Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как рассчитать мощность стабилизатора напряжения для дома

Правильный подбор стабилизатора напряжения необходимо выполнять по основному параметру – общей мощности электроприборов, которые необходимо защитить от чрезмерной нагрузки и перепадов напряжения, подключенных к определенной сети питания.

Однофазные устройства устанавливают чаще всего для создания качественных параметров напряжения в небольшом офисе, квартире. Чтобы правильно рассчитать мощность стабилизатора, необходимо сначала сложить мощность всех электрических устройств. Кроме мощности по паспорту устройства, оснащенного электродвигателем, нужно учесть пусковой ток. Для этого к расчету добавляют около 30% мощности.

Наличие в цепи стабилизатора напряжения дает возможность обеспечить защиту бытовой техники. Через стабилизатор можно подключить отдельные приборы, однако эффективнее всего будет выбор прибора, через которое будет работать все оборудование

Расчет по техническим характеристикам

Каждый прибор в комплекте имеет паспорт, где указаны все характеристики работы. В нем указана мощность устройства. Необходимо суммировать все значения устройств. Эта величина будет приблизительной.

К ней необходимо добавить запас мощности около 30% для пусковых токов, и также 50% для устройств, изготовленных в Китае.

Мощность стабилизатора напряжения по автоматам

Оптимальным методом является посмотреть значение мощности на автоматах входа, находящихся в щитке. Они расположены вместе со счетчиком электрической энергии. Электронный стабилизатор рассчитать намного проще:

  1. Сначала определяем номинал автомата.
  2. Далее, эту величину делим на 5. В результате получаем необходимую полную мощность вашего стабилизатора.

Если автоматы на 25 А, то маркировка стоит С25. В результате деления получаем 5 кВА. Если у вас в квартире никогда не выбивало автоматы, то значит нагрузка вашей квартиры меньше 5 кВА. По этой информации подбираем полную мощность стабилизатора.

Расчет мощности стабилизатора будет сложнее, если в щите есть несколько автоматов. Необходимо выписать все значения с них. И по этим данным осуществляют подбор стабилизатора.

Стабилизаторы серии ЛЮКС функционируют без снижения мощности при низком напряжении. Элемент измерения находится на выходе устройства. В итоге защита сработает, когда потребитель превысит более 100% нагрузки от заданных номиналов. При пониженном напряжении на входе сила тока возрастет. В итоге падение напряжения будет оплачивать производитель устройства, а не потребитель.

Подкатегории стабилизаторов

Существуют различные типы стабилизирующих устройств с разным типом работы. Рассмотрим основные из таких стабилизаторов, для облегчения выбора в торговой сети.

Релейные

При повышенной скорости регулирования, сильных скачках напряжения, за небольшой промежуток несколько раз, стабилизаторы работают с малой точностью, при работе способны издавать щелчки. Это работает реле, переключает ступени трансформатора.

Тиристорные

Такие устройства еще называют симисторными. Они относятся к электронным приборам. Их повышенная точность и скорость регулирования напряжения питания, бесшумность работы привлекает покупателей при приобретении.

Из недостатков можно отметить различные микросекундные провалы при переключении. Однако, даже имею повышенную стоимость, для домашнего использования они вполне подходят. Чаще всего на такие приборы заводы изготовители дают расширенную длительную гарантию.

Электромеханические

К таким типам приборов относятся: сервоприводные, роликовые, щеточные, и электродинамические устройства. Они обладают повышенной точностью регулирования, не имеют шума при работе, постепенного изменения напряжения при входных колебаниях питания.

Одним из недостатков является быстрый износ узла щеток из-за повышенного искрообразования при значительной нагрузке. Стабилизаторы напряжения электродинамического вида, роликовые фирмы Ortea не имеют таких недостатков. Они являются оптимальным выбором для частного дома.

Особенности расчётов

Параметров выбора приборов стабилизации существует много. Одним из основных является полная мощность стабилизатора напряжения. Речь идет о характеристике напряжения и тока, то есть, о параметрах выхода тока, которые устройство может поддерживать в номинальном режиме работы. Однако исходными данными расчета становится расходуемая мощность устройств, которые будут подключаться к прибору.

  • Иногда к стабилизатору подключают дополнительное оборудование. При этом нужно учитывать это показатель мощности при расчете.
  • Если вы планируете устанавливать внешние циркуляционные насосы, то необходимо брать в расчет также их мощность.
  • При преобразовании напряжения до требуемого значения всегда имеются потери мощности. Чем больше отклонение от 220 вольт, тем выше эти потери. Поэтому перед расчетом, целесообразно сделать проверку – измерить сетевое напряжение днем, вечером, утром, и в часы «пик». Эту проверку лучше провести за несколько дней. В результате вы получите информацию, которая вам пригодится для расчетов.
  • Обычная сумма значений мощности будет неточными данными, так как значительное число приборов расходует кроме полезной мощности, также и реактивную составляющую. Она определяется по определенной формуле, и добавляется в результаты расчета.

Особенности выбора стабилизатора

Необходимо заметить, что если ваша электросеть способна выдать в пиковые часы напряжение 120 вольт, то понятно, что в это время нельзя подключать к прибору другие устройства значительной мощности. При таком режиме допускается подключать только маломощные потребители в виде телевизора, освещения. А такие устройства, как чайник, бойлер или стиральная машина перегрузят бытовую сеть, и защита обесточит всю вашу квартиру.

В торговой сети продавцы чаще всего говорят, что мощность при малых напряжениях входа теряется только на недорогих стабилизаторах. Однако, практически это далеко не так. Даже дорогой прибор не способен сделать чудо, и нарушить законы физики.

Многие изготовители стабилизаторов вместо Вт в инструкции указывают В/А. Это делается для введения покупателей в заблуждение, так как имеются приборы, расходующие электроэнергию, с разными типами нагрузки:

  1. Активная нагрузка (лампы освещения, нагревательные элементы).
  2. Реактивная нагрузка (электродвигатели).

При расчете мощности следует учитывать сечение кабеля. При размере в 4 кв. мм нагрузка не должна превышать 10 киловатт. Следовательно, если купить при этом стабилизатор выше 10 кВт, то это не даст больше мощности, и вы зря потратите деньги.

ostabilizatore.ru

Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения.

В статье расскажем про компенсационный стабилизатор напряжения, о расчёте стабилизатора напряжения. Предоставим практические советы конструкторам. Нарисуем схему стабилизатора.

При проектировании источников питания электронной аппаратуры предъявляются высокие требования к стабильности питающего напряжения. Как медленные, так и быстрые колебания (нестабильности и пульсации) напряжения питания существенно изменяют режимы и параметры работы радиоэлектронных схем. Причинами нестабильности могут быть колебания напряжения и частоты питающей сети, изменения нагрузки, пульсации выпрямленного напряжения, колебания влажности окружающей среды. Например, для питания измерительных устройств, работающих с точностью 0,1%, требуется стабильность напряжения питания не хуже 0,01%.


 

Компенсационный стабилизатор

Различают компенсационные стабилизаторы напряжения непрерывного и импульсного действия. Стабилизаторы напряжения непрерывного действия представляют собой систему автоматического регулирования, в которой фактическое значение выходного напряжения сравнивается с заданным значением эталонного (опорного) напряжения. Возникающий при этом сигнал рассогласования усиливается и должен воздействовать на регулирующий элемент стабилизатора таким образом, чтобы выходное напряжение стремилось вернуться к заданному уровню. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, представляющий собой цепочку, состоящую из резистора и стабилитрона. Это было рассмотрено в предыдущей статье Стабилизаторы напряжения, их расчёт.

В зависимости от способа включения регулирующего элемента различают компенсационные стабилизаторы последовательного и параллельного типов.

 

Структурная схема компенсационного стабилизатора последовательного типаСтруктурная схема компенсационного стабилизатора последовательного типа представлена на рис. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. Схему, состоящую из регулирующего элемента и сопротивления нагрузки можно представить как делитель напряжения, в котором определённая часть входного напряжения «падает» на сопротивлении нагрузки, а всё остальное напряжение – на регулирующем элементе. При этом, и все изменения входного напряжения отражаются не на нагрузке, а на регулирующем элементе.

Опорное стабилизированное напряжение формируется источником опорного напряжения ИОН. Схема сравнения СС сравнивает выходное напряжение с опорным напряжением Uоп. Разностный сигнал рассогласования Uн — Uоп, формируемый схемой сравнения СС, поступает на вход усилителя постоянного тока У, усиливается и воздействует на регулирующий элемент РЭ.

Если в нагрузке оказывается напряжение большее, чем опорное Uоп – имеет место положительный сигнал рассогласования (Uн — Uоп) > 0, тогда внутреннее сопротивление РЭ возрастает и падение напряжения Uрэ на нем увеличивается. Так как регулирующий элемент и нагрузка включены последовательно, то при увеличении Uрэ выходное напряжение уменьшается.

При уменьшении выходного напряжения , отрицательном сигнале рассогласования (Uн — Uоп) < 0, наоборот, внутреннее сопротивление РЭ и падение напряжения на нем уменьшаются, что приводит к возрастанию выходного напряжения .

Принципиальная схема компенсационного стабилизатора напряжения последовательного типа на транзисторахПринципиальная схема компенсационного стабилизатора напряжения последовательного типа на транзисторах приведена на следующем рисунке. Для более простого понимания того, как работает схема, мы рассмотрим её работу поэлементно.

Источник опорного напряжения выполнен на резисторе Rб и стабилитроне VD. Как он работает и как рассчитывать элементы этой цепи, описывалось ранее в статье Стабилизаторы напряжения, их расчёт.

Схема сравнения выполнена по принципу измерительного моста. Это – типовая измерительная схема сравнения, которая довольно часто применяется в различных схемах, поэтому актуальна не только в стабилизаторах напряжения.

Рассмотрим измерительный мост более подробно. Для этого мы изобразим его отдельно от остальных элементов стабилизатора.

картинка-схема измерительного мостаИсточник опорного напряжения Rб-VD и делитель напряжения R1-R2-R3 подключены к выходу стабилизатора параллельно. Переменный резистор R2 для наглядности поделен на схеме на две половины – два постоянных резистора R2/1 и R2/2. Если к средним точкам этих цепочек подключить вольтметр, то он будет реагировать на разность напряжений, между этими точками. А если использовать вольтметр со шкалой, у которой нуль находится посередине, тогда наглядно будет видно в какой средней точке напряжение выше, а в какой ниже. Основное состояние измерительного моста, которое используется в стабилизаторе напряжения, это — явление баланса моста, состояние, при котором значение напряжения в средних точках равно.

Предположим, что сопротивление резисторов R1 и R3 равны, а «ползунок» резистора R2 находится в среднем положении. Тогда сопротивления плеч R1+R2/1 и R2/2+R3 равны. Это означает, что на выводе «ползунка» резистора R2 будет ровно половина находящегося на клеммах напряжения. Предположим, что мы подали на клеммы ровно 9 вольт, тогда в средней точке резисторов будет 4,5 вольта (ровно половина). Источник опорного напряжения мы поставим на напряжение стабилизации 4,5 вольта – равное значению средней точки делителя на резисторах R1, R2, R3. Поэтому, по причине отсутствия разности потенциалов в средних точках стрелка вольтметра будет стоять на нуле.

Если мы увеличим напряжение до 10 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение поднимется до 5 вольт, а на источнике опорного напряжения оно так и останется 4,5 вольта (стабилитрон не позволит увеличиться напряжению на своём кристале) и стрелка вольтметра отклонится влево на 0,5 вольта.

Если наоборот, мы уменьшим напряжение до 8 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение уменьшится до 4 вольт, а на источнике опорного напряжения оно по-прежнему останется 4,5 вольта и теперь, стрелка вольтметра отклонится вправо на 0,5 вольта.

А теперь вернёмся к схеме стабилизатора напряжения. В ней функцию вольтметра выполняет транзистор VT2, который в процессе работы схемы стабилизации используется в «рабочем» усилительном режиме (полуоткрытом состоянии). Роль регулирующего элемента в этой схеме стабилизатора играет транзистор VT1. Его задача – в случае нарушения баланса измерительного моста, определяемого базо-эмиттерным переходом, восстановить этот баланс путём изменения сопротивления перехода эмиттер-коллектор управляющего элемента, и как следствие — уменьшение, или увеличение выходного напряжения.

картинка-схема стабилизатора напряженияПри увеличении Uвх, выходное напряжение возрастает по абсолютному значению, создавая отрицательный сигнал рассогласования напряжения Uэ62 на входе усилителя постоянного тока, выполненного на транзисторе VT2. Транзистор, подключенный к средним точкам измерительного моста «приоткрывается». Ток коллектора транзистора VT2 возрастает, а потенциал коллектора VT2 становится более положительным относительно потенциала земли. Напряжение эмиттер-база транзистора VT1 уменьшается, что приводит к возрастанию внутреннего сопротивления транзистора VT1 и падению напряжения на нем. Выходное напряжение при этом уменьшается, стремясь к прежнему значению.

При уменьшении входного напряжения Uвх наоборот, транзистор VT2 «призакрывается», что приводит к увеличению напряжения база-эмиттер транзистора VT1, в результате чего сопротивление транзистора уменьшается и выходное напряжение повышается, стремясь к номинальному напряжению стабилизации.

Обратите внимание, что на схемах изображалась «точка» подключения к какому то источнику напряжения Е0. Для повышения коэффициента стабилизации схемы резистор , определяющий базовый ток регулирующего транзистора VT1, подключается к стабильному источнику напряжения – Е0. Если Е0 не стабилен, то его колебания передаются через резистор на базу регулирующего транзистора VT1 и ухудшают коэффициент стабилизации схемы. Довольно часто встречаются радиолюбительские схемы стабилизаторов, в которых резистор подключен напрямую ко входному контакту -Uвх. В результате этого, стабилизатор работает в качестве автоматического регулятора «среднего» выходного напряжения, и абсолютно не подавляет никакие пульсации сетевого напряжения.

картинка-схема использования дополнительного источника стабильного опорного напряженияЛучшим источником стабильного напряжения является гальванический элемент, но его использование в большинстве случаев – не оправдывает себя. В сложных устройствах с несколькими источниками стабилизированного питания часто для целей стабилизированного смещения одного более мощного стабилизатора используют выходное напряжение другого стабилизатора, но с меньшей нагрузкой.

Наиболее простой способ – использовать дополнительный источник стабильного опорного напряжения, как показано на рисунке. Для исключения кратковременных скачков напряжения стабилизации, которые могут быть вызваны бросками входного напряжения, или сопротивления нагрузки, параллельно стабилитрону добавлен конденсатор С. Практически постоянно в радиолюбительской практике упускается важность этого источника опорного напряжения. В простейшем случае, как я писал, резистор подключается напрямую к -Uвх, без всяких стабилитронов. Выбирать Вам – допускать пульсацию, или нет. Я думаю три дополнительных радиоэлемента – резистор, стабилитрон и конденсатор в этой схеме стабилизатора не помешают.


 

 

Расчёт стабилизатора постоянного напряжения компенсационного типа и практические советы конструкторам

 

Как и ранее, я не пишу сложные формулы радиолюбительских расчётов, которые отбивают желание вообще становиться радиолюбителями. Они мной применяются только тогда, когда их использование действительно необходимо. Кроме того, если Вы научитесь понимать их физический смысл, то Вы самостоятельно сможете применять их на практике для расчётов цепей.

Расчёт стабилизированного блока питания мы будем проводить с использованием конкретной схемы, которую мы сначала изобразим, соблюдая правила построения схем, а потом рассчитаем на основе предъявляемых к ней требований.

1. Прежде всего, обратите внимание, на то, что большинство блоков питания имеет минус на массе, поэтому мы так же выполняя условие – «минус на массе» изменим полярности диодов и конденсаторов, а кроме того — тип проводимости транзисторов с p-n-p на n-p-n.

картинка-схема стабилизатора напряжения с добавлением составного транзистора VT32. Для повышения коэффициента стабилизации компенсационного стабилизатора в качестве регулирующего элемента мы будем использовать составной транзистор. Использование составного транзистора увеличивает коэффициент стабилизации на величину коэффициента усиления по току дополнительного транзистора, и на порядок увеличивает нагрузочную способность стабилизатора напряжения. Поэтому (см. схему) к ранее изученному стабилизатору, мы добавим этот транзистор VT3. Считаем, что каждый добавленный таким образом транзистор увеличивает нагрузочную способность в 10…20 раз, но не забываем, что основная часть мощности на него и «приложится». Поэтому чем мощнее транзистор, тем лучше.

3. Ток через делитель Iдел состоящий из R1,R2,R3 выбирают обычно на порядок меньше (в 10 раз), чем ток, протекающий по цепи Rб, VD1. Увеличение или уменьшение тока делителя за счет снижения, или повышения сопротивлений R1,R2,R3 нецелесообразно, так как приводит к существенному уменьшению КПД, или чувствительности схемы к изменению выходного напряжения и его пульсациям.

4. Резистор R2 предназначен для регулировки стабилизированного напряжения в небольших пределах. Пределы регулировок выходного напряжения такого стабилизатора ограничены параметрами стабилитрона – минимальным и максимальным током стабилизации. Как это выглядит практически, я затрону в процессе расчётов.

 

5. Напряжение стабилизации дополнительного источника опорного напряжения, используемого для смещения транзистора регулирующего элемента должно не менее, чем в 1,5 раза превышать значение выходного напряжения стабилизатора. Иначе силовыми транзисторами VT2 и VT3 «нечем будет управлять» — напряжение на эмиттерах будет превышать базовое, и ни о какой стабилизации речи не будет.

6. Предыдущее условие накладывает ограничения на нагрузочные способности стабилизатора потому, что разница входного и выходного напряжения стабилизатора помноженная на выходной ток, будет «падать» в виде рассеиваемой мощности на силовых транзисторах. Поэтому необходимо выбирать транзисторы способные выдерживать такую мощность – повторяется правило — чем мощнее транзистор, тем лучше. Но чем мощнее транзистор, тем меньше у него коэффициент передачи.

 

Расчёт

 

Исходные данные (допустим, к разрабатываемому ИП предъявлены такие требования):

— среднее выходное напряжение стабилизатора – 12 вольт;

— максимальный ток нагрузки стабилизатора – 2 ампера;

— используется трансформатор достаточной мощности, с выходным напряжением 25 вольт.

При расчётах сложных схем, обычно идут «с конца к началу», поэтому, предлагаю начать с расчёта схем опорного напряжения и сравнения.

1. Выберем стабилитрон измерительного моста Стабилитрон VD1 выбирается со значением напряжения стабилизации, равном половине выходного напряжения стабилизатора:

12в / 2 = 6 вольт

.

При этом условии обеспечивается наилучшая стабилизация. Но стабилитрон на такое напряжение в рознице отсутствует, поэтому выбираем стабилитрон, максимально близкий по напряжению стабилизации – КС156А, у которого Uст = 5,6 вольт, Iст = 10 мА.

2. Найдём резистор :

На резисторе падает напряжение:

URб = Uвых – Uст = 12в – 5,6в = 6,4в

Зная падение напряжения и ток стабилизации, по закону Ома определяем сопротивление резистора:

Rб = URб / = 6,4в/0,01А = 640 Ом

Ближайшее значение сопротивления резистора по номинальному ряду — 620 Ом.

Мощность резистора находим из условия РRб = URб * Iст * 2 = 6,4в * 0,01А * 2 = 0,128 Вт

Если кто не знает, что в формуле обозначает цифра 2, поясню, это коэффициент запаса по мощности (чтобы резистор не грелся). Более подробно написано в статье Резистор . Ближайшее наибольшее значение мощности резистора по номинальному ряду – 0,125 Вт.

Таким образом, параметры Rб – 620 Ом на 0,125 Вт.

3. Определим возможные значения выходного напряжения стабилизатора, при которых стабилизация происходит.

Они ограничены предельными токами стабилитрона, стоящего в мостовой измерительной цепи.

а) Определим минимальное (регулируемое) напряжение стабилизации: По справочнику минимальный ток стабилизации КС156А = 3 мА, при этом токе значение выходного напряжения стабилизатора составит:

Uвых.min = Uст + (Iст.min * Rб) = 5,6 в + (0,003 * 620) = 7,46 вольт

б) Определим максимальное (регулируемое) напряжение стабилизации:

По справочнику максимальный предельный ток стабилизации КС156А = 55 мА. Это большой ток, при котором стабилитрон будет греться и нужны дополнительные меры защиты, поэтому ограничимся значением, в 2 раза превышающем номинальное — 20 мА. При этом токе значение выходного напряжения стабилизатора составит:

Uвых.max = Uст + (Iст.max * Rб) = 5,6 в + (0,02 * 620) = 18 вольт

Поскольку мощность прикладываемая к резистору возросла, для того, чтобы резистор не сгорел от большой прикладываемой мощности, его мощность следует увеличить до значения:

РRб = URб * Iст * 2 = 12,4 в * 0,02 А * 2 = 0,5 Вт

Если Вы хотите, чтобы Ваш стабилизатор выдавал 18 вольт, то мощность резистора необходимо увеличить, но если Вы делаете стабилизатор на фиксированное напряжение (в данном случае 12 вольт), то этого можно не делать, удовлетворившись расчётом, приведённым в пункте 2.

4. Рассчитаем делитель R1,R2,R3:

Нам известно, что на стабилитроне КС156А падает – 5,6 вольта. А ещё мы знаем (см. статью Биполярный транзистор), что в режиме стабилизации, транзистор VT1 находится в «рабочей точке», это означает, что на его переходе база-эмиттер «падает» напряжение 0,65 вольта. А это в свою очередь означает, что на базе должно быть всегда 5,6 + 0,65 = 6,25 вольта относительно корпуса стабилизатора. База соединена с «ползунком» среднего регулировочного резистора, значит, это напряжение 6,25 вольта всегда присутствует на его «ползунке».

Исходя из этого, можно составить, систему уравнений с тремя неизвестными, но это Вас только запутает, поэтому мы пойдем по более простому, но практичному пути.

При максимальном напряжении стабилизации Uвых.max = 18 вольт, ползунок находится в нижнем по схеме положении, ток стабилизации Iст.max = 0,02 A, а ток делителя R1,R2,R3 в 10 раз меньше: Iцепи = 0,002 А , следовательно:

R3 = 6,25 / Iцепи = 6,25 / 0,002 = 3,125 кОм;
R1 + R2 = (Uвых.max — UR3) / Iцепи = 11,75 / 0,002 = 5,875 кОм.

Суммарное сопротивление R1 + R2 + R3 = 5 875 + 3 125 = 9 кОм

При минимальном напряжении стабилизации Uвых.min = 7,46 вольта, ток делителя будет:

Iцепи = Uвых.min / (R1 + R2 + R3) = 7,46 / 9000 = 0,00083 А

найдем значение R1 = (Uвых.min – 6,25) / Iцепи = (7,46 – 6,25) / 0,00083 = 1,46 кОм,

отсюда значение R2 = 5,88 – 1,46 = 4,42 Ом,

округлим значения резисторов до значений номинального ряда: R1 = 1,5 кОм, R2 = 4,3 кОм (переменный), R3 = 3 кОм

5. Рассчитаем второй источник опорного напряжения и смещения VT2.

В качестве стабилитрона выбираем Д816А, у которого Uст = 22 вольта, Iст = 10 мА.

Найдём Rсм.

Выходное напряжение трансформатора после выпрямления и сглаживания фильтром = 25 вольт, тогда Rсм = (Uтр. — Uст) / Iст = 25 – 22 / 0,01А = 300 Ом.

Мощность резистора РRсм = URсм / Iст = 3 *0,01 = 0,03 Вт, ближайшая из номинального ряда — 0,125 Вт

Для стабильной работы цепи опорного напряжения Rсм VD2, необходимо, чтобы не оказывал на эту цепь шунтирующего действия. Поэтому ток должен быть не менее, чем в 2 раза меньше тока стабилитрона. Кроме того, на нём падает разность между входным и выходным напряжением: URк = Uтр. — Uвых. = 25 – 12 = 13 вольт,

отсюда: Rк = URк / (Iст/2) = 13 / 0,005 = 2,7 кОм.

Мощность РRк = URк * Iст / 2 = 13 *0,005 = 0,0325 Вт, ближайший 0,125 Вт.

6. Наконец дело дошло до транзисторов.

В качестве VT1 подойдёт транзистор КТ315Г. Он удовлетворяет требованиям:

— достаточно высокий коэффициент усиления (передачи) h31Э = 50…350;

— допустимое напряжение коллектор-эмиттер – 35 вольт.

В качестве VT2 подойдёт транзистор КТ815 с любым буквенным индексом. Коэффициент передачи h31Э = 40 – 70 , обеспечивает усиление тока резистора с 5 мА до 250 мА;

В качестве VT3 попробуем взять не то, что надо искать, а то, что есть — например КТ809А. Коэффициент передачи h31Э = 15…100 , что обеспечивает усиление тока с 250 мА до 3,7 А, но максимальный ток коллектора – 3 А это по справочнику – предел, нет «запаса прочности», поэтому ставим два транзистора в параллель. При выходном напряжении = 12 вольт и токе 2 ампера, на них должно падать 13 вольт, таким образом, общая мощность рассеивания транзисторов: РVT3 = UVT3 * I VT3 = 2 * 13 = 26 Вт.

Это вполне приемлемое значение. Для выравнивания мощностей на транзисторах придётся использовать два резистора в эмитерных цепях выходных транзисторов. 0,05…1 Ом с мощностью по 2 Вт.

7. Остался один резистор . Его расчет приведён в предыдущей статье Простейшие стабилизаторы напряжения. Rэ = 0,65 / 2 * 50 = 16 Ом,

где 0,65 – падение на переходе база-эмиттер, 2 – номинальный ток нагрузки = 2 ампер), 50 — усреднённое значение коэффициента передачи транзистора.

 

Рисуем схему нашего стабилизатора

 

картинка-схема стабилизатора напряжения (полная)
 

 

Дополнения к статье

 

1. При выборе стабилитронов возможно последовательное их соединение, например два КС156А (по 5,6 вольта) можно соединить последовательно для получения стабилитрона на напряжение стабилизации 11,2 вольта;

2. Для возможности регулировки выходного напряжения в более широких пределах цепочку источника опорного напряжения R3, VD6 (см. схему) подключают не к выходу, а на вход стабилизатора с применением цепей сглаживания (по аналогии с R1, VD5 и С2). Естественно, необходимо пересчитать резистор R3. Как это делается описано в этой статье и предыдущей статье Простейшие стабилизаторы напряжения. В результате этого, входное напряжение ИОН не зависит от выходного напряжения, поэтому ток стабилизации номинальный и постоянен. Другой вариант расширения диапазона стабилизируемых напряжений — использование в качестве одного резистора Rб – галентного переключателя с несколькими резисторами;

3. Для повышения нагрузочных свойств стабилизатора, и как следствие повышения надёжности рекомендую вместо двух КТ809А поставить один составной КТ827А без резисторов R4 – R6.

4. Никогда не брезгуйте рассчитать мощность резисторов, иначе это может Вам выйти кучей сгоревших дорогих элементов;

5. В приведённой схеме стабилизатора имеется защита по первичной обмотке трансформатора, а во вторичных цепях защита отсутствует. В простейшем случае поставьте на выходе стабилизатора двух-трехватный предохранитель, но лучше сделать более интеллектуальную схему защиты;

6. В этой статье указаны простейшие правила и условия, соблюдение которых позволит проектировать и собирать действующие стабилизаторы. И тогда у Вас не будет возникать вопросов типа тех, на которых и существует половина интернет-Форумов: Я вместо конденсатора поставил резистор, а он как конденсатор работать не хочет!? Или: Почему резистор, предназначенный в схеме для выполнения одной функции, не выполняет другую функцию?


Расчёт с первого взгляда выглядит нудноватым, но это самый простейший расчёт. Поняв принципы работы и расчёта транзисторных каскадов, Вы сможете конструировать и рассчитывать более сложные схемы.

meanders.ru

Онлайн калькулятор мощности стабилизатора напряжения

Онлайн калькулятор мощности стабилизатора напряжения

Используйте онлайн калькулятор мощности стабилизатора напряжения для расчета потребления тока каждого бытового прибора. Для аппаратуры, Вы можете посмотреть потребление энергии в паспорте, а так же эта информация дублируется и на самом приборе (на задней стенке прибора). Так же необходимо учитывать различные типы нагрузки. Нагрузка существует как активная, так и реактивная.

Что это такое?

Онлайн калькулятор мощности позволяет правильно учесть активную нагрузку. Активная нагрузка, потому и называется активной, что вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и др.). Многие приборы и устройства имеют только активную нагрузку. К таким приборам и устройствам можно отнести лампы накаливания, обогреватели, электроплиты, утюги и т.д. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВт. Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель. Среди бытовой техники, таких устройств очень много – почти вся электронная и бытовая техника. Они имеют полную мощность и активную.

Полная мощность исчисляется ВА (вольт-амперы), активная мощность исчисляется Вт (ваттах). Полная мощность (вольт-амперы) и активная мощность ( ватты) связаны между собой коэффициентом cos ф. На электроприборах имеющих реактивную составляющую нагрузки , часто указывают их активную потребляемую мощность в ваттах и cos ф. Для того чтобы Вам подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Расчет мощности стабилизатора напряжения
Расчет мощности стабилизатора напряжения очень ответственное дело и подходить к этому надо внимательно, иначе вы рискуете оказаться в ситуации, когда стабилизатор напряжения будет все время отключать ваших потребителей (так работает защита по току).

Расчет мощности стабилизатора напряжения

Сделаем расчет мощности стабилизатора напряжения на примере.

Пример: если на дрели написано “700 Вт” и ” cos ф = 0,7″, это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи. Многие приборы в момент пуска могут потреблять энергии в несколько раз больше, чем их номинальная мощность. К таким приборам относятся все устройства, содержащие двигатель.

Например, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите “щадящий” режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

www.norma-stab.ru

Расчитать мощность стабилизатора напряжения

Очень важная характеристика для надежной, долгой работы. Всем известно, если любое оборудование использовать на все сто процентов его возможностей, срок службы значительно сокращается. Мощность стабилизатора указывает максимальное значение нагрузки, которое можно подключить. Перед покупкой следует первым делом вычислить общее потребление бытовой техники дома, лишь после этого рассматривать модели, способные обеспечить соответствующий режим работы по нагрузке.

Как она влияет на работоспособность? Если неправильно подобрать мощность стабилизатора, периодически будет срабатывать защита – перегрузка. Результат, возникает дискомфорт от постоянных отключений. Работа будет в перегруженном режиме, последствия – перегрев трансформатора. Случай без гарантийный. Чтобы правильно рассчитать данный параметр электронного стабилизатора, существует несколько способов. Рассмотрим подробнее.

Расчет по техническим характеристикам

Каждый бытовой прибор имеет паспорт, где есть таблица характеристик прибора. В этой таблице без особого труда можно посмотреть сколько потребляет прибор. На каждом приборе (обычно на задней стороне прибора) есть шильдик с указанием основных характеристик. Собрав все значения с приборов которыми Вы можете пользоваться одновременно, суммируем. Получаем приблизительное значение необходимой мощности стабилизатора. Значение приблизительное. Поэтому рекомендуется всегда закладывать небольшой запас для Российских производителей, и 50% запаса для произведенных в Китае.

Мощность стабилизатора по входным автоматам

Самый простой способ определения мощности стабилизатора – посмотреть номинал входных автоматов установленных в щитке. Автоматы находятся рядом со счетчиком электроэнергии. На фото показан пример расположения автоматов, место обозначения номинала. Расчет мощности электронного стабилизатора прост. Смотрим значения номинала автомата. Приблизительно делим значение на 5, получаем мощность стабилизатора. Например стоят автоматы 25 Ампер (25 А). Будет прописано С25. Делим, получаем значение 5 кВа. Если автоматы не выбивало, значит Ваша нагрузка не превышает 5 кВа. Начинаем просматривать модели с данной характеристикой. Сложнее определить если в щитке много автоматических выключателей. Внимательно рассматриваем номиналы всех. Как правило вводной (входной) автомат имеет значение выше, чем все остальные, ставят его первым от счетчика электроэнергии.

Расчет мощности в онлайн калькуляторе

В процессе расчета надо сложить все электроприборы, которыми пользуетесь одновременно. Прибавить несколько киловатт на свет. Не забывайте учитывать мощные нагревательные элементы. Получив определенное значение, надо теперь заложить запас на падение мощности стабилизатора при пониженном напряжении. В нижней части калькулятора предусмотрена дополнительная шкала, которая учитывает падение, закладывая небольшой запас.

Серия ЛЮКС работает без падения мощности стабилизатора при пониженном напряжении. Измерительный элемент стоит на выходе стабилизирующего устройства. В результате защита по перегрузке сработает только тогда, когда потребитель даст нагрузку в 100% от заданных параметров. Естественно, законы физики не отменяли, на входе устройства при низком напряжении потребление тока будет больше. В результате само падение оплачивает не потребитель, а производитель. Что очень удобно для конечного потребителя.

Хотите получить бесплатную консультацию, узнать стоимость и действующие скидки?

Отправьте запрос, заполнив все поля в онлайн консультанте.

Рассчитать мощность стабилизатора можно позвонив по бесплатному номеру

760396.ru

Расчет стабилизатора


Расчет стабилизатора

  Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В таком устройстве работают стабилитрон V5 и регулирующий транзистор V6. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения Uн и максимального тока нагрузки Iн. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем – выпрямитель и трансформатор питания. Расчет стабилизатора ведут в следующем порядке.

1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып) при заданном выходном (Uн):

Uвып = Uн + 3,

Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып.

2. Рассчитывают максимально рассеиваемую транзистором мощность:

Рmах = 1,3 (Uвып – Uн) Iн,

3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором – больше Uвып, а максимально допустимый ток коллектора – больше Iн.

4. Определяют максимальный ток базы регулирующего транзистора:

Iб.макс = Iн / h21Э min,

где: h21Эmin – минимальный коэффициент передачи тока выбранного (по справочнику) транзистора..

5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max.

6. Подсчитывают сопротивление резистора R1:

R1 = (Uвып – Uст) / (Iб max + Iст min),

Здесь R1 – сопротивление резистора R1, Ом;
Uст – напряжение стабилизации стабилитрона, В;
Iб.max – вычисленное значение максимального тока базы транзистора, мА;
Iст.min – минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА).
.

7. Определяют мощность рассеяния резистора R1:

PR1 = (Uвып – Uст)2 / R1,

  Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности – такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21Э. В таком случае целесообразно ввести в стабилизатор дополнительный транзистор V7 малой мощности (рис. 2), который позволит снизить максимальный ток нагрузки для стабилитрона (а значит, и ток стабилизации) примерно в h21Э раз и применить, соответственно, маломощный стабилитрон.

  В приведенных здесь расчетах отсутствует поправка на изменение сетевого напряжения, а также опущены некоторые другие уточнения, усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по наибольшей стабильности выходного напряжения при максимальном токе нагрузки.
Источник: shems.h2.ru

www.qrz.ru

10. Блок питания. Расчет стабилизатора

1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып) при заданном выходном (Uн):

Uвып = Uн + 3,

Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып.

2. Рассчитывают максимально рассеиваемую транзистором мощность:

Рmах = 1,3 (Uвып – Uн) Iн,

3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором – больше Uвып, а максимально допустимый ток коллектора – больше Iн.

4. Определяют максимальный ток базы регулирующего транзистора:

Iб.макс = Iн / h21Э min,

где: h21Эmin – минимальный коэффициент передачи тока выбранного (по справочнику) транзистора..

5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max.

6. Подсчитывают сопротивление резистора R1:

R1 = (Uвып – Uст) / (Iб max + Iст min),

Здесь R1 – сопротивление резистора R1, Ом;
Uст – напряжение стабилизации стабилитрона, В;
Iб.max – вычисленное значение максимального тока базы транзистора, мА;
Iст.min – минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА).
.

7. Определяют мощность рассеяния резистора R1:

PR1 = (Uвып – Uст)2 / R1,

lib.qrz.ru

Калькулятор расчета мощности стабилизатора напряжения для газового котла

Многие современные модели газовых котлов оснащены достаточно сложной системой электронного управления. Она обеспечивает поддержание заданного режима работы системы, управляет циркуляционными насосами, вентиляторами подачи воздуха в камеру сгорания, дает команду на срабатывание различных электромагнитных клапанов или кранов, иногда сохраняет в памяти необходимые настройки и даже способна анализировать внешние данные для выработки наиболее оптимального алгоритма всей системы отопления в целом.

Калькулятор расчета мощности стабилизатора напряжения для газового котлаКалькулятор расчета мощности стабилизатора напряжения для газового котла

Безусловно, это все удобно, но если в сети питания нет достаточной стабильности напряжения, то система управления может начать сбоить, а то и вовсе «зависать». Чтобы избежать подобных ситуаций, настоятельно рекомендуется оснащать подобное котельное оборудование специально выделенным для него стабилизатором. А правильно выбрать подходящую к конкретным условиям модель поможет калькулятор расчета мощности стабилизатора напряжения для газового котла.

Цены на стабилизаторы для газового котла

стабилизатор для газового котла

Если по ходу расчетов возникнут вопросы, то под калькулятором даны необходимые разъяснения по работе с ним.

Калькулятор расчета мощности стабилизатора напряжения для газового котла

Перейти к расчётам

Несколько необходимых пояснений к проведению расчетов

Критериев выбора стабилизатора напряжения – немало. Одним из них является его мощность. Если быть точным, то разговор, конечно, идет о вольт-амперной характеристике, то есть не о полезной мощности (ватт), а о тех параметрах выходного тока (вольт-ампер), которые прибор способен поддерживать в нормальном режиме своей работы. Но все равно исходными параметрами для расчета, безусловно, будут значения потребляемой мощности подключенных к стабилизатору приборов.

  • Простое суммирование – даст крайне неточный результат. Дело в том, что большинство приборов потребляют не только полезную, но еще и реактивную мощность. Она рассчитывается по специальной формуле, и ее следует принимать в расчет. В нашем калькуляторе это учтено.
  • Далее, при трансформации напряжения до необходимого номинала, обязательно происходят потери мощности, и они тем больше, чем значительнее отклонение от установленных 220 В. Поэтому прежде чем приступать к расчетам, рекомендуется провести своеобразное «исследование» — организовать измерение напряжения в сети, например, утром, днем и в вечерние пиковые часы потребления, в течение нескольких дней. Должна получиться наглядная картина —  и значение, наибольшим образом отличающееся от номинала, и станет исходным параметром для расчетов.
  • В калькуляторе будет запрашиваться потребляемая мощность котла. ВАЖНО: не путайте с тепловой мощностью котельного оборудования! Потребляемая мощность котла указывается в его паспорте, и касается исключительно его электротехнических параметров.
  • Если к стабилизатору планируется подключение внешних (не входящих в компоновку котла) циркуляционных насосов, то учитывается и их потребляемая мощность. В калькуляторе достаточно указать количество насосов.
  • Наконец, к стабилизатору иногда подключают и другое внешнее оборудование, необходимое для работы котельной (например, это может быть принудительная вентиляция). В этом случае в специальном поле калькулятора необходимо будет указать суммарную потребляемую мощность всех дополнительных приборов.

Результат будет получен в вольт-амперах. Он станет одним из ключевых критериев при дальнейшем выборе необходимой модели стабилизатора.

2016-08-09_182806Как выбрать оптимальную модель?

В продаже представлен широкий ассортимент приборов такого класса, различающихся как принципом действия, так и эксплуатационными характеристиками. Не ошибиться при выборе стабилизатора напряжения для котла поможет специальная публикация нашего портала.

stroyday.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *