Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Содержание

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. простейшая схема

В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: формулаили его интерпретация интерпретация формулы

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. вах

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: конечная формулаULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U

LED). В итоге все данные для расчета сопротивления получены.

графический расчетТем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: расчет сопротивления для светодиода АЛ307

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле: расчет мощности

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

cree-xm-lВ первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое U

LED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. пример на Cree XM–L Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит: мощность резистора

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника: расчета КПД

Пример с LED SMD 5050

smd-5050По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А. пример с smd 5050Ближайшее стандартное значение – 30 Ом. Расчет мощности и КПД

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.


Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристикаДлина волны, нМНапряжение, В
Инфракрасныеот 760до 1,9
Красные610 — 760от 1,6 до 2,03
Оранжевые590 — 610от 2,03 до 2,1
Желтые570 — 590от 2,1 до 2,2
Зеленые500 — 570от 2,2 до 3,5
Синие450 — 500от 2,5 до 3,7
Фиолетовые400 — 4502,8 до 4
Ультрафиолетовыедо 400от 3,1 до 4,4
Белыеширокий спектрот 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.


Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1…Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.


Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.


Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.


Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении
Расчет резистора для светодиода – как правильно рассчитать, примеры и формулы

Любой светодиод имеет маленькое сопротивление. Если его подключить прямо к блоку питания, он немедленно перегорит, так как сила тока будет слишком высока. Провода, которыми он подключается к внешним выводам сделаны из меди или золота и не могут выдержать скачка тока. Именно поэтому важно правильно произвести расчет резистора для светодиода.

От правильности произведенного расчета зависит сколько долго будет работать данный светодиод. Если резистор имеет недостаточное сопротивление, светодиод может перегореть, если же наоборот, сила тока будет меньше номинальной, лампочка будет иметь тусклый свет. Для того чтобы провести расчеты, существуют специальные формулы и сделать это не сложно. Кроме того, существуют специальные программы, которые автоматически произведут все необходимые расчеты на основании введенных данных.

В данной статье будут рассмотрены все аспекты и тонкости произведения подобных расчетов. Также в качестве бонуса в статье присутствует видеоролик на данную тему и научная статья, которою можно скачать.

Расчет сопротивления светодиода

Расчет сопротивления светодиода.

Результат расчёта

светодиоды Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону. Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла. Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь. Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Как зависит рабочее напряжение светодиода от его цвета

Таблица зависимости рабочего напряжения светодиода от его цвета.

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В. Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения цвета:

  • синий;
  • красный;
  • зелёный;
  • желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный;
  • теплый и холодный белый.
Светодиоды

Светодиоды.

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм.

Как рассчитать резистор для светодиода?

В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность. Автомобильные лампы на самых слабых лед 0,1W Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло. Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Вычисление светодиодного резистора с использованием Закон Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где V = напряжение через резистор (V = S – V L в данном случае),  I = ток через резистор.  Итак R = (V S – V L) / I. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Пример расчета: Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.  V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).  Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом. Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Как рассчитать резистор для светодиода?

Избегайте подключения светодиодов в параллели!

Светодиод как нелинейный элемент

Размеры резисторов до 2 Вт Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов. Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему. Как видно на рисунке, характеристики имеют нелинейный характер.

Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз. Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

 

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду

Расчёт резистора для светодиода

Расчёт резистора для светодиода – очень важный момент перед подключением светодиода к источнику питания. Ведь от этого зависит то, как будет работать светодиод. Если резистор будет иметь слишком маленькое сопротивление, то светодиод может выйти из строя (перегореть), а если сопротивление будет слишком велико, то светодиод будет излучать свет слабо. Расчёт резистора для светодиода производится по следующей формуле:

  • R = (VS – VL) / I
  • VS – напряжение источника питания (В).
  • VL – напряжение питания светодиода (обычно 2 вольта и 4 вольта для голубых и белых светодиодов).
  • I – ток светодиода (например 10 мА = 0.01 А или 20 мА = 0.02 А)
Как рассчитать резистор для светодиода?

Убедитесь, что выбранный вами электрический ток меньше максимального, на который рассчитан светодиод. Переведите эту величину из миллиампер в амперы. Таким образом результатом вычисления будет величина сопротивления резистора в омах (Ом). Если рассчитанная величина сопротивления резистора не совпадает со стандартным номиналом резисторов, необходимо выбрать ближайший больший номинал.

Впрочем, Вы можете изначально захотеть выбрать несколько большее сопротивление, для экономии электричества например. Но надо помнить, что излучение светодиода в этом случае будет менее ярким. Если напряжение источника питания = 9 Вольт и у Вас красный светодиод (VL = 2V), требуемый ток I = 20 мА = 0.02A, R = (9V – 2V) / 0.02A = 350 Ом. Необходимо выбрать резистор сопротивлением 390 Ом (ближайшее большее значение).

Расчёт резистора для светодиода

Расчёт резистора для светодиода.

 Мигающие светодиоды

мигающие светодиоды Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.

При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.

При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания. Ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники. Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный – 1,8…2В;
  • зеленый и желтый – 2…2,4В;
  • белые и синие – 3…3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем – 3В. Производим расчет напряжения на гасящем резисторе – Uгрез = Uпит – Uсвет = 5В – 3В = 2В. Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

Расчет гасящего резистора для светодиода В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт). Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

 

  • Uгрез = Uпит – Uсвет = 5В – 2В = 3В.
  • R = U / I = 3В / 0,015А = 200 Ом.
  • P = U * I = 3В * 0,015А = 0,045 Вт.

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр. Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

 

Расчет гасящего резистора для светодиода

Расчет гасящего резистора для светодиода.

 

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным. Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления.

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

В данной статье были рассмотрены основные вопросы расчета подключения светодиодов посредством резистора. По ссылке можно скачать статью “Как рассчитать резистор для подключения светодиодов”.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.led-obzor.ru

www.www.casemods.ru

www.katod-anod.ru

www.radiostorage.net

www.ledno.ru

Предыдущая

РезисторыЧто такое делитель напряжения и как он используется на резисторах?

Следующая

РезисторыКак отличается параллельное и последовательное соединение резисторов?

Расчет резистора для светодиода и различные подключения LEDs

Подключать светодиоды – дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю.

Главный параметр у любого светодиода – ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

Ток на светодиодах ограничивается резистором – это самый дешевый вариант. Но есть и более “продвинутый” – использовать светодиодный драйвер. По факту, использование резисторов – пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно приобрести тут. Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов подключения светодиодов:

к оглавлению ↑

Расчет резистора для светодиода


Расчет резистора для светодиода

Вспомним закон Ома:

U=I*R

R=U/I где,

R – сопротивление – измеряется в Омах

U – напряжение-  измеряется в вольтах (В)

I – ток- измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод – 2 В и 20 мА

Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:

20 мА=0,02 А.

R=10/0.02=500 Ом

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

P=U*I

P=10*0.02 A=0.2 Вт

Необходимый резистор – R=500 Ом и Р=0,2 Вт

к оглавлению ↑

Расчет резистора для светодиода при последовательном соединение светодиодов


Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.

Последовательное соединение расчет резистора

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если “на пальцах”, то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

R=6/0.02=300 Ом.

Р=6*0,02=0,12Вт

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру. 

к оглавлению ↑

Расчет резистора для светодиода при параллельном соединении


При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

к оглавлению ↑

Расчет резистора для светодиода при последовательно-параллельное соединении


Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Расчет резистора

Существует еще один способ соединения светодиодов – параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: “Хочешь сделать это хорошо, сделай это сам”.

к оглавлению ↑

Видео на тему правильного расчета резисторов для LEDs


Как рассчитать сопротивление резистора для светодиода: формула, онлайн калькулятор

Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Резистор

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Схема

Исходя из закона Ома, рассчитываем по такой формуле:

Формула

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

Формула

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Формула

Обратите внимание, что резистор подведен на плюсовой контакт диода. Определить полярность диода достаточно просто: плюсовой контакт в колбе по размеру больше минусового.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

График

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Формула

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Формула

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

 

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Читайте также: Основные способы определения полярности у светодиода.

В каких случаях допускается подключение светодиода через резистор

Никакие диоды, в том числе светодиоды, нельзя включать без ограничения проходящего тока. Резисторы в таком случае просто необходимы. Даже небольшое изменения напряжения вызывают очень сильное изменение тока и, следовательно, перегрев диода.

Если вы планируете подключать несколько диодов, рекомендуем выбирать модели одной фирмы. Одинаковые образцы лучше работают вместе.

Параллельное соединение

Схема

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Читайте также: Схема для плавного включения ламп накаливания 220 В.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Объясняется достаточно просто: если перегорит один светодиод, то на другой (-ие) может попасть больший ток и начнется перегрев. Потому при параллельной схеме подключения каждому диоду нужен отдельный резистор.

Неправильно:

Схема

 

Правильно:

Схема

 

Последовательное соединение светодиодов

Схема

Именно такое соединение пользуется популярностью. Объясняется такой частый выбор простым примером. Представьте, что в елочной гирлянде для каждого светодиода подобран резистор. А в гирлянде этих лампочек бывает более сотни! Параллельное соединение в данном случае невыгодно и трудоемко.

Только в самодельных гирляндах можно встретить параллельное соединение. В заводских моделях всегда последовательное.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Читайте также: Как сделать блок питания из энергосберегающей лампы своими руками.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Резистор

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

В заключение

Пишите комментарии и делитесь статьей в социальных сетях! Если возникли вопросы, можно найти в интернете дополнительные видео для расчета сопротивления резистора и на другие близкие темы.

Расчет резистора для светодиода ⋆ diodov.net

Программирование микроконтроллеров Курсы

Расчет резистора для светодиода выполняется довольно просто, быстро и не содержит ничего «военного», только закон Ома. Хотя во всемирной сети существует множество онлайн-калькуляторов, помогающие определить различные параметры, но, по моему личному мнению, лучше один раз разобраться самому и понять физику процесса, чем слепо пользоваться подобными калькуляторами.

Самый частый пример – это подключение светодиода к источнику питания с напряжением 5 В, например к USB порту компьютера. Второй пример – подключение к аккумуляторной батарее автомобиля, номинальное значение напряжения которой 12 В. Если к такому источнику питания напрямую подсоединить полупроводниковый прибор, то последний попросту выйдет из строя под действием протекающего тока, превышающего допустимое значение, ‑ произойдет тепловой пробой полупроводникового кристалла. Поэтому нужно ограничивать величину тока.

Правильное подключение светодиода

С целью лучшей наглядности возьмем два типа светодиодов с наиболее распространенными характеристиками:

Светодиоды

напряжение:

UVD1 = 2,2 В;

UVD2 = 3,5 В;

ток:

IVD1 = 0,01 А;

IVD2 = 0,02 А.

Расчет резистора для светодиода

Определим сопротивление R1,5 для VD1 при Uип = 5 В.

Расчет резистора для светодиода при 5 В

Для расчета величины сопротивления, согласно закону Ома нужно знать ток и напряжение:

R=U/I.

Величина тока, протекающего в цепи и в том числе через VD нам известна из заданного условия IVD1 = 0,01 А, поэтому следует определить падение напряжения на R1,5. Оно равно разности подведенного Uип = 5 В и падения напряжения на светодиоде UVD1 = 2,2 В:



Падение напряжения на резисторе

Теперь находим R1,5

ПаОпределение сопротивления резистора

Из стандартного ряда сопротивлений выбираем ближайшее в сторону увеличения, поэтому принимаем R1,5 = 300 Ом.

Расчет сопротивления резистора для светодиода при 5 В

Таким же образом выполним расчет R для VD2:

Формула расчета сопротивления резистора

Схема соединения резистора со светодиодом

Произведем аналогичные вычисления при значении Uип = 12 В.

Расчет сопротивления резистора для светодиода при 12 В

Принимаем R1,12 = 1000 Ом = 1 кОм.

Как рассчитать резистор для светодиода

Принимаем R2,12 = 430 Ом.

Схема соединения светодиода с резистором

Для удобства выпишем полученные значения сопротивлений всех резисторов:

Значения сопротивлений резисторов для светодиодов

Следует заметить, что сопротивление, выбранное из стандартного ряда, превышает расчетное, поэтому ток в цепи будет насколько снижен. Однако этим снижением можно пренебречь в виде его малого значения.

Расчет мощности рассеивания

Определить сопротивление – это только полдела. Еще резистор характеризуется важным параметром, который называется мощность рассеивания P – это мощность, которую он способен выдержать длительное время, при этом, не перегреваясь выше определенной температуры. Она зависит ток в квадрате, так как последний протекая в цепи, вызывает нагрев ее элементов.

P = I2R.

Визуально резистор более высокой Р отличается большими размерами.Резисторы с разной мощностью рассеивания

 

Выполним расчет P для всех 4-х резисторов:

Расчетные мощности рассеивания резисторов

Из стандартного ряда мощностей выбираем ближайшие номиналы в сторону увеличения: первые три сопротивления можно взять с мощностью рассеивания 0,125 Вт, а четвертый – с 0,250 Вт.

Запишем общий расчет резистора для светодиода. Следует определить всего три параметра:

1) падение напряжения

2) сопротивление

3) мощность рассеивания.

Как видно, понять и запомнить данный алгоритм достаточно просто. Теперь, в случае применения специальных калькулятор, вы будете понимать, что и как они считают. Кстати, алгоритмы многих подобных калькуляторов не учитывают стандартный ряд номинальных значений, поэтому будьте внимательны, а лучше считайте все сами – это очень полезно делать для приобретения ценного опыта.

Электроника для начинающих

Еще статьи по данной теме

Расчет резистора для светодиода. Онлайн калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

где:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

 Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Умный ПДУ для светодиодной ленты

Контроллер для RGBW/RGB/Dual White. Управление по радиоканалу, WIFI…


Светодиодный драйвер на PT4115

Для светодиодов 3 Вт 700mA / 1 Вт 350mA


Инфракрасный включатель для светодиодной ленты

Напряжение: 12/24В, ток: 5А, расстояние срабатыва…


Драйвер для светодиодной ленты

220В/12В, мощность: 18 Вт / 36 Вт / 72 Вт / 100 Вт…


Светодиодный драйвер

Мощность: 3 Вт, 4 Вт, 5 Вт, 7 Вт, Напряжение: 3…12В, выходной ток…


Контроллер светодиодной ленты

Bluetooth – WiFi контроллер для 5050, WS2811, WS2812B сведодиодной ленты…


Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор  поможет вам найти нужный номинал резистора  для светодиода, подключенного по следующей схеме:

примечание: разделителем  десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора  = (U UF)/ I

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание:   Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются  в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то  выберите ближайшее  бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то   возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

90000 How to Calculate Resistor Value for LED Lighting 90001 90002 Following these steps will give us the resistor value for LEDs powered by 12V, DC: 90003 90004 90005 Determine the voltage and current needed for your LED. 90006 90005 We’ll use the following formula to determine the resistor value: Resistor = (Battery Voltage – LED voltage) / desired LED current. 90006 90005 For a typical white LED that requires 10mA, powered by 12V the values ​​are: (12-3.4) /. 010 = 860 ohms. 90006 90005 To use several LEDs in parallel, sum the current values.From the example above, if we use 5 white LEDs the current requirement is 10mA x 5 = 50mA. So (12-3.4) /. 050 = 172 ohms. 90006 90013 90002 LEDs are becoming more and more popular for a variety of lighting projects and needs. This is due to the excellent power efficiency and extended life times of LEDs over incandescent lamps. Also, as the technology improves and production increases, the cost continues to be reduced. 90003 90002 LED is an acronym for Light Emitting Diode. This means that an LED has a specific polarity that must be applied to make it produce light.Failure to observe this polarity requirement will cause the LED to fail to light and could cause catastrophic damage to the LED. This is because an LED has a relatively low value of reverse polarity voltage that is allowed (normally about 5 volts). Since an LED is essentially a diode, it has a maximum current value that can not be exceeded for any period of time. 90003 90002 With this in mind, we will explore the requirements for the limiting resistor that must be used in an LED circuit. Since LEDs are available in various colors, the required resistance value will vary depending on the color of the LED.This is because the color of the LED is determined by the materials used to make it and these various materials have different voltage characteristics. The forward voltage value is the voltage required to cause the LED to light. Typical Red, Green, Orange, and Yellow LEDs have a forward voltage of approximately 2.0 volts; but White and Blue LEDs have a forward voltage value of 3.4 volts. Because of this variation the value of resistor value will vary depending on what the LED color is. The procedure is to choose a resistor value that will produce the correct amount of current to flow in the LED based on this forward voltage value and the value of the Power supply that is powering the circuit.90003 90002 Since automotive applications are one of the most popular uses for LEDs, I will go through an example for an LED lighting project that uses 12 volts as the power source. The formula required is ohm’s law which states that the Resistance is equal to the Voltage divided by the Current. The important feature to note here is that the voltage value used in the calculation is the difference between the power supply (battery) voltage and the LED’s forward voltage value. This is because we want the resistor to “drop” the voltage from the power source down to the forward voltage value of the LED.So the formula becomes 90003 90002 Resistor = (Battery Voltage – LED voltage) / desired LED current. So assuming a 12 volt power source and a white LED with a desired current of 10 mA; The formula becomes Resistor = (12-3.4) /. 010 which is 860 ohms. Since this is not a standard value I would use an 820 ohm resistor. We also need to determine the power rating (watts) of the required resistor. This is calculated by multiplying the voltage value dropped across the resistor by the current value flowing in it.For our example above, (12-3.4) X .010 = 0.086 so we can safely use a ¼ watt resistor in this application since we should use the next highest standard wattage rating. 90003 90002 If more than one LED is required, multiple LEDs (of the same color) may be connected in parallel. This will maintain the same voltage requirement but the current value will increase in direct proportion to the number of LEDs. The wattage rating of the resistor may also increase. An as example we will assume the same white LED but we will connect 5 LEDs in parallel.Therefore, the current value required will be 10 mA multiplied by 5 (.010 X 5 = .050). Using this in our formula; (12-3.4) /. 050 = 172 ohms. Use the standard value of 180 ohms. The wattage rating will now be higher (12-3.4) X .050 = .43 so we need to use at least a ½ watt resistor in this case. 90003 90002 The two examples will be repeated for Red LEDs. For a single Red LED: (12-2.0) /. 010 = 1000 ohms which is 1K ohms and wattage rating is (12-2.0) X (.010) = .100 so ¼ watt is sufficient. For 5 Red LEDs in parallel: (12-2.0) /. 05 = 200 ohms which is a standard value and wattage rating is (12-2.0) X .050 = .5 so I would use a 1 watt resistor to give us some tolerance to compensate for variations in power supply voltage etc . 90003 90002 As we can see, determining the resistor value for lighting LEDs is simple and straightforward, but we must take into consideration the color of the LED as well as the wattage rating of the required resistor and the number of LEDs in the circuit. 90003 .90000 How to Calculate the Value of Resistor for LED & LED’s Circuits 90001 90002 90003 How to Find the Value of Resistor for different types of LED’s Circuits 90004 90005 90006 The following step by step tutorial will help you to find the proper value of resistor (or resistors) for one or more LED’s and LED’s strings circuits to connect with battery and power supply. 90007 90006 If you pick this topic, you will be able to: 90007 90010 90011 Calculate the value of resistors for different LED’s circuit diagrams 90012 90011 Calculate the Forward Current of LED’s 90012 90011 Calculate the Forward Voltage for different LED’s Circuits 90012 90011 Connect LED’s in Series with batter 90012 90011 Connect LED’s in Parallel with battery 90012 90011 Connect LED’s in Series-Parallel combination Circuits 90012 90023 90024 90025 90026 Update: 90027 You can Also use this 90028 90025 90026 LED Resistor Calculator 90027 for this purpose 90028 90026 90027 90007 90036 90026 Typical LED Symbol, Construction and Leads Identification.90027 90039 90006 90041 Click Image to enlarge 90042 90007 90006 90026 90027 90047 90047 Before we go in detail, we will try to get ride on below simple circuit, so that the other calculation will be easier to understand. 90007 90006 90041 Click Image to enlarge 90042 90007 90006 90041 90056 90042 90026 This is the Simplest LED Series circuit ever 90027. 90007 90006 Here, the supply voltage is 6V, LED Forward Voltage (V 90062 F 90063) is 1.3 Volt and Forward Current (I 90062 F 90063) is 10mA.90007 90006 Now the Value of resistor (which we will connect in Series with LED) for this circuit would be: 90007 90006 90026 Resistor Value 90027 = (V 90062 supply 90063 – V 90062 F) 90063 / I 90062 F 90063 = (6 – 1.3) / 10mA = 90026 470 Ω 90027 90007 90006 Current draw = 90003 20mA 90004 90007 90006 Resistor Power rating formula for this circuit 90007 90006 Resistor Power Rating = I 90062 F 90063 90090 2 90091 x Resistor Value = (10mA) 90090 2 90091 x 470 90026 90027 Ω = 0.047W = 90003 47mW 90004 90007 90006 90026 But 90027 This is the minimum required resistor value to ensure that resistor will not overheat, so its recommended that to double the power rating of resistor that you have calculated, therefore, choose 0.047W x 2 = 0.094W = 94mW resistor for this circuit.Resistor power rating (Value is doubled) = 0.094 W = (94 mW) 90007 90006 90026 Also keep in mind that: 90027 90007 90010 90011 It is too difficult to find the exact power rating resistors that you have calculated. Generally, Resistors come in 1/4 watt, 1/2 watt, 1 watt, 2 watt, 5 watt, and so on. Therefore, select the next higher value of power rating. For example, if you’re calculated value of resistor power rating is 0.789W = 789mW, then you would select 1W Resistor.90012 90011 It is too difficult to find the exact value of resistors that you have calculated. Generally, Resistors come in standard values. If you are not able to find the exact value of resistor that you have calculated, and then select the next coming value of resistor that you have calculated, For Example, if the calculated value is 313.5Ω, you would use the closest standard value, which is 330 Ω. if the closest value is not close enough, then you can make it by connecting resistors in series – parallel configuration.90012 90011 90026 I 90062 F 90063 = Forward Current of LED: 90027 This is the amount of maximum current that LED can accept continuously. It is recommended that provide 80% of LED forward current rating for long life and stability. For example, if the rating current of LED is 30mA, then you should run this LED on 24mA. Value of current over this amount will shorten LED life or may start to smock and burn. 90012 90011 If you are still unable to find the LED forward current, than assume it 20mA because a typical LED’s run on 20mA.90012 90011 90026 V 90062 F 90063 = Forward Voltage of LED: 90027 This is the forward voltage of LED i.e. the voltage drop when we supply the rated forward current. You can find this data on LED’s Packages, but is somewhere between 1.3V to 3.5V depending on type, color and brightness. If you are still unable to find the forward voltage, simply connect the LED through 200Ω with 6V battery. Now measure the voltage across LED. It will be 2V and this is the forward voltage. 90012 90023 90024 90026 Formula for finding the value of resistor (s) to connect LED’s in Series: 90027 90007 90024 Below is another simple LED’s (LED’s Connected in Series) Circuit.In this circuit, we have connected 6 LED’s in Series. Supply Voltage is 18V, The Forward Voltage (V 90062 F 90063) of LED’s is 2V and the forward Current (I 90062 F 90063) is 20mA each. 90007 90024 90041 Click Image to enlarge 90042 90007 90024 90041 90143 90143 90042 Resistor Value (LED’s in Series) = (V 90062 supply 90063 – (V 90062 F 90063 x No. of LED’s)) / I 90062 F 90063 90007 90024 Here, Total forward voltage (V 90062 F 90063) of 6 LED’s = 2 x 6 = 12V 90007 90024 and forward Current (I 90062 F 90063) is same (i.e. 20mA) 90007 90024 (90026 Note: 90027 this is a series circuit, so current in series circuit in each point is same while voltages are additive) Now, the value of resistor (for Series Circuit) would be: 90007 90024 = (V 90062 supply 90063 – (V 90062 F 90063 x No. of LED’s)) / I 90062 F 90063 = (18 – (2 x 6)) / 20mA 90007 90024 = (18-12) / 20mA = 90026 300 90027 90026 Ω 90027 90026 90027 90007 90024 Total Current draw = 20mA 90007 90024 (This is series circuit, so currents are same) Resistor Power Rating 90007 90024 = I 90062 F 90063 90090 2 90091 x Resistor Value = (20mA) 90090 2 90091 x 300 90026 90027 Ω = 0.12 = 120mW 90007 90024 90026 But 90027 This is the minimum required resistor value to ensure that resistor will not overheat, so its recommended that to double the power rating of resistor that you have calculated, therefore, choose 0.12W x 2 = 0.24W = 240mW resistor for this circuit.Resistor power rating (Value is doubled) = 0.24 W = (240 mW) 90007 90024 90026 Formula for finding the value of resistor (s) to connect LED’s in Parallel (With Common Resistor): 90027 90007 90024 90041 Click Image to enlarge 90042 90007 90024 90208 90208 In this circuit, we have connected LED’s in parallel with common resistor.Supply Voltage is 18V, The Forward Voltage (V 90062 F 90063) of LED’s is 2V and the forward Current (I 90062 F 90063) is 20mA each. 90007 90024 Resistor Value (LED’s in parallel With Common Resistor) = (V 90062 supply 90063 – V 90062 F) 90063 / (I 90062 F 90063 x No. of LED’s) 90007 90024 Here, Total forward Current (I 90062 F 90063) of 4 LED’s = 20mA x 4 = 0.08A, and forward Voltage (V 90062 F 90063) is same (ie 2V) 90007 90024 (90026 Note: 90027 this is a parallel circuit, so voltage is parallel circuit is same in each point while currents are additive).90007 90024 Now, the value of resistor (for parallel Circuit with common resistor) would be: 90007 90024 = (V 90062 supply 90063 – V 90062 F) 90063 / (I 90062 F 90063 x No. of LED’s) 90007 90024 = (18 – 2) / 0.08 90007 90024 = 90026 200 90027 90026 Ω 90027 90007 90024 Total Current draw = 20mA x 4 = 80mA 90007 90024 (This is parallel circuit, so currents are additive) 90007 90024 Resistor Power Rating = I 90062 F 90063 90090 2 90091 x Resistor Value = (20mA) 90090 2 90091 x 200Ω = 0.08 W = 80mW 90007 90024 90026 But 90027 This is the minimum required resistor value to ensure that resistor will not overheat, so its recommended that to double the power rating of resistor that you have calculated, therefore, choose 1.28W x 2 = 2.56W resistor for this circuit. Resistor power rating (Value is doubled) = 2.56W (280 mW) 90007 90024 90026 Formula for finding the value of resistor (s) for connecting LED’s in Parallel (With Separate resistor) 90027 90007 90024 90041 Click Image to enlarge 90042 90007 90024 90041 90277 90277 90042 This is another way to connect LED’s in parallel with separate resistors.In this circuit, we have connected 4 LED’s in parallel with separate resistors. Supply Voltage is 9V and the Forward Voltage (V 90062 F 90063) of LED’s is 2V and the forward Current (I 90062 F 90063) is 20mA each. 90007 90024 90026 Resistor Value 90027 (LED’s in parallel with separate Resistor) = (V 90062 supply 90063 – V 90062 F 90063) / I 90062 F 90063 Here, Total forward voltage (V 90062 F 90063) of LED’s = 2 and forward Current ( I 90062 F 90063) 20mA (ie 20mA) 90007 90024 (90026 Note: 90027 this is a parallel circuit, but we are finding the value of resistor for each section, not for whole circuit.So in each section, the circuit becomes in Series position (refer to the Series Circuit formula or the 1 90090 st 90091 simple circuit above, you will find that these are same) 90007 90024 Now, the value of resistor (for parallel Circuit with separate resistors) would be: 90007 90024 90003 = (V 90062 supply 90063 – V 90062 F 90063) / I 90062 F 90063 = (9 – 2) / 20mA = 350 Ω 90004 90007 90024 Total Current draw = 20mA x 4 = 80mA (This is parallel circuit, so currents are additive) 90007 90024 Resistor Power Rating = I 90062 F 90063 90090 2 90091 x Resistor Value = (20mA) 90090 2 90091 x 350 90026 90027 Ω = 0.14 = 90003 140mW 90004 90007 90024 90026 But 90027 this is the minimum required value of resistor to ensure that resistor will not overheat, so its recommended that to double the power rating of resistor that you have calculated, therefore, choose 0.14W x 2 = 0.28W = 280mW resistor for this circuit.Resistor power rating (Value is doubled) = 0.28 W (280 mW) 90007 90024 There is another way (Series-Parallel Combination) to connect LED’s with battery; if you understood this simple calculation then I’m sure that you can easily calculate the value of resistors for Series-Parallel Combination LED’s connection circuit as well.90007 90024 Related Posts: 90007.90000 LED Series Resistor Calculator 90001 90002 LED Series Resistor Calculator 90003 90004 All LEDs require some form of 90005 current limiting 90006. Connecting an LED directly to the power supply will burn it out in a heartbeat. Overdriving, even briefly, will significantly reduce it’s life and light output. 90007 90004 Fortunately, driving a single or a string of low current (20-30 mA) LEDs is a simple task – adding a small 90005 resistor in series 90006 is the easiest and cheapest way to limit the current.Keep in mind however, that high current (above a few hundreds of mA) LEDs are tougher to drive, and while they can be operated with a series resistor, to minimize power loss and ensure reliability, it’s advisable to use a more expensive 90011 switching current regulator 90012. 90007 90004 Our 90005 LED calculator 90006 will help you determine the value of the current limiting series resistor when driving a single or an array of low-current LEDs. To get started, input the required values ​​and hit the “Calculate” button.90007 90004 The program will draw a small schematic, display the calculated resistance and will tell you the value and color code of the nearest lower and higher standard resistor. It will calculate the power dissipated by the resistor and LED (s), the recommended resistor Wattage, the total power consumed by the circuit and the efficiency of the design (Power consumed by the LED (s) / Total circuit power consumption) x 100 ). 90007 90020 Input fields 90021 90004 90005 Supply voltage 90006: Type in a voltage greater than the LED voltage drop for a single LED circuit and parallel connection or the sum of all voltage drops when connecting multiple LEDs in series.90007 90004 90005 LED current 90006: Type in the single LED current in milliamperes. Common 3 mm and 5 mm LEDs usually operate in the range of 10-30 milliamps, but power LEDs used in lighting and automotive applications can have current requirements above 200 mA. A current of 20 mA is usually a safe value if you do not have access to the component’s datasheet. 90007 90004 90005 LED color 90006 and 90005 Voltage drop 90006: Select the color of your LED. The 90011 voltage drop 90012 box will auto-fill with the typical value for the selected color (e.g. 2V for a standard red LED; 3.6V for a white LED used in lighting, stroboscope, etc .; 1.7V for an infrared LED used in remote controls, etc.). However, the voltage drop varies greatly between different types of LEDs and also changes slightly with the current, so please change it if you know the correct value for your component. 90007 90004 90005 Number of LEDs 90006: Select the number of LEDs you want to use in your circuit. For multiple LEDs a second drop-down will appear where you can select either a 90005 series or parallel 90006 connection.90007 90004 Note: You should avoid connecting LEDs in parallel with just one resistor shared between them. Identical LEDs can be successfully connected in parallel, but each LED may have a slightly different voltage drop, and the brightness of the LEDs will differ. If you want to connect the LEDs in parallel each one should have its own resistor. Calculate the value for a single LED and connect all the LED-resistor pairs in parallel. 90007 90004 90005 Resistor precision 90006: select the desired standard resistor precision: 10% (E12), 5% (E24), 2% (E48) or 1% (E96).Use our resistor color code calculator to find out the color bands for different (20%, 0.5% …) precision resistors. 90007 90020 How to interpret the results 90021 90004 A simple 90005 schematic 90006 is generated with every pageload. Only the nearest standard resistor’s value is shown on the diagram and only two LED connections are drawn regardless of how many LEDs are in the circuit (but I’m sure you can easily fill in the missing bits). 90007 90004 There are 90005 two resistors 90006 shown on the right.They are the nearest (upper and lower) standard values ​​closest to the raw calculated resistance. You have to use only one in your circuit – it’s best to select the one which is closer (the one with * after the value). 90007 90004 The 90005 recommended resistor Wattage 90006 is calculated with a small safety margin, so that the dissipated power stays within 60% of the rated value. 90007 90004 The 90005 efficiency 90006 [%] will show you how much of the total power consumed by the circuit is actually used by the LED (s).90007 90020 How to identify the leads of an LED 90021 90004 An LED has two leads: a positive (anode) and a negative (cathode). On schematic diagrams, its symbol is similar to the simple diode, with two arrows pointing outwards. The anode (+) is marked with a triangle and the cathode (-) with a line. Sometimes you’ll find additional labels: A or + for anode and K or 90005 – 90006 for cathode. 90007 90004 There are several ways to identify the leads of an LED: 90007 90076 90077 The cathode (negative) is usually marked with a 90011 flattened edge 90012 on the bottom of the LED’s body.90080 90077 Most LEDs are manufactured with one longer leg, indicating the positive (anode). 90080 90077 Take a look inside the LED itself – the smaller metal piece inside the LED connects to the positive electrode and the bigger one connects to the negative electrode. 90080 90085 90004 90007 .90000 Should You Omit a Current Limiting Resistor for LED? | Blog 90001 90002 90003 90002 Most of my friends in engineering live a balanced lifestyle. However, there are some engineers that are workaholics. These engineers do not limit their working hours and are constantly dealing with stress. Their lifestyle is not so different from an LED’s that is directly connected to a power supply without a current limiting resistor.They start out strong, but eventually flicker and burn out. 90003 90002 In the architecture industry, it is common for Light Emitting Diodes (LED) to be used in architecture models. However, I have noticed that more and more people are connecting their LEDs directly to the power supply without a current-limiting resistor. While they are initially functional since the voltage of the power supply is set to match the LED, this is not a good practice to follow if you want your LEDs to live up to their printed board specified life cycles.90003 90008 How an LED works 90009 90002 An LED is a semiconductor device built using a junction of P-Type silicon and N-Type silicon, similar to a diode. P-Type semiconductors have a higher concentration of positive “holes” than electrons and N-Type semiconductors have a higher concentration of electrons. 90003 90002 A typical diode only allows current to flow in a single direction. A forward bias is applied to the LED by connecting the P-Type silicon to the positive terminal of a power supply, and the N-Type silicon to the ground.When the forward voltage exceeds the threshold voltage of the P-N junction, the current starts to flow. The voltage drop across an LED is always equivalent to the forward voltage of the LED. They may vary from 1.8V to 3.3V depending on the color and type of the LED. 90003 90002 When LED is connected to a power supply with a voltage higher than its forward voltage, a current limiting resistor is connected in series with the LED. The current limiting resistor limits the current for the LED and regulates the difference in voltage drops between the LED and the power supply.Of course, you’ll need to calculate which current limiting resistor you’ll need for your printed board. 90003 90008 Choosing The Right Power Supply for LEDs 90009 90002 While regular switching power supply could easily light up an LED with a current limiting resistor, there are power supplies that are dedicated to LED applications. These power supplies are called LED drivers and there are two types of them: constant current LED drivers and constant voltage drop LED drivers. 90003 90002 A constant current LED driver will alter its voltage within a range to ensure that its current output is maintained at the specified value.For example, you can use a constant current LED driver for 100 LEDs connected in parallel that have a forward voltage of 3.3V and forward current of 10mA. The LED driver must be capable of maintaining 1A consistently with an operating voltage range that overlaps the LED’s forward voltage. In this case, a current limiting resistor is not needed. 90003 90002 A constant voltage LED driver works by regulating the voltage at a specified value within a current limit. In the case of LED strips or commercial lighting, current limiting resistors are installed to minimize the effects of variation in the voltage source.These LED lights often state the voltage that they operate at and that they require constant voltage LED drivers. 90003 90002 90025 90026 Get the right power supply for your LED configuration. 90027 90003 90008 Omitting Current Limiting Resistor – Is It Worth The Risk? 90009 90002 With a range of LED drivers in the market, many companies are choosing to use a regular switching power supply and are omitting current limiting resistors in their LED installations. This is because manually soldering the resistors to the LEDs takes additional labor, and regular switching power supplies are cheaper than LED drivers.90003 90002 While it seems sound, in theory, to connect a regular 3.3V power supply to hundreds of LED with the same forward voltage. This approach omits may cause these LEDs to fail long before its stated life cycle. As a result, it is not uncommon to have these LEDs to flicker or burn out within weeks being installed. This is because regular switching power supplies tend to have issues with in-rush current; a sudden spike of current when the power is turned on. Over time, this can damage the LEDs if they are not protected by current limiting resistors.Alternatively, advanced LED Drivers have features that eliminate inrush current issues and help you avoid manual soldering. 90003 90002 90025 90026 Some of these beautiful LEDs will start flickering within weeks of installation when you choose to cut costs instead of following best practices. 90027 90003 90002 As an engineer or an electronics hardware supplier, the best we can do is give sound advice for how to handle these scenarios. However, when we are designing our own LED applications, there is no excuse for not following the best practices for powering LEDs.As a start, you can get your power calculations and current calculations correct and double check your designs with a PDN Analyzer ™. This will help you eliminate high-current density areas that generate too much heat when all your LEDs power up simultaneously. Of course, you’ll want to use professional PCB Design software, like Altium Designer’s CircuitStudio® or to help get your designs started. 90003 90042 Still doubtful of whether to include limiting resistors for your LED application? Or remove them to save precious spaces? Talk to the experts at Altium Designer now.90003 90042 90003 90046 90025 Check out Altium Designer® in action … 90027 90049 90046 90025 Powerful PCB Design 90027 90049 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *