Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

1. Реактивная мощность в системах электроснабжения промышленных предприятий

РМ определяется для первых гармоник напряжений и токов, и поэтому при расчетах нелинейных цепей в случае синусоидального напряжения и несинусоидального тока РМ для высших гармоник не находится.

1.2. Особенности передачи реактивной мощности по электрическим сетям

Режимы работы систем электроснабжения промышленных предприятий (СЭСПП) характеризуются следующими величинами: напряжениями в узлах нагрузки Ui; токами в ветвях Ii; потерями активной Pi и реактивной Qi мощностей; потерями напряжения Ui и др. Они

зависят от продольных сопротивлений Z=R+jX элементов СЭС (линий электропередачи, силовых трансформаторов, реакторов и др.), а также от активной Рi и реактивной Qi мощностей, передаваемых через эти элементы.

Передача активной и реактивной мощностей по элементам СЭСПП имеет ряд особенностей:

1. Мощность в начале линии P1+jQ1 отличается от мощности в конце линии P2+jQ2 на величину потерь мощности, активная и реактивная составляющие которых определяется по формулам:

P =

P2

+Q2

R =

P2

R +

 

Q2

R

=

P

+

P

;

 

2

 

 

2

 

2

 

 

2

 

U22

 

U22

U22

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

P

 

 

Q =

P2

+Q2

X

=

 

P2

X +

Q2

X =

 

Q

 

+

Q

.

 

2

 

2

 

 

2

 

 

2

 

 

(1.6)

U22

 

 

U22

U22

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

P

 

 

Из этих выражений видно, что потери как активной, так и РМ могут быть разделены на две составляющие, обусловленные соответственно потоками активной и реактивной мощностей по рассматриваемому элементу СЭС.

2. Напряжение в начале линии U1 связано с напряжением в ее конце U2 соотношением

 

U = (U2 + U ′)2 +( U ′′)2 ,

 

где U ′ и

U ′′ – продольная и поперечная составляющие вектора падения

напряжения, определяемые по формулам:

 

 

 

 

U ′ =

P2 R +Q2 X

= U A′ + U ′p ;

 

 

 

 

 

 

U2

 

 

 

 

U ′′ =

P2 X −Q2 R

=

U A′′ +

U ′′p .

(1.7)

 

 

 

 

 

U2

 

 

 

Для сетей высокого напряжения обычно X >R, поэтому

U ′

определяется в основном

слагаемым Q2X, а U ′′ – слагаемым P2X. Влияние

U ′′ на напряжение U2 у потребителя мало,

т.к. U2 >>

U ′′. Из этого следует, что уровни напряжений в различных точках СЭС значительно

слабее зависят от передаваемой активной мощности и в основном определяются реактивной составляющей. Арифметическую разницу между напряжениями в начале и конце линии называют потерей напряжения:

U =U1 −U2 ≈ U ′.

3. Промышленное предприятие (ПП) в общем случае имеет переменный режим потребления активной и реактивной мощностей. В утренние и вечерние часы наблюдается максимумы электрических нагрузок, а в ночное время – их минимумы. При этом на большинстве ПП из-за отсутствия автоматического регулирования мощностей КУ последние от сети не отключаются.

Способы и средства компенсации реактивной мощности в системах электроснабжения

Анонс: Технически корректная концепция средств и способов компенсации реактивной мощности. Активные и пассивные средства компенсации реактивной мощности. Способы компенсации реактивной мощности в системах электроснабжения.

Средства компенсации реактивной мощности – любые устройства и мероприятия, посредством которых можно целенаправленно воздействовать на баланс реактивной мощности в системах электроснабжения, причем и путем уменьшения потребляемой, и увеличения генерации реактивной мощности. Способы компенсации реактивной мощности – системное применение средств по определенным схемам, оптимальным реактивной нагрузке систем электроснабжения.

Средства компенсации реактивной мощности в системах электроснабжения.

Все средства компенсации реактивной мощности в системах электроснабжения условно делят на пассивные и активные, причем реализация пассивных средств приводит к уменьшению объемов потребляемой реактивной мощности, а активные средства генерируют реактивную мощность и интегрируются в электрические сети в соответствии с оптимальным способом компенсации.

Пассивные средства компенсации реактивной мощности.

Типовыми средствами компенсации реактивной мощности, используемыми для разгрузки сети по реактивным токам, сегодня являются:

  • организационно-технические мероприятия по оптимизации административных, производственных и технологических процессов, позволяющие обеспечить улучшение энергетического режима работы энергоприемников – оборудования, устройств, систем.
    Это замена устаревшего не энергоэффективного оборудования, модернизация систем освещения, контроля и управления процессами, не одновременное, а распределенное (несмимметричное) пол времени включение реактивных нагрузок, оптимизация режима работы подразделений и т.д. и т.п;
  • использование переключения с треугольника на звезду статорных обмоток асинхронных двигателей с загрузкой в часы работы менее, чем на 40%;
  • снижение объемов потребляемой реактивной мощности за счет отключения асинхронных двигателей, работающих на холостом ходу, а также вывода из эксплуатации (или отключения) трансформаторов с загрузкой менее, чем на треть;
  • применение в проектах и замена в действующих приводах асинхронных двигателей синхронными, где это допустимо в техническом и технологическом аспектах;
  • модернизация приводов с применением тиристорного управления регулированием напряжения, преобразователей с заменой на модели с большим числом фаз выпрямления;
  • интеграция в электрические сети систем с искусственной коммутацией вентилей или ограничениями по генерации токов высших гармоник;
  • применение в новых сегментах электрической сети и поэтапная замена действующих реактивных нагрузок на оборудование, устройства, сертифицированные по энергосбережению.

Активные средства компенсации реактивной мощности.

К активным средствам компенсации реактивной мощности, генерирующим реактивную энергию в электрические сети, относят:

  • единичные косинусные конденсаторы и конденсаторные батареи, применяемые в способах индивидуальной и групповой компенсации реактивной мощности;
  • конденсаторные батареи с коммутационной аппаратурой, средствами защиты и управления – комплектные установки повышения коэффициента мощности – нерегулируемые и автоматические с релейными контакторами;
  • синхронные двигатели и их разновидность – синхронные компенсаторы, работающие без нагрузки на валу и используемые для стабилизации напряжения в точке подключения в пределах интервала ±5% от номинального значения;
  • многоступенчатые установки коррекции коэффициента мощности на конденсаторных батареях и с тиристорными ключами. Установка устройств с тиристорными ключами дает возможность снизить броски тока при включении ступеней – конденсаторных батарей и риски перенапряжения при отключении ступеней;
  • статические тиристорные компенсаторы реактивной мощности – мостовые генераторы реактивной мощности с индуктивным накопителем, реакторы насыщения с нелинейной или линейной вольтамперной характеристикой, а также последовательным подключением встречно-параллельных управляемых вентилей – работающие принципу прямой и косвенной компенсации.
  • тиристорные компенсаторы реактивной мощности для сетей с резкопеременной нагрузкой напряжением 6-10 кВ, тиристорно-реакторные группы для ЛЭП и т.д.

Способы компенсации реактивной мощности в системах электроснабжения.

Среди популярных способов выделяют централизованную (по стороне высшего и низшего напряжения), групповую, индивидуальную и комбинированную компенсацию реактивной мощности, а в качестве комбинированной обычно используется централизованная в сочетании с групповой и/или индивидуальной.

Рис. Способы компенсации реактивной мощности: а – централизованная по стороне высшего напряжения, б – централизованная по стороне низшего напряжения, в – групповая (посекционная), г – индивидуальная, где штриховым обозначением показаны электрические сети, разгруженные от перетоков реактивной мощности.

Выбор средства и способа компенсации реактивной мощности, установка устройств и обслуживание осуществляется профильной компанией по результатам энергетического аудита объекта, что позволяет исключить риски перекомпенсации и минимизировать объемы недокомпенсированной мощности для конкретной электрической сети с реактивными нагрузками.


Параметры устройств компенсации реактивной мощности в системах электроснабжения Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

ЭНЕРГОСБЕРЕЖЕНИЕ, ЭНЕРГОСБЕРЕГАЮЩИЙ ЭЛЕКТРОПРИВОД И ЭНЕРГОЭФФЕКТИВНОСТЬ ЕГО ПРИМЕНЕНИЯ

УДК 676.013.6

И. М. Базыль, асп., (4872) 35-54-50, [email protected] (Россия, Тула, ТулГУ)

ПАРАМЕТРЫ УСТРОЙСТВ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ

Рассмотрены задачи и практические методы, обеспечивающие эффективность требуемых показателей электрической энергии.

Кчючевые слова: электроэнергия, реактивная мощность, показатели качества электроэнергии.

Вопросы экономного использования всех видов энергии, в том числе электрической, и повышения экономичности работы электроустановок являются важной государственной проблемой.

В последние годы повышению качества электроэнергии уделяют большое внимание, т.к. качество электроэнергии может существенно влиять на расход электроэнергии, надежность систем электроснабжения, технологический процесс производства.

При решении задачи повышения качества электроэнергии выделяют экономические, математические и технические аспекты.

Экономические аспекты включают в себя методы расчета убытков от некачественной электроэнергии в системах промышленного электроснабжения. Математические аспекты представляют собой обоснование тех или иных методов расчета показателей качества электроэнергии. Технические аспекты включают в себя разработку технических средств и мероприятий, улучшающих качество электроэнергии, а также организацию системы контроля и управления ее качеством.

Качество электроэнергии можно улучшить средствами питающей сети или применением соответствующего дополнительного оборудования

на основе имеющегося опыта проектных и эксплуатационных организаций.

Часть решений, в основном обусловленных техническими требованиями, является общей и должна приниматься на основе имеющихся указаний. В других случаях учитывают специфику конкретных условий.

Стремление повысить производительность труда на современных промышленных предприятиях, а также интенсификация и усложнение технологических процессов обусловили то, что все большую долю в общем объеме суммарных нагрузок занимают резкопеременные и нелинейные нагрузки с повышенным потреблением реактивной мощности. Это, прежде всего, вентильные преобразователи, нашедшие широкое применение на заводах черной и цветной металлургии и предприятиях химической промышленности, а также мощные дуговые печи, сварочные установки и т. п.

Характерной особенностью работы этих потребителей является влияние их на качество электроэнергии питающих сетей. В свою очередь нормальная работа электрооборудования зависит от качества электроэнергии питающей системы. Такое взаимное влияние электрооборудования и питающей системы определяют термином “электромагнитная совместимость”.

Решение проблемы электромагнитной совместимости связано с определением и поддержанием оптимальных показателей качества электроэнергии, при которых выполняются технические требования с минимальными затратами.

Проблема электромагнитной совместимости электроприемников с питающей сетью остро возникла в последнее время в связи с широким внедрением мощных вентильных преобразователей, дуговых сталеплавильных печей, сварочных установок и других устройств, которые при всей своей экономичности и технологической эффективности оказывают отрицательное влияние на качество электрической энергии в питающих электрических сетях.

При разработке новых приемников электроэнергии необходимо учитывать то отрицательное влияние, которое они могут оказывать на питающую электрическую сеть. При оценке должны приниматься во внимание дополнительные устройства, предотвращающие ухудшение качества электрической энергии. Необходимые нормы качества электрической энергии могут быть достигнуты уже на стадии проектирования электроснабжения промышленных предприятий путем соответствующих расчетов и применения технических средств.

Одним из основных вопросов, связанных с повышением качества электроэнергии в сетях, решаемых как на стадии проектирования, так и на стадии эксплуатации систем промышленного электроснабжения, является вопрос о компенсации реактивной мощности, включающий выбор целесообразных источников, расчет и регулирование их мощности, размещение источников в системе электроснабжения.

Энергосбережение, энергосберегающий электропривод и энергоэффективность …

Рациональная (оптимальная) компенсация реактивной мощности в промышленных электросетях включает в себя широкий комплекс вопросов, направленных на повышение экономичности работы электроустановок, улучшение качества потребляемой электроэнергии и включающих в себя методы выбора и расчета компенсирующих устройств, исходя из условий выполнения заданий энергосистемы; вопросы места установки компенсирующих устройств и их наивыгоднейшего размещения, рациональной и безопасной эксплуатации и защиты; ключевые вопросы автоматического регулирования реактивной мощности в промышленных электросетях, а также создания целенаправленного научного подхода к разработке и решению с минимумом погрешности адекватной математической модели задачи рациональной компенсации реактивной мощности [1].

Рациональная компенсация реактивной мощности приводит к снижению потерь мощности из-за перетоков реактивной мощности, обеспечению надлежащего качества потребляемой электроэнергии за счет регулирования и стабилизации уровня напряжений в электросетях, достижению высоких технико-экономических показателей работы электроустановок.

Проблема компенсации реактивной мощности в электрических системах страны имеет большое значение по следующим причинам:

1) в промышленном производстве наблюдается опережающий рост потребления реактивной мощности по сравнению с активной;

2) в городских электрических сетях возросло потребление реактивной мощности, обусловленное ростом бытовых нагрузок;

3) увеличивается потребление реактивной мощности в сельских электрических сетях.

Количественные и качественные изменения, происходящие в промышленном электроснабжении за последние годы, придают этому вопросу особую значимость. В настоящее время прирост потребления реактивной мощности существенно превосходит прирост потребления активной мощности. При этом передача реактивной мощности на значительные расстояния от мест генерации до мест потребления существенно ухудшает технико-экономические показатели систем электроснабжения.

Интенсификация производственных процессов, повышение производительности труда связаны с совершенствованием существующей и внедрением новой, передовой технологии. Этому процессу сопутствует широкое внедрение мощных вентильных преобразователей, электродуговых печей, сварочных установок и других устройств, которые при всей технологической эффективности оказывают отрицательное влияние на качество электроэнергии в электрических сетях.

Следует отметить, что практически все показатели качества электроэнергии по напряжению зависят от потребляемой промышленными электроприемниками реактивной мощности. Поэтому вопросы качества электроэнергии необходимо рассматривать в непосредственной связи с во-

просами компенсации реактивной мощности.

Проблема электромагнитной совместимости электроприемников с питающей сетью, которую в последнее время сравнивают с проблемой загрязнения окружающей среды, порождает новые научные и технические проблемы при проектировании и эксплуатации промышленных электрических сетей. В настоящее время принимаются меры для того, чтобы уменьшить влияние потребителей на качество электроэнергии в промышленных сетях.

Проблема может быть решена путем создания и промышленного освоения быстродействующих многофункциональных средств компенсации реактивной мощности (рисунок), улучшающих качество электроэнергии сразу по нескольким параметрам. Внедрение этих устройств приведет также к уменьшению потерь электроэнергии.

Вопросы качества электроэнергии требуют тщательной разработки и изучения происходящих при этом явлений. Особые трудности связаны с отсутствием требуемых измерительных приборов в электрических сетях, а также сложностью и необходимостью изменения методов измерений. Это связано, в частности, с влиянием случайного характера изменений нагрузок, что, в свою очередь, требует применения статистических приборов и соответствующей обработки получаемой информации – использования вероятностно-статистических методов расчета[1].

Коэффициент реактивной мощности на предприятии

Для обеспечения требуемых показателей электрической энергии и соответствующего значения соб ^ необходимо контролировать несимметричность нагрузки, перекосы фаз с последующей их ликвидацией.

В связи с этим разработанное устройство компенсации статической и резкопеременной реактивной нагрузки, которое будет решать проблему в комплексе, должно быть многофункциональным, применяемым в системах электроснабжения. Это устройство позволит производить компенсацию реактивной мощности в электрической сети, а также обеспечит стабилизацию напряжения на шинах потребителей, фильтрацию высших гармоник, симметрирование токов и напряжений в сети, экономию средств на оплату потребляемой предприятием электрической энергии.

Список литературы

1. Алексеев Б. А. Продление срока службы силовых трансформато-

Энергосбережение, энергосберегающий электропривод и энергоэффективность

ров. Новые виды трансформаторного оборудования. СИГРЭ-2002// Электрические станции. 2003. №7.

2. Быстрицкий Г.Ф. Энергосиловое оборудование промышленных предприятий: учеб. пособие. М.: Издательский Центр “Академия”, 2003. 304 с.

4. Ильяшов В. П. Конденсаторные установки промышленных предприятий. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1983. 152 с.

6. Нагорная В.Н. Экономика энергетики: учеб. пособие. Владивосток: Изд-во ДВГТУ, 2007. 157 с.

7. Трунковский Л. Е. Электрические сети промышленных предприятий. – 1991.

I. M. Bazyl’

PARAMETERS OF REACTIVE POWER COMPENSATION IN POWER SYSTEMS

The practical methods to ensure the effectiveness of the required parameters of electric energy are challenged.

Key words: electric power, reactive power, current, power factor, power quality.

Получено 19.06.12

УДК 621.31.

И. М. Базыль, асп., (4872) 35-54-50, [email protected] (Россия, Тула, ТулГУ)

РЕЖИМЫ РАБОТЫ УСТРОЙСТВ ПО ОГРАНИЧЕНИЮ ПРОВАЛОВ НАПРЯЖЕНИЯ

Рассмотрены задачи, обеспечивающие эффективность требуемых значений напряжения на предприятии.

Ключевые слова: электроэнергия, провалы напряжения, качество электроэнергии.

Приемники электроэнергии (ПЭ) и аппараты, присоединенные к электрическим сетям, предназначены для работы при определенных номинальных параметрах: номинальной частоте переменного тока, номинальном напряжении, номинальном токе и т. п. Долгое время основными режимными параметрами, определяющими качество электрической энергии, считались значение частоты в электрической системе и уровни напряжения

Компенсация реактивных мощностей

Параметры режимов электрических систем

Режим работы электрической системы характеризуется значениями показателей ее состояния, называемых параметрами режимов. Все процессы в электрических системах можно охарактеризовать тремя параметрами: напряжением, током и активной мощностью. Но для удобства расчетов режимов применяются и другие параметры, в частности, реактивная и полная мощность. Произведение показаний вольтметра и амперметра в цепи переменного тока называется полной мощностью. Для трехфазной цепи она выражается формулой:
(1)
где
I — ток в одной фазе;
U — линейное напряжение.
Активная мощность трехфазного переменного тока определяется по формуле:
(2)
Множитель cosφ называется коэффициентом мощности. Угол ф указывает сдвиг по фазе тока и напряжения.
На основании этих выражений полная мощность S представляется гипотенузой прямоугольного треугольника, один катет которого представляет активную мощность Р = S cosφ, а другой — реактивную Q = S sinφ.
Реактивная мощность находится также из выражения:
(3)
где
tgφ — коэффициент реактивной мощности.
Следует помнить об условности толкования Q как мощности. Только активная мощность и энергия могут совершать работу и преобразовываться в механическую, тепловую, световую и химическую энергию. Активная мощность обусловлена преобразованием энергии первичного двигателя, полученной от природного источника, в электроэнергию. Реактивная мощность не преобразуется в другие виды мощности, не совершает работу, и поэтому называется мощностью условно. Реактивная мощность идет на создание магнитного и электрических полей. Для анализа режимов в цепях синусоидального тока реактивная мощность является очень удобной характеристикой, широко используемой на практике.
Особенностью производства и потребления электроэнергии является равенство выработанной и израсходованной в единицу времени электроэнергии (мощности). Следовательно, в электрической системе должно выполняться равенство (баланс) для активных мощностей:
 
(4)
где
Рг — суммарная активная мощность, отдаваемая в сеть генераторами электростанций, входящих в систему;
РПОтр — суммарная совмещенная активная нагрузка потребителей системы;
АРпер — суммарные потери активной мощности во всех элементах передачи электроэнергии (линиях, трансформаторах) по электрическим сетям;
Рсн — суммарная активная нагрузка собственных нужд всех электростанций системы при наибольшей нагрузке потребителя.
Основная доля выработанной мощности идет на покрытие нагрузки потребителей. Суммарные потери на передачу зависят от протяженности линий электрических сетей, их сечений и числа трансформаций и находятся в пределах 5…15% от суммарной нагрузки. Нагрузка собственных нужд электростанций зависит от их типа, рода топлива и типа оборудования; она составляет для тепловых электростанций

  1. . 12%, для гидростанций — 0,5… 1 % от мощности электростанции.

Равенство (4) позволяет определить рабочую активную мощность системы. Располагаемая мощность генераторов Рг.расп системы несколько больше, чем рабочая мощность в режиме максимальных нагрузок Pr.max; требуется учитывать необходимость резервирования при аварийных и плановых (ремонтных) отключениях части основного оборудования электроэнергетической системы:
 
(5)
где
Рг рез — мощность резерва системы, который должен быть не меньше 10% ее рабочей мощности.
При нарушении баланса активных мощностей, например, если
 
(6)
происходит снижение частоты в системе.

Баланс реактивных мощностей

В электрической системе суммарная генерируемая реактивная мощность должна быть равна потреб- мощности, источниками которой являются только генераторы электростанций, реактивная мощность генерируется как ими, так и другими источниками, к которым относятся воздушные и кабельные линии разных напряжений (Эл, а также установленные в сетях источники реактивной мощности (ИРМ) (компенсирующие устройства — КУ) мощностью Q
Поэтому баланс реактивной мощности в электрической системе представляется уравнением:
 
(7)
Следует отметить, что уравнение баланса реактивных мощностей связано с уравнением баланса активных мощностей, так как:
 
(8)
Генерация реактивной мощности на электростанциях зависит от числа и активной мощности работающих агрегатов, а потребление реактивной мощности — от состава электроприемников. При номинальном коэффициенте мощности генераторов cosφr= 0,85 коэффициент реактивной мощности tgφr = 0,6. Для потребителей коэффициент реактивной мощности tgφn0Tp = 0,3.
Потери реактивной мощности на передачу в основном определяются потерями реактивной мощности в трансформаторах, при трех-четырех трансформациях суммарные потери мощности в трансформаторах могут достигать 40% от передаваемой полной мощности.
В линиях напряжением 110 кВ и выше генерация реактивной мощности (зарядная мощность) компенсирует реактивные потери в линиях и может превысить их.
Таким образом, при выборе активной мощности генераторов энергосистемы по условию баланса активных мощностей и при работе генераторов с номинальным коэффициентом мощности генерируемая суммарная реактивная мощность без дополнительно используемых ИРМ может оказаться меньше требуемой по условию баланса реактивных мощностей:
(9)
В этом случае образуется дефицит реактивной мощности, который приводит к следующему:
• большая загрузка реактивной мощностью генераторов электростанций приводит к перегрузке по току генераторов;
ности от генераторов по элементам сети приводит к повышенным токовым нагрузкам и, как следствие, к увеличению затрат на сооружение сети, повышенным потерям активной мощности;

  1. недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей.

Для получения баланса реактивных мощностей вблизи основных потребителей реактивной мощности устанавливают дополнительные источники с выдаваемой реактивной мощностью QKy.
При избытке реактивной мощности в системе, т.е.
при
(10)
в элементах электрической сети возникают перетоки реактивной мощности, встречные направлению потоков активной мощности, что приводит к повышению напряжений в узлах и увеличению потерь мощности. Данный режим характерен для периода минимальных нагрузок в системе.
Отсюда возникает задача оптимизации режима реактивной мощности в системе электроснабжения промышленного предприятия, выбора типа и мощности, а также места установки компенсирующих устройств.
В системах электроснабжения городов с коммунально-бытовой нагрузкой компенсирующие устройства обычно не устанавливаются.
В качестве средств компенсации реактивной мощности используются статические конденсаторы напряжением до и выше 1 кВ и синхронные двигатели.

Исходные положения по компенсации реактивной мощности в системах электроснабжения промышленных предприятий

При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать две группы промышленных сетей в зависимости от состава их нагрузок:

  1. сети общего назначения с режимом прямой последовательности основной частоты 50 Гц;
  2. сети со специфическими нелинейными, несимметричными и резкопеременными нагрузками.

В данном разделе рассматриваются вопросы компенсации реактивной мощности в промышленных сетях общего назначения.
На начальной стадии проектирования определяются наибольшие суммарные расчетные нагрузки
КУ) коэффициенте реактивной мощности Ррасчпп, QP
расчпп
Наибольшая суммарная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств,
(11)
где
1_0 тах — коэффициент, учитывающий несовпадение по времени наибольшей активной нагрузки системы и реактивной мощности промышленного предприятия. Значения для разных отраслей промышленности Lomax= 0,75…0,95.
Значения наибольших реактивной и активной нагрузок предприятия сообщаются в энергосистему для определения значения экономически оптимальной реактивной мощности, которая может быть передана предприятию в режимах наибольшей и наименьшей активных нагрузок энергосистемы, соответственно Оэ1 и Оэ2.
По реактивной мощности Оэ1 определяется суммарная мощность компенсирующих устройств предприятия, а в соответствии с заданным значением Оэ2 — регулируемая часть компенсирующих устройств.
Суммарная мощность компенсирующих устройств:
(12)
В период минимальных активных нагрузок системы входная реактивная мощность предприятия должна быть равна Оэ2, для чего требуется отключение части установленной на предприятии мощности КУ.

Основные потребители реактивной мощности на промышленных предприятиях

Рассмотрим основные виды электроприемников различного технологического назначения, электропотребителей разных отраслей промышленности, характер их нагрузок и особенности режимов работы.
Электродвигатели применяются в приводах различных производственных механизмов на всех промышленных предприятиях. Электропривод представляет собой комплекс электрических машин, аппаратов и систем управления, в котором электродвигатели конструктивно связаны с исполнительным механизмом и преобразуют электрическую энергию в механическую работу. В установках, не требующих регулирования скорости в процессе работы, применяются исключительно электроприводы переменного тока (асинхронные и синхронные двигатели).
го тока — основной вид электроприемников в промышленности, на долю которого приходится около 2/3 суммарной мощности. Доля электропотребления асинхронными двигателями напряжением 0,38 кВ составляет 52% в машиностроении.
Электротермия, электросварка, электролиз и прочие потребители составляют около 1/3 суммарной промышленной нагрузки.
Электротермические приемники в соответствии с методами нагрева делятся на следующие группы: дуговые электропечи для плавки черных и цветных металлов, установки индукционного нагрева, для плавки и термообработки металлов и сплавов, электрические печи сопротивления, электросварочные установки, термические коммунально-бытовые приборы.
Наибольшее распространение в цеховых электрических сетях напряжением 0,38 кВ имеют печи сопротивления и установки индукционного нагрева. Печи сопротивления прямого и косвенного действия имеют мощность до 2000 кВт и подключаются к сети напряжением: 0,38 кВ, коэффициент мощности близок к 1,0.
Индукционные плавильные печи промышленной и повышенной частоты представляют собой трехфазную электрическую нагрузку «спокойного» режима работы. Печи повышенной частоты питаются от вентильных преобразователей частоты, к которым подводится переменный ток напряжением 0,4 кВ. Индукционные печи имеют низкий коэффициент мощности: от 0,1 до 0,5.
Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную и несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 — для дуговой сварки и 0,7 — для контактной.
 
 
Электрохимические и электролизные установки работают на постоянном токе, который получают от преобразовательных подстанций, выпрямляющих трехфазный переменный ток. Коэффициент мощности установок — 0,8.. .0,9.
Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновыми лампами применяются на всех предприятиях для внутреннего и наружного освещения. В производственных цехах в настоящее время применяются преимущественно дуговые ртутные лампы высокого давления типов ДРЛ и ДРИ 220 В.Аварийное освещение, составляющее 10% общего, выполняется лампами накаливания. Лишь лампы накаливания имеют коэффициент мощности 1,0.

Потребление реактивной мощности асинхронными двигателями

В настоящее время наиболее распространенное выражение реактивной нагрузки асинхронного двигателя (АД) имеет вид:
(13)
где
qH0M — номинальная реактивная мощность АД, которая может быть определена по паспортным данным двигателя.
 
(14)
После некоторых преобразований получим выражение полной реактивной нагрузки:
(15)
где
Ри„„. — номинальная полезная активная мощность на валу, указываемая на заводском щитке;
1Н0М — номинальное фазное значение тока статора;
lx х — ток холостого хода электродвигателя; т|ном — коэффициент полезного действия;
К3 = р/рном — коэффициент загрузки АД по активной мощности;
tgφnoM — коэффициент реактивной мощности, соответствующий номинальному коэффициенту мощности cosφHOM, указанному на щитке.
Для удобства расчетов преобразуем формулу

  1. в следующую:

(16)
где
(17)
Здесь UH0M — номинальное напряжение двигателя, 1х х — относительный ток холостого хода АД.
На рис. 1 и 2 приведены зависимости коэффициентов а1 и Р1 от активной номинальной мощности Рно„ при числе пар полюсов п = 1, 2, 3, 4 для короткозамкнутых АД серии 4А.

сит от К3 АД и определяется следующим выражением:
 
Рис. 1. Г рафик зависимостей коэффициента а1 от активной номинальной мощности АД
tgφ = аКз + р/К3,                           (18)
На рис. 3 представлены графики зависимостей tgφAfl = /(К3) для АД различных групп мощностей.

7. Источники реактивной мощности (компенсирующие устройства)

На промышленных предприятиях применяют следующие компенсирующие устройства:
 
Рис. 2. График зависимостей коэффициента от активной номинальной мощности и числа пар полюсов п АД

  1. для компенсации реактивной мощности — синхронные двигатели и параллельно включаемые батареи силовых конденсаторов;
  2. для компенсации реактивных параметров передачи — батареи силовых конденсаторов последовательного включения.

 
Рис. 3. График зависимостей коэффициента реактивной мощности от коэффициента загрузки для АД различных групп мощностей
Синхронные двигатели как источник реактивной мощности. Основное назначение синхронных двигателей — выполнение механической работы, следовательно, он является потребителем активной мощности. При перевозбуждении СД его Э. Д. С. больше напряжения сети, в результате вектор тока статора опережает вектор напряжения, т.е. имеет емкостной характер, а СД выдают реактивную мощность. При не до возбужден ии СД является потребителем реактивной мощности. При некотором режиме возбуждения СД его коэффициент мощности равен единице. Изменение тока возбуждения позволяет плавно регулировать генерируемую СД реактивную мощность. Затраты на генерацию двигателями реактивной мощности определяются в основном стоимостью связанных с этим потерь активной мощности в самом двигателе. Потери активной мощности в СД зависят от генерируемой ими реактивной мощности, причем, чем меньше номинальная мощность СД и его частота вращения, тем больше эти потери. Для быстроходных СД удельный расход активной мощности составляет около 10 Вт/квар; для СД с частотой вращения 300… 500 об/мин — около 20… 30 Вт/квар; для СД с частотой вращения 50… 100 об/мин — около 60.. .85 Вт/квар. Следовательно, маломощные двигатели с малой частотой вращения неэкономичны в качестве ИРМ. В качестве ИРМ обычно используют СД на номинальное напряжение 6 или 10 кВ, недогруженные по активной мощности.
Значения реактивной мощности, которую можно получить от СД, зависят от его загрузки активной мощностью и относительного напряжения на зажимах двигателя;
Силовые конденсаторы. Силовые конденсаторы — специальные однофазные или трехфазные емкости, предназначенные для выработки реактивной мощности.

 
Рис. 4. Схемы присоединения конденсаторных батарей:
а) через выключатель на напряжении 6…10 кВ;
б) через рубильник и предохранитель на напряжении до 1 кВ
Мощность конденсаторов в одном элементе составляет 5… 100 квар, номинальное напряжение — от 220 В до 10 кВ. Реактивная мощность, вырабатываемая конденсатором:
(19)
где
U — напряжение на зажимах конденсатора;
ш — угловая частота переменного тока;
Ск — емкость конденсатора, которая определяется, в основном, площадью обкладок.
В установках с большей мощностью и на большее напряжение применяют батареи конденсаторов с параллельным и последовательно-параллельным включением элементов. Увеличение номинального напряжения конденсаторной батареи достигается последовательным включением элементов, а для увеличения мощности применяют параллельное соединение элементов.
Обычно конденсаторы включаются в сеть по схеме треугольника (рис. 4). При отключении конденсаторов необходимо, чтобы запасенная в них энергия разряжалась автоматически на постоянный трансформатор напряжения).
Конденсаторы по сравнению с СД обладают следующими преимуществами: простотой эксплуатации вследствие отсутствия вращающихся частей; простотой монтажных работ вследствие малой массы; малыми потерями активной мощности на выработку реактивной (2,5…5 Вт/квар).
К недостаткам конденсаторов относят зависимость генерируемой реактивной мощности от напряжения, недостаточную стойкость к токам КЗ и перенапряжениям, чувствительность к искажениям формы кривой подводимого напряжения, невозможность плавного изменения мощности конденсаторной установки.

Размещение компенсирующих устройств в системах электроснабжения промышленных предприятий

После определения суммарной мощности компенсирующих устройств Оку, требуемых к установке в системе электроснабжения промышленного предприятия по условиям питающей энергосистемы, необходимо решить задачу размещения и выбора типа КУ в сетях промышленного предприятия.
Суммарная мощность КУ обеспечивается возможным использованием располагаемой реактивной мощности синхронных двигателей Осд и установкой в сетях батарей конденсаторов напряжением до и выше 1 кВ, т.е. соответственно QBH и Обв:
(20)
Реактивная мощность £NtQt, передаваемая со стороны высокого напряжения через цеховые трансформаторы (6…10/0,4…0,6 кВ) по условию баланса мощностей на шинах напряжением до 1 кВ трансформаторов, выражается формулой:
(21)
Величина £NtQt определяется номинальной мощностью цеховых трансформаторов SH0M т при их числе NT, коэффициенте загрузки трансформатора Кзт и расчетной активной нагрузки до 1 кВ Ppac4vH:
(22)
при условии
Необходимо определить оптимальное соотношение мощности источников реактивной мощности, устанавливаемых на стороне ниже 1 кВ Обн, и передачи
потери на генерацию реактивной мощности источниками напряжением до и выше 1 кВ, потери на £NtQt от сети напряжением выше 1 кВ в сеть напряжением ниже 1 кВ и, главное, увеличение мощности цеховых трансформаторов при увеличении £NtQt.
Реактивная мощность QT, протекающая через один трансформатор цеховой ТП, определяется по условию минимума потерь активной мощности без учета активных сопротивлений кабельных линий сети напряжением 10 кВ для группы из NT трансформаторов с одинаковой номинальной мощностью:
(23)
Мощность батареи конденсаторов, устанавливаемых в сети напряжением до 1 кВ, питающейся от конкретного j-ro трансформатора, определяется исходя из величины QT и реактивной нагрузки Qpac4j приемников электроэнергии этой сети:
 
По полученному значению QgHj следует определить стандартное значение мощности конденсаторной установки QKyj.
Расчеты показали, что передача реактивной мощности в сеть напряжением до 1 кВ оказывается невыгодной, если это вызывает увеличение числа трансформаторов сверх необходимого числа вследствие большой стоимости комплектных трансформаторных подстанций.
Мощность компенсирующих устройств в сети напряжением выше 1 кВ определяется по условию баланса реактивной мощности на шинах вторичного напряжения главной понижающей подстанции. Если в системе электроснабжения имеются высоковольтные СД, которые могут быть использованы как ИРМ, то определяется их располагаемая реактивная мощность, и если их мощность С) недостаточна для соблюдения условий баланса, то определяется мощность батарей конденсаторов высокого напряжения:
(25)
Если цеховые трансформаторы имеют низкий коэффициент загрузки и коэффициент реактивной мощности нагрузки сетей напряжением до 1 кВ не превышает единицы, то предпочтительнее установка батарей конденсаторов в сети напряжением выше 1 кВ вследствие их более низкой удельной стоимости 1 квар, чем у низковольтных конденсаторов.
1 кВ целесообразно устанавливать на вторичном напряжении главной понижающей подстанции или распределительной подстанции, а также на РП в системе электроснабжения предприятия. Не рекомендуется устанавливать конденсаторы напряжением выше 1 кВ на бесшинных цеховых подстанциях, на которых трансформаторы присоединены наглухо или через разъединитель, выключатель нагрузки и предохранитель, так как присоединение конденсаторных установок к этим подстанциям вызовет их усложнение и удорожание.
Нерегулируемые конденсаторные установки на напряжение до 1 кВ обычно присоединяются к цеховым распределительным пунктам, магистральным шинопроводам, если этому не препятствует окружающая среда. Место установки регулируемых конденсаторных установок напряжением до 1 кВ выбирается с учетом требований регулирования напряжения или реактивной мощности.
Точка присоединения БН одной батареи конденсаторов к магистральному шинопроводу ШМА определяется ориентировочно:
(26)
где
L0-6; L0и — длины магистрального шинопровода ШМА от начальной точки «О» до точек присоединения «Б» и «1» — первого распределительного ШРА, м;
Ц к — длина распределительной части ШМА от точки «1» до конечной точки магистрального шинопровода «К», м;
Отах — максимальная реактивная нагрузка ветви «0-1» шинопровода ШМА.
Окончательно конденсаторы устанавливаются в точке присоединения ШРА, ближайшего к расчетной точке «К» в сторону цеховой трансформаторной подстанции.
Не рекомендуется чрезмерное дробление мощности конденсаторных установок в сетях напряжением до и выше 1 кВ, так как это приводит к значительному увеличению удельных затрат на отключающую аппаратуру, измерительные приборы, конструкции и прочее на 1 квар установленной мощности батареи. Единичная мощность БК на напряжении выше 1 кВ принимается не менее 400 квар, если присоединение выполняется с помощью отдельного выключателя. В сетях низшего напряжения не рекомендуется применять БК мощностью менее 30 квар.
Если расчетная мощность БК на отдельных участках получается менее указанных значений, то БК на них не устанавливается.

Регулирование мощности компенсирующих устройств

Задание питающей энергосистемой двух значений входной реактивной мощности, которые могут быть переданы предприятию в режимах наибольшей и наименьшей активных нагрузок системы, соответственно Qs1 и Оэ2 (причем Оэ2 = 0 практически во всех случаях), предопределяет необходимость регулирования потребления реактивной мощности предприятием в течение суток.
Для регулирования потребления реактивной мощности используется автоматическое регулирование возбуждения синхронных машин и регулирование батарей конденсаторов.
Регулирование конденсаторами реактивной мощности может вестись только ступенями путем деления батарей на части. Чем больше число таких ступеней, тем совершеннее регулирование, но тем больше затраты на установку переключателей и защитной аппаратуры. Обычно мощность батарей конденсаторов разделяется на две ступени:

  1. базовую QK 6аз, равную реактивной нагрузке предприятия в часы минимума активных нагрузок энергосистемы, включенную постоянно;
  2. регулируемую QK per = QKy — QK 6аз, включаемую в часы максимальных активных нагрузок энергосистемы.

Ступенчатое регулирование батарей конденсаторов может производиться как вручную, так и автоматически. Автоматическое регулирование конденсаторных батарей может производиться в функции:

  1. напряжения;
  2. тока нагрузки;
  3. направления реактивной мощности относительно направления активной мощности;
  4. по времени суток.

 
Рис. 5. Схема влияния установки компенсирующих устройств на параметры режимов электрической сети

Поэтому на напряжении до 1 кВ для коммутации БК обычно применяют контакторы, на напряжении выше 1 кВ — воздушные, элегазовые или вакуумные выключатели. Для устранения переходных процессов при коммутации БК вместо выключателей можно использовать тиристорные ключи, которые позволяют включать конденсаторы в тот момент, когда мгновенное напряжение на конденсаторах равно напряжению сети, и отключать их, когда мгновенное значение тока в конденсаторах равно нулю.

Установка компенсирующих устройств влияет на параметры режимов электрической сети, изменяя токи в ветвях и напряжения в узлах.
Рассмотрим влияние компенсации реактивной мощности на примере одной ветви схемы (рис. 5).
Уменьшение полных мощностей и токов. При наличии в конце ветви КУ мощностью QK полная мощность, протекающая в ветви при номинальном напряжении UH0M:
(27)
где
tgφ — коэффициент реактивной мощности нагрузки;
Cq — степень компенсации реактивной мощности, равная отношению реактивной мощности КУ при номинальном напряжении к реактивной нагрузке электропотребителя ЭП Qn ном при номинальном напряжении:
(28)
Поскольку площади сечений линий и мощности трансформаторов выбирают по полной мощности (или току), ее уменьшение при Cq < 1 позволяет в ряде случаев применять оборудование меньших номиналов, т.е. снизить капитальные затраты, если же сеть уже эксплуатируется, то компенсация реактивной мощности позволяет повысить ее пропускную способность по активной мощности и, следовательно, при увеличении нагрузки потребителя не менять электрооборудование.
При полной компенсации реактивной нагрузки, т.е. при Cq= 1, мощность ветви имеет минимальное значение:
 
когда Cq > Qn ном, полная мощность становится больше минимальной Sc=1.
Снижение нагрузочных потерь мощности. Для каждой ветви с активным R и реактивным X сопротивлением потери полной мощности определяются как:
(30)
Потери полной мощности в сети при протекании только активной мощности потребителя при номинальном напряжении UH0M, т.е. минимально возможные потери активной мощности при прочих равных условиях:
(31)
Отношение
(32)
позволяет проанализировать влияние степени компенсации реактивной мощности Cq при разных значениях коэффициента реактивной мощности нагрузки tgφ на нагрузочные потери мощности. Отметим, что d0 = I2, если напряжение равно номинальному значению UH0M.
На рис. 6 показаны зависимости I2 = AS/ASp при разных значениях коэффициента реактивной мощности tgφ = 0,4; 1; 1,5 и номинальном напряжении U ном, из которых можно сделать вывод об эффективности степени компенсации реактивной мощности.
Как видно из этих зависимостей, уровень соотношения I2 в первую очередь определяется степенью компенсации реактивной мощности и коэффициентом реактивной мощности.
Например, без компенсации при Cq = 0 и tgφ = 1: I2 = 2, т.е. реальные потери мощности больше минимальных в два раза; а при полной компенсации Cq = 1 и любом значении коэффициента реактивной мощности I2 = 1.
Отметим, что при перекомпенсации Cq > 1 и нагрузочные потери мощности становятся больше минимальных ASp.
Снижение потерь напряжения. Потери напряжения при номинальном напряжении на потребителе:
где
£ — отношение реактивных и активных сопротивлений элемента сети: е = X/R. Очевидно, что компенсация реактивной мощности оказывает наибольшее влияние на потери напряжения в элементах с большим значением е, т.е. в элементах с преобладанием реактивного сопротивления, каковыми являются трансформаторы и воздушные линии.

 
Рис. 6. Зависимости I2 = AS/ASp = fCq; tg<p при номинальном напряжении
Напряжение на приемном конце линии UK равно разности напряжения начала Un и потерь напряжения AUnK, т.е.:
(34)
Следовательно, при установке КУ напряжение в конце линии повышается. При перекомпенсации (Cq > 1) потери напряжения могут принять отрицательное значение AUnK < О, напряжение в конце линии может стать больше напряжения в начале, т.е. U > U .

Батареи конденсаторов в сетях с резкопеременной и вентильной нагрузкой

Характерными резкопеременными нагрузками являются сварочные нагрузки на машиностроительных предприятиях, дуговые печи, прокатные станы и др. Главные приводы прокатных станов оснащаются регулируемыми вентильными преобразователями.
Нагрузки с регулируемыми вентильными преобразователями характеризуются большим потреблением реактивной мощности. Резкопеременный характер потребления реактивной мощности вызывает колебания напряжения в сети.

 
 
а)
Рис. 7. Однолинейная схема питающей сети с конденсаторными батареями и фильтрами высших гармоник (а) и схема замещения (б)

Управляемые вентильные преобразователи, кроме того, значительно искажают форму кривой питающего напряжения. Нагрузки дуговых печей ввиду неравномерности потребления тока по фазам могут вызывать значительную несимметрию напряжения.
Все изложенное обусловливает принципы компенсации реактивной мощности, существенно отличающиеся от общепринятых в сетях с так называемой спокойной нагрузкой.
Особенности компенсации реактивной мощности в сетях с резкопеременной и вентильной нагрузкой заключаются в следующем:

  1. ввиду низкого коэффициента мощности потребителей и резкопеременного характера нагрузки необходимо осуществить компенсацию как постоянной и переменной составляющей реактивной мощности. Компенсация постоянной составляющей реактивной мощности необходима для уменьшения потребления реактивной мощности от энергосистемы. Компенсация переменной составляющей реактивной мощности преследует цель уменьшения колебаний напряжения в питающей сети;
  2. ввиду быстрых изменений потребляемой реактивной мощности необходимо применение быстродействующих компенсирующих устройств, способных изменять регулируемую реактивную мощность со скоростью, соответствующей скорости наброса и сброса потребляемой реактивной мощности;
  3. ограничивается применение батарей конденсаторов для компенсации постоянной составляющей реактивной мощности в сети с резкопеременной вентильной нагрузкой. Это обусловлено наличием в сети высших гармоник тока и напряжения при работе вентильных преобразователей, которые приводят к значительным перегрузкам батарей конденсаторов;
  4. при наличии в сети высших гармоник тока и напряжения включение конденсаторов приводит к резонансным явлениям на частотах высших гармоник, что ведет к нарушению нормальной работы БК.

Сущность явлений резонанса удобно рассмотреть на примере простой схемы электроснабжения промышленного предприятия, показанной на рис. 7. На схеме показаны три основных элемента, участвующих в резонансном процессе:

  1. питающая сеть, упрощенно представленная в схеме замещения индуктивным Хс и активным Rc сопротивлениями;

 
Рис. 8. Однолинейная схема защиты конденсаторной батареи от высших гармоник

  1. вентильный преобразователь как источник высших гармоник с сопротивлениями Хпр и Rnp — индуктивно-активная цепь в схеме замещения;
  2. батарея конденсаторов С и RK — емкостно-активная цепь в схеме замещения.

При отсутствии емкостных элементов (при отключении БК) частотные характеристики Хс линейны. Включение БК резко изменяет линейный характер частотной характеристики питающей сети, причем нелинейность частотной характеристики в значительной степени зависит от добротности контура, т.е. от соотношения X/R. Нелинейность частотной характеристики питающей сети объясняется тем, что при включении БК образуется параллельный LC-контур, состоящий из индуктивного сопротивления питающей сети и емкостного сопротивления конденсатора. Таким образом, изменяются частотные характеристики систем и возникают условия для возникновения резонанса на частотах, превышающих промышленную частоту 50 Гц. Вентильные преобразователи генерируют в сеть спектр гармоник, начиная с пятой, поэтому в каждом конкретном случае необходим расчет токовой нагрузки БК резонансной группой гармоник (вплоть до 59, 61, 71 гармоник).
Батареи конденсаторов, предназначенные для компенсации реактивной мощности в сетях, питающих нелинейную нагрузку, для их нормальной работы необходимо защищать реакторами, устанавливаемыми последовательно с конденсаторами (рис. 8

Компенсация реактивной мощности | Электроснабжение промышленных предприятий | Архивы

Страница 10 из 14

Вопросы генерирования реактивной мощности имеют большое значение, так как потребность в ней возрастает в связи с широким применением электроприемников с довольно низким коэффициентом мощности: больших дуговых электропечей, мощных вентильных преобразователей, крупных электросварочных агрегатов.
Баланс реактивной мощности должен обеспечиваться при всех режимах работы системы электроснабжения: нормальном, послеаварийном, ремонтном. При послеаварийном и ремонтном режимах используются все средства генерации реактивной мощности независимо от их экономичности. Компенсирующие устройства используются также в качестве одного из средств регулирования напряжения с целью обеспечения оптимального режима напряжений в электрических сетях.
Для стимулирования мероприятий по компенсации реактивной мощности установлены скидка (—) и надбавка (+) к тарифу на электроэнергию, зависящие от степени компенсации реактивной мощности [Л.1].

Суммарная мощность компенсирующих устройств QK, которые устанавливаются на предприятиях, зависит от их реактивных нагрузок QM и от той наибольшей реактивной мощности Qc, которая может быть передана из сети энергосистемы в сеть предприятия в период наибольших активных нагрузок системы и которая задается последней (с приближенным учетом потерь электроэнергии также и в сети предприятия).

где QM — реактивная нагрузка предприятия в период наибольших активных нагрузок энергосистемы.
Так как режимы наибольших реактивных нагрузок предприятия и наибольших активных нагрузок энергосистемы могут не совпадать по времени, то при существенных расхождениях в расчете нужно вносить поправки по результатам анализа графика нагрузки. Для выбора оптимальных режимов работы источников реактивной мощности на предприятии и определения условий регулирования их мощности энергоснабжающая организация кроме величины Qc в режиме наибольшей активной нагрузки задает также допустимые по техническим условиям величины реактивных мощностей Qc в режиме наименьших активных нагрузок энергосистемы (ночной минимум) и в послеаварийном режиме.

Средства компенсации.

Для уменьшения затрат на установку специальных компенсирующих устройств проводятся следующие мероприятия:
упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и к повышению коэффициента мощности;
выбор электродвигателей и трансформаторов с оптимальной их загрузкой;
преимущественное применение синхронных электродвигателей, когда это возможно и целесообразно по условиям сети и производства;
применение устройств, ограничивающих холостой ход электроприемников (асинхронных электродвигателей, трансформаторов), в частности широкое внедрение ограничителей холостого хода для устранения холостой работы асинхронных двигателей в тех случаях, когда продолжительность межоперационного периода превышает 10 с;
применение переключателей с треугольника на звезду у тех асинхронных двигателей напряжением до
1000 В, которые систематически загружаются не более  чем на 40%.
При реконструкции электроснабжения производится замена незагруженных трансформаторов и электродвигателей и замена асинхронных двигателей синхронными, если последнее технически возможно и экономически целесообразно.

Рис. 27. Принципиальная схема компенсационного преобразователя.

Основным средством компенсации на промышленных предприятиях являются батареи силовых конденсаторов (КБ), подключаемые параллельно к электросети, т. е. поперечная компенсация. К их преимуществам относятся: простота, относительно невысокая стоимость, недефицитность материалов, малые удельные собственные потери активной мощности, а к недостаткам — отсутствие плавного регулирования отдаваемой в сеть реактивной мощности, пожароопасность, наличие остаточного заряда (см. ниже). Конденсаторные батареи устанавливаются вблизи от места потребления реактивной мощности, при необходимости снабжаются автоматическим регулированием для изменения присоединенной мощности при разных режимах нагрузок.
Неблагоприятное влияние на работу конденсаторных установок оказывает наличие в сети высших гармоник (см. §6).
Конденсаторы применяются также в схемах крупных компенсационных ртутно-выпрямительных агрегатов, например на заводах электролиза алюминия. На стороне катодов вентилей включается уравнительный реактор, к которому присоединяются конденсаторы (рис. 27). При периодическом заряде и разряде конденсаторов они создают дополнительные напряжения, которые заставляют ток переходить на очередную фазу раньше, чем это было бы при отсутствии в схеме конденсаторов, в результате чего преобразователь генерирует компенсирующую мощность Qn. Следовательно, конденсаторы выполняют в основном только функцию коммутирующего звена; общий компенсирующий эффект Кэ от их применения значительно превышает их номинальную мощность

На подстанциях с несколькими преобразователями обычно применяется не более одного-двух компенсационных преобразователей, что обычно достаточно для улучшения общего коэффициента мощности всей установки. Разрабатывается схема компенсации с тиристорными преобразователями.

К широкому применению для генерации реактивной мощности рекомендуются синхронные электродвигатели в большом диапазоне их мощностей. Они способны отдавать реактивную мощность в сеть на месте потребления при полезной нагрузке на валу, допускают форсировку возбуждения и широкие пределы регулирования отдаваемой реактивной мощности, меньше зависят от колебаний напряжения, чем косинусные конденсаторы, повышают устойчивость системы.
Значение реактивной мощности, генерируемой СД, зависит от их загрузки по активной и реактивной мощности и от относительного напряжения на их зажимах.
Целесообразно применять синхронные двигатели совместно с конденсаторами, которые осуществляют в основном компенсацию базисной части суточного графика реактивной нагрузки, а синхронные двигатели, главным образом, снижают пики графика.
Синхронные компенсаторы (СК) на промышленных предприятиях применяются редко — при больших мощностях компенсирующих устройств, на подстанциях, имеющих районное значение, а также иногда на крупных электропечных установках (дуговых и руднотермических).
Использование реактивной мощности генераторов заводских станций экономически целесообразно, если это не вызывает увеличения числа или сечения питающих линий, числа устанавливаемых трансформаторов и других сетевых затрат, связанных с передачей реактивной мощности от генераторов.
При определенных условиях учитываются также реактивные мощности, генерируемые воздушными линиями и токопроводами напряжением выше 20 кВ и кабельными линиями напряжением 6 кВ и выше, которые пропорциональны их длине и квадрату напряжения. Средние значения реактивной мощности, генерируемой различными линиями, приведены в [Л. 5].
Распределение мощности компенсирующих устройств в сетях производится в основном из условия наибольшего снижения потерь активной мощности от реактивных нагрузок. Установка конденсаторов относительно большей мощности производится в местах наибольших реактивных нагрузок и сопротивлений питающих линий. Это обеспечивает повышение напряжения в тех частях сети, где это напряжение ниже расчетного уровня.
Не рекомендуется чрезмерное разукрупнение конденсаторных установок, так как это приводит к значительному увеличению удельных затрат на отключающую аппаратуру, измерительные приборы и конструкции на установленный 1 кВАр батареи. Единичная мощность батарей на напряжение 6—10 кВ принимается не менее
400 кВАр, если присоединение выполняется с помощью отдельного выключателя. В сетях низкого напряжения не рекомендуется снижать мощность конденсаторных батарей до величины менее 30 кВАр. Если расчетная мощность батареи на отдельных участках получается менее указанных величин, то конденсаторы на них не устанавливаются, а полученная по расчету мощность конденсаторов перераспределяется между близко расположенными другими более мощными батареями путем пропорционального увеличения их мощности.
В сетях 6—10 кВ в первую очередь следует полностью использовать для компенсации реактивную мощность работающих СД [Л. 1]. При отсутствии СД нли недостаточности их реактивной мощности дополнительно применяются конденсаторы, которые устанавливаются либо на цеховых подстанциях, имеющих РУ 6—10 кВ, либо на РП. Целесообразна также установка конденсаторов на вторичном напряжении ПГВ 110—220 кВ, которые в данном случае выполняют функции РП и от которых непосредственно производится распределение электроэнергии по цеховым подстанциям.
Не рекомендуется устанавливать конденсаторы напряжением 6—10 кВ на бесшинных цеховых подстанциях, на которых трансформаторы присоединены наглухо или только через разъединитель, так как присоединение конденсаторных батарей к этим подстанциям вызовет их усложнение и удорожание.
В сетях 380—660 В для компенсации реактивной мощности также следует в первую очередь использовать свободную реактивную мощность СД 6—10 кВ, оставшуюся после компенсации реактивных нагрузок в сети 6—10 кВ, если это экономически целесообразно. Передача реактивной мощности от СД 6—10 кВ в сеть напряжением до 1000 В, как правило, оказывается невыгодной, если это вызывает увеличение числа понижающих трансформаторов. Это, в основном, объясняется тем, что стоимость комплектных трансформаторных подстанций очень велика. По этой же причине может оказаться нецелесообразной передача в сеть низкого напряжения реактивной мощности от генераторов заводской ТЭЦ.

Нерегулируемые конденсаторные батареи на напряжение 380—660 В обычно устанавливаются на цеховых распределительных пунктах или присоединяются к магистральным токопроводам, если этому не препятствует окружающая среда. Получается значительно лучшее использование конденсаторов, чем при индивидуальной компенсации, и разгружаются питательная сеть и трансформаторы цеховых подстанций. Место установки регулируемых конденсаторных батарей в сетях до 1000 В выбирается с учетом требований регулирования напряжения или реактивной мощности.

Рис. 28. Распределение мощности конденсаторов в сетях низкого напряжения.
а — при радиальной схеме; б — при магистральной схеме.
Централизованная установка конденсаторов 380—660 В на цеховых подстанциях нецелесообразна, так как это не дает снижения потерь в сети низкого напряжения. Она может быть применена лишь в тех случаях, когда размещение конденсаторов в цехе недопустимо по условиям пожарной безопасности и в то же время имеется необходимость в разгрузке силового трансформатора на подстанции. В этих случаях нужно произвести уточнение целесообразной мощности конденсаторов напряжением до 1000 В по сравнению с конденсаторами напряжением выше 1000В. При выборе цеховых конденсаторных батарей (КБ) следует стремиться (в пределах их типажа), чтобы их мощность была близка к реактивным нагрузкам цехового РП, к которому присоединена эта батарея, так как это дает наибольший экономический эффект от снижения потерь энергии в сети.
Распределение мощностей конденсаторов радиальной сети (рис. 28, с) производится по формуле

где QK» — искомая реактивная мощность КБ в данном пункте, Мвар; Q — суммарная распределяемая реактивная мощность, Мвар; — сопротивление радиальной линии питающей данный пункт, Ом; гэ — эквивалентное сопротивление сети, Ом, определяемое по формуле

При распределении мощностей конденсаторов в магистральных сетях, в частности при присоединении КБ к магистральным токопроводам, в большинстве случаев можно пренебречь потерями энергии в ответвлениях г и г2 и т. д. от магистрали к КБ, так как их длина обычно невелика. На рис. 28,6 приведен пример распределения реактивных нагрузок Qu и мощностей конденсаторов Qh при присоединении их к токопроводам 380—660 В. При суммарной реактивной мощности Q=770 кВАр применены стандартные батареи по 225 и 150 кВАр на суммарную мощность 750 кВАр. Если нельзя пренебречь потеря- Ми электроэнергии в ответвлениях от магистрали, то определение эквивалентного сопротивления производится по формуле сложения двух параллельно соединенных сопротивлений. Так, например, эквивалентное сопротивление в узловой точке 3 (рис. 28,6) определится по формуле
Для небольших электроустановок, присоединяемых к действующим сетям 6—10 кВ, как правило, экономически целесообразна полная компенсация реактивной мощности на вторичном напряжении 380—660 В.

Схемы.

Наиболее распространены схемы присоединения КБ через отдельные выключатели при напряжении 6—10 кВ или через рубильники и предохранители или автоматы при напряжении 380 В.
Схемы с подсоединением под общий выключатель (рис. 29,6) применяются очень редко, в основном при индивидуальной компенсации реактивной мощности электродвигателей или при установке батарей на работающей подстанции, когда нет свободной камеры для установки выключателя.
Конденсаторные батареи напряжением 380—660 В присоединяются к цеховым групповым щиткам или к токопроводам и в отдельных случаях к шинам вторичного напряжения цеховых подстанций. Схема на рис. 30, в предназначена для автоматически регулируемых батарей, схема на рис. 30,6 может применяться как при автоматическом регулировании конденсаторных батарей на предприятии, так и при отсутствии такого регулирования, схема на рис. 30, а применяется при отсутствии автоматического регулирования.
Рис. 29. Присоединение конденсаторных батарей на напряжении 6—10 кВ.
а — к сборным шинам через     выключатель: б — через общий         выключатель с трансформатором или электродвигателем.


На относительно крупных конденсаторных батареях или при необходимости регулирования реактивной мощности применяются секционированные схемы с подразделением конденсаторной батареи на несколько секций, что дает также возможность поочередного осмотра или ремонта секций без полного отключения всей конденсаторной батареи. Число секций, необходимых для регулирования конденсаторных батарей, зависит от требуемого количества ступеней регулирования. На рис. 31 представлена экономичная секционированная схема с тремя конденсаторными батареями на каждой секции. Каждая секция подключена к шинам через выключатель Ви рассчитанный на отключение полной мощности к. з. Выключатели же В2 в цепях конденсаторных батарей не рассчитаны на это и служат лишь для переключений при автоматическом регулировании конденсаторной установки.
При аварии на какой-либо батарее сначала отключается выключатель Ви затем подается импульс на отключение выключателя В2 поврежденной части, после че го вновь включается выключатель В\ и восстанавливается питание оставшихся батарей секции. В качестве выключателей В2 рекомендуются вакуумный или элегазовый выключатели. Если выключатели В2 выбрать на полную мощность к. з., то эксплуатация и релейная защита упростятся, но установка в целом удорожится.

Рис. 30. Присоединение конденсаторных батарей на напряжение 0,38—0,66 кВ.
а — через рубильник и предохранитель; б — через автомат; в — через рубильник, предохранитель и контактор.

При включении и переключении конденсаторов возникают переходные процессы, характеризующиеся перенапряжениями и кратковременными бросками тока, вели чина которых многократно превышает номинальный ток батарей. Бросок тока зависит от мощности батареи и параметров сети, в которую она включается: он будет тем больше, чем выше ток к. з. в сети.

При включении батареи или секции на параллельную работу с работающими батареями или секциями бросок тока получается значительно больше, чем при включении отдельной батареи, так как работающие батареи разряжаются на вновь включаемую, что вызывает колебания в контуре, состоящем из индуктивности ошиновки между батареями и включенными последовательно емкостями вновь включаемой и работающей батарей.

Рис. 31. Секционированная схема конденсаторной батареи.

Для управления конденсаторными установками применяются быстродействующие выключатели, имеющие повышенную износоустойчивость контактной и механической частей и допускающие частые и быстрые переключения. Они должны обладать большой скоростью размыкания и замыкания контактов,- чтобы избежать повторных зажиганий дуги при незаряженной конденсаторной батарее, которые могут вызвать перенапряжения до трех-пятикратных значений номинального напряжения. Обычные масляные и воздушные выключатели не удовлетворяют полностью всем требованиям для коммутации емкостных нагрузок. Наиболее пригодны и перспективны вакуумные выключатели. Но они маломощны и применяются пока лишь для секционирования конденсаторных батарей и регулирования их мощности в схемах подобных представленным на рис. 31, когда им не приходится отключать тока к. з. Их выбирают, исходя примерно из полуторакратного номинального тока секции конденсаторной батареи.
Весьма пригодными для регулирования конденсаторных батарей являются быстродействующие бесконтактные тиристорные выключатели. Обычные выключатели на напряжение 6—10 кВ, выбранные с запасом по номинальному току не менее чем на 50%, удовлетворительно работают при коммутации КБ мощностью до 2500 кВАр.
Если деление конденсаторной батареи на секции делается при помощи разъединителей, то последние снабжаются блокировкой с выключателем всей батареи, которая не позволяет оперировать разъединителями под нагрузкой.
Для конденсаторных установок до 1000 В необходимы аппараты, рассчитанные на частое (до 20—30 операций в сутки) коммутирование часто емкостной нагрузки в диапазоне 300—800 А при автоматическом регулировании. Обычные автоматы А 3700 или контакторы КТУ-4; КТ6043 с предохранителями следует выбирать с запасом по току не менее 50%, так как они рассчитаны для коммутации индуктивной, а не емкостной нагрузки.

Защита.

Для конденсаторных батарей 6—10 кВ применяется общая для всей установки максимальная токовая защита от коротких замыканий и от перегрузок без выдержки времени. Уставка защиты принимается примерно вдвое большей номинального тока батареи для отстройки от тока включения и тока разряда батареи. При регулируемых конденсаторных батареях токовая защита устанавливается на каждой секции; она действует на отключение всей батареи с последующим восстановлением питания неповрежденных секций (см. рис.31). При присоединении конденсаторной батареи под общий выключатель с электродвигателем или трансформатором на ней устанавливается отдельная защита с действием на головной выключатель.
Так как конденсаторы 6—10 кВ не имеют встроенной индивидуальной защиты, то у каждого конденсатора, кроме того, устанавливаются быстродействующие токоограничивающие предохранители типа ПК необходимой разрывной мощности, рассчитанные на броски тока при включении конденсатора, на максимальный разрядный ток, протекающий от неповрежденных конденсаторов к поврежденному, и на обычные колебания нагрузки при работе конденсаторной установки. Исходя из этих условий, ток плавкой вставки предохранителя выбирают не менее 150% номинального тока конденсатора при номинальном токе предохранителя свыше 30 А и не менее
200% при номинальном токе предохранителя до 30 А. Ниже приведены рекомендации по выбору плавких вставок предохранителей для индивидуальной защиты однофазных конденсаторов 6—10 кВ:

Индивидуальная защита конденсаторов должна быть селективной с общей защитой всей батареи.
Если в сети возможно повышение напряжения более 110% номинального, то применяется защита от повышения напряжения.
При токе замыкания на землю 20 А и более применяется защита от однофазных замыканий на землю.
Конденсаторы до 1000 В имеют индивидуальные встроенные предохранители, следовательно, необходима только общая защита батареи. При защите предохранителями ток плавкой вставки определяется по формуле, А:

где п — общее количество конденсаторов в установке (во всех фазах), шт; QK — номинальная мощность одного однофазного конденсатора, кВАр; Ll„ — линейное напряжение, кВ.

При защите автоматами автомат должен иметь комбинированный расцепитель, обеспечивающий защиту с плавной регулировкой тока. Уставка тока выбираемая исходя из перегрузочной способности конденсатора, не должна превышать 130% 1ак. Она определяется по формуле

При наличии в сетях высших гармоник проверяется вероятность перегрузки конденсаторов по току в резонансных или близких к ним режимах и предусматриваются меры по предотвращению резонансных явлений (см. §6).
Для измерения тока и контроля равенства емкостей в цепи конденсаторной батареи предусматриваются три амперметра или один амперметр с переключателем. Для небольших КБ мощностью до 400 кВАр допускается установка одного амперметра. При подключении КБ по схеме 29, б предусматривается раздельное измерение тока в цепи КБ. Для измерения напряжения вольтметр допускается подключать к вторичной обмотке трансформатора напряжения, служащего для разряда.
Предусматриваются приборы для контроля наибольших и наименьших реактивных 30-минутных мощностей, потребляемых предприятием в режиме наибольших активных нагрузок энергоснабжающей системы, зафиксированных в договоре с последней. Для этого применяются счетчики реактивной энергии с указателями 30-минутного максимума, причем наибольшая нагрузка определяется по указателю нагрузки, а наименьшая — по счетному механизму счетчика. При отсутствии специальных счетчиков с указателем максимума учет наибольшей и наименьшей реактивных нагрузок производится по показаниям обычных счетчиков реактивной анергии. При этом записи подлежат 30-минутные показания счетчиков во время максимума энергосистемы и на начало и конец суточного провала нагрузки. Если предприятие выдает реактивную мощность в сеть энергосистемы (по договору с последней), то для ее учета устанавливается отдельный счетчик.

Разряд.

Для быстрого разряда конденсаторов после их отключения применяются индуктивные или активные разрядные сопротивления, подключаемые параллельно конденсаторной батарее. Без этих разрядных сопротивлений естественный саморазряд конденсаторов до безопасного напряжения 65 В происходит очень медленно, остающееся на зажимах отключенной батареи напряжение будет представлять опасность для обслуживающего персонала. Кроме того, при обратном включении в сеть неразрядившегося конденсатора возникает большой бросок тока, значительно превосходящий ток включения полностью разряженного конденсатора. В секционированных конденсаторных установках предусматривается отдельное разрядное сопротивление на каждой секции, с отдельным выключателем.
Разрядное сопротивление R выбирается таким образом, чтобы потери активной мощности в нем при номинальном напряжении не превышали 1 Вт/кВАр. Оно определяется по формуле, Ом:

где Г/ф — фазное напряжение сети, кВ; QK — мощность конденсаторной батареи, кВАр.
Разрядные сопротивления в трехфазных конденсаторных батареях можно соединить треугольником, открытым треугольником, звездой. Соединение треугольником наиболее надежно, так как при обрыве одной фазы эта схема превращается в открытый треугольник и, следовательно, сохраняется возможность разряда всех трех фаз конденсаторной батареи, что не имеет места при других схемах. При напряжении 6—10 кВ обычно применяют два трансформатора напряжения, соединенных открытым треугольником (рис. 32, а) во избежание образования колебательного контура, увеличивающего перенапряжения при включении батареи. Для контроля целости цепи разряда применяются неоновые лампы, включенные во вторичные обмотки трансформаторов напряжения. К этим же обмоткам присоединяются измерительные приборы и реле. Для разряда батарей 380 В обычно применяют лампы накаливания на напряжение 220 В, так как газосветные лампы не обеспечивают полного разряда. Чтобы увеличить срок службы ламп и уменьшить потребляемую ими мощность, их соединяют попарно последовательно и три такие группы включают в звезду (рис. 32,6).

Наилучшим решением является применение конденсаторов со встроенными разрядными сопротивлениями, которые у конденсаторов на напряжение 380 В устанавливаются снаружи между выводами конденсатора, а у конденсаторов 6—10 кВ — внутри в верхней части бака конденсатора.
При присоединении батареи под общий выключатель с двигателем или трансформатором разряд происходит на их обмотки и специальных разрядных сопротивлений не требуется.

Рис. 32. Схемы разряда конденсаторной батареи, а — при напряжении 6—10 кВ; б — при напряжении 880—220 кВ.
При этом оперирование разъединителем на ответвлении к батарее допускается только при снятом напряжении, т. е. после предварительного кратковременного отключения выключателя.
В цепи между конденсаторной батареей и разрядными сопротивлениями не ставится никаких коммутационных аппаратов и трансформаторы напряжения, служащие для разряда батареи, не должны иметь предохранителей на стороне 6—10 кВ.
Разрядные сопротивления проверяют на продолжительность разряда конденсаторной батареи до безопасного напряжения 65 В.
Для конденсаторных батарей до 1000 В разрядные сопротивления нормально отключены и автоматически включаются только в момент отключения конденсаторов.
Это делается для уменьшения потерь электроэнергии. Имеется ряд схем такого автоматического включения [Л. I].
Регулирование мощности компенсирующих устройств уменьшает потери энергии в сетях, является одним из средств для регулирования напряжения и способствует улучшению общего режима работы системы электроснабжения и повышению качества электроэнергии, особенно при большой неравномерности графика нагрузки. При включении конденсаторной мощности QK напряжение в этой точке сети будет повышаться на величину AU, а при отключении QK будет понижение напряжения
где U — междуфазное напряжение, кВ; х — реактивное сопротивление сети от данной точки до источника питания.
В первую очередь целесообразно использовать автоматическое регулирование возбуждения синхронных электродвигателей, а затем уже предусматривать регулирование мощности части конденсаторных батарей в зависимости от режима работы проектируемой системы электроснабжения. На трехсменных промышленных предприятиях с ровным графиком нагрузки в течение всех смен мощность постоянно включенных источников реактивной мощности (ИРМ) принимается равной их расчетной мощности и регулирование, как правило, не применяется. На мелких односменных предприятиях также, как правило, применяется ИРМ постоянной мощности без регулирования. В остальных случаях при неравномерном суточном графике реактивной мощности ИРМ регулируются частично в соответствии с графиком.

Конденсаторные установки допускают только ступенчатое регулирование мощности, которое бывает одноступенчатым, когда отключается или включается сразу вся установка, и многоступенчатым при отключении или включении по секциям. Одноступенчатое регулирование — самое простое, дешевое и надежное ввиду минимального количества коммутационных и управляемых аппаратов и приборов.
Число и мощность ступеней регулирования и последовательность их включения и отключения определяются по графикам нагрузки предприятия и в зависимости от заданий энергетической системы. Обычно бывает достаточным подразделение конденсаторных батарей на две-три секции одинаковой мощности, что упрощает и удешевляет схему регулирования и повышает надежность ее работы. Если же секции принять разной мощности, то уже при двух секциях можно получить трехступенчатое регулирование. Наиболее целесообразно. выбирать мощности разных секций, отличающиеся в геометрической прогрессии, например 100 :200:400 : 800 кВАр и т. д. По условиям эксплуатации в большинстве случаев нет необходимости на предприятиях применять число ступеней регулирования более трех. На предприятиях, где нагрузки двух дневных смен мало различаются и снижение происходит только в третью (ночную) смену, обычно бывает достаточно двух ступеней, что сильно упрощает все устройство. Если на предприятии имеется несколько конденсаторных батарей, то многоступенчатое регулирование суммарной реактивной мощности, вырабатываемой всеми конденсаторными батареями предприятия, осуществляется разновременным включением или отключением отдельных батарей в соответствии с графиком нагрузки.
Автоматическое регулирование конденсаторных батарей выполняется несколькими способами [Л. 1]:
по напряжению с коррекцией, если потребуется, по полному току или по реактивной его составляющей, если необходимо уменьшить отклонения уровня напряжения от оптимального значения;
но величине реактивной мощности или реактивной составляющей тока при изменении графика реактивной мощности;
по времени суток при необходимости ограничения выдачи реактивной мощности в сеть энергосистемы;
по комбинированным схемам в зависимости от нескольких факторов (например, по направлению мощности, напряжению и времени суток).
В большинстве случаев можно рекомендовать схемы автоматического регулирования по напряжению или по времени суток.

На рис. 33 приведена в качестве примера схема автоматического регулирования по времени суток с коррекцией по напряжению. Принцип действия схемы заключается в том, что если после включения конденсаторной батареи (КБ) действием ЭВЧС в заданное время суток напряжение будет повышенное, реле 1Н вновь отключит КБ. Наоборот, если ЭВЧС в заданное время отключит КБ, а напряжение на данном участке будет пониженное, то реле 1Н вновь включит ее. Если же напряжение опять повысится, то реле 1Н отключит КБ, не дожидаясь заданного времени на ЭВЧС. Следовательно, реле 1Н вводит коррективы в работе ЭВЧС в зависимости от напряжения.

Рис. 33. Схема одноступенчатого автоматического регулирования конденсаторных батарей по времени суток с коррекцией но напряжению.

 

Схема автоматического регулирования по напряжению применяется в тех случаях, когда основной задачей является поддержание напряжения в определенных пределах. На рис. 34 приведен пример суточного графика реактивной мощности при регулировании по напряжению. Конденсаторная батарея автоматически включается, когда напряжение становится ниже номинального, и отключается, когда оно вновь станет выше номинального. В результате такого регулирования напряжение не выходит за нормированные пределы ±5%.

Рис. 34. Суточный график при регулировании конденсаторных батарей по напряжению.

1 — потребляемая реактивная мощность; 2 — компенсируемая реактивная мощность; 3 — реактивная мощность после компенсации; 4 — изменение напряжения.

Рис. 35. Принципиальная схема регулирования УК при помощи устройства «Аркон».
1 — командный блок; 2 — приставки программного блока; 3 — секции регулируемой УК.

На рис. 35 показана принципиальная схема регулирования, предусмотренная в комплектных конденсаторных установках серии УК с применением автоматического регулятора «Аркон». Схема позволяет осуществлять регулирование по напряжению либо по напряжению с коррекцией по току нагрузки и углу между ними. Устройство «Аркон» состоит из командного и программного блоков.

При регулировании по напряжению на командный блок подаются входное напряжение Uъ и напряжение питания Uп. При регулировании же с коррекцией по току нагрузки, кроме того, подаются ток свободной фазы от трансформатора тока ввода — /т.тi (или же /т.тt Iт.тг) и ток /т.т3 от трансформатора тока УК. Командный блок 1 в соответствии с полученным входным сигналом подает программному блоку 2 команду на включение или отключение секции УК- Программный блок состоит из так называемых приставок, число которых зависит от числа секций УК.

Компенсация реактивной мощности однофазных нагрузок низковольтных систем электроснабжения

Принято считать, что из-за относительно коротких фидеров и небольшой (единицы-десятки кВА) присоединенной мощности многочисленных потребителей проблемы компенсации реактивной мощности (РМ) для городских низковольтных распределительных сетей не существует. Однако интенсивный рост потребления электроэнергии в жилищном секторе, вызвавший повышение среднестатистической мощности силовых трансформаторов инфраструктуры городских сетей при существенном (до 2-2,5 крат) сезонном колебании загрузки, ставит под сомнение это утверждение. Наличие значительной, постоянно меняющейся по величине однофазной нагрузки, нарушающей симметричный (идентичный для всех фаз) режим работы городских сетей, затрудняет применение в них установок компенсации реактивной мощности (УКРМ) без соответствующей конструктивной адаптации.

Появление в неуравновешенных системах электроснабжения (СЭС) комплексно-сопряженного результирующего вектора пульсирующей мощности — NΣ [1] приводит к дополнительным потерям электроэнергии, снижению срока службы и технических характеристик электрооборудования [1, 2]. Дисбаланс напряжений сети — kU можно приблизительно оценить по соотношению [1]:

где SКЗ — мощность симметричного КЗ в точке общего присоединения. Более корректный порядок измерения и статистического усреднения неуравновешенности напряжений СЭС через коэффициенты несимметрии по обратной — k2U и нулевой — k0U последовательности приведен в [3]. Относительно низкие значения SКЗ (1) низковольтных СЭС и вероятность появления напряжения нулевой последовательности — U0(1) [3], обусловленного концентрацией в них основного числа однофазных электроприемников, создает предпосылки к разбалансу фазных напряжений четырехпроводных сетей (системы TN-C, TN-S, TN-C-S) при сохранении симметрии междуфазных напряжений. Как известно [1, 2], обеспечение максимальной эффективности работы симметрирующих устройств, возможной при коэффициенте мощности нагрузки (cos φ), равном единице, предусматривает параллельное подключение к ним конденсаторных батарей (КБ) компенсации РМ. Одновременно эти КБ могут использоваться и как средство симметрирования [4], но в обоих случаях генерация РМ отдельными ветвями КБ должна быть дифференцированной.

Согласно приведенным в ряде источников данным, значение средневзвешенного cos φ в некомпенсированных городских сетях 0,4 кВ находится в пределах 0,84–0,95. Обработка графиков, снятых на ТП городской сети (мощность трансформатора 400 кВА, схема соединения обмоток — Y/YН, коэффициент загрузки — 32% в часы максимума и 11% в часы минимума проведения измерений, электроприемники преимущественно однофазные), показала: при изменении в течение суток средневзвешенного cos φ от 0,65 до 0,97 его пофазные значения (L1, L2, L3 — рис. 1) менялись в более широком диапазоне. Соответственно, суточное потребление активной и реактивной электроэнергии составило 1666,46 кВт·ч и 740,17 квар·ч при существенном (в 2,25 и 2,8 раза) разбросе по фазам. Учитывая высокую плотность (кВА/км²) городской коммунально-бытовой нагрузки, постоянное наличие в перетоках мощности СЭС реактивной составляющей приводит к значительным потерям электроэнергии и необходимости их возмещения за счет дополнительных источников генерации, но неравномерность потребления активной и реактивной мощности по отдельным фазам затрудняет применение в городских распределительных сетях традиционных для промышленных сетей УКРМ на базе однофазных регуляторов (контроллеров) РМ и соединенных «треугольником» трехфазных КБ.

Следует отметить, что при появлении несимметрии из-за разницы приложенного к зажимам напряжения номинальная РМ — Qном. отдельных, симметричных по емкости ветвей КБ меняется на величину [2]

где U1(1) — действующее значение напряжения прямой последовательности основной частоты [4]; Uном. — номинальное напряжение КБ. Отклонение Uном. линейных напряжений отдельных фаз сети происходит как в сторону увеличения, так и уменьшения [1, 2, 4], поэтому генерация РМ ветвями КБ будет неравномерной.

Программируемый алгоритм переключения КБ однофазным регулятором РМ достигается путем их последовательного набора по командам, соответствующим входному параметру управления — cos φ только одной (L1, L2, L3 — рис. 1) фазы компенсируемой сети [4]. В рассматриваемом случае (рис. 1–3) подобная схема контроля cos φ приведет к некорректной работе УКРМ, так как равномерное или случайное (2) распределение РМ ветвей КБ способно вызвать избыточность или недостаточность величины тока компенсации в неконтролируемых фазах, снизить пропускную способность сети и увеличить уже присутствующий дисбаланс трехфазной системы напряжений [5]. На рис. 2 представлены измеренные значения k2U и k0U при одинаковом изменении нагрузки СЭС. Отметим, что, в отличие от трехпроводной (система IT), четырехпроводная сеть располагает бульшими вариантами выбора схем питания нагрузки, но наличие между нейтральными точками Y-соединений контура протекания токов нулевой последовательности делает возможным ее равновесие — NΣ = 0 только при равенстве фазных активно-реактивных проводимостей [1]. Неуравновешенность рассматриваемой низковольтной СЭС в основном определяет несбалансированность однофазных нагрузок (см. соотношение значений k2U и k0U — рис. 2).

Принципиальные отличия технических характеристик трехстержневых трансформаторов 6–10/0,4 кВ с разными схемами соединения обмоток (Y/YН, Δ/YН, Y/ZН) во многом определяет их реакция на несимметричный режим нагрузки. Экспериментальные данные показывают, что для наиболее распространенных в электрических сетях 10(6)–0,4 кВ Российской Федерации трансформаторов Y/YН значение сопротивления нулевой последовательности — z0 = r2 + jx22, где r2 — активное сопротивление вторичной обмотки, а x22 — реактивное сопротивление, характеризующее однофазный магнитный поток рассеяния, сцепляющийся с формирующей его вторичной обмоткой по воздуху, гораздо больше их сопротивления прямой последовательности — z1 [6]. В обмотках трансформатора Y/YН индуцируются совпадающие по фазе ЭДС, которые с учетом увеличения z0 за счет сопротивления линии [6], вызовут рост дисбаланса фазных напряжений сети, особенно интенсивный при большой загрузке трансформатора и низком cos φ нагрузки. Кроме того, магнитные потоки, вызванные протеканием неуравновешенного тока нулевой последовательности — I0(1), замыкаясь через поверхность бака, дно и крышку трансформатора, нагревают его корпус, ухудшая охлаждение активной части [3]. Как установлено при исследовании промышленных сетей [6], максимально допустимая неуравновешенная однофазная нагрузка составляет лишь 2…5% от номинальной мощности питающего трансформатора с группой соединения обмоток Y/YН–12, что приблизительно в 10 раз меньше, чем в случае включения эквивалентной по мощности нагрузки на его междуфазное напряжение (несимметрией по обратной последовательности). Снизить несимметрию СЭС до допустимого значения k0U [3] можно за счет полной или частичной компенсации составляющей РМ обратной последовательности (рис. 3) путем комбинаций переключения емкостных элементов на различные линейные напряжения четырехпроводной сети [5].

Практическая реализация подобных схем возможна с помощью специальных автоматических регуляторов РМ (например, BLR-CM 3phase [7]) или структурного объединения в единую технологическую цепь трех серийных однофазных контроллеров. Для СЭС с разбалансированной (несимметричной) нагрузкой компания EPCOS AG предлагает версию трехканального управления автоматическими микропроцессорными контроллерами BR6000 однофазными ступенями УКРМ (рис. 4), функция регулирования которых равнозначна системе уравнений [4]:

где: QL1, QL2, QL3 — РМ соответствующей фазы; К — коэффициент трансформации трансформаторов тока; φL1, φL2, φL3 — сдвиг фаз между линейными (IL1, IL2, IL3) токами и одноименными фазными (UL1, UL2, UL3) напряжениями компенсируемой сети.

Независимо друг от друга однофазные измерительные системы контроллеров тестируют мгновенные значения фазных напряжений и линейных токов (рис. 4), вычисляют их сдвиг во всех четырех квадрантах комплексной плоскости, формируя на выходе сигналы, пропорциональные по величине и направлению РМ каждой фазы (3). Далее результаты измерения сравниваются с предварительно заданной (одинаковой для 3 контроллеров) уставкой cos φ, соразмерной углу φ. Если отклонение превысит границы зоны чувствительности, контроллер выдаст команду на поочередную автономную коммутацию шести параллельно включенных секций однофазных конденсаторов одной из 3-емкостных ветвей КБ. Поскольку в существующем программном обеспечении контроллера BR6000 входные параметры вычисляются и отображаются как трехфазные величины, РМ шага компенсации установочного меню должна в три раза превышать фактическое значение (например при однофазном шаге 10 квар следует ввести 30 квар). Модуль пульсирующей мощности, генерируемой в сеть несимметричной КБ, направленный встречно NΣ (1), приблизительно будет равен удвоенной разности между РМ наибольшей и наименьшей ветви [4].

Дискретное подключение ветвей КБ (рис. 4) позволит снизить напряжение нулевой последовательности эквивалента однофазной нагрузки — U0(1) = I0(1) × z0/3, численно равное модулю вектора сдвига нулевой точки трехфазной системы напряжений [4], и откорректировать cos φ [5], обеспечив эксплуатационную пропускную способность сети. Таким образом, обеспечивается условие ввода дополнительной емкостной проводимости [1], компенсирующей дисбаланс линейных напряжений СЭС путем дифференцированного регулирования РМ-секций, соединенных «звездой» ветвей симметричных трехфазных КБ.

Литература

  1. Шидловский А. К., Борисов Б. П. Симметрирование однофазных и двухплечевых электротехнологических установок. Киев: Наукова думка, 1977.
  2. Жежеленко И. В. Высшие гармоники в системах электроснабжения промпредприятий. М.: Энергия, 1974.
  3. ГОСТ 13109-97. Нормы качества электрической энергии в системах электроснабжения общего назначения. Минск: ИПК Издательство стандартов, 1998.
  4. Шишкин С. А. Симметрирование и компенсация реактивной мощности несимметричных низковольтных нагрузок с помощью конденсаторных батарей // Электротехника, 2006. № 8.
  5. Патент РФ на изобретение 2229766 H02J3/18 / Устройство для симметрирования и компенсации реактивной мощности / Шишкин С. А. (RU) — № 2002126525. Заявл. 07.10.02, опубл. 27.05.04. Бюлл. № 15.
  6. Гамазин С. И., Зеленская М. А. Расчетно-экспериментальные исследования области допустимых несимметричных режимов в системе электроснабжения до 1000 В // Электрика, 2003. № 3.
  7. Power factor control relay BLR-CM 3phase. http://www.beluk.de

Влияние реактивной мощности на энергоресурсоэффективность

За последние годы характер потребления электроэнергии сильно изменился. Это обусловлено увеличением мощности нелинейных потребителей, а также опережающим ростом потребления реактивной мощности по отношению к активной вследствие уменьшения загрузки силовых трансформаторов. Это является характерной чертой современной электроэнергетики, отрицательно влияющей на качество и потери электроэнергии.

Поэтому основная задача оптимизации электропотребления, как на стадии проектирования, так и на стадии эксплуатации системы электроснабжения, состоит в том, чтобы наиболее полно обеспечить компенсацию реактивной мощности в сети.

Основные негативные последствия, вызванные ростом потребления реактивной мощности:

  • Общее снижение уровней напряжения в распределительных сетях, на шинах потребителей и снижение качества электрической энергии;
  • Увеличение потерь активной мощности в элементах электрической сети;
  • Дополнительная загрузка линий электропередач и силовых трансформаторов потоками реактивной мощности, которые увеличивают токовую нагрузку электросети, снижают резерв пропускной способности и устойчивость сети;
  • Значительное увеличение потребности в источниках реактивной мощности в энергосистеме.

Первопричины и вызываемые ими помехи в сети

Колебания напряжения в сети

Несимметрия напряжения в сети

Высшие гармоники

Промежуточные гармоники

Мощные регуляторы напряжения



×


Генераторы электроэнергии (ветровые станции, фотоэлектрические установки…)

×


×


Медицинские электроприводы (рентгеновские станции, магнитные диагностические аппараты…)

×




Эксцентриковые приводы (пилорамы…)

×



×

Частотные преобразователи (преобразователи числа фаз, несинхронные преобразователи тока…)



×

×

Газоразрядные лампы (мощные осветительные установки)



×


Пульсирующая нагрузка (напр. от терморегуляторов…)

×




Выпрямители переменного тока (напр. для питания ж/д. транспорта, для узлов связи…)



×


Мощные потребители (переходные процессы при вкл./выкл.)

×




Индукционные нагревательные установки



×


Дуговые сталеплавильные печи

×




Дуговые сварочные агрегаты


×



Светомузыкальные установки



×

×

Среднечастотные индукционные печи

×




Электродвигатели большой мощности (лифты, вентиляторы, насосы…)

×




Индукционные печи промышленной частоты



×

×

Вентильные преобразователи

×




Кузнечные прессы


×



Агрегаты и блоки резервного питания



×


Электропечи для производства электродов

×

×


×

Плавильные электропечи


×



Автоматы контактной сварки

×

×


×

С чего начать? Мониторинг параметров КЭЭ

Чтобы понять суть процессов, протекающих в конкретной электросети, нужна достоверная техническая информация. Для этого необходимо проводить мониторинг параметров электросети, снимая и фиксируя специальными приборами одновременно несколько десятков характеристик электросети с интервалом в доли секунды (токи, напряжения, активные, реактивные и полные мощности по каждой фазе, СosF, гармонический состав сети и т.д.). Полученную информацию необходимо обрабатывать, анализировать, и только после этого можно будет с уверенностью сказать, что за процессы протекают в вашей электросети, самое главное, где, каким образом и сколько нужно компенсировать реактивной мощности, чтобы электроэнергия, получаемая от поставщика, имела бы необходимые показатели качества, и расходовалась самым экономичным образом на нужды предприятия, без потерь, а вы бы еще и экономили эту самую электроэнергию.

Отрицательное влияние реактивной мощности на электрическую сеть несоизмеримо больше, чем положительное

Недаром еще во времена заката СССР в конце 80-х годов директивно на всех промышленных предприятиях были установлены конденсаторные батареи. К сожалению, в дальнейшие 90-е годы многие предприятия-потребители электроэнергии отключали имевшиеся у них компенсирующие устройства, а некоторые — вовсе демонтировали, не занимались поддержанием их работоспособности по причине отсутствия финансирования.

Все изменилось после опубликования Приказа Минпромэнерго от 22 февраля 2007 года № 49, утверждающего :

Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения)” энергосистемам следует начать подготовку к переходу на новый уровень взаимоотношений с потребителями и новую организацию работ по управлению реактивной мощностью.

Многие энергосистемы уже приступили к этой работе, не дожидаясь указания сверху, на особо проблемных участках электрических сетей устанавливая компенсирующие устройства.

Важно, чтобы положительные результаты этой работы в локальных энергосистемах тиражировались на другие регионы.

После выхода в свет новой методики применения скидок и надбавок к тарифам на электроэнергию, которая готовится в недрах Минпромэнерго, потребителю будет дана возможность получить скидку за поддержание требуемого коэффициента реактивной мощности за регулирование реактивной мощности у себя в электросети предприятия в часы max/min нагрузок.

Пути решения. Новые подходы

Сегодня проектировщикам и эксплуатационным службам пром. предприятий следует обращать особое внимание решению проблемы качества электроэнергии. Все мощные потребители на предприятии должны оснащаться фильтро-компенсирующими устройствами (ФКУ), а потребители с большой единичной мощностью и резко-переменной нагрузкой (дуговые печи с электропечными трансформаторами 100 МВА и выше) — статическими тиристорными компенсаторами (СТК). Это позволит обеспечить высокую степень стабилизации требуемой реактивной мощности при по-фазном регулировании, а также снизить уровень высших гармоник в сети за счет фильтро-компенсирующих цепей (ФКЦ). Применение СТК даст также дополнительный технологический эффект.

К примеру, их использование в сетях, питающих дуговые сталеплавильные печи (ДСП), поможет повысить стабильность горения дуги и почти на 10% поднять производительность печи. Кроме того, в остальных менее ответственных участках электросети предприятия необходимо устанавливать регулируемые УКМ с электромеханическим переключением ступеней.

В системах промышленного электроснабжения 6-10 кВ устройства компенсации реактивной мощности служат для поддержания напряжения на шинах 6(10) кВ при провалах напряжения, вызванных КЗ в цепях 110(35) кВ. Они ограничивают колебания напряжения на шинах 6(10) кВ, а гармонические составляющие снижаются фильтро-компенсирующими устройствами ФКУ, состоящими из емкостей и реакторов, при этом улучшается и СosF.

На трансформаторных подстанциях рекомендуется применять устройства компенсации реактивной мощности, например такие как управляемые шунтирующие реакторы с вакуумными (элегазовыми) выключателями с повышенным коммутационным ресурсом и устройством синхронной коммутации в сетях до110 кВ включительно.

В электроустановках потребителей 0,4-10 кВ наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение регулируемых конденсаторных установок УКМ непосредственно на шинах РУНН-0,4 кВ трансформаторных подстанций.

Преимущества УКМ перед другими техническими средствами — синхронными компенсаторами и синхронными двигателями, в том, что последние имеют большие потери активной электрической мощности и вращающиеся части, подверженные механическому износу.

В качестве примера снижения электропотребления системы электроснабжения коммунальных однофазных потребителей представляет интерес опыт применения УКРМ в низковольтных городских распределительных сетях при минимальном удалении от потребителей, предприятий, входящих в группу Endesa (Испания). По данным Edeinor S. A.A. [6], установка конденсаторов суммарной мощностью 37 000 кВАр в 114 000 домовладений района Инфантас северной части Лимы (Перу), повысила средневзвешенный CosF распределительной сети с 0,84 до 0,93, что позволило ежегодно экономить примерно 280 кВт/ч на каждый установленный кВАр реактивной мощности или всего около 19 300 МВт/?ч в год.

Конденсаторные установки

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Роль реактивной мощности в энергосистеме

В последние годы регулирование реактивной мощности играет важную роль в поддержании безопасного профиля напряжения в крупномасштабной системе передачи. Хотя это необходимо для нормального функционирования различных электрических систем, таких как линии передачи, двигатели, трансформатор и т. Д. Это необходимо для работы большинства устройств электромагнитной энергии для создания магнитного поля. В некоторых случаях он принудительно вводится в сеть энергосистемы для поддержания более высокого напряжения узла.Реактивная мощность – это одна из составляющих полной мощности в цепи переменного тока, источником которой является фазовый сдвиг между синусоидальными сигналами напряжения и тока. Это следствие или побочный продукт системы переменного тока, который перемещается взад и вперед по силовому проводнику, то есть течет к реактивным компонентам от источника в течение одного полупериода и обратно к источнику в течение другого полупериода формы волны переменного тока.

Таким образом, среднее значение мощности равно нулю, что означает, что нагрузка никогда не потребляет реактивную мощность.В случае трехфазной цепи в любой момент суммирование реактивных мощностей трех фаз равно нулю. Чтобы отличить активную мощность, которая выполняет полезную работу, реактивная мощность измеряется в «VAR», а не в ваттах. Использование конденсаторов для подачи реактивной мощности снижает ток в линии. Поскольку потери в линиях являются функцией квадрата тока I 2 R, уменьшение потока реактивной мощности в линиях значительно снижает потери.

При передаче электроэнергии на большие расстояния возникают дополнительные потери реактивной мощности из-за большого реактивного сопротивления системы передачи высокого напряжения.Чтобы избежать чрезмерной передачи реактивной мощности, генерация и потребление реактивной мощности должны быть как можно ближе друг к другу; в противном случае это приведет к неправильному профилю напряжения. Линии электропередачи, трансформаторы, асинхронные двигатели, печи, реакторы, дроссели, пускорегулирующие аппараты потребляют реактивную мощность, и ее передача сильно локализована. Поэтому реактивная мощность им обеспечивается некоторыми локализованными источниками. Для низкотемпературных нагрузок им можно управлять с помощью «интеллектуального реле контроля коэффициента мощности».Система возбуждения синхронного генератора позволяет регулировать спрос и предложение реактивной мощности для достижения желаемого уровня напряжения.

В системе переменного тока мощность состоит из двух компонентов: активной и реактивной мощности. Полезная работа выполняется за счет активной мощности, в то время как реактивная мощность улучшает стабильность напряжения и предотвращает падение напряжения. Регулируя реактивную мощность, можно контролировать такие параметры энергосистемы, как использование активной мощности, стабильность напряжения, коэффициент мощности, эффективность системы, стоимость энергии и качество электроэнергии.

Как реактивная мощность помогает поддерживать работоспособность системы

Реактивная мощность

На практике мы всегда на практике снижаем реактивную мощность для повышения эффективности системы. Это приемлемо на некотором уровне, если система является чисто резистивной или емкостной, это вызывает некоторые проблемы в электрической системе. Системы переменного тока поставляют или потребляют два вида мощности: активную мощность и реактивную мощность.

Как реактивная мощность помогает поддерживать работоспособность системы (на фото: Панель коррекции коэффициента мощности среднего напряжения; кредит: tepco-group.com)

Реальная мощность выполняет полезную работу, а реактивная мощность поддерживает напряжение, которое необходимо контролировать для обеспечения надежности системы. Реактивная мощность оказывает сильное влияние на безопасность энергосистем, поскольку влияет на напряжения во всей системе.

Найдите важное обсуждение, касающееся важности реактивной мощности и того, как полезно поддерживать напряжение в системе в нормальном состоянии.

ОСВЕЩЕННЫЕ ТЕМЫ:

Потребность в реактивной мощности

  • Контроль напряжения в системе электроснабжения важен для правильной работы силового оборудования, чтобы предотвратить такие повреждения, как перегрев генераторов и двигателей, снизить потери при передаче и сохранить работоспособность. системы, чтобы выдерживать и предотвращать падение напряжения.В общем, уменьшение реактивной мощности вызывает падение напряжения, а увеличение вызывает повышение напряжения. Падение напряжения происходит, когда система пытается обслуживать гораздо большую нагрузку, чем может выдержать напряжение.
    .
  • Когда подает реактивную мощность , более низкое напряжение, при падении напряжения ток должен увеличиваться для поддержания подаваемой мощности, в результате чего система потребляет больше реактивной мощности, и напряжение падает дальше. Если ток увеличивается слишком сильно, линии передачи отключаются, вызывая перегрузку других линий и потенциально вызывая каскадные отказы.
    .
  • Если напряжение упадет слишком низко, некоторые генераторы отключатся автоматически, чтобы защитить себя. Коллапс напряжения происходит, когда увеличение нагрузки или уменьшение мощности генерирующих или передающих мощностей вызывает падение напряжения, что вызывает дальнейшее снижение реактивной мощности от заряда конденсатора и линии, и, тем не менее, дальнейшее снижение напряжения. Если снижение напряжения продолжается, это вызовет срабатывание дополнительных элементов, что приведет к дальнейшему снижению напряжения и потере нагрузки.Результатом всего этого постепенного и неконтролируемого падения напряжения является то, что система не может обеспечить реактивную мощность, необходимую для удовлетворения требований реактивной мощности.

Важность наличия реактивной мощности

  • Управление напряжением и управление реактивной мощностью – это два аспекта одной деятельности, которые поддерживают надежность и облегчают коммерческие транзакции в сетях передачи.
    .
  • В энергосистеме переменного тока (AC) напряжение регулируется путем управления производством и потреблением реактивной мощности.Есть три причины, по которым необходимо управлять реактивной мощностью и управляющим напряжением.
    .
  • Во-первых, оборудование потребителя и энергосистемы рассчитано на работу в диапазоне напряжений, обычно в пределах ± 5% от номинального напряжения. При низких напряжениях многие типы оборудования плохо работают; лампы накаливания обеспечивают меньшую освещенность, асинхронные двигатели могут перегреться и выйти из строя, а некоторое электронное оборудование не будет работать при. Высокое напряжение может повредить оборудование и сократить срок его службы.
    .
  • Во-вторых, реактивная мощность потребляет ресурсы передачи и генерации. Чтобы максимизировать количество реальной мощности, которая может быть передана через перегруженный интерфейс передачи, потоки реактивной мощности должны быть минимизированы. Точно так же производство реактивной мощности может ограничивать реальную мощность генератора.
    .
  • В-третьих, при перемещении реактивной мощности в системе передачи возникают потери реальной мощности. Чтобы восполнить эти потери, необходимо обеспечить как мощность, так и энергию.
    .
  • Контроль напряжения усложняется двумя дополнительными факторами.
    .
  • Во-первых, сама система передачи является нелинейным потребителем реактивной мощности в зависимости от загрузки системы. При очень небольшой нагрузке система генерирует реактивную мощность, которую необходимо поглотить, тогда как при большой нагрузке система потребляет большое количество реактивной мощности, которую необходимо заменить. Требования к реактивной мощности системы также зависят от конфигурации генерации и передачи.
    .
  • Следовательно, требования к реактивности системы меняются во времени по мере изменения уровней нагрузки и моделей нагрузки и генерации.Система объемного питания состоит из множества единиц оборудования, любое из которых может выйти из строя в любой момент. Таким образом, система спроектирована так, чтобы выдерживать потерю любого отдельного оборудования и продолжать работу, не затрагивая клиентов. То есть система рассчитана на то, чтобы противостоять единственному непредвиденному обстоятельству. Взятые вместе, эти два фактора приводят к динамической потребности в реактивной мощности. Потеря генератора или основной линии электропередачи может иметь комбинированный эффект, заключающийся в снижении реактивной мощности и, в то же время, перенастройке потоков, так что система потребляет дополнительную реактивную мощность.
    .
  • По крайней мере, часть реактивного источника питания должна быть способна быстро реагировать на изменение требований реактивной мощности и поддерживать приемлемые напряжения во всей системе. Таким образом, как электрическая система требует резервов реальной мощности для реагирования на непредвиденные обстоятельства, так и она должна поддерживать резервы реактивной мощности.
    .
  • Нагрузки также могут быть как действительными, так и реактивными. Реактивная часть нагрузки может обслуживаться от системы передачи. Реактивные нагрузки вызывают большее падение напряжения и реактивные потери в системе передачи, чем реальные нагрузки аналогичного размера (MVA).
    .
  • Вертикально интегрированные коммунальные предприятия часто включают в свои тарифы плату за предоставление реактивной мощности нагрузкам. При реструктуризации наблюдается тенденция к ограничению нагрузок работой при почти нулевом потреблении реактивной мощности (коэффициент мощности 1,0). Предложение системного оператора ограничивает нагрузки коэффициентами мощности от 0,97 (потребляемая реактивная мощность) до 0,99 с опережением. Это поможет поддерживать надежность системы и избежать проблем рыночной власти, когда компания может использовать свои линии электропередачи для ограничения конкуренции за производство электроэнергии и повышения цен.

Назначение реактивной мощности

  • Синхронные генераторы, SVC и различные типы другого оборудования DER (Распределенный энергоресурс) используются для поддержания напряжения во всей системе передачи. Подача реактивной мощности в систему повышает напряжение, а поглощение реактивной мощности снижает напряжение.
    .
  • Требования к поддержанию напряжения зависят от расположения и величины выходных сигналов генератора и нагрузок потребителей, а также от конфигурации системы передачи DER.
    .
  • Эти требования могут существенно отличаться от места к месту и могут быстро меняться по мере изменения места и величины генерации и нагрузки. При очень низких уровнях нагрузки системы линии передачи действуют как конденсаторы и повышают напряжение. Однако при высоких уровнях нагрузки линии передачи поглощают реактивную мощность и тем самым снижают напряжение. Большая часть оборудования системы передачи (например, конденсаторы, катушки индуктивности и трансформаторы с переключением ответвлений) статична, но может быть переключена в ответ на изменения в требованиях
    к поддержке напряжения.
  • При управлении реактивной мощностью и напряжением работа системы преследует три цели.
    .
  • Во-первых, он должен поддерживать адекватное напряжение по всей системе передачи и распределения как для текущих, так и для непредвиденных условий.
    .
  • Во-вторых, он стремится минимизировать перегрузку потоков реальной мощности.
    .
  • В-третьих, он стремится минимизировать потери реальной мощности.
    .
  • Однако механизмы, которые системные операторы используют для приобретения и развертывания ресурсов реактивной мощности, меняются.Эти механизмы должны быть справедливыми по отношению ко всем сторонам, а также быть эффективными. Кроме того, они должны быть явно справедливыми.

Что такое реактивная мощность?

  • В то время как активная мощность – это энергия, подаваемая для запуска двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения.
  • Если напряжение в системе недостаточно высокое, активная мощность не может быть подана.
  • Реактивная мощность используется для обеспечения уровней напряжения, необходимых для того, чтобы активная мощность выполняла полезную работу.
  • Реактивная мощность необходима для передачи активной мощности по системе передачи и распределения к потребителю.

Зачем нам реактивная мощность?

  • Реактивная мощность (ВАР) требуется для поддержания напряжения для передачи активной мощности (ватт) по линиям передачи.
  • Двигательные нагрузки и другие нагрузки требуют реактивной мощности для преобразования потока электронов в полезную работу.
  • Когда реактивной мощности недостаточно, напряжение падает, и невозможно передать мощность, требуемую нагрузкой, по линиям.

Реактивная мощность является побочным продуктом систем переменного тока

  • Трансформаторам, линиям передачи и двигателям требуется реактивная мощность
  • Трансформаторы и линии передачи вносят индуктивность, а также сопротивление:
    1. Оба противостоят протеканию тока
    2. Необходимо поднять напряжение выше, чтобы протолкнуть мощность через индуктивность линий
    3. Если не вводится емкость для смещения индуктивности
  • Чем дальше передается мощность, тем выше напряжение должно быть повышено.
  • Электродвигатели нуждаются в реактивном режиме. мощность для создания магнитных полей для их работы

Как контролируются напряжения?

  • Напряжения контролируются путем обеспечения достаточного запаса регулирования реактивной мощности для «модуляции» и обеспечения потребностей посредством:
    1. Компенсация шунтирующего конденсатора и реактора
    2. Динамическая компенсация
    3. Правильный график напряжения генерации.
  • Напряжения контролируются путем прогнозирования и корректировки потребности в реактивной мощности от нагрузок

Напряжение должно поддерживаться в пределах допустимых уровней

  • В нормальных условиях системы, при пиковых или непиковых нагрузках, напряжения должны поддерживаться в пределах 95 % и 105% от номинала.
  • Низкое напряжение может привести к сбоям в работе оборудования:
    1. Двигатель остановится, перегреется или повредит
    2. Реактивная мощность на выходе конденсаторов будет экспоненциально снижена
    3. Генерирующие блоки могут отключиться.
  • Условия высокого напряжения могут:
    1. Повреждение основного оборудования – нарушение изоляции
    2. Автоматическое отключение основного передающего оборудования

Напряжение и реактивная мощность

  • Напряжение и реактивная мощность должны регулироваться и контролироваться надлежащим образом:
    1. Обеспечьте надлежащее качество обслуживания.
    2. Поддерживайте надлежащую стабильность энергосистемы.

Реактивная мощность и коэффициент мощности

  • Реактивная мощность присутствует, когда напряжение и ток не совпадают по фазе:
    1. Один сигнал опережает другой
    2. Фазовый угол не равен 0o
    3. Коэффициент мощности меньше единицы
  • Измеряется в реактивных вольт-амперах (ВАр)
  • Производится, когда форма волны тока опережает форму волны напряжения (опережающий коэффициент мощности)
  • И наоборот, потребляется, когда форма волны тока отстает от напряжения (отстающий коэффициент мощности)

Ограничения реактивной мощности

  • Реактивная мощность не распространяется очень далеко.
  • Обычно необходимо производить его близко к месту, где это необходимо.
  • Поставщик / источник, расположенный близко к месту потребности, находится в гораздо лучшем положении для обеспечения реактивной мощности по сравнению с источником, расположенным далеко от места потребности.
  • Источники реактивной мощности тесно связаны с возможностью выдавать реальную или активную мощность.

Реактивная мощность привела к отсутствию электроснабжения в стране – отключение электроэнергии

Треугольник мощности
  • Качество электроснабжения можно оценить по ряду параметров.Однако самым важным всегда будет наличие электрической энергии, а также количество и продолжительность прерываний.
    .
  • Если в розетке нет напряжения, то никого не волнуют гармоники, провалы или скачки напряжения.
    .
  • Длительное прерывание с большим размахом – отключение электроэнергии обычно приводит к катастрофическим потерям. Сложно представить, что во всей стране нет электроснабжения.
    .
  • На самом деле такое уже происходило неоднократно.Одна из причин, приводящих к отключению электроэнергии, – выходящая из-под контроля реактивная мощность.
    .
  • При высоком потреблении электроэнергии потребность в индуктивной реактивной мощности обычно увеличивается в той же пропорции. В этот момент линии передачи (которые хорошо загружены) вносят дополнительную индуктивную реактивную мощность.
    .
  • Местные источники емкостной реактивной мощности становятся недостаточными. Необходимо доставлять больше реактивной мощности от генераторов на электростанциях.
    .
  • Может случиться так, что они уже полностью загружены, и реактивную мощность придется доставлять из более отдаленных мест или из-за границы. Передача реактивной мощности приведет к большей нагрузке на линии, что, в свою очередь, приведет к увеличению реактивной мощности. Напряжение на стороне потребителя будет снижаться дальше. Местное управление напряжением с помощью автотрансформаторов приведет к увеличению тока (для получения той же мощности), что, в свою очередь, увеличит падение напряжения в линиях. В один момент этот процесс может пойти лавинообразно, снижая напряжение до нуля.Между тем, большинство генераторов на электростанциях отключатся из-за недопустимо низкого напряжения, что, конечно, ухудшит ситуацию.
    .
  • В континентальной Европе большинство электростанций построено на тепловых и паровых турбинах. Если энергоблок такой электростанции останавливается и остывает, ему требуется время и электроэнергия, чтобы снова начать работу. Если другие электростанции также отключены – отключение электроэнергии будет постоянным.
    .
  • Недостаточная реактивная мощность, приводящая к падению напряжения, была причинным фактором крупных отключений электроэнергии во всем мире.Обвал напряжения произошел в Соединенных Штатах во время отключения электроэнергии 2 июля 1996 г. и 10 августа 1996 г. на Западном побережье.
    .
  • Хотя 14 августа 2003 г. отключение электроэнергии в Соединенных Штатах и ​​Канаде не было связано с падением напряжения, как этот термин традиционно используется инженерами энергосистем, в итоговом отчете целевой группы говорилось, что «Недостаточная реактивная мощность была проблемой в системе. отключение электроэнергии » и отчет также« переоценка динамики реактивного выхода системы генерации »как общий фактор среди крупных отключений в США.
    .
  • Спрос на реактивную мощность был необычно высоким из-за большого объема потоковых передач на большие расстояния, проходящих через Огайо в районы, включая Канаду, чем было необходимо для импорта энергии для удовлетворения местного спроса. Но подача реактивной мощности была низкой, потому что некоторые станции не работали и, возможно, потому, что другие станции не производили ее в достаточном количестве.

Проблемы с реактивной мощностью

  • Хотя реактивная мощность необходима для работы многих электрических устройств, она может оказывать вредное воздействие на ваши приборы и другие моторизованные нагрузки, а также на вашу электрическую инфраструктуру.Поскольку ток, протекающий через вашу электрическую систему, превышает ток, необходимый для выполнения требуемой работы, избыточная мощность рассеивается в виде тепла, поскольку реактивный ток течет через резистивные компоненты, такие как провода, переключатели и трансформаторы. Имейте в виду, что всякий раз, когда расходуется энергия, вы платите. Не имеет значения, в виде тепла или полезной работы расходуется энергия.
    .
  • Мы можем определить, сколько реактивной мощности потребляют ваши электрические устройства, измерив их коэффициент мощности, соотношение между реальной мощностью и реальной мощностью.Коэффициент мощности 1 (т.е. 100%) в идеале означает, что вся электрическая мощность используется для реальной работы. Дома обычно имеют общий коэффициент мощности в диапазоне от 70% до 85%, в зависимости от того, какие приборы могут работать. Более новые дома с новейшими энергоэффективными приборами могут иметь общий коэффициент мощности 90-х годов.
    .
  • Типичный счетчик электроэнергии в жилых помещениях считывает только реальную мощность, то есть то, что вы получили бы при коэффициенте мощности 100%. В то время как большинство электроэнергетических компаний не взимают плату за реактивную мощность с жилых домов напрямую, распространенным заблуждением является утверждение, что коррекция реактивной мощности не имеет экономической выгоды.Для начала электрические компании корректируют коэффициент мощности вокруг промышленных комплексов, или они потребуют от нарушившего правила потребителя сделать это за его счет, или они будут взимать дополнительную плату за реактивную мощность. Очевидно, что электрические компании выигрывают от коррекции коэффициента мощности, поскольку линии электропередачи, по которым проходит дополнительный (реактивный) ток в промышленно развитые районы, стоят им денег. Многие люди упускают из виду преимущества, которые коррекция коэффициента мощности может предложить для типичного дома по сравнению с экономией и другими преимуществами, которые могут ожидать предприятия с большими индуктивными нагрузками.
    .
  • Самое главное, что вы платите за реактивную мощность в виде потерь энергии, создаваемых реактивным током, протекающим в вашем доме. Эти потери имеют вид тепла и не могут быть возвращены в сеть. Следовательно, вы платите. Чем меньше киловатт расходуется в доме за счет рассеивания тепла или нет, тем ниже счет за электричество. Поскольку коррекция коэффициента мощности снижает потери энергии, вы экономите.
    .
  • Как указывалось ранее, электрические компании корректируют коэффициент мощности вокруг промышленных комплексов, либо они потребуют этого от нарушителя, либо они будут взимать плату за реактивную мощность.Их не беспокоит обслуживание жилых домов, потому что влияние на их распределительную сеть не такое серьезное, как в промышленно развитых регионах. Однако верно то, что коррекция коэффициента мощности помогает электроэнергетической компании за счет снижения спроса на электроэнергию, тем самым позволяя им удовлетворять потребности в услугах в других местах. Но кого это волнует? Коррекция коэффициента мощности снижает ваши счета за электроэнергию за счет уменьшения количества израсходованных киловатт, и без нее ваш счет за электроэнергию будет гарантированно выше.
    .
  • Мы сталкивались с этим с другими электрическими компаниями, и нам удалось добиться от каждой из них опровержения.Электроэнергетические компании сильно различаются, и многие не проявляют интереса к отклонению от своей стандартной маркетинговой стратегии, признавая проверенные энергосберегающие продукты. Имейте в виду, что продвижение РЕАЛЬНОЙ экономии энергии для всех своих клиентов опустошит их прибыль.
    .
  • Коррекция коэффициента мощности не приведет к увеличению счета за электроэнергию и не нанесет вреда вашим электрическим устройствам. Эта технология уже много лет успешно применяется в промышленности. При правильном размере коррекция коэффициента мощности повысит электрический КПД и долговечность индуктивных нагрузок.Коррекция коэффициента мощности может иметь неблагоприятные побочные эффекты (например, гармоники) на чувствительном промышленном оборудовании, если с ней не будут работать знающие и опытные специалисты. Коррекция коэффициента мощности в жилых домах ограничена мощностью электрической панели (макс. 200 А) и не обеспечивает чрезмерной компенсации индуктивных нагрузок в домах. Повышение эффективности электрических систем снижает потребность в энергии и ее воздействие на окружающую среду.

Глубокое влияние реактивной мощности в различных элементах энергосистемы:

Генерация

  • Основная функция генератора электроэнергии заключается в преобразовании топлива (или другого энергоресурса) в электроэнергию.Почти все генераторы * также имеют значительный контроль над напряжением на клеммах и выходной реактивной мощностью.
    .
  • Плата за использование этого ресурса является специфическим направлением управления напряжением от службы генерации. Способность генератора обеспечивать реактивную поддержку зависит от его выработки реальной мощности. Как и у большинства электрического оборудования, генераторы ограничены своей пропускной способностью по току. При напряжении, близком к номинальному, эта способность становится пределом в МВА для якоря генератора, а не ограничением в МВт.
    .
  • Производство реактивной мощности связано с увеличением магнитного поля для повышения напряжения на клеммах генератора. Увеличение магнитного поля требует увеличения тока во вращающейся обмотке возбуждения. Поглощение реактивной мощности ограничивается структурой магнитного потока в статоре, что приводит к чрезмерному нагреву железа на конце статора, что является пределом нагрева сердечника.
    .
  • Синхронизирующий крутящий момент также уменьшается при поглощении большого количества реактивной мощности, что также может ограничивать возможности генератора, чтобы снизить вероятность потери синхронизма с системой.
    .
  • Первичный двигатель генератора (например, паровая турбина) обычно проектируется с меньшей мощностью, чем электрический генератор, что приводит к ограничению первичного двигателя. Разработчики понимают, что большую часть времени генератор будет вырабатывать реактивную мощность и поддерживать напряжение в системе. Наличие первичного двигателя, способного выдавать всю механическую мощность, которую генератор может преобразовать в электричество, когда он не производит и не поглощает реактивную мощность, приведет к недоиспользованию первичного двигателя.
    .
  • Для производства или поглощения дополнительных VAR сверх этих пределов потребуется снижение реальной выходной мощности устройства. Управление реактивным выходом и напряжением на клеммах генератора обеспечивается регулировкой постоянного тока во вращающемся поле генератора. Управление может быть автоматическим, непрерывным и быстрым.
    .
  • Характеристики, присущие генератору, помогают поддерживать напряжение в системе. При любой данной настройке поля генератор имеет определенное напряжение на клеммах, которое он пытается удерживать.Если напряжение в системе падает, генератор подает в энергосистему реактивную мощность, стремясь повысить напряжение в системе. Если напряжение в системе возрастает, реактивная мощность генератора упадет, и в конечном итоге реактивная мощность будет поступать в генератор, стремясь к снижению напряжения в системе. Регулятор напряжения усиливает это поведение, направляя ток возбуждения в нужном направлении для получения желаемого напряжения системы.

Синхронные конденсаторы

  • Каждая синхронная машина (двигатель или генератор) с управляемым полем имеет характеристики реактивной мощности, описанные выше.
    .
  • Синхронные двигатели иногда используются для обеспечения динамической поддержки напряжения в энергосистеме, поскольку они обеспечивают механическую мощность для своей нагрузки. Некоторые турбины внутреннего сгорания и гидроагрегаты спроектированы таким образом, чтобы генератор мог работать без механического источника энергии просто для обеспечения реактивной мощности энергосистемы, когда выработка реальной энергии недоступна или не требуется.
    .
  • Синхронные машины, которые предназначены исключительно для обеспечения реактивной поддержки, называются синхронными конденсаторами.
    .
  • Синхронные конденсаторы обладают всеми преимуществами генераторов по быстродействию и управляемости без необходимости строительства остальной части электростанции (например, оборудования для перекачки топлива и котлов). Поскольку это вращающиеся машины с движущимися частями и вспомогательными системами, они могут потребовать значительно большего обслуживания, чем статические альтернативы. Они также потребляют активную мощность, равную примерно 3% от номинальной реактивной мощности машины.

Конденсаторы и катушки индуктивности

  • Конденсаторы и катушки индуктивности (иногда называемые реакторами) – это пассивные устройства, которые генерируют или поглощают реактивную мощность.Они достигают этого без значительных потерь реальной мощности или эксплуатационных расходов. Выход конденсаторов и катушек индуктивности пропорционален квадрату напряжения. Таким образом, конденсаторная батарея (или катушка индуктивности) на 100 МВАр будет производить (или поглощать) только 90 МВАр, когда напряжение падает до 0,95 о.е., но она будет производить (или поглощать) 110 МВАр, когда напряжение повышается до 1,05 о.е. Это соотношение полезно, когда для удержания напряжения используются катушки индуктивности.
    .
  • Катушка индуктивности поглощает больше при самых высоких напряжениях и при наибольшей потребности в устройстве.Связь неудачна для более распространенного случая, когда конденсаторы используются для поддержания напряжения. В крайнем случае напряжение падает, и конденсаторы вносят меньший вклад, что приводит к дальнейшему снижению напряжения и еще меньшей поддержке со стороны конденсаторов; в конечном итоге происходит коллапс напряжения и перебои в работе.
    .
  • Катушки индуктивности – это дискретные устройства, предназначенные для поглощения определенного количества реактивной мощности при определенном напряжении. Они могут быть включены или выключены, но не имеют возможности регулировки.
    .
  • Конденсаторные батареи состоят из отдельных емкостей конденсаторов, обычно на 200 кВАр или меньше каждая. Банки подключаются последовательно и параллельно, чтобы получить желаемое напряжение конденсаторной батареи и номинальную емкость. Как и катушки индуктивности, конденсаторные батареи представляют собой дискретные устройства, но они часто имеют несколько ступеней, чтобы обеспечить ограниченное количество регулируемых параметров, что делает их недостатком по сравнению с синхронным двигателем.

Статические компенсаторы VAR (SVC)

  • SVC объединяет в себе обычные конденсаторы и катушки индуктивности с возможностью быстрого переключения.Переключение происходит во временном интервале субцикла (т.е. менее чем за 1/60 секунды), обеспечивая непрерывный диапазон управления. Диапазон может быть изменен от поглощения до выработки реактивной мощности. Следовательно, средства управления могут быть спроектированы так, чтобы обеспечивать очень быструю и эффективную поддержку реактивной мощности и регулирование напряжения. Поскольку в SVC используются конденсаторы, их реактивная способность снижается так же, как и при падении напряжения. Они также не способны выдерживать кратковременную перегрузку генераторов и синхронных конденсаторов.В приложениях SVC обычно требуются фильтры гармоник для уменьшения количества гармоник, вводимых в энергосистему.

Статические синхронные компенсаторы (STATCOM)

  • STATCOM – это твердотельное шунтирующее устройство, которое генерирует или поглощает реактивную мощность и является одним из членов семейства устройств, известных как гибкая система передачи переменного тока (FACTS).
  • СТАТКОМ похож на SVC по скорости отклика, возможностям управления и использованию силовой электроники. Однако вместо использования обычных конденсаторов и катушек индуктивности в сочетании с быстродействующими переключателями, STATCOM использует силовую электронику для синтеза выходной реактивной мощности.Следовательно, производительность обычно симметрична, обеспечивая столько же возможностей для производства, сколько и для поглощения.
  • Твердотельный характер STATCOM означает, что, как и в SVC, элементы управления могут быть спроектированы для обеспечения очень быстрого и эффективного управления напряжением. Несмотря на отсутствие кратковременной перегрузочной способности генераторов и синхронных конденсаторов, емкость STATCOM не страдает так серьезно, как SVC и конденсаторы, от пониженного напряжения.
  • СТАТКОМы ограничены по току, поэтому их способность MVAR линейно реагирует на напряжение, в отличие от отношения квадрата напряжения SVC и конденсаторов.Этот атрибут значительно увеличивает полезность СТАТКОМов для предотвращения падения напряжения.

Распределенная генерация

  • Распределение ресурсов генерации по энергосистеме может иметь положительный эффект, если у генерации есть возможность поставлять реактивную мощность. Без этой возможности управления выходной реактивной мощностью производительность системы передачи и распределения может ухудшиться. Индукционные генераторы были привлекательным выбором для небольшой, подключенной к сети генерации, прежде всего потому, что они относительно недороги.Они не требуют синхронизации и обладают механическими характеристиками, которые подходят для некоторых приложений (например, ветра). Они также поглощают реактивную мощность, а не генерируют ее, и не поддаются контролю. Если мощность генератора колеблется (как ветер), реактивная нагрузка генератора также колеблется, что усугубляет проблемы управления напряжением для системы передачи. Индукционные генераторы можно компенсировать статическими конденсаторами, но эта стратегия не решает проблему флуктуаций и не обеспечивает контролируемое поддержание напряжения.Многие ресурсы распределенной генерации теперь подключаются к сети через твердотельную силовую электронику, что позволяет изменять скорость первичного двигателя независимо от частоты энергосистемы. Что касается ветра, то использование твердотельной электроники может улучшить захват энергии.
    .
  • Для газовых микротурбин оборудование силовой электроники позволяет им работать на очень высоких скоростях. Фотоэлектрические установки генерируют постоянный ток и требуют инверторов для подключения к энергосистеме. Устройства накопления энергии (например,(например, батареи, маховики и сверхпроводящие магнитные накопители энергии) также часто бывают распределенными и требуют, чтобы твердотельные инверторы взаимодействовали с сетью. Это более широкое использование твердотельного интерфейса между устройствами и энергосистемой дает дополнительное преимущество, обеспечивая полный контроль реактивной мощности, аналогичный таковому у STATCOM.
    .
  • Фактически, большинству устройств не обязательно обеспечивать активную мощность, чтобы был доступен полный диапазон реактивного управления. Первичный двигатель поколения, e.грамм. турбина, может выйти из строя, пока реактивный компонент полностью исправен. Это технологическое развитие (твердотельная силовая электроника) превратило потенциальную проблему в преимущество, позволив распределенным ресурсам внести свой вклад в управление напряжением.

Передающая сторона

  • Неизбежным следствием работы нагрузки является наличие реактивной мощности, связанной с фазовым сдвигом между напряжением и током.
    .
  • Некоторая часть этой мощности компенсируется на стороне потребителя, а остальная часть загружает сеть.Контракты на поставку не требуют, чтобы cosφ был равен единице. Реактивная мощность также используется владельцем линии электропередачи для управления напряжением.
    .
  • Реактивная составляющая тока добавляет к току нагрузки и увеличивает падение напряжения на полном сопротивлении сети. Регулируя поток реактивной мощности, оператор изменяет падения напряжения в линиях и, таким образом, напряжение в точке подключения потребителя. Напряжение на стороне потребителя зависит от всего, что происходит на пути от генератора до нагрузки потребителя.Все узлы, точки подключения других линий передачи, распределительные станции и другое оборудование вносят свой вклад в поток реактивной мощности.
    .
  • Сама линия передачи также является источником реактивной мощности. Открытая на другом конце линия (без нагрузки) похожа на конденсатор и является источником емкостной (опережающей) реактивной мощности. Продольные индуктивности без тока не намагничиваются и не вносят никаких реактивных составляющих.
    .
  • С другой стороны, когда линия проводит большой ток, преобладает вклад продольных индуктивностей, и сама линия становится источником индуктивной (отстающей) реактивной мощности.Для каждой строки может быть вычислено характерное значение потока мощности Sk .
    .
  • Если передаваемая мощность выше Sk, линия будет вводить дополнительную индуктивную реактивную мощность, а если она ниже Sk, линия будет вводить емкостную реактивную мощность. Значение Sk зависит от напряжения: для линии 400 кВ это около 32% от номинальной мощности передачи, для линии 220 кВ – около 28%, для линии 110 кВ – около 22%. Процент будет меняться в зависимости от параметров строительства.
    .
  • Реактивная мощность, вносимая самими линиями, действительно мешает оператору системы передачи. Ночью, когда спрос невелик, необходимо подключать параллельные реакторы для потребления дополнительной емкостной реактивной мощности линий. Иногда возникает необходимость отключить малонагруженную линию (что однозначно сказывается на надежности системы). В часы пик не только нагрузки потребителей вызывают большие падения напряжения, но и индуктивная реактивная мощность линий увеличивает общий поток мощности и вызывает дальнейшие падения напряжения.
    .
  • Регулирование напряжения и реактивной мощности имеет некоторые ограничения. Большая часть реактивной мощности вырабатывается в агрегатах электростанции. Генераторы могут обеспечивать плавно регулируемую опережающую и запаздывающую реактивную мощность без каких-либо затрат на топливо.
    .
  • Однако реактивная мощность занимает генерирующую мощность и снижает выработку активной мощности. Кроме того, не стоит передавать реактивную мощность на большие расстояния (из-за потерь активной мощности). Контроль, обеспечиваемый «в пути» в линии передачи, узлах связи, распределительной станции и других точках, требует установки конденсаторов или \ и реакторов.
    .
  • Часто используются с системой переключения ответвлений трансформатора. Диапазон регулирования напряжения зависит от их размера. Контроль может состоять, например, в повышении напряжения трансформатора и последующем уменьшении его за счет протекания реактивных токов.
    .
  • Если напряжение трансформатора достигает максимального значения и все конденсаторы находятся в рабочем состоянии, то дальнейшее повышение напряжения на стороне потребителя невозможно. С другой стороны, когда требуется уменьшение, предел устанавливается максимальной реактивной мощностью реакторов и самым низким ответвлением трансформатора.

Практика планирования и оценки напряжения и реактивной мощности

(1) Основные принципы:
  • Реактивная мощность не может передаваться на большие расстояния или через силовые трансформаторы из-за чрезмерных потерь реактивной мощности.
  • Источник реактивной мощности должен располагаться в непосредственной близости от места его потребления.
  • Необходима достаточная поддержка статического и динамического напряжения для поддержания уровней напряжения в приемлемом диапазоне.
  • Должны быть доступны достаточные резервы реактивной мощности для постоянного регулирования напряжения.
(2) Ключевые последствия:
  • Должны быть установлены и поддерживаться измерения, чтобы фиксировать фактическое реактивное потребление в различных точках.
  • Планировщики передачи и распределения должны заранее определить требуемый тип и место реактивной коррекции.
  • Устройства реактивной мощности должны обслуживаться и функционировать должным образом, чтобы обеспечить правильную величину компенсации реактивной мощности.
  • Реактивные нагрузки распределения должны быть полностью скомпенсированы, прежде чем будет рассматриваться компенсация реактивной мощности передачи.
(3) Передача реактивной мощности
  • Реактивная мощность не может эффективно передаваться на большие расстояния или через силовые трансформаторы из-за высоких потерь I2X.
  • Реактивная мощность должна располагаться в непосредственной близости от места ее потребления.
(4) Поддержка статического и динамического напряжения
  • Тип требуемой компенсации реактивной мощности зависит от времени, необходимого для восстановления напряжения.
  • Статическая компенсация идеально подходит для секундных и минутных ответов. (Конденсаторы, реакторы, переключатели).
  • Динамическая компенсация идеальна для мгновенных откликов. (конденсаторы, генераторы)
  • Для поддержания уровней напряжения в приемлемом диапазоне необходим правильный баланс статического и динамического напряжения.
(5) Реактивные резервы при различных условиях эксплуатации
  • В идеале конденсаторы системы, реакторы и конденсаторы должны работать для обеспечения нормальной реактивной нагрузки.
  • По мере увеличения нагрузки или после возникновения непредвиденных обстоятельств следует включать дополнительные конденсаторы или снимать реакторы для поддержания приемлемого напряжения в системе.
  • Реактивная способность генераторов должна быть в основном зарезервирована на случай непредвиденных обстоятельств в системе сверхвысокого напряжения или для поддержки напряжений в экстремальных условиях эксплуатации системы.
  • Схемы отключения нагрузки должны быть реализованы, если желаемое напряжение недостижимо из-за резервов реактивной мощности.
(6) Координация напряжения
  • Реактивные источники должны быть скоординированы, чтобы гарантировать, что адекватные напряжения поддерживаются повсюду в соединенной системе во всех возможных состояниях системы.
  • Поддержание приемлемого напряжения системы включает в себя координацию источников и приемников, которые включают:
    1. Графики напряжения на заводе
    2. Настройки ответвлений трансформатора
    3. Настройки реактивного устройства
    4. Схемы отключения нагрузки.
  • Последствия несогласованных операций могут включать:
    1. Повышенные потери реактивной мощности
    2. Снижение реактивного запаса, доступного для непредвиденных обстоятельств и условий экстремальной легкой нагрузки
    3. Чрезмерное переключение шунтирующих конденсаторов или реакторов
    4. Повышенная вероятность условий падения напряжения .
(7) График напряжения
  • От каждой электростанции требуется поддерживать определенное напряжение на системной шине, к которой она подключена.
  • Назначенный график позволит энергоблоку работать в обычном режиме:
    1. В середине диапазона реактивной способности в нормальных условиях
    2. В верхней части диапазона реактивной способности во время непредвиденных обстоятельств
    3. «Недостаточное возбуждение» или поглощение реактивной мощности в условиях экстремальных легких нагрузок.
(8) Настройки ответвлений трансформатора
  • Отводы трансформатора должны быть согласованы друг с другом и с графиками напряжения ближайшей генерирующей станции.
  • Отводы трансформатора следует выбирать таким образом, чтобы вторичные напряжения оставались ниже пределов оборудования в условиях небольшой нагрузки.
(9) Настройки реактивного устройства
  • Конденсаторы в сетях низкого напряжения должны быть настроены на включение, чтобы поддерживать напряжение во время пикового и аварийного состояния. И
  • «Выкл.», Когда больше не требуются поддерживающие уровни напряжения.
(10) Схемы отключения нагрузки
  • Схемы отключения нагрузки должны быть реализованы как «последнее средство» для поддержания приемлемого напряжения.
(11) Управление напряжением и реактивной мощностью
  • Требуется координация всех дисциплин по передаче и распределению.
  • Передача требует:
    1. Прогнозировать реактивный спрос и необходимый запас запаса
    2. Спланировать, спроектировать и установить требуемый тип и место коррекции реактивной энергии
    3. Поддерживать реактивные устройства для надлежащей компенсации
    4. Поддерживать счетчики для обеспечения точности данных При необходимости порекомендуйте правильную схему сброса нагрузки.
  • Распределению необходимо:
    1. Полностью компенсировать распределительные нагрузки до того, как будет принята во внимание компенсация реактивной мощности передачи
    2. Поддерживать реактивные устройства для надлежащей компенсации
    3. Поддерживать счетчики для обеспечения точности данных
    4. Установить и протестировать схемы автоматического отключения нагрузки при пониженном напряжении

Ссылки:

  1. Samir Aganoviş,
  2. Zoran Gajiş,
  3. Grzegorz Blajszczak- Варшава, Польша,
  4. Gianfranco Chicco
  5. Robert P.O’Connell-Williams Power Company
  6. Harry L. Terhune-American Transmission Company,
  7. Абрахам Ломи, Фернандо Альварадо, Благой Борисов, Лоуренс Д. Кирш
  8. Роберт Томас,
  9. НАЦИОНАЛЬНАЯ ЛАБОРАТОРИЯ OAK RIDGE

Связанные с EEP’s контент с рекламными ссылками

Важность реактивной мощности при производстве и передаче электроэнергии

Важность реактивной мощности возрастает с ростом спроса на электроэнергию со стороны многих бытовых и промышленных предприятий в сети энергосистем.Стабильность и надежность системы электроснабжения зависят от управления реактивной мощностью.

Требуется более эффективное, надежное и экономичное производство энергии. Эффективный способ доставки электроэнергии использует такие технологии, как FACTS (гибкая система передачи переменного тока), SVC (компенсация статического напряжения) и т. Д. Для поддержания стабильности напряжения, высокого коэффициента мощности и уменьшения потерь при передаче. Реактивная мощность играет решающую роль в сети энергосистемы.


Важность реактивной мощности

Системы электроснабжения переменного тока вырабатывают и потребляют два типа мощности; активная и реактивная мощность. Реальная мощность или активная мощность – это истинная мощность, отдаваемая любой нагрузке. Он выполняет полезную работу, например, осветительные лампы, вращающиеся двигатели и т. Д.

С другой стороны, реактивная мощность – это мнимая мощность или полная мощность, которая не выполняет никакой полезной работы, а просто перемещается взад и вперед по линиям энергосистемы. Это побочный продукт систем переменного тока, производимый индуктивными и емкостными нагрузками.Он существует, когда есть фазовый сдвиг между напряжением и током. Он измеряется в реактивных вольт-амперных единицах (ВАР).

3 Причины важности реактивной мощности

1. Контроль напряжения

Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных устройств. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, слабое освещение лампочек, перегрев асинхронных двигателей и т. Д.

Если потребляемая мощность больше, чем мощность, потребляемая передающими линиями, ток, потребляемый из линий питания, увеличивается до более высокого уровня, что вызывает резкое падение напряжения на стороне приема. Дальнейшее снижение этого низкого напряжения приводит к отключению генераторных установок, перегреву двигателей и отказу другого оборудования.

Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку с помощью реактивных катушек индуктивности или реакторов в линиях передачи. Мощность этих реакторов зависит от количества поставляемой полной мощности.

Регулировка напряжения с помощью реактивной мощности

Если потребляемая мощность меньше подаваемой реактивной мощности, напряжение нагрузки повышается до более высокого уровня, что приводит к автоматическому отключению передающего оборудования, низкому коэффициенту мощности, нарушениям изоляции кабелей и обмоток различных механических устройств. .

Чтобы преодолеть это, необходимо компенсировать дополнительную реактивную мощность, доступную в системе. Различное компенсирующее оборудование – это синхронные конденсаторы, шунтирующие конденсаторы, последовательные конденсаторы и другие фотоэлектрические системы.Эти устройства вводят емкостную реактивную мощность для компенсации индуктивной реактивной мощности в системе.

Из приведенного выше обсуждения мы можем сказать, что полная мощность требуется для поддержания уровней напряжения в пределах, установленных для стабильности систем передачи.

2. Отключение электроэнергии

Отключение электроэнергии

Несколько отключений электроэнергии, например, во Франции в 1978 г., северо-восточных странах в 2003 г., во многих частях Индии в 2012 г., показали, что недостаточная реактивная мощность в системе электроснабжения является основной причиной ситуации затемнения.Это вызвано тем, что потребность в полной мощности необычно высока из-за передачи на большие расстояния.

Это в конечном итоге приводит к отключению различного оборудования и энергоблоков из-за низкого напряжения. Поэтому для правильной работы электрической системы в ней должно присутствовать достаточное количество реактивной мощности.

3. Правильная работа различных устройств / машин

Правильная работа различных устройств машин

Трансформаторам, двигателям, генераторам и другим электрическим устройствам требуется реактивная мощность для создания магнитного потока.Это связано с тем, что генерация магнитного потока необходима этим устройствам для выполнения полезной работы. На приведенном выше рисунке реактивная мощность, обозначенная красным цветом, помогает создать магнитное поле в двигателе, но приводит к снижению коэффициента мощности. Вот почему конденсатор помещен для компенсации индуктивной реактивной мощности путем подачи емкостной реактивной мощности.

Источники и приемники реактивной мощности

Большая часть оборудования, подключенного к системам электроснабжения, потребляет или производит полную мощность, но не все они контролируют уровни напряжения.Генераторы электростанций вырабатывают как активную, так и реактивную мощность, тогда как конденсаторы вводят реактивную мощность для поддержания уровней напряжения. Некоторые из источников и стоков показаны на диаграмме ниже.

Источники и приемники реактивной мощности

2 типа источников

Существует два типа источников реактивной мощности, а именно динамические и статические источники реактивной мощности.

Динамические источники реактивной мощности

К ним относятся передающее оборудование и устройства, которые способны быстро реагировать на изменения реактивной мощности, вводя или обеспечивая достаточное количество реактивной мощности в электрическую систему.Они имеют высокую стоимость, и некоторые из этих устройств приведены ниже.

• Синхронные генераторы: в синхронных машинах изменяется генерируемая активная и реактивная мощность в зависимости от напряжения возбуждения. АВР (автоматические регуляторы напряжения) используются для управления реактивной мощностью в рабочем диапазоне этих машин.

• Синхронные конденсаторы: это типы небольших генераторов, используемых для выработки реактивной мощности без выработки реальной мощности.

• Твердотельные устройства: к ним относятся силовые электронные преобразователи и устройства, такие как устройства FACTS от SVC.

Статические источники реактивной мощности

Это недорогие устройства, которые реагируют на изменение реактивной мощности несколько меньше, чем устройства с динамической мощностью. Некоторые из статических ресурсов приведены ниже.

• Емкостные и индуктивные компенсаторы: они состоят из нескольких шунтирующих конденсаторов и катушек индуктивности, подключенных к системе для регулировки напряжения системы. Конденсатор генерирует полную мощность, а индуктор поглощает реактивную мощность.

• Подземные кабели и воздушные линии: ток, протекающий по кабелям и воздушным линиям, создает чистый магнитный поток, который генерирует реактивную мощность.Слабонагруженная линия действует как генератор реактивной мощности, а сильно нагруженная линия действует как поглотитель реактивной мощности.

• Фотоэлектрические системы: они используются для ввода активной мощности, а также для компенсации гармонических и реактивных мощностей в сетевых системах с помощью фотоэлектрической энергии.

Различные поглотители реактивной мощности

Реактивная мощность, вырабатываемая генераторами и другими источниками, поглощается некоторыми из нагрузок, которые указаны ниже. Это вызывает потери в этих устройствах; следовательно, на эти нагрузки необходимо устанавливать компенсационные устройства.

• Асинхронный двигатель (насосы и вентиляторы)
• Трансформаторы
• Синхронные машины с возбуждением
• Сильно нагруженные линии передачи

Это все о важности реактивной мощности. Я хотел бы поблагодарить читателей за то, что они уделили время этой статье. Вот вопрос для заинтересованных читателей – что такое коэффициент мощности и как добиться компенсации коэффициента мощности. Просим писать ответы в комментариях ниже.

Фото:

Важность реактивной мощности с помощью peguru
Контроль напряжения с помощью реактивной мощности с помощью sari-energy
Электрические отключения от lonnypaul
Надлежащая работа различных устройств / машин от vanrijnelectric
Источники и приемники реактивной мощности by cheers4all

Значение Реактивная мощность в системной сети | by Атул Вадхай

Значение реактивной мощности резко возрастает из-за высоких требований к электроэнергии со стороны многих промышленных и бытовых коммунальных предприятий в системе энергосети.Управление реактивной мощностью – основа устойчивости и надежности электроэнергетической системы.

Для выработки электроэнергии более эффективным, экономичным и надежным способом в эффективном способе подачи электроэнергии используются такие методы, как FACTS (гибкая система передачи переменного тока), (состав статического напряжения) SVC для поддержания высокого коэффициента мощности, снижения потерь при передаче, поддержание стабильности напряжения и т. д.

Реактивная и активная мощности – это две мощности, которые система электропитания переменного тока потребляет и производит.Нагрузка получает истинную мощность, называемую активной мощностью или реальной мощностью. Большинство его применений – это осветительные лампы, вращающиеся двигатели и т. Д.

Кажущаяся или мнимая мощность по своей природе, реактивная мощность не имеет полезной работы, а просто перемещается взад и вперед по линиям энергосистемы. Системы переменного тока являются предшественниками реактивной мощности и вырабатываются индуктивными и емкостными нагрузками. Сдвиг фаз между напряжением и током измеряется в реактивных вольт-амперных единицах.

В пределах ± 5% от номинальных токов рассчитано оборудование энергосистемы.Изменение уровней напряжения приводит к плохой работе различных приборов. Голливуд повреждает изоляционный материал обмоток, где низкое напряжение вызывает плохую работу различных аксессуаров, таких как слабое освещение ламп, нагрев индукционных двигателей и т. Д. напряжения, это вызывает низкий КПД различного оборудования, такого как перегрев асинхронных двигателей, слабое освещение ламп и т. д.

Если потребность в мощности превышает мощность линий передачи, то ток, потребляемый от источника питания, достигает более высокого уровня и, таким образом, напряжение на приемной стороне резко падает.Количество поставляемой полной мощности является основой мощности этих реакторов.

Чтобы преодолеть это, нагрузка должна быть обеспечена реактивной мощностью путем установки реактивных катушек индуктивности или реакторов в передающих линиях. Количество поставляемой полной мощности определяет мощность этих реакторов.

Если подаваемая мощность реактора превышает потребляемую мощность, то напряжение нагрузки повышается до более высокого уровня с прямым отключением оборудования, низким коэффициентом мощности, в кабелях и обмотках механических устройств возникают нарушения изоляции.

Многие отключения электроэнергии, например, во Франции в 1978 году, в странах северо-востока в 2003 году, во многих частях Индии в 2012 году, вызвали неадекватную реактивную мощность при выработке электроэнергии, и это является основной причиной аварийных остановов. Из-за передачи на большие расстояния потребность в полной мощности высока, и она постоянно растет. В конечном итоге из-за низкого напряжения останавливается различное оборудование. Следовательно, он должен иметь постоянный и достаточный запас реактивной мощности.

Генераторам, двигателям, трансформаторам и другим электрическим устройствам требуется реактивная мощность для создания магнитного потока.Для выполнения полезных работ необходимо создание магнитного потока. Это помогает создавать магнитное поле в двигателе, но приводит к снижению коэффициента мощности. Индуктивная реактивная мощность за счет подачи емкостной реактивной мощности, и по этой причине емкостная реактивная мощность размещается для компенсации.

Чтобы узнать больше, пройдите курс обучения электрике в Пуне , чтобы стать сертифицированным электриком в этой области.

Оставайтесь на связи с CRB Tech для дополнительной технической оптимизации и других обновлений и информации.

Что такое реактивная мощность? – Определение из Техопедии

Что означает реактивная мощность?

В системах электросетей реактивная мощность – это мощность, которая течет обратно от пункта назначения к сети в сценарии переменного тока.

В системе постоянного тока напряжение и нагрузка статичны, и, проще говоря, направление энергии «одностороннее», но в переменном токе есть разные фазы, связанные с элементами системы, такими как конденсаторы. и индукторы.

Реактивная мощность возвращает энергию обратно в сеть во время пассивных фаз.

Реактивная мощность также известна как фантомное питание.

Techopedia объясняет реактивную мощность

Другой способ объяснить это состоит в том, что реактивная мощность – это результирующая мощность в ваттах цепи переменного тока, когда форма волны тока не совпадает по фазе с формой волны напряжения, обычно на 90 градусов, если нагрузка является чисто реактивной, и является результатом емкостных или индуктивных нагрузок.

Фактическая работа выполняется только тогда, когда ток находится в фазе с напряжением, например, в резистивных нагрузках. Примером может служить лампа накаливания; в реактивной нагрузке энергия течет к нагрузке половину времени, тогда как в другой половине мощность течет от нее, что создает иллюзию, что нагрузка не рассеивает и не потребляет мощность.

Три вида мощности

Реактивная мощность – это один из трех типов мощности, присутствующих в нагруженных цепях.

Истинная мощность

Фактическая мощность в ваттах, рассеиваемая схемой

Реактивная мощность

Рассеиваемая мощность от индуктивных и емкостных нагрузок, измеренная в вольт-амперах реактивной (ВАр)

Полная мощность

Комбинация измерения реактивной и истинной мощности в вольт-амперах (ВА)

Реактивная мощность также называется «фантомной мощностью», потому что неясно, куда она идет.Общеизвестно, что реактивные нагрузки, такие как конденсаторы и катушки индуктивности, на самом деле не рассеивают мощность в том смысле, что она не используется для их питания, но измерение напряжения и тока вокруг них указывает на то, что они падают напряжение и потребляют ток.

Мощность, рассеиваемая при этом падении напряжения и потребляемом токе, представляет собой тепло или ненужную энергию и не выполняется как фактическая работа; поэтому инженеры искали способы уменьшить это. Из-за этого фантомного питания проводники и генераторы должны иметь соответствующие номиналы и размеры, чтобы выдерживать общий ток, включая отходы, а не только ток, который выполняет фактическую работу.

Маятник часов

Некоторые эксперты в области энергетики говорят о реактивной мощности как части движения конденсатора, которое напоминает движение маятника часов от зенита до надира. По этой аналогии, когда маятник качается вверх, переменный ток подает активную мощность на устройство назначения. По мере того, как маятник движется вниз, реактивная мощность возвращается в сеть для поглощения.

В таких определениях эксперты сказали бы, что реактивная энергия – это энергия, циркулирующая взад и вперед между источником и нагрузкой, а именно, что реактивная мощность «исчезает» обратно к источнику.В некотором смысле это связано с задержкой между током и напряжением. Помимо конденсаторов, статические компенсаторы VAr и синхронные конденсаторы могут использоваться для управления реактивной мощностью в системе.

Ключевым моментом является размещение оборудования реактивного тока рядом с силовыми нагрузками. Это уменьшает количество реактивного тока, который система доставки должна переносить на определенное расстояние.

Реактивная мощность в сети

Чтобы справиться с реалиями переменного тока и изменения путей передачи энергии, проектировщики принимают меры по контролю напряжения.Эксперты в области энергетики отмечают, что даже 5% -ное изменение напряжения в данной системе может вызвать отключение электроэнергии и другие проблемы.

С этой целью многие элементы электрической системы, такие как трансформаторы, могут переключаться с подачи на поглощение реактивной мощности по фазам. Но те, кто близок к отрасли, подчеркивают, что это станет еще более важным, когда мы переведем части американской электросети на возобновляемые источники энергии.

Реактивная мощность и возобновляемые источники энергии

Реактивная мощность также очень важна в контексте меняющихся энергосистем.

По многим важным причинам возобновляемые источники энергии, такие как солнце и ветер, заменяют традиционные источники энергии, такие как уголь и природный газ. Но это может иметь разветвления для электросети в целом.

«Всплеск возобновляемых источников энергии в сети без достаточной вращающейся массы может вызвать серьезные проблемы: отключение электроэнергии в определенных областях, чтобы привести спрос в соответствие с предложением; и отключение крупных электростанций от сети, чтобы предотвратить их перегрузку », – пишет Арчи Робб из Renewable Energy World, описывая принцип« инерции сети »и то, как это применимо к управлению реактивной мощностью в системе, которая переходит на возобновляемые источники энергии. строить.

Поскольку возобновляемые источники энергии поставляют энергию в сеть по-разному, возникнет потребность в микроуправлении активной мощностью и реактивной мощностью соответственно.

Что означает коэффициент мощности?

Низкий коэффициент мощности снижает пропускную способность электрической системы за счет увеличения тока. Следовательно, иметь низкий коэффициент мощности неэффективно и дорого. Но что такое коэффициент мощности и что на него влияет?

Типичная распределительная система ограничена по величине тока, которую она может нести; Коэффициент мощности, выраженный в процентах, является показателем общего тока, который можно использовать для создания работы (активная мощность).Чем ближе коэффициент мощности к 1,00 (100%), тем меньше сила тока, необходимая для выполнения указанной работы.

Например, нагрузка с коэффициентом мощности 0,80 означает, что только 80% мощности эффективно используется для выполнения работы. В идеальном мире вся энергия, получаемая от энергосистемы, была бы преобразована в полезную работу, но в реальном мире это не так. Чтобы полностью описать коэффициент мощности, необходимы сложные уравнения. Однако для более простого понимания Министерство энергетики США использует простую аналогию с мощностью, необходимой лошади, чтобы тянуть тележку по рельсам.

В идеале лошадь должна располагаться перед железнодорожным вагоном, чтобы обеспечить наиболее эффективное тяговое усилие; однако это не всегда возможно. Угол буксировки представляет собой изменение коэффициента мощности: чем меньше угол, тем лучше коэффициент мощности, чем больше угол, тем ниже коэффициент мощности (Рисунок 1).

1. Углы влияют на полезную работу. Приведенная здесь аналогия обеспечивает визуализацию, помогающую понять коэффициент мощности.Коэффициент мощности определяется как отношение реальной (рабочей) мощности к полной (полной) мощности. Если лошадь ведет ближе к центру гусеницы, угол бокового увода уменьшается, и реальная мощность приближается к значению кажущейся мощности. Источник: Министерство энергетики США

Полная энергия, необходимая для тяги вагона, представляет собой полную мощность. Фактическая энергия, перемещающая вагон, – это реальная мощность. Неиспользованная энергия от тягового угла лошади – это реактивная мощность.Другими словами, реальная мощность, также называемая рабочей мощностью (кВт), выполняет фактическую работу движения, тепла и света. Реактивная мощность или нерабочая мощность (кВАр) поддерживает магнитное поле реактивной нагрузки (обычно индуктивной). Ток, используемый для создания реактивной мощности, не используется для создания работы; однако этот ток ложится бременем на распределительную систему, поставщика электроэнергии и счета за электроэнергию на предприятии.

Векторная сумма рабочей мощности и нерабочей мощности составляет полную мощность (полную мощность):

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2 )

, который используется для расчета коэффициента мощности:

Коэффициент мощности = активная мощность / полная мощность = косинус угла (ϕ)

Основы напряжения и тока

Чтобы понять коэффициент мощности, мы должны сначала понять базовую теорию переменного тока (AC) и связанные с ней формы сигналов.Напряжение в системе переменного тока чередуется между положительным и отрицательным (в синусоидальной форме) и заставляет ток вести себя аналогичным образом. Это происходит 60 раз в секунду (в системе с частотой 60 Гц) в диапазоне от 0 до 360 градусов. В отличие от систем переменного тока, напряжение в системе постоянного постоянного тока (DC) не изменяется.

Поскольку мгновенное значение переменного напряжения непрерывно изменяется, наука определила другую меру для величин переменного тока, а именно среднеквадратичное значение (среднеквадратичное значение). Среднеквадратичное значение сигнала переменного тока дает тот же эффект нагрева, что и форма сигнала постоянного тока того же значения.

RMS – это квадратный корень из среднего арифметического квадратов набора мгновенных значений за период (цикл). Когда напряжение и ток являются чисто синусоидальными, среднеквадратичное значение напряжения и тока можно определить по пиковому (pk) напряжению и току:

В RMS = В pk / √2

119,5 В RMS = 169 В pk / 1,414

Аналогично

I RMS = I pk / √2

75 A RMS = 106 A pk /1.414

Вы можете спросить себя, какое отношение это имеет к коэффициенту мощности? Для расчета мощности переменного тока необходимо знать действующее значение напряжения, среднеквадратичного значения тока и синусоидального фазового соотношения. Итак, вкратце, среднеквадратичное значение – это мера теплового эффекта, рассчитанная на основе формы волны, которая позволяет сравнивать переменный ток с постоянным. Любой сдвиг фазы от чисто синусоидального сигнала указывает на коэффициент мощности.

Ниже приводится сравнение того, как коэффициент мощности влияет на выходную мощность в кВА на двух разных однофазных нагрузках.

Для электрического обогревателя 9 кВт (120 В переменного тока, 75 А) с коэффициентом мощности на входе 1,0:

P = √1ϕ x 120 В переменного тока x 75 A x 1,0 PF = 9 кВт

кВА = √1ϕ x 120 В переменного тока x 75 A = 9 кВА

Для зарядного устройства на 9 кВт (120 В переменного тока, 75 А) с входом 0,866 PF:

P = √1ϕ x 120 В переменного тока x 86,6 A x 0,866 PF = 9 кВт

кВА = √1ϕ x 120 В переменного тока x 86,6 A = 10,392 кВА

Хотя каждая нагрузка потребляет 9 кВт мощности, коэффициент входной мощности зарядного устройства составляет 0,866.Более низкий коэффициент мощности требует дополнительных 11,6 А для работы, которые в конечном итоге предоставляются энергетической компанией. Необходимо не только приобрести дополнительный реактивный ток, но и увеличить размер распределительной системы, чтобы выдержать дополнительный ток.

Что влияет на коэффициент мощности?

Коэффициент мощности относится к соотношению между активной (полезной мощностью) и полной (полной) мощностью. Эта взаимосвязь является мерой того, насколько эффективно используется электричество.

Линейные резистивные нагрузки. В системе переменного тока нагрузки классифицируются по способу потребления тока. Линейная резистивная нагрузка – это чисто резистивная нагрузка без индуктивных или емкостных компонентов, таких как электрические обогреватели и лампы накаливания. Кривые напряжения и тока пересекают нулевую координату в одной и той же точке.

Кривая мощности (P) на рисунке 2 рассчитывается по напряжению (V) и току (I), показанным в виде положительной области графика. В этом примере напряжение и ток равны 120 и 75 среднеквадратичных значений соответственно.Их произведение составляет 9 кВА или 9 кВт. Напряжение и ток находятся «в фазе», и 100% мощности (рабочей мощности) эффективно используется для выполнения полезной работы. Коэффициент мощности для этого типа нагрузки составляет 1,0.

2. Линейные резистивные нагрузки. Напряжение и ток совпадают по фазе с коэффициентом мощности, равным 1,0 для чисто резистивных нагрузок. Предоставлено: Ametek Solidstate Controls

Линейные не резистивные / реактивные нагрузки. Нет ничего необычного в том, чтобы встретить чисто резистивные нагрузки; большинство нагрузок имеют дополнительную реактивную составляющую. Эти не резистивные / реактивные нагрузки составляют большой процент от всех нагрузок. Форма волны тока смещена от формы волны напряжения, поэтому она «не в фазе». Если нагрузка индуктивная, ток отстает от напряжения; если нагрузка емкостная, ток ведет.

Промышленные объекты обычно имеют нагрузки с отстающим коэффициентом мощности (индуктивные нагрузки). Эти типы нагрузок могут быть асинхронными двигателями, дросселями и трансформаторами.Нагрузки с опережающим коэффициентом мощности (емкостные нагрузки) встречаются реже и обычно представляют собой подземные кабели или определенные импульсные источники питания.

На Рисунке 3 та же нагрузка, что и на Рисунке 2, теперь имеет кривую напряжения и тока, сдвинутую по фазе на 30 градусов. Поскольку это индуктивный сигнал, ток теперь отстает.

3. Индуктивные нагрузки. Напряжение и ток не в фазе для линейных нерезистивных / реактивных нагрузок.В этом примере индуктивной нагрузки ток отстает от напряжения на 30 градусов с коэффициентом мощности 0,866. Предоставлено: Ametek Solidstate Controls

Нелинейные нагрузки – гармоники. Сегодняшние промышленные установки имеют не только резистивные, индуктивные и емкостные нагрузки, но многие также включают твердотельное оборудование, такое как импульсные источники питания, приводы постоянного тока, частотно-регулируемые приводы (VFD), электронный балласт, аппараты для дуговой сварки и температурные -управляемые духовки.Это все нелинейные нагрузки или нагрузки, для которых ток не является синусоидальным, даже если напряжение синусоидальное. Несинусоидальный характер этих сигналов выражается с помощью гармоник.

Гармоники – это формы сигналов различной амплитуды на частотах, кратных основной частоте напряжения (50 Гц или 60 Гц). Они накладываются на синусоидальную форму волны тока для создания общей формы волны тока. На рисунке 4 показан пример такой формы волны тока.

4. Нелинейные нагрузки. На этом графике показаны формы сигналов напряжения и тока нелинейного источника питания с гармониками. Для наглядности он показан без сдвига фазы тока на 30 градусов. Предоставлено: Ametek Solidstate Controls

Среднеквадратичное значение всего тока находится путем суммирования среднеквадратичного значения каждой гармонической составляющей тока. Учитывая форму волны 60 Гц, это означает, что частота 2-й гармоники будет 120 Гц (60 Гц x 2 = 120 Гц), а частоты 3-й, 4-й и 5-й гармоник будут составлять 180 Гц, 240 Гц и 300 Гц соответственно.Гармоники, кратные основной частоте, могут быть выражены как 2f, 3f, 4f и т. Д.

Общее гармоническое искажение тока (THD) – это сумма всех гармонических составляющих формы волны тока по сравнению с основной составляющей волны тока. Как показано ниже, это отношение действующего значения гармоник тока к действующему значению тока основной гармоники.

I THD = RMS гармоник тока / RMS основной гармоники = √ (I 2 2 + I 3 2 + I 4 2 +…) / I 1 x 100%

Для чисто синусоидальных сигналов фазовый сдвиг между напряжением и током достаточен для количественного определения коэффициента мощности (PF).Для сигналов, которые не являются синусоидальными, термин коэффициент мощности смещения (DpPF) используется для количественной оценки фазового сдвига между основными составляющими двух сигналов (составляющими 50 или 60 Гц). Для тех же несинусоидальных сигналов определен термин для количественной оценки влияния гармоник на коэффициент мощности. Этот термин называется коэффициентом мощности искажения (DF).

DF = 1 / √ (1 + THD 2 )

Чтобы найти общий коэффициент мощности (PF T ), используется следующее уравнение:

PF T = DF x D p PF

Корреляция коэффициента мощности

Для линейных нагрузок треугольник мощности представляет собой прямоугольный треугольник, который показывает взаимосвязь между рабочей, реактивной и полной мощностью.Отношение между рабочей и полной мощностью – PF. Значение может находиться в диапазоне от 0,0 до 1,0.

Рабочая мощность, также называемая истинной мощностью, реальной мощностью или активной мощностью, выполняет фактическую работу движения / нагрева / освещения и т. Д. И измеряется в ваттах (Вт). Реактивная мощность поддерживает магнитное или электрическое поле в устройствах, таких как катушки соленоидов, обмотки двигателя, обмотки трансформатора, конденсаторы и балласты, без выполнения реальной работы. Эта дополнительная энергия измеряется в вольт-амперах реактивной мощности (VAR) и иногда называется мощностью без мощности.Полная мощность объединяет рабочую мощность и реактивную мощность и измеряется в вольт-амперах (ВА).

Фазовый угол (ϕ) в градусах представляет «неэффективность» нагрузки и соответствует общему реактивному сопротивлению (Z) текущему току в нагрузке. Чем больше фазовый угол, тем больше реактивная мощность. Нелинейные нагрузки добавляют дополнительный элемент к общей (полной) мощности, не прибавляя к активной мощности, что дополнительно снижает коэффициент мощности. ■

Дэвид Маккиннон – старший инженер по приложениям в Ametek Solidstate Controls.Особая благодарность Bogdan Proca, PhD и Doug King за их вклад.

Реактивная мощность – обзор

4.3 Регулирование реактивной мощности биогазовой системы

Реактивная мощность может быть указана как количество «неиспользованной» мощности, вырабатываемой реактивными компонентами, такими как катушки индуктивности или конденсаторы в цепях переменного тока (AC) . Для повышения производительности системы питания переменного тока необходимо эффективно управлять реактивной мощностью; это называется компенсацией реактивной мощности.Проблема компенсации реактивной мощности имеет два аспекта: компенсация нагрузки и поддержка напряжения. Компенсация нагрузки включает улучшение коэффициента мощности, балансировку реальной мощности, потребляемой от источника питания, лучшее регулирование напряжения и т. Д. Больших колеблющихся нагрузок. Поддержка напряжения заключается в снижении колебаний напряжения на заданном конце линии передачи. Можно использовать два типа компенсации: последовательная и шунтирующая. Они изменили параметры системы, чтобы обеспечить улучшенную компенсацию вольт-амперной реактивной мощности (VAR).Они вполне подходят для работы по поглощению или генерации реактивной мощности с более быстрым откликом и относятся к гибким системам передачи переменного тока (FACTS). Это позволит увеличить передачу полной мощности по линии передачи и значительно улучшить стабильность за счет регулировки параметров, которые управляют энергосистемой, то есть тока, напряжения, фазового угла, частоты и импеданса. Чтобы управлять потоком мощности в системе, необходимо контролировать реактивную мощность в линии передачи.Существует множество различных устройств FACT, которые используются для компенсации реактивной мощности в линии передачи. К различным методам FACT относятся статический компенсатор реактивной мощности (SVC), статический синхронный последовательный компенсатор (SSSC), статический синхронный компенсатор (STATCOM) и унифицированный контроллер потока мощности (UPFC) и т. Д .; Напряжения на шинах, фазовые углы и полное сопротивление линий в энергосистеме можно регулировать быстро и гибко. Следовательно, устройства FACT могут развить способность передачи мощности, облегчить управление потоком мощности, снизить затраты на генерацию и улучшить стабильность и безопасность системы.SSSC – это устройство FACT, которое последовательно подключено к энергосистеме. Он работает как управляемый последовательный индуктор и последовательный конденсатор. Одной из основных особенностей SSSC является то, что его вводимое напряжение регулируется отдельно и ни в коем случае не связано с интенсивностью линии. Это позволяет SSSC подходить как для более низких, так и для более высоких нагрузок. UPFC ассоциируется с устройствами FACT, которые имеют поразительные особенности. Он имеет возможность управлять всеми параметрами, которые влияют на поток энергии в линии передачи.Он считается наиболее совершенным методом управления потоком энергии. Он состоит из последовательного преобразователя и шунтирующего преобразователя, соединенного конденсатором звена постоянного тока, которые в совокупности могут выполнять функцию управления потоком активной / реактивной мощности в линии передачи. Напряжение шины UPFC и реактивная мощность шунта регулируются шунтирующим преобразователем. В то время как реальная и активная мощность линии передачи регулируется последовательным преобразователем путем подачи последовательного напряжения изменяемой величины и фазового угла. Параллельная часть, которая представляет собой СТАТКОМ, вводит синусоидальный ток переменной величины.SVC является частью устройства FACT, которое регулирует напряжение, гармоники и коэффициент мощности, а также стабилизирует систему. SVC – это автомат для согласования импеданса, который используется при проектировании, чтобы приблизить коэффициент мощности системы к единице. Существуют две основные ситуации, в которых используются SVC: когда они подключены к энергосистеме для регулирования напряжения передачи, и когда они подключены рядом с крупными промышленными нагрузками для улучшения качества электроэнергии. SVC использует реактор с тиристорным управлением (TCR) для понижения напряжения и потребления реактивной мощности из системы в случае емкостной (опережающей).В индуктивном случае (запаздывание) конденсаторная батарея автоматически включается и обеспечивает более высокое напряжение. Результат постоянно меняется, опережает или запаздывает при подключении TCR вместе с батареей конденсаторов. СТАТКОМ – это модифицируемое устройство, которое используется в сети передачи переменного тока. Он работает как источник или приемник реактивной мощности переменного тока. СТАТКОМ также называют статическим синхронным конденсатором. В его основе лежит преобразователь источника напряжения. Существует новый подход, в котором используются твердотельные синхронные источники напряжения для фактического временного управления передачей мощности в системах передачи и динамической компенсации.Создание синхронного источника напряжения стало возможным благодаря многоимпульсному инвертору с запирающими тиристорами. При этом он генерирует реактивную мощность, которая необходима для компенсации сети, а также взаимодействует с подходящим устройством хранения энергии для расчета реальной торговли мощностью с системой переменного тока. Это создает широко распространенное управление потоком мощности для последовательной компенсации, компенсации шунта и управления фазовым углом. Чтобы повысить безопасность системы, устройства FACT используются для управления устройством потока мощности, что дает возможность управлять напряжением и потоками мощности.С прошлых лет STATCOM играет важную роль в регулировании напряжения в системах передачи переменного тока. В линиях передачи трехфазного переменного тока часто возникает анализ проблемы перерегулирования напряжения, и обсуждалось ее решение путем продвижения разработки системы регулирования напряжения с использованием устройства FACT STATCOM.

Алгоритм управления реактивной мощностью : Оптимальное распределение реактивной мощности – это нелинейная и смешанно-целочисленная задача оптимизации, которая включает как дискретные, так и непрерывные управляющие переменные.Чтобы найти ситуацию с управляющими переменными, такими как напряжения генератора, положение ответвлений трансформатора с переключением ответвлений и количество устройств компенсации реактивной мощности, запланированный алгоритм используется для оптимизации определенной цели. Потери при передаче мощности, профиль напряжения и стабильность напряжения оптимизируются дискретно. Это означает, что «чистые» пассивные фильтры не обеспечивают адекватных характеристик с точки зрения фильтрации гармоник. При запуске активных фильтров ток источника становится почти синусоидальным, и активный фильтр улучшает фильтрующие характеристики пассивного фильтра (De La Roza et al., 2002). В обоих случаях результат доказывает, что производительность шунтирующего фильтра активной мощности с гибридно-нечетким контроллером лучше, чем с обычным контроллером P-I. Переходный отклик сети энергосистемы был значительно улучшен, а динамический отклик стал быстрее за счет использования гибридного нечеткого контроллера. В настоящее время для компенсации реактивной мощности используется конденсаторно-тиристорный реактор постоянной емкости (FCTCR), управляемый нейронной сетью. Алгоритм, который используется для инструктирования нейронных сетей, – это обратное распространение.При отстающем коэффициенте мощности TCR обеспечивает постоянно контролируемую реактивную мощность. Батарея фиксированных конденсаторов соединена шунтом с TCR для расширения динамического регулируемого диапазона до опережающего коэффициента мощности. Подбирая подходящее количество индуктивной / емкостной, можно скомпенсировать реактивную мощность. Быстрая и динамическая балансировка системы возможна за счет наличия схемы управления, которая использует компьютерную нейронную сеть, а не традиционное дискретное переключение нагрузки. FCTCR на основе нейронной сети может быстро реагировать на реактивную мощность системы.В длинной линии передачи реактивная мощность играет важную роль в стабильности напряжения и способности передачи мощности в энергосистеме. Для управления реактивной мощностью в длинной ЛЭП обычно используются компенсаторы с параллельным подключением. В условиях малой нагрузки TCR используется для управления реактивной мощностью. Реактивной мощностью в линиях передачи можно управлять, управляя углом включения тиристоров. В систему TCR вводит гармонический ток. Гармоники в токе могут быть доведены до определенного предела, управляя подачей реактивной мощности.Контроллер нечеткой логики реализован для получения наилучшего возможного управления реактивной мощностью компенсатора для поддержания напряжения и гармоник в токе в заданных пределах. Алгоритм, который оптимизирует угол включения в каждом нечетком подмножестве, оценивается для построения правил в Fuzzy Logic Controller. Уникальность алгоритма заключается в том, что он использует простую формулу ошибки для контроля ранга возможных углов зажигания в каждом нечетком подмножестве. Пропорционально-интегрально-производные (ПИД-регуляторы) – это самый простой и наиболее широко используемый метод управления, но основная проблема возникает из-за настройки параметров ПИД-регулятора для соответствия желаемым характеристикам для широкого диапазона рабочих условий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *