Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Защитные проводники (PE-проводники)

Надежными техническими способами защиты от поражения электротоком считаются заземление и зануление. Система защитного заземления предназначена для электрического соединения предмета из проводящего ток материала с землёй. Составляющими компонентами заземление выступают заземлитель и заземляющий проводник, соединённые между собой. Защитная функция заключается в полной или частичной защите человека от угрозы поражения током, в уменьшении разницы потенциалов заземляемого проводящего объекта и проводящими ток объектами с естественным заземлением до безопасного значения. Отдельные части установки соединяются с заземленным устройством через сопротивление в несколько раз меньше сопротивления человеческого тела. Когда возникает замыкание, большая часть тока проходит через землю, а тот ток, который припадает на тело, оказывается совсем уже довольно незначительным. Если система заземления спроектирована правильно, согласно норм и правил по технической эксплуатации, то возникновение утечки тока ведёт к незамедлительному срабатыванию защитных устройств.


Зануление также выполняется в целях электробезопасности. Это процесс преднамеренного электрического соединения проводящих открытых частей электроустановок с наглухо заземленной точкой. Нулевой РЕ-проводник используется в данном случае для соединения открытых частей пользователя электрической энергии с заземленной нейтральной точкой источника.

Проводники для защитного заземления, нулевые защитные проводники в электроустановках с напряжением до 1 кВ с глухозаземленной нейтралью маркируются буквенным обозначение РЕ. Защитный РЕ-проводник предназначен исключительно для целей электробезопасности. В системе заземления, РЕ-проводники обеспечивают непрерывное соединение всех открытых и внешних токопроводящих частей установки. Проводники обеспечивают создание непрерывной эквипотенциальной системы, обеспечивают безопасность. РЕ-проводники способствуют прохождению тока, возникшего при повреждении к заземленной нейтрали источника. PE-проводники присоединены к главной шине заземления установки, которая, в свою очередь, подсоединена к заземляющему электроду специальным проводником.

Цветовое обозначение проводников (РЕ) соответствует чередующимися поперечным или продольным полосам одинаковой ширины зеленого и желтого цветов. РЕ-проводники должны быть тщательно защищены от разного рода механических и химических повреждений. Их прокладывают в одной трубе, кабельном канале, кабельной нише с токоведущими кабелями цепи в схемах заземления IT и ТН. Такая особенность обеспечивает минимально возможное индуктивное сопротивление цепи, по которой ток замыкания проходит на землю.

В электроустановках напряжением до 1 кВ в качестве РЕ-проводников используют специально предусмотренные проводники. Но данные функции также могут быть возложены и на открытые части электроустановок или некоторые сторонние проводящие части. Если речь идет о специально предусмотренных проводниках, то они могут быть:

  • жилами многожильных кабелей;
  • как изолированными, так и неизолированными проводами;
  • проводниками, проложенными стационарно.

Функции РЕ-проводников могут выполнять открытые части электроустановок:

  • алюминиевых оболочек кабелей;
  • стальных труб электропроводок;
  • металлических оболочек шинопроводов;
  • опорных конструкций комплектных устройств.

Функции РЕ-проводников могут выполнять сторонние части, обладающие высокой проводимостью, такие как:

  • металлические каркасы зданий, конструкции из металла;
  • арматурные конструкции;
  • конструкции для производственного назначения.

Короба из металла, лотки электрических проводок, прекрасно подойдут в качестве проводников. В процессе проектировки строительства следует исключить любые механические повреждения этих конструкций и предварительно предусмотреть их использование в качестве проводников.

Открытые проводящие части, как и сторонние проводящие части вполне подойдут в качестве защитных РЕ-проводников, в том случае, если они отвечают всем требованиям настоящей главы проводимости и непрерывности электроцепи.

Если возникает необходимость в качестве проводников использовать сторонние проводящие части, то они должны соответствовать следующим требованиям:

  • их конструкция должна быть произведена таким образом, чтобы обеспечить непрерывность электроцепи. В случае, если такая возможность ограничена определенными строительными особенностями, то непрерывность электрической цепи должна быть обеспечена посредством соединений, защищенных от любого рода повреждений;
  • если существует минимальный риск прерывания непрерывности цепи, то демонтаж таких конструкций невозможен.

В целях безопасности, не следует забывать о том, что некоторые приспособления строго запрещены для использования в качестве защитных РЕ-проводников. Речь идёт о:

  • металлических оболочках изоляционных трубок, рукавов, свинцовых оболочках кабелей;
  • трубах центрального отопления;
  • канализационных трубах;
  • водопроводные трубы;
  • системах газоснабжения.

В многих старых домах электрическая проводка выполнена по давно устаревшим нормам и нуждается в замене. Для обеспечения собственной безопасности жители таких домов пытаются, с помощью опытных специалистов электриков, произвести модернизацию. Задача состоит в разделении ранее совмещенного нулевого и рабочего проводника PEN на нулевой защитный РЕ и нулевой рабочий N проводники.

Такое требование обеспечивает максимальную безопасность, надёжно сохраняет соединения заземления с защитным проводником в случае разрушения контактного зажима.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Добавить отзыв

ПУЭ 1.7.131 – Совмещенные нулевые защитные и нулевые рабочие проводники (pen-проводники)

ПУЭ 1.7.131 – Совмещенные нулевые защитные и нулевые рабочие проводники (pen-проводники)
el-linne.narod.ru


Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Защитное заземление – заземление частей электроустановки с целью обеспечения электробезопасности.

Заземление, меры электробезопасности

  • Область применения. Термины и определения
  • Общие требования.
  • Меры защиты от прямого прикосновения.
  • Меры защиты от прямого и косвенного прикосновений.
  • Меры защиты при косвенном прикосновении.
  • Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью.
  • Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью.
  • Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью.
  • Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью.
  • Заземляющие устройства в районах с большим удельным сопротивлением земли.
  • Заземлители.
  • Заземляющие проводники.
  • Главная заземляющая шина.
  • Защитные проводники (PE-проводники).
  • Совмещенные нулевые защитные и нулевые рабочие проводники (PEN-проводники).
  • Проводники системы уравнивания потенциалов.
  • Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов.
  • Переносные электроприемники.
  • Передвижные электроустановки.
  • Электроустановки помещений для содержания животных
  •  

Электропроводка

  • Область применения, определения
  • Общие требования
  • Открытые электропроводки внутри помещений
  • Скрытые электропроводки внутри помещений
  • Электропроводки в чердачных помещениях
  • Наружные электропроводки

Электроустановки зданий

  • Область применения. Определения
  • Общие требования. Электроснабжение
  • Вводные устройства, распределительные щиты, распределительные пункты, групповые щитки
  • Электропроводки и кабельные линии
  • Внутреннее электрооборудование
  • Учет электроэнергии
  • Защитные меры безопасности

Совмещенные нулевые защитные и нулевые
рабочие проводники (pen-проводники)

1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм2 по меди или 16 мм2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников могут быть совмещены в одном проводнике (pen-проводник).

1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии.
1.7.133. Не допускается использование сторонних проводящих частей в качестве единственного pen-проводника.
Это требование не исключает использования открытых и сторонних проводящих частей в качестве дополнительного pen-проводника при присоединении их к системе уравнивания потенциалов.
1.7.134. Специально предусмотренные pen-проводники должны соответствовать требованиям 1.7.126 к сечению защитных проводников, а также требованиям гл. 2.1 к нулевому рабочему проводнику.
Изоляция pen-проводников должна быть равноценна изоляции фазных проводников. Не требуется изолировать шину PEN сборных шин низковольтных комплектных устройств.
1.7.135. Когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения pen-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. pen-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.


Сайт управляется системой uCoz

Что такое проводник?

К

  • Рахул Авати

Что такое проводник?

Проводник или электрический проводник — это вещество или материал, через который проходит электричество. В проводнике носители электрического заряда, обычно электроны или ионы, легко перемещаются от атома к атому при приложении напряжения. Большинство металлов, таких как медь, считаются хорошими проводниками, в то время как неметаллы считаются плохими проводниками, то есть изоляторами.

Понимание электрических проводников

В целом под проводимостью понимается способность вещества передавать электричество или тепло. Проводник проводит электричество, так как он оказывает небольшое сопротивление потоку электронов или не оказывает никакого сопротивления, что приводит к протеканию электрического тока. Обычно металлы, металлические сплавы, электролиты и даже некоторые неметаллы, такие как графит и жидкости, включая воду, являются хорошими проводниками электричества. Чистое элементарное серебро является одним из лучших проводников электричества. Другие хорошие электрические проводники включают следующее:

  • медь
  • сталь
  • золото
  • серебро
  • платина
  • алюминий
  • латунь

Люди также являются хорошими проводниками электричества, поэтому прикосновение к человеку, пораженному электрическим током, вызывает такой же удар. В электрических и электронных системах проводники состоят из твердых металлов, отформованных в провода или вытравленных на печатных платах.

Основные характеристики электрических проводников

Важные особенности электрического проводника включают следующее:

  • Обеспечивает свободное движение через него электронов или ионов.
  • У него внутри нулевое электрическое поле, что позволяет двигаться электронам или ионам.
  • Снаружи проводника электрическое поле перпендикулярно поверхности проводника.
  • Он имеет нулевую плотность заряда, благодаря чему положительные и отрицательные заряды компенсируют друг друга, а свободные заряды существуют только на поверхности.

Кроме того, проводники имеют низкое сопротивление и высокую теплопроводность. Кроме того, проводник, помещенный в магнитное поле, не накапливает энергию. Наконец, оба конца проводника находятся под одинаковым потенциалом. Электричество течет по проводнику, когда потенциал меняется на одном конце, что позволяет электронам течь от одного конца к другому.

Как работают кондукторы

Согласно зонной теории в физике твердого тела, твердые тела имеют валентную зону и зону проводимости. Чтобы материал мог проводить через него электрический ток, между его валентной зоной и зоной проводимости не должно быть энергетической щели. Таким образом, в проводниках эти полосы перекрываются, позволяя электронам проходить через материал даже при приложении минимального напряжения. Поскольку внешние электроны в валентной зоне слабо связаны с атомом, приложение напряжения, электродвижущая сила или тепловое воздействие возбуждают их, что перемещает их из валентной зоны в зону проводимости.

Схема энергетической зоны проводника

В зоне проводимости эти электроны могут свободно перемещаться где угодно, что приводит к обилию электронов в этой зоне. Эти электроны движутся вперед и назад, а не по прямой линии. Вот почему их скорость известна как скорость дрейфа или V d . Именно из-за этой скорости дрейфа электроны сталкиваются с атомами материала или другими электронами внутри зоны проводимости проводника.

Когда в проводнике есть разность потенциалов в двух точках, электроны перетекают из точки с более низким потенциалом в точку с более высоким потенциалом. Электроны и электричество текут в противоположных направлениях. В этой ситуации материал проводника оказывает лишь небольшое сопротивление.

Что такое изоляторы?

Материалы, которые не пропускают электрический ток или тепло, известны как изоляторы или диэлектрические материалы. Большинство изоляторов являются твердыми по своей природе. Примеры включают следующее:

  • дерево
  • ткань
  • стекло
  • кварц
  • слюда
  • пластик
  • фарфор
  • резина

Большинство газов и некоторые типы дистиллированной воды также являются хорошими изоляторами.

Резисторы, полупроводники и сверхпроводники

Материал, который довольно хорошо проводит электричество, но не так хорошо, как проводник, известен как резистор . Наиболее распространенным примером резистора является комбинация углерода и глины, смешанных в определенном соотношении для создания постоянного, предсказуемого сопротивления электрическому току.

Полупроводники ведут себя как хорошие проводники при одних условиях, но как плохие проводники при других. В полупроводнике как электроны, так и так называемые дырки — отсутствие электронов — действуют как носители заряда. Примеры полупроводников включают кремний, германий и различные оксиды металлов.

Интегральные схемы, такие как микросхемы, состоят из полупроводниковых материалов.

При экстремально низких температурах некоторые металлы проводят электричество лучше, чем любое известное вещество при комнатной температуре. Это явление называется сверхпроводимость . Вещество, которое ведет себя таким образом, называется сверхпроводником .

Влияние температуры на проводимость

Температура и проводимость обратно пропорциональны, то есть повышение температуры отрицательно влияет на проводимость. С повышением температуры увеличивается и колебание молекул проводника. Это препятствует плавному потоку электронов, тем самым уменьшая проводимость материала.

Кроме того, повышение температуры приводит к разрыву связей в молекулах проводника, что приводит к высвобождению электронов. Это оставляет материал с меньшим количеством электронов, тем самым снижая способность материала проводить через него электрический ток.

Типы проводников

В зависимости от омической характеристики электрические проводники классифицируются как:

  • жилы омические
  • неомические проводники

Омические проводники всегда следуют закону Ома, согласно которому приложенное напряжение прямо пропорционально протекающему току. Примеры включают алюминий, медь и серебро. Неомические проводники, которые не подчиняются закону Ома, включают термисторы и фоторезисторы, зависящие от света.

Применение электрических проводников Проводники

полезны для многих приложений, включая следующие:

  • Алюминий, хорошо проводящий тепло и электричество, обычно используется для изготовления кухонной утвари. Он также используется в фольге для хранения и консервации пищевых продуктов.
  • Железо, хорошо проводящее тепло, используется в производстве автомобильных двигателей.
  • Проводники также используются в автомобильных радиаторах для отвода тепла от двигателя.

Изоляторы также используются для многих распространенных применений. Например, каучук используется для изготовления огнеупорной одежды и обуви. Пластик часто включают в электрические приборы, чтобы предотвратить поражение пользователей электрическим током. Изоляторы также защищают пользователей от огня и звука.

См. также: Эффект Зеебека , переменный ток , постоянный ток , проводимость , поток , ампер , эффект Холла , индукция и электромагнитное сопротивление 074 .

Последнее обновление: май 2022 г.

Продолжить чтение О дирижере
  • IBM: еще один чип в стене
  • Подготовьте провода к Интернету вещей
  • Создание руководства по электробезопасности для центра обработки данных
  • Подсоедините анизотропную проводящую пленку для ваших устройств IoT
  • Баланс электроэнергии — построение устойчивой электросети
СпейсИкс

SpaceX (Space Exploration Technologies Corporation) — производитель космических транспортных средств и аэрокосмической техники, основанный в 2002 году Илоном Маском.

Нетворкинг

  • основная полоса

    Основная полоса частот при передаче сигналов связи означает, что для отправки и приема цифровых сигналов доступен только один путь …

  • широкополосный

    Широкополосный доступ относится к телекоммуникациям, в которых для передачи информации доступна широкая полоса частот.

  • оптоволокно до дома (FTTH)

    Оптоволокно до дома (FTTH), также называемое оптоволокном до помещения (FTTP), представляет собой установку и использование оптического волокна от центрального …

Безопасность

  • Общая система оценки уязвимостей (CVSS)

    Общая система оценки уязвимостей (CVSS) — это общедоступная система оценки серьезности уязвимостей безопасности в …

  • WPA3

    WPA3, также известный как Wi-Fi Protected Access 3, является третьей итерацией стандарта сертификации безопасности, разработанного Wi-Fi . ..

  • брандмауэр

    Брандмауэр — это устройство сетевой безопасности, которое предотвращает несанкционированный доступ к сети. Проверяет входящий и исходящий трафик…

ИТ-директор

  • Agile-манифест

    Манифест Agile — это документ, определяющий четыре ключевые ценности и 12 принципов, в которые его авторы верят разработчики программного обеспечения…

  • Общее управление качеством (TQM)

    Total Quality Management (TQM) — это структура управления, основанная на убеждении, что организация может добиться долгосрочного успеха, …

  • системное мышление

    Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…

HRSoftware

  • непрерывное управление производительностью

    Непрерывное управление эффективностью в контексте управления человеческими ресурсами (HR) представляет собой надзор за работой сотрудника . ..

  • вовлечения сотрудников

    Вовлеченность сотрудников — это эмоциональная и профессиональная связь, которую сотрудник испытывает к своей организации, коллегам и работе.

  • кадровый резерв

    Кадровый резерв — это база данных кандидатов на работу, которые могут удовлетворить немедленные и долгосрочные потребности организации.

Служба поддержки клиентов

  • бесконтактная оплата

    Бесконтактный платеж — это беспроводная финансовая транзакция, при которой покупатель совершает покупку, перемещая жетон безопасности в …

  • исходящий вызов

    Исходящий вызов — это вызов, инициированный оператором центра обработки вызовов клиенту от имени центра обработки вызовов или клиента.

  • социальная CRM

    Social CRM, или социальное управление взаимоотношениями с клиентами, — это управление взаимоотношениями с клиентами и взаимодействие с ними, поддерживаемое . ..

Учебник по физике: проводники и изоляторы

Поведение заряженного объекта зависит от того, из проводящего или непроводящего материала он сделан. Проводники — это материалы, которые позволяют электронам свободно течь от частицы к частице. Объект, сделанный из проводящего материала, позволяет передавать заряд по всей поверхности объекта. Если заряд передается объекту в заданном месте, этот заряд быстро распределяется по всей поверхности объекта. Распределение заряда является результатом движения электронов. Поскольку проводники позволяют электронам переноситься от частицы к частице, заряженный объект всегда будет распределять свой заряд до тех пор, пока общие силы отталкивания между избыточными электронами не будут минимизированы. Если заряженный проводник прикоснуться к другому объекту, проводник может даже передать свой заряд этому объекту. Перенос заряда между объектами происходит легче, если второй объект сделан из проводящего материала. Проводники обеспечивают перенос заряда за счет свободного движения электронов.


В отличие от проводников, изоляторы представляют собой материалы, препятствующие свободному потоку электронов от атома к атому и от молекулы к молекуле. Если заряд передается изолятору в заданном месте, избыточный заряд останется в начальном месте зарядки. Частицы изолятора не допускают свободного потока электронов; впоследствии заряд редко распределяется равномерно по поверхности изолятора.

Хотя изоляторы непригодны для переноса заряда, они играют важную роль в электростатических экспериментах и ​​демонстрациях. Проводящие объекты часто монтируются на изолирующих объектах. Такое расположение проводника поверх изолятора предотвращает передачу заряда от проводящего объекта к его окружению. Такое расположение также позволяет ученику (или учителю) манипулировать проводящим объектом, не касаясь его. Изолятор служит ручкой для перемещения проводника по лабораторному столу. Если эксперименты по зарядке проводятся с алюминиевыми банками для поп-музыки, то банки следует устанавливать поверх стаканов из пенополистирола. Чашки служат изоляторами, не позволяя банкам из-под попсы разряжаться. Чашки также служат ручками, когда необходимо передвигать банки по столу.


Примеры проводников и изоляторов

Примеры проводников включают металлы, водные растворы солей (т. е. ионные соединения , растворенные в воде), графит и тело человека. Примеры изоляторов включают пластмассы, пенополистирол, бумагу, резину, стекло и сухой воздух. Разделение материалов на категории проводников и изоляторов несколько искусственно. Более уместно думать о материалах как о размещении где-то в континууме. Те материалы, которые обладают сверхпроводимостью (известные как сверхпроводники ) будут размещены на одном конце, а материалы с наименьшей проводимостью (лучшие изоляторы) будут размещены на другом конце. Металлы будут помещены рядом с наиболее проводящим концом, а стекло — на противоположном конце континуума. Электропроводность металла может быть в миллион триллионов раз выше, чем у стекла.


В континууме проводников и изоляторов можно найти человеческое тело где-то ближе к проводящей стороне середины. Когда тело приобретает статический заряд, оно имеет тенденцию распределять этот заряд по всей поверхности тела. Учитывая размер человеческого тела по сравнению с размером типичных объектов, используемых в электростатических экспериментах, потребуется аномально большое количество избыточного заряда, прежде чем его эффект будет заметен. Влияние избыточного заряда на тело часто демонстрируют с помощью генератора Ван де Граафа. Когда ученик кладет руку на неподвижный мяч, избыточный заряд от мяча передается человеческому телу. Будучи проводником, избыточный заряд мог стекать в тело человека и распространяться по всей поверхности тела, даже на пряди волос. Когда отдельные пряди волос заряжаются, они начинают отталкивать друг друга. Стремясь дистанцироваться от своих заряженных соседей, пряди волос начинают подниматься вверх и наружу — поистине мурашки по коже.

Многие знакомы с воздействием влажности на накопление статического заряда. Вы, вероятно, замечали, что в зимние месяцы чаще всего случаются плохие прически, удары дверными ручками и статическая одежда. Зимние месяцы, как правило, самые засушливые месяцы в году, когда уровень влажности воздуха падает до более низких значений. Вода имеет свойство постепенно снимать лишний заряд с предметов. Когда влажность высокая, человек, приобретающий избыточный заряд, будет склонен отдавать этот заряд молекулам воды в окружающем воздухе. С другой стороны, сухой воздух способствует накоплению статического заряда и более частым поражениям электрическим током. Поскольку уровни влажности имеют тенденцию меняться изо дня в день и от сезона к сезону, ожидается, что электрические эффекты (и даже успех электростатических демонстраций) могут меняться изо дня в день.

 

Распределение заряда посредством движения электронов

Предсказание направления движения электронов в проводящем материале — это простое применение двух основных правил взаимодействия зарядов. Противоположности притягиваются, а подобное отталкивается. Предположим, что какой-то метод используется для передачи отрицательного заряда объекту в заданном месте. В месте, где передается заряд, имеется избыток электронов. То есть множество атомов в этой области содержат больше электронов, чем протонов. Конечно, есть такое количество электронов, которое можно считать равным 9.0073 вполне довольны , так как есть сопровождающий положительно заряженный протон, удовлетворяющий их притяжение к противоположному. Однако так называемые избыточные электроны отталкивают друг друга и предпочитают больше места. Электроны, как и люди, хотят манипулировать своим окружением, чтобы уменьшить отталкивающие эффекты. Поскольку эти избыточные электроны присутствуют в проводнике, мало что мешает их способности мигрировать в другие части объекта. И это именно то, что они делают. Чтобы уменьшить общие эффекты отталкивания внутри объекта, происходит массовая миграция избыточных электронов по всей поверхности объекта. Лишние электроны мигрируют, чтобы удалиться от своих отталкивающих соседей. В этом смысле говорят, что избыточный отрицательный заряд распределяется по всей поверхности проводника.

Но что произойдет, если проводник приобретет избыток положительного заряда? Что, если электроны удаляются из проводника в заданном месте, придавая объекту общий положительный заряд? Если протоны не могут двигаться, то как избыток положительного заряда может распределиться по поверхности материала? Хотя ответы на эти вопросы не столь очевидны, они все же предполагают довольно простое объяснение, которое опять-таки опирается на два фундаментальных правила взаимодействия зарядов. Противоположности притягиваются, а подобное отталкивается. Предположим, что проводящая металлическая сфера заряжена с левой стороны и сообщила избыток положительного заряда. (Конечно, это требует, чтобы электроны были удалены от объекта в месте зарядки.) Множество атомов в области, где происходит зарядка, потеряли один или несколько электронов и имеют избыток протонов. Дисбаланс заряда внутри этих атомов создает эффекты, которые можно рассматривать как нарушение баланса заряда внутри всего объекта. Присутствие этих избыточных протонов в данном месте оттягивает электроны от других атомов. Электроны в других частях объекта можно рассматривать как вполне доволен балансом заряда, который они испытывают. Однако всегда найдутся электроны, которые почувствуют притяжение избыточных протонов на некотором расстоянии. Говоря человеческим языком, мы могли бы сказать, что эти электроны притягиваются любопытством или верой в то, что по ту сторону забора трава зеленее. На языке электростатики мы просто утверждаем, что противоположности притягиваются — лишние протоны и как соседние, так и дальние электроны притягиваются друг к другу. Протоны ничего не могут поделать с этим притяжением, поскольку они связаны внутри ядра своих собственных атомов. Тем не менее, электроны слабо связаны внутри атомов; и, находясь в проводнике, они могут свободно перемещаться. Эти электроны перемещаются за избыточными протонами, оставляя свои собственные атомы со своим избыточным положительным зарядом. Эта миграция электронов происходит по всей поверхности объекта до тех пор, пока общая сумма эффектов отталкивания между электронами по всей поверхности объекта не будет минимизирована.


Мы хотели бы предложить …

Иногда недостаточно просто прочитать об этом. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего Интерактивного поляризационного алюминиевого банка. Вы можете найти его в разделе Physics Interactives на нашем сайте. Интерактивная поляризация алюминиевой банки помогает учащимся визуализировать перераспределение зарядов внутри проводника по мере приближения заряженного объекта.


Посетите:  Поляризация алюминиевой банки

 

 

Проверьте свое понимание

Используйте свое понимание заряда, чтобы ответить на следующие вопросы. Когда закончите, нажмите кнопку, чтобы просмотреть ответы.

1. Одна из этих изолированных заряженных сфер сделана из меди, а другая — из каучука. На приведенной ниже диаграмме показано распределение избыточного отрицательного заряда по поверхности двух сфер. Отметьте, что есть что, и подкрепите свой ответ объяснением.

 

 

2. Какой из следующих материалов обладает более высокими проводящими свойствами, чем изолирующими? _____ Объясните свои ответы.

а. резина

б. алюминий

с. серебро

д. пластик

е. мокрая кожа

 

3. Проводник отличается от изолятора тем, что проводник ________.

а. имеет избыток протонов

б. имеет избыток электронов

с. может заряжаться, а изолятор не может

д. имеет более быстрые молекулы

эл. не содержит нейтронов, препятствующих потоку электронов

ф. ни один из этих

 

 

4. Предположим, что проводящий шар каким-то образом заряжается положительно. Заряд изначально осаждается на левой стороне сферы. Тем не менее, поскольку объект является проводящим, заряд равномерно распределяется по всей поверхности сферы. Равномерное распределение заряда объясняется тем, что ____.

а. заряженные атомы в месте заряда перемещаются по всей поверхности сферы

б. избыточные протоны перемещаются из места заряда в остальную часть сферы

с. избыточные электроны из остальной части сферы притягиваются к избыточным протонам

 

 

5. Когда цистерна прибыла в пункт назначения, она готовится слить топливо в резервуар или бак. Часть подготовки включает соединение корпуса автоцистерны металлическим проводом с землей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *