивления, ток увеличивается линейно, и
время достижения определенного тока определяется по формуле:
t = L.I / V
Если катушка имеет сопротивление, увеличение тока больше не является линейным.
Максимальный ток через катушку ограничен значением: I = V / R.
Время зарядки катушки с сопротивлением рассчитывается по формуле:
т = -L / R.LN (1- (I.R / V))
Где:
t = время в секундах для увеличения тока от нуля до значения I.
L = индуктивность катушки в Генри.
R = Сопротивление катушки в Ом.
LN = Натуральный логарифм.
I = ток в амперах, для которого вы рассчитываете время зарядки.
В = напряжение на катушке.
В этом калькуляторе рассчитывается время, чтобы зарядить до максимальной катушки. ток, то есть ток, который дает в сердечнике плотность потока Bmax.
Накопленная энергия в катушке
Когда через катушку проходит ток, определенное количество энергии
хранится в катушке.
Накопленная энергия рассчитывается с помощью:
E = 1/2. (L. I)
Где:
E = Накопленная энергия в катушке в Джоулях
L = Индуктивность катушки в Генри
I = Ток через катушку в Амперах
Максимальное напряжение переменного тока на катушке
Максимальное напряжение переменного тока (синусоидальная волна), которое вы можете приложить к катушке, составляет рассчитано по формуле:
Vmax = 4,44. Φмакс. N. f
Где:
Vmax = максимальное синусоидальное напряжение переменного тока на катушке, среднеквадратичное значение в вольтах
Φmax = максимальный магнитный поток в сердечнике в Weber
N = количество витков на катушке
f = частота напряжения в герцах
Фактор 4.44 – это произведение двух
коэффициенты, которыми являются:
4, поток изменяется от нуля до + Φmax за 1/4 цикла, следующая 1/4 цикла
он возвращается к нулю, следующие две 1/4 цикла до -Φmax и обратно до
нуль.
Таким образом, за один цикл поток изменяется в 4 раза по Φmax.
Умноженный на:
1,11, это форм-фактор синусоидальной волны, который представляет собой отношение среднеквадратичного значения к
среднее значение.
Вот еще один способ вычисления максимального переменного напряжения на катушке:
Vmax = Imax.2. пи. f .L / √2
Здесь мы умножаем максимальный ток, проходящий через катушку, на полное сопротивление катушки при
частоту f, а затем разделите ее на √2, чтобы преобразовать пиковое значение в среднеквадратичное значение.
Число витков первичной обмотки трансформатора.
Из формулы для максимального напряжения на катушке (см. Выше) мы легко можем найти формулу количества витков первичной обмотки трансформатора.
Np = Vp / (4.44. Φmax. F) Эта формула предназначена для синусоидальной волны. напряжения.
Где:
Np = количество витков первичной обмотки
Vp = первичное напряжение (= входное напряжение) трансформатора, среднеквадратичное значение,
Φmax = максимальный магнитный поток в сердечнике в Weber
f = частота напряжения в герцах
Если вы используете трансформатор для прямоугольных напряжений, форм-фактор для
напряжение равно 1 (вместо 1,11 для синусоид),
, а количество витков трансформатора должно быть в 1,11 раза больше.
Количество витков, которое мы теперь рассчитали, является минимальным количеством первичных
повороты.
Если уменьшить количество витков первичной обмотки, сердечник трансформатора войдет в
магнитное насыщение, которого необходимо избегать.
Однако разрешено делать количество витков (как первичных, так и вторичных).
выше, но это увеличит сопротивление обмоток, и тем самым
потеря мощности трансформатора.
Для трансформаторов линий электропередач обычно количество витков
минимально возможное значение, достаточное для предотвращения насыщения сердечника при максимальном вводе
Напряжение.
Количество витков вторичного трансформатора
В идеальном трансформаторе без потерь соотношение напряжений между вторичной и первичной обмотками
стороны, такое же, как отношение витков между вторичной и первичной сторонами.
Или в формуле:
Vs / Vp = Ns / Np
Где:
Vs = Напряжение на вторичной стороне
Vp = Напряжение на первичной стороне
Ns = Число витков вторичной обмотки
Np = Число витков первичной обмотки
Отсюда следует:
Ns = Np. Vs / Vp
Мы также могли бы рассчитать его по формуле, очень похожей на формулу
первичные витки:
Ns = Vs / (4.44. Φmax. f) Эта формула предназначена для синусоидальной волны
напряжения.
Индуктивность первичной обмотки трансформатора
Это индуктивность первичной обмотки трансформатора.
Вы можете измерить индуктивность первичной обмотки с помощью измерителя индуктивности.
При этом вторичная обмотка ни к чему не должна подключаться.
Или, если вы знаете количество витков первичной обмотки и коэффициент AL, первичный индуктивность можно рассчитать с помощью:
Lp = Np. AL
Где:
Lp = первичная индуктивность
Np = количество витков первичной обмотки
AL = коэффициент индуктивности сердечника
Значение первичной индуктивности необходимо для расчета намагничивания
ток трансформатора.
Ток намагничивания
Ток намагничивания – это небольшой ток, который протекает через первичную обмотку.
обмотка трансформатора, даже если выход трансформатора не нагружен.
Ток намагничивания создает магнитный поток в трансформаторе.
основной.
Амплитуда тока намагничивания рассчитывается по формуле:
Im = Vp / (2.pi.f.Lp)
Где:
Im = ток намагничивания в Амперах RMS
Vp = Первичное напряжение в Вольтах RMS
f = частота в Герцах
Lp = Первичная индуктивность трансформатора в Генри
Ток намагничивания фактически такой же, как
максимальный ток, который мы рассчитали для катушки.
Но для максимального тока катушки мы вычислили пиковое значение, в
ток намагничивания трансформатора мы вычисляем действующее значение, поэтому есть коэффициент
1.414 между.
Если мы собираемся нагружать вторичную обмотку трансформатора, ток через
первичная обмотка поднимется.
Но поток в сердечнике останется прежним.
Это потому, что ток во вторичной обмотке дает противоположный поток,
который нейтрализует весь дополнительный поток первичной обмотки.
Итак, в конце мы сохраняем только поток, вызванный током намагничивания,
как бы тяжело мы ни нагружали трансформатор.
Ну это должно быть так, если обмотки трансформатора имеют нулевое сопротивление.
Однако на практике обмотки трансформатора имеют некоторое сопротивление.
Ток через первичную обмотку дает определенное падение напряжения на
сопротивление первичной обмотки.
Это вызывает уменьшение напряжения на первичной индуктивности (Lp), и это
уменьшит ток намагничивания (Im) и магнитный поток в сердечнике.
Итак, для практических трансформаторов (с некоторым сопротивлением в обмотках)
ток намагничивания и магнитный поток в сердечнике уменьшатся при загрузке
трансформатор более тяжелый.
Это вызвано не сердечником трансформатора, а сопротивлением первичной обмотки.
обмотка.
Номинальная мощность
Мощность, которую может выдать трансформатор, ограничена сопротивлением
обмотки, а не сам сердечник.
Сопротивление обмоток приведет к понижению напряжения вторичного трансформатора.
падение при более высоких токах нагрузки.
Это один из ограничивающих факторов, насколько допустимое падение напряжения для вашего
заявление?
Другой ограничивающий фактор: потери мощности в первичной и вторичной обмотке.
Больший ток нагрузки на вторичной обмотке означает больше потерь мощности в первичной обмотке.
и вторичные обмотки.
Потеря мощности приведет к нагреву обмоток трансформатора.
Во избежание перегрева трансформатора выходной ток трансформатора должен
быть ограниченным ниже некоторого максимума.
Чтобы сделать трансформатор с высокой номинальной мощностью, мы должны поддерживать сопротивление
как можно ниже обмотки.
В первую очередь это делают:
сохраняя как можно меньшее количество витков, создавая магнитный поток
плотность в ядре как можно более высокая, чуть ниже насыщения.
Еще одна полезная вещь: использование большого сердечника трансформатора, а не потому, что сердечник
ограничивает мощность, а потому что:
– Большой сердечник дает больше места для обмоток,
поэтому мы можем использовать более толстую проволоку, чтобы уменьшить сопротивление.
– Большая площадь сердечника означает, что вы можете увеличить поток (не поток
плотность) за счет уменьшения количества витков.
– Трансформатор большего размера может лучше рассеивать тепло, вызванное потерей мощности.
Калькулятор трансформаторов рассчитает для вас
падение напряжения на вторичной обмотке и потери мощности в обмотках.
Вам решать, сколько падения напряжения и потери мощности приемлемы для
ваш трансформатор.
Входной ток первичной обмотки трансформатора
Ток, идущий в первичную обмотку трансформатора (Ip), складывается из
следующие токи:
Ток намагничивания (Im), который составляет 90
за первичным напряжением.
Ток, вызванный током вторичной нагрузки (Is), появляется ток нагрузки.
на первичной обмотке величиной: Is. Ns / Np.
Ip = √ (Im + (Is.Ns / Np))
На самом деле существует также некоторый первичный ток, вызванный потерями в сердечнике, но я игнорирую
это.
Не то чтобы этот ток обязательно незначительно мал, но я тоже его нашел
сложно реализовать потери в сердечнике в калькуляторе.
Так что я просто опускаю его.
Так или иначе, первичный ток трансформатора при полной нагрузке почти только в зависимости
от вторичного тока нагрузки.
Потери в трансформаторе
В этом калькуляторе потери в трансформаторе рассчитываются на основе ток нагрузки, ток намагничивания и сопротивление обмоток постоянному току.
Однако есть и другие причины потерь в трансформаторе, такие как:
– Потери в сердечнике (потери на гистерезис и потери на вихревые токи).
– Емкость внутри и между обмотками.
– скин-эффект и эффект близости, которые увеличивают сопротивление провода при более высоких
частоты.
Но я их опускаю, поэтому вам не нужно указывать все правильные параметры для
эти эффекты, и для меня калькулятор не стал слишком сложным в изготовлении.
Ток намагничивания играет незначительную роль в потерях трансформатора, но I
реализовали это в калькуляторе, потому что это было довольно легко сделать.
Рисунок 9
Рисунок 9 показывает эквивалентную схему для трансформатора с первичной обмоткой.
сопротивление (Rp), вторичное сопротивление (Rs) и первичная индуктивность (Lp).
Резистор RL – это нагрузочный резистор, который вы подключаете к трансформатору.
выход.
«Идеальный трансформатор» в схеме – это воображаемое устройство без потерь, с
бесконечная индуктивность и нулевое сопротивление.
Рисунок 10: упрощение рисунка 9.
На рисунке 10 показаны идеальные трансформаторы Rs и RL из рисунка 9.
заменен одним резистором номиналом (Rs + RL). (Np / Ns).
Теперь можно рассчитать напряжение на катушке Lp, а затем
ток намагничивания.
Я не буду подробно объяснять, как идет этот расчет, калькулятор
делаем расчет за вас.
Напряжение на Lp можно умножить на Ns / Np, чтобы получить напряжение на Rs + RL.
Таким образом мы можем определить мощность на всех резисторах.
Вернуться к оглавлению.
Как рассчитать трансформатор SMPS
Трансформатор SMPS становится очевидным на выходе всех преобразователей прямого режима. Преобразователи, использующие прямую, двухтактную, полумостовую и полумостовую топологии, обычно являются преобразователями прямого режима.Следовательно, при вычислении выходной индуктивности используются эквивалентные методы для любых 4 таких широко используемых топологий. Фактическое предназначение выходной катушки индуктивности всегда состоит в том, чтобы сохранять мощность для нагрузки почти в течение каждого цикла переключения, когда выключены силовые устройства (BJT, MOSFET или IGBT). Электрическая работа трансформатора SMPS всегда заключается в объединении прямоугольных импульсов переключения (сигналов с широтно-импульсной модуляцией с изменяющимся рабочим циклом) в постоянный ток.Конденсатор, расположенный после катушки индуктивности, сглаживает постоянный ток в постоянный ток без пульсаций.
Расчет трансформатора SMPS довольно прост. Чаще всего можно использовать самозамкнутый тороидный сердечник. Ферритовые сердечники с зазором (типы, используемые для ферритовых трансформаторов, например, ETD39), возможно, можно будет использовать без проблем.
Формула для определения выходной индуктивности:
L (min) = [Vin (max) – V (out) x T (ON) / 1,4 x Iout (min)
Vin (max). = Максимальное напряжение рядом с выходным выпрямителем в пределах этого конкретного выхода.
Vout = выходное напряжение.
Toff (est) = ожидаемое время включения силового устройства при максимальном входном напряжении.
Iout (min) = наименьший ожидаемый ток нагрузки для достижения этого выхода.
По приведенной выше формуле определяется значение L (мин), которое представляет собой минимальную рекомендуемую индуктивность, ниже которой сердечник будет терять магнитный поток при наименьшем номинальном токе нагрузки для данного конкретного выхода.
Убедитесь, что вы спланировали схему, которая позволяет работать без какой-либо нагрузки. Несомненно, вы не можете заменить ноль на Iout (min), потому что это может способствовать получению L (min) числа бесконечности. 2
L будет индуктивностью, а N будет количеством витков.Использование M в качестве аргумента:
L = √ L / AL
Таким образом, вот формула, которая может использоваться для вычисления количества витков при определении предпочтительной индуктивности.
Иногда вы, вероятно, не знакомы с оценкой AL. Вы, возможно, не узнаете спецификацию компонента ядра, которым вы владеете, поэтому не сможете идентифицировать таблицу.
Независимо от объяснения, можно экспериментально определить оценку AL.
Сделайте несколько оборотов и определите индуктивность с помощью L-метра. После этого измерьте индуктивность для наборов с различным числом витков.
Сделайте это снова для всех этих выбранных чисел оборотов. Следовательно, определите индуктивность, например, для 5, 10, 20, 40 витков, после чего для каждого и каждого определите значение AL. Получите среднее значение AL.
Можно сделать набросок графика зависимости L от N2. Градиент наиболее эффективной линии совпадения может быть значением AL.Вы также можете математически определить градиент «линии регрессии». Выполняйте любой курс, который вы понимаете, самый быстрый.
А сейчас давайте рассмотрим конкретный пример, чтобы решить то, что вы понимали до этого момента.
Оговоримся, что наш преобразователь является полумостовым преобразователем.
Входное напряжение преобразователя будет отличаться от 150 В переменного тока (212 В постоянного тока) до 250 В переменного тока (354 В постоянного тока). Выходное напряжение преобразователя может составлять 14 В постоянного тока. Частота поворота 50 кГц.
Первичная обмотка трансформатора: 26 витков
Вторичная обмотка трансформатора: 4 + 4 витка
Формула для вычисления минимальной существенной индуктивности:
L (мин.) = [Vin (макс.) – V (выход) x T (ВКЛ.) / 1,4 x Iout (мин.)
Нам нужно будет оценить выходное напряжение с вторичной обмоткой трансформатора на входе 354 В постоянного тока, что может быть нашим оптимальным входным напряжением.
Считаем, что падение напряжения на выпрямительном диоде составляет 1В. Следовательно, типичное выходное напряжение во вторичной обмотке трансформатора составляет 15 В.Соотношение витков трансформатора (первичная: вторичная) = 26: 4 = 6,5
Таким образом, в любое время типичное вторичное напряжение равно 15 В, типичное напряжение на первичной обмотке трансформатора составляет 6,5 * 15 В = 97,5 В. В случае, если рабочий цикл составлял 100%, напряжение на первичной обмотке трансформатора могло быть 177 В (50% напряжения шины постоянного тока – с учетом полумостовой топологии). Следовательно, рабочий цикл (97,5 / 177) * 100% = 55%.
Среднее выходное напряжение на вторичной обмотке трансформатора будет 15 В, при рабочем цикле 55%. Следовательно, максимальное выходное напряжение составляет 15 В / 0.55 = 27,3 В, и тогда предполагается уменьшение диода на 1 В. Следовательно, Vin (макс.) Составляет 26,3 В.
При оптимальном входном напряжении рабочий цикл, вероятно, будет наименьшим. Это может быть любое время, когда перерыв будет самым большим.
Теперь мы определили значение рабочего цикла 55% – это фактически минимальное значение рабочего цикла. Поскольку частота переключения составляет 50 кГц, период времени составляет 20 мкс. Период выключения составляет 0,45 * 20 мкс = 9 мкс. Это наш Toff (est).
Предположим, что конкретная минимальная нагрузка будет потреблять ток 500 мА.При использовании выхода 14 В и тока 500 мА рассеиваемое на выходном резисторе электричество, вероятно, составит:
P = VI = 14 x 0,5 Вт = 7 Вт
Это определенно большая мощность! В случае согласия, обязательно используйте минимальную нагрузку 500 мА. Если вы решите довести минимальную нагрузку до 250 мА, вы уменьшите рассеиваемую мощность (см. Выше) до 3,5 Вт.
Итак, теперь мы выяснили все существенные переменные. Давайте объединим их в формулу.-6 / 1,4 x 0,25
= 316uH
Часто это минимальная ожидаемая индуктивность. Не стесняйтесь использовать индуктивность выше установленного минимального числа, учитывая, что вы правильно определили минимальную существенную индуктивность.
Допустим, мы будем использовать индуктивность 450 мкГн. Предположим, что мы выбрали тороидный сердечник с оценкой AL 64 нГн за виток в квадрате.
Начнем с того, что ожидаемая индуктивность составляет 316 мкГн, что может быть эквивалентно 316000 нГн.
Следовательно, предпочтительный диапазон оборотов:
Это может быть 70 или 71 виток. Часто это для 316 мкГн.
Относительно 450 мкГн:
Сделаем примерно 84 витка.
Итак … теперь вы знаете, как рассчитать обороты трансформатора SMPS в домашних условиях, и вы можете применить это простое решение, чтобы определить необходимую выходную индуктивность для любого преобразователя, в котором используются прямой, двухтактный, полумостовой или полномостовая топология. Это легко, а также. Будем надеяться, что у меня лично была возможность дать вам возможность понять без сомнения.Хочу ценить ваши отзывы и мнения!
Как рассчитать обмотку трансформатора
Обновлено 28 декабря 2020 г.
Автор С. Хуссейн Атер
Если вы когда-нибудь задумывались, как дома и здания используют электроэнергию от электростанций, вы должны узнать о трансформаторах в распределительные сети, которые преобразуют токи высокого напряжения в те, которые вы используете в бытовых приборах. Эти трансформаторы имеют простую конструкцию для большинства типов трансформаторов, но могут сильно различаться по степени изменения входного напряжения в зависимости от конструкции.
Формула обмотки трансформатора
Трансформаторы, которые используются в системах распределения электроэнергии, имеют простую конструкцию, в которой используется катушка, намотанная на магнитный сердечник в различных областях.
Эти катушки с проводом принимают входящий ток и изменяют напряжение в соответствии с коэффициентом витков трансформатора , который равен
\ frac {N_P} {N_S} = \ frac {V_P} {V_S}
для числа обмотки первичной обмотки и вторичной обмотки N p и N s соответственно, а напряжение первичной обмотки и вторичной обмотки V p и V s соответственно.
Эта формула обмотки трансформатора сообщает вам, на какую долю трансформатор изменяет входящее напряжение, и что напряжение обмоток катушки прямо пропорционально количеству обмоток самих катушек.
Имейте в виду, что, хотя эта формула называется «отношением», на самом деле это дробь, а не отношение. Например, если у вас есть одна обмотка первичной обмотки и четыре обмотки вторичной обмотки трансформатора, это будет соответствовать доле 1/4, что означает, что трансформатор снижает напряжение на величину 1/4.Но соотношение 1: 4 означает, что для одного из чего-то есть четыре из чего-то другого, что не всегда означает то же самое, что и дробь.
Трансформаторы могут увеличивать или уменьшать напряжение и известны как повышающие трансформаторы или понижающие трансформаторы в зависимости от того, какое действие они выполняют. Это означает, что коэффициент трансформации трансформатора всегда будет положительным, но может быть больше единицы для повышающих трансформаторов или меньше единицы для понижающих трансформаторов.
Формула обмотки трансформатора верна только тогда, когда углы первичной и вторичной обмоток совпадают по фазе друг с другом. Это означает, что для данного источника питания переменного тока (AC), который переключается вперед и назад между прямым и обратным током, ток как в первичной, так и во вторичной обмотках синхронизируется друг с другом во время этого динамического процесса.
Могут быть трансформаторы с коэффициентом трансформации 1, которые не изменяют напряжение, а вместо этого используются для разделения различных цепей друг от друга или для небольшого изменения сопротивления цепи.
Калькулятор конструкции трансформатора
Вы можете понять свойства трансформаторов, чтобы определить, что калькулятор конструкции трансформатора будет учитывать как метод определения того, как сконструировать трансформаторы.
Хотя первичная и вторичная обмотки трансформатора отделены друг от друга, первичная обмотка индуцирует ток во вторичных обмотках с помощью метода индуктивности. Когда источник питания переменного тока подается через первичные обмотки, ток течет по виткам и создает магнитное поле с помощью метода, называемого взаимной индуктивностью.
Формула обмотки трансформатора и магнетизм
Магнитное поле описывает, в каком направлении и насколько сильный магнетизм будет действовать на движущуюся заряженную частицу. Максимальное значение этого поля составляет dΦ / dt , скорость изменения магнитного потока Φ за небольшой промежуток времени.
Поток – это измерение того, сколько магнитного поля проходит через определенную площадь поверхности, например прямоугольную. В трансформаторе силовые линии магнитного поля направляются наружу от магнитной катушки, вокруг которой намотаны провода.
Магнитный поток связывает обе обмотки вместе, а сила магнитного поля зависит от величины тока и количества обмоток. Это может дать нам калькулятор расчета трансформатора , который учитывает эти свойства.
Закон индуктивности Фарадея, который описывает, как магнитные поля индуцируются в материалах, диктует, что напряжение любой из обмоток индуцирует
либо для первичной обмотки, либо для вторичной обмотки. Обычно это называется наведенной электродвижущей силой ( ЭДС ).
Если бы вы измерили изменение магнитного потока за небольшой промежуток времени, вы могли бы получить значение dΦ / dt и использовать его для вычисления ЭДС . Общая формула для магнитного потока:
\ Phi = BA | cos {\ theta}
для магнитного поля B , площадь поверхности плоскости в поле A и угол между магнитным полем линии и направление, перпендикулярное площади θ .
Вы можете учесть геометрию обмоток вокруг магнитного сердечника трансформатора, чтобы измерить поток. Askat
для источника переменного тока, где ω – угловая частота ( 2πf для частоты f ) и Φ макс. – это максимальный поток.В этом случае частота f относится к количеству волн, которые проходят через заданное место каждую секунду. Инженеры также называют произведение силы тока на количество витков обмоток как « ампер-витков », что является мерой силы намагничивания катушки.
Примеры калькулятора обмоток трансформатора
Если вы хотите сравнить экспериментальные результаты того, как обмотки трансформаторов влияют на их использование, вы можете сравнить наблюдаемые экспериментальные свойства с характеристиками калькулятора обмоток трансформатора.
Компания-разработчик программного обеспечения Micro Digital предлагает онлайн-калькулятор обмотки трансформатора для расчета стандартного калибра проводов (SWG) или американского калибра проводов (AWG). Это позволяет инженерам изготавливать провода соответствующей толщины, чтобы они могли нести заряды, необходимые для их целей. Калькулятор оборотов трансформатора подскажет вам индивидуальное напряжение на каждом витке обмотки.
Другие калькуляторы, такие как калькулятор от компании-производителя Flex-Core, позволяют рассчитать сечение провода для различных практических применений, если вы вводите номинальную нагрузку, номинальный вторичный ток, длину провода между трансформатором тока и измерителем и входную нагрузку. метра.
Трансформатор тока создает напряжение переменного тока во вторичной обмотке, пропорциональное току в первичной обмотке. Эти трансформаторы снижают токи высокого напряжения до более низких значений, используя простой метод контроля фактического электрического тока. Нагрузка – это сопротивление самого измерительного прибора пропускаемому через него току.
Hyperphysics предлагает онлайн-интерфейс расчета мощности трансформатора, который позволяет использовать его в качестве калькулятора конструкции трансформатора или в качестве калькулятора сопротивления трансформатора.