Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Регулируемый стабилизатор напряжения на LM2576

Решил недавно отреставрировать свои колонки от ПК, которые достались мне, не помню когда и от кого. Данные колонки хрипели уже на пол громкости. Вид мне был не важен, так как они звучали в моей лаборатории, главное, чтобы был звук без треска и фона. Было принято решение собрать новый усилитель и темброблок. Но питать данные устройства я решил стабилизированным источником, поэтому стал собирать стабилизированный источник с возможностью регулировки выходного напряжения. Вообще мне было нужно однополярное напряжение +15 Вольт, но на всякий случай решил сделать регулируемое выходное напряжение.

Выбор пал на LM2576, их у меня было много, когда-то покупал для ремонта БП. LM2576 есть на фиксированное выходное напряжение 3.3В, 5В, 12В, 15, а также с регулируемым выходным напряжением. В регулируемой версии выходное напр-ие меняется от 1.23В до 37В, а у LM2576HV до 57 Вольт.

Входное же напр-ие может достигать 40В, а у LM2576HV до 60В. Максимальный выходной ток 3 А. Температура, которую может выдержать кристалл, составляет 150 градусов Цельсия.

Если у LM2576 фиксированное выходное напряжение, то в конце маркировки пишется индекс, например 3.3 или 5.0, который указывает выходное напряжение (пример маркировки стабилизатора на 5 Вольт — LM2576HV-5.0).

Схема регулируемого стабилизатора напряжения на LM2576

Ничего сложного нет. Дроссель можете выдернуть из блока питания ПК, например как этот.

Если будете покупать или мотать, то 150 мкГн и на 5 Ампер, не менее. 20-30 Витков провода диаметром 0,8 мм достаточно.

Остальные все элементы доступные.

Добавив диодный мост, получим регулируемый блок питания.

Диодный мост можете собрать из диодов, или использовать любой с током 5 Ампер и более. Я применил KBU810, на 8 Ампер, другого не было.

Забыл на схеме подписать, тот вывод моста, который соединен с выводом №1 микросхемы, это плюс (+) диодного моста, а минус (-) диодного моста соединен с минусом выхода.

Испытывая стабилизатор напряжения на LM2576, я использовал трансформатор с одной вторичной обмоткой, напряжением 20 Вольт и током 0.9 Ампер.

Выставил выходное напряжение 15 Вольт.

Нагрузил сопротивлением 7.5 Ом. Выходной ток составил почти 2 Ампера.

Напряжение при этом просело до 13.7 Вольт. Не обращайте внимания друзья, это все из-за слабого трансформатора, пока другого нет.

Вот переменное напр-ние на трансформаторе без нагрузки 23.7 Вольт.

А вот оно же под нагрузкой 15.2 Вольта.

 Видите, это не стабилизатор просаживает напругу, а трансформатор “не вывозит”. Был бы, трансформатор мощнее, напруга на выходе бы почти не проседала.

Даташит на LM2576 СКАЧАТЬ

Печатная плата СКАЧАТЬ

Импульсные стабилизаторы напряжения на ИМС LM2576 и LM2596 (1,5-50 В)

Регуляторы серии LM2576 это монолитные интегральные схемы, которые обеспечивают все активные функции понижающего импульсного стабилизатора, поддерживающие максимальный ток 3А в линии нагрузки. Эти устройства доступны в версиях как с фиксированными, так и с изменяемыми выходными напряжениями, требуют минимальное количество внешних компонентов, просты в использовании, работают на частоте встроенного генератора 52 кГц.
Полезным бонусом является введённая в LM2576 схема защиты, срабатывающая при превышении тока нагрузки сверх положенных 3А.

Для наших регулируемых целей подойдут микросхемы с маркировкой LM2576ADJ (с максимальным входным напряжением 40 Вольт), либо LM2576HV-ADJ (с максимальным входным напряжением 55 Вольт).

Принципиальная схема регулируемого блока питания взята прямиком из datasheet-а на микросхему.


Рис. 1

В сети эта же схема повсеместно гуляет и для устройств, построенных на микросхеме LM2596, работающей с большей частотой встроенного генератора, и, соответственно, с уменьшенными значениями индуктивностей.
Это не совсем правильно! У LM2596 схема включения согласно технической документации построена несколько иначе, чем у LM2576. Поэтому будьте бдительны – есть нюансы.

На схеме я умышленно не стал рисовать трансформатор и диодный мост, чтобы не ограничивать выбор радиолюбителя только силовыми низкочастотными трансформаторами. Данный регулируемый стабилизатор с не меньшим успехом можно совокупить и с импульсным источником напряжения, к примеру, таким, как приведён на странице по ссылке   ссылка на страницу.

В качестве L1 производитель рекомендует промышленный дроссель на жёлтом кольце PE-92108 (Рис.2 слева), но не кто не мешает вооружиться и дроссельком отечественного производителя (КИГ), намотанном на цилиндрическом магнитопроводе (Рис.2 справа).


Рис. 2

На мой непредвзятый взгляд купить готовый дроссель проще, чем искать подходящий сердечник для самостоятельной намотки. Однако для желающих самолично вырастить дубраву из жёлудя, вполне подойдут кольца, выдернутые из блока питания ПК, либо AMIDON-овские из карбонильного железа жёлто-белого цвета (материал 26), либо сине-зелёные (материал 52).
Главное, чтобы полученное моточное изделие обладало индуктивностью 150мкГн и пропускало токи – не менее 3А. Намоточный провод должен иметь диаметр 1мм.

В качестве иллюстрации к нашей повести приведу пример радиолюбительской реализации регулируемого блока питания на LM2576, позаимствованный с сайта www.komitart.ru (Рис. 3).


Рис. 3

И для кучи пример преобразователя напряжения с сайта http://320volt.com (Рис. 4).


Рис. 4

Что тут скажешь?
Отечественный радиолюбитель явно сэкономил на размере кольца, да и количество витков – немного из другой оперы.
В буржуйском варианте всё отлично! Особенно порадовала обширная “земля”, которая является хорошим подспорьем, как для овощеводов Якутии, так и для всех тех, кто ведёт суровую борьбу против высокочастотных наводок и помех в устройствах со значительными величинами протекающих импульсных токов.

К сожалению, оба ваятеля проигнорировали выходной фильтр L2-C1 (Рис.1), который производитель микросхемы обозначил как необязательный (опционный) причиндал. А зря!

Если стабилизированный источник планируется использовать для запитывания не только моторов, лампочек и светодиодов, то значение уровня пульсаций выходного напряжения является не менее важным, чем параметр стабильности выходного напряжения. Тут-то и должна вступить в действие опционная LC-цепочка, позволяя снизить величину этих пульсаций в десяток-другой раз.

Теперь, что касается импульсных регулируемых стабилизаторов напряжения на микрсхеме LM2596.

Максимальное входное напряжение для этих микросхем ограничено значением 40В, соответственно максимальное стабилизированное напряжение на выходе составляет величину 37В, максимальный ток нагрузки – 3А.
Казалось бы – всё хуже, чем у LM2576HV. И на кой оно нам надо?
А тут всё дело в в том, что микросхемы серии LM2596 работают на частоте встроенного генератора не 52, а 150кГц, позволяя использовать компоненты фильтра меньших номиналов, а соответственно, и меньших размеров.


Приведём схему включения LM2596 согласно datasheet-а.


Рис. 5

Cin — 470 μF, 50-V, Aluminum Electrolytic Nichicon PL Series
Cout — 330 μF, 35-V Aluminum Electrolytic, Nichicon PL Series
D1 — 5A, 40V Schottky Rectifier, 1N5825
L1 — 47 μH,
R1 — 1 kΩ, 1%

Всё достаточно близко к схеме включения M2576, представленной на Рис.1. И разница в значении R1 1 кОм, против 1,2 кОм, скорее всего ни на что не повлияет. По большому счёту – всё различие только в компенсационном конденсаторе Cff, обеспечивающем, по убеждению производителя, дополнительную стабильность работы устройства.
Значение номинала этого конденсатора находится в диапазоне 390pF-33nF в зависимости от выходного напряжения. Если стабилизатор предполагается делать регулируемым, его значение следует выбрать в диапазоне 1-1,5 nF.

При разработке конструктива и печатных плат стабилизаторов на микросхемах LM2576 и LM2596 переменный резистор R2, регулирующий выходное напряжение, следует располагать в непосредственной близости к печатной плате (длина соединительных проводов не должна превышать 3-5 см).

 

Регулируемое ограничение тока на LM2576

набросанная “в лоб” схема работает, но в режиме ограничения вызывает осцилляцию. что и не удивило в принципе – усиление с датчика тока доходит до 60. Может есть более правильные пути решения данной проблемы??

 

А где схема?

 

О, я что-то пропустил схему-то… вот.
LM358 питается от отдельного источника 5в.

 

hanz45, транзисторы лишние. Они только внесут дополнительную температурную и фазовую нестабильность.
Один ОУ прекрасно выполнит все функции. Но подключать его выход к 4-му выводу LM2576 нужно через диод – анод к выходу ОУ, а катод – к 4-му выводу мс стабилизатора.

То есть, нужно на вход усилителя ошибки стабилизатора сигналы обратной связи по напряжению и току подавать через диоды. Для развязки напряжений с датчиков напряжения и тока. Так делают в ШИМ контроллерах со встроенными сразу двумя ОУ ошибки, как, напрмер, в известном ШИМ контроллере TL494.
Но в данном случае будет достаточно одного диода.

В этом случае цепи обратной связи с выходов датчиков напряжения и тока не будут влиять друг на друга, главным окажется напряжение с того датчика, у которого напряжение окажется больше, и стабилизатор будет работать как стабилизато напряжения со стабилизацией тока.
То есть, пока ток нагрузки меньше заданного порога, то работает стабилизация напряжения, а если сопротивление нагрузки уменьшилось так, что вызвало срабатывание схемы защиты по току, то стабилизатор перейдёт в режим стабилизации тока. Ни какой осцилляции при этом быть не должно, а переход из одного режима в другой должен быть плавным.

 

hanz45: правильные пути

3A Battery Charger with Logic-Level Current Controls

 

DWD – как я понимаю, в моем случае Ку транзисторов ухудшил ситуацию… попробую их на диод заменить.
Видимо, Шотки, чтоб падение не сильно вредило.

 

hanz45: Ку транзисторов ухудшил ситуацию… попробую их на диод заменить.

в вашей схеме транзистор берёт напряжение с выхода блока, которое может опуститься до “0”, а стабилизатор пытается делать на выводе “4” 1,23В – противоречие!!!

ОУ берёт напряжение от hanz45: LM358 питается от отдельного источника 5в. – т.е. может нормально “запереть” стабилизатор, подав более 1,23в на 4 вывод.

hanz45: Видимо, Шотки, чтоб падение не сильно вредило.

это не имеет значения, т.к. для регулировки ОУ должно обеспечить на выходе 4 напяжение >1,23в плюс падения на диоде и резисторе(последовательно с диодом) – что ОУ вполне способно обеспечить.


можно транзистор подключить к входу стабилизатора или к 5в питания ОУ(желательно через резистор, чтоб при открытом транзисторе на выв 4 было > 1,23в) – чтоб напряжение на эмиттере не пропадало.

 

выходное у LM2576 до нуля не может опуститься. минимум 1.25в…

 

hanz45: выходное у LM2576 до нуля не может опуститься. минимум 1.25в…

кто вам это сказал ?
если опорное 1,23 – это не повод для “домыслов”.

если вы о вашей схеме, то да, “не может”.

если сделаете как вам сказали –

DWD: подключать его выход к 4-му выводу LM2576 нужно через диод – анод к выходу ОУ, а катод – к 4-му выводу мс стабилизатора. – то… проверьте сами 😉 – хотя, строго говоря выходное напряжение не будет “0” , т.к. будет некоторое падение на токоизмерительном резисторе(0,1ом х 3а = 0,3в), т.к. он у вас является частью нагрузки. кстати из-за него(резистора) напряжение на выходе будет нестабильным.

 

чтоб выходное было 0, надо подпирать нижний резистор делителя минусовым напряжением.
это в штатном режиме.
а если “запорное” идет с другого источника, то да, ноль можно получить в теории, но кажется будет опять осцилляция

 

Простой импульсный лабораторный БП на основе микросхем LM2576T-ADJ и LM2596T-ADJ | hardware

В статье описаны простые импульсные регулируемые стабилизаторы напряжения (понижающие, step-down) на 1. 2 .. 40В, с током защиты . Они основаны на микросхемах LM2576T-ADJ и LM2596T-ADJ компании National Semiconductor.

[EK-2596Kit]

Схема электрическая принципиальная EK-2596Kit

Модуль может работать в режиме стабилизатора тока, что может использоваться для заряда аккумуляторов стабильным током, питания различных нагрузок, питания мощного светодиода или группы светодиодов.

Для включения модуля стабилизатором тока необходимо параллельно резистору R1 установить резистор, номинал которого вычисляется по формуле: R=1.23/I

Технические характеристики

Параметр Значение
Входное напряжение, не более 40В
Выходное напряжение 1…40В
Выходной ток во всем диапазоне напряжений, не более
Срабатывание защиты по выходному току
Частота преобразования 150 кГц
Размеры: Д, Ш, В 49х27х25мм
Масса 30 г

Перечень элементов стабилизатора напряжения

Позиция Номинал Количество
C1 470 мкФ х 50В 1 шт.
C2 470 мкФ х 50В 1 шт.
R1 1.2 кОм 1 шт.
D1 1N5822 1 шт.
IC1 LM2596T-ADJ 1 шт.
L1 120 uH 1 шт.
  Печатная плата 1 шт.
  PLS-06R 1 шт.

Работа устройства и рекомендации

Модуль является более миниатюрным аналогом модуля EK-2576 за счет большей частоты преобразования. И имеет меньшую амплитуду пульсаций на выходе.

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и, в отличие от линейных стабилизаторов, не нуждается в большом теплоотводе. Как правило, достаточно радиатора 100 см2. Устройство имеет тепловую защиту и защиту по выходному току = 3А. Внимание! Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор = 47 Ком (для установки в устройства с фиксированным выходным напряжением – постоянный резистор) резистор не следует устанавливать на длинные провода.

Выводы модуля:

1 и 2 – контакты подключения подстроечного/переменного резистора.
3 – выход плюс.
4 – выход минус.
5 – питание минус.
6 – питание плюс.

Внимание! При подключении соблюдайте полярность! 

Габаритный чертеж и расположение элементов на печатной плате EK-2596Kit

Лабораторный блок питания с цифровой индикацией выходного напряжения. (EK2596 + SVH0001) 

Включение модуля стабилизатором тока для питания группы 3W светодиодов 

[EK-2576 Kit]

Схема электрическая принципиальная регулируемого импульсного стабилизатора

Технические характеристики

Параметр Значение
Входное напряжение, не более 40 В
Выходное напряжение 1. ..40 В
Выходной ток во всем диапазоне напряжений, не более 3 А
Срабатывание защиты по выходному току 3 А
Частота преобразования 52 КГц

Перечень элементов стабилизатора напряжения

Позиция Номинал Количество
C1 2200 мкФ х 50 В 1 шт.
C2 2200 мкФ х 50 В 1 шт.
R1 1.2 КОм 1 шт.
D1 1N5822 1 шт.
DA1 LM2576T-ADJ 1 шт.
L1 100 uH 1 шт.
  Печатная плата 1 шт.

Порядок работы устройства и рекомендации

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и, в отличие от линейных стабилизаторов, не нуждается в большом теплоотводе. Как правило, достаточно радиатора 100 см2. Устройство имеет тепловую защиту и защиту по выходному току = 3А. Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор = 47 Ком (для установки в устройства с фиксированным выходным напряжением – постоянный резистор) резистор не следует устанавливать на длинные провода.

Подключение стабилизатора:

1. Подключить питание на входа “+Вход” и “-Вход”
2. Подключить переменный резистор на контакты “R” и “R”
3. Подключить нагрузку на выхода “+Вых” и “-Вых”

Для конструирования лабораторного блока питания с регулируемым выходным напряжением рекомендуется использовать цифровой встраиваемый вольтметр EK-2501.

Внимание! При подключении соблюдайте полярность!

Лабораторный блок питания с цифровой индикацией выходного напряжения

Расположение элементов на печатной плате

[Ссылки]

1. LM2596 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator site:ti.com.
2. Утилита для разработки стабилизаторов напряжения (и не только их) – WEBENCH® Power & LED Designer site:ti.com.
3. MAX710, MAX711 – 3.3V/5V or Adjustable, Step-Up/Down DC-DC Converters (автопереключение преобразования напряжения Step-Up/Down, вх. напряжение +1.8 V..+11 V, выходное напряжение 5 V/250 mA при вх.=1.8 V, 5 V/500 mA при вх.=3.6 V, не нужны внешние FET транзисторы, в режиме Shutdown отключение от вх. напряжения, потребление от вх. 200 μA без нагрузки (вх.=4 V), 7 μA в режиме Standby, 0.2 μA в выкл. режиме, режимы Low-Noise и High-Efficiency).
4. MC34063AB – MC34063AC, MC34063EB – MC34063EC, DC/DC converter control circuits (выходной ток ключа 1.5 A, 2% точность, типичный ток потребления 2.5 mA, вх. напряжение 3..40 V, частота преобразования до 100 кГц, ограничение выходного тока).
5. Высокоэффективный понижающий преобразователь с использованием синхронного контроллера LT1773.

Регулируемый стабилизатор постоянного тока – Просто о технологиях

Автор adminВремя чтения 38 мин.Просмотры 221Опубликовано

Как самому изготовить стабилизатор тока для светодиодов: схемы

Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Обустройство цепи на кренке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317.

Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт.

Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля.

Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса.

Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.

Обустройство цепи на транзисторах

Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе.

В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться.

При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена.

Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта.

Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)

Механизм на операционном усилителе

Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.

2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2.

Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта.

Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку.

Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора

Схема механизма с применением импульсного устройства

В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1. 5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр.

При обратном процессе устройство будет увеличивать данный показатель.

Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д.

Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора.

Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

 Загрузка …

Стабилизатор тока светодиода

См. также:  Электронный балласт для светодиодной лампы. Схемотехника.

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока. 

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально.

По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро.

При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов – 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше – 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс.

Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение – это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток.

Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени).

Следовательно, включать светодиоды без устройств выравнивания тока – нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток – стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода.

В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным.

Также существуют более экономичные устройства – стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера).

Они называются импульсными, поскольку внутри себя прокачивают мощность порциями – импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность – когда входное напряжение лишь немного превышает напряжение на светодиоде.

Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока.

То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания – соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока – на одном транзисторе (схема “а”). Поскольку транзистор – это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h31 раз (коэффициент усиления).

Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема “б”). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова.

Гораздо лучше работает схема с обратной связью “в” и “г”. Резистор R в схеме выполняет роль обратной связи – при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается.

Схема “г”, при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема “д”). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации.

Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства – готовые стабилизаторы с фиксированным током, собранные по такой схеме – CRD (Current Regulating Devices) или CCR (Constant Current Regulator) .

Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент – при увеличении температуры, ток через светодиоды снижается.

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении – снижает.

Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент – дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке.

Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях – включенном и выключенном.

В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале – равное нулю), соответственно на нём выделяется мощность, близкая к нулю.

Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток.

Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора.

Но если использовать вместо RC – LC фильтр (схема “б”), то, благодаря “специфическим” свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством – ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике.

После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем.

Ток в дросселе правильно работающего устройства присутствует постоянно – так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode – CCM).

При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством.

Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode – BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции – с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема “а”). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема “б”), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом – широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания.

Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку.

Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично – когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более.

Прямоходовой преобразователь (схема “а”) передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически – это модифицированный понижающий преобразователь.

Обратноходовой преобразователь (схема “б”) передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически – это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой – Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения.

Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя.

Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1.

Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора.

В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель.

При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор.

Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования – контролем пикового тока дросселя.

Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля – включается. Эффективность устройства достигает 94%.

Назад к каталогу статей >>>

Стабилизатор тока для зарядного устройства, светодиодов и т.д

СТАБИЛИЗАТОР ТОКА

    При конструировании самых различных схем может потребоваться источник постоянного втекающего тока . Примером может служить ток фиксации управляющего электрода симистора в регуляторе яркости флуоресцентного или светодиодного светильника , или источник прецизионного втекающего тока на конце длинной линии , такой , скажем , как кабель ADSL модема .

В обоих случаях необходимо создать схему , способную отдавать постоянный ток в широком диапазоне входных напряжений .     В общем случае задача решается с помощью схемы , состоящей из датчика тока на измерительном резисторе, маломощного транзистора и мощного транзистора .

На Рисунке 1 изображена схема стабилизатора тока, в которой используется мощный биполярный транзистор Q 1 . При высоком напряжении схема отдает относительно постоянный ток , однако входит в регулирование лишь тогда , когда напряжение достигает примерно 60 В , и в базу транзистора начинает поступать достаточный ток .

На Рисунке 2 мощный биполярный транзистор заменен MOSFET транзистором Q 1 , благодаря чему схема будет входить в режим регулирования при значительно меньшем напряжении .

    На основе данных стабилизаторов тока можно строить схемы зарядных устройств различного назначения, а так же линейные драйверы для различных светодиодов, в том числе и с питанием непосредственно от сети 220 В, т.е. делать своими руками светодиодные лампы не меняющие свою яркость даже при провале сетевого напряжения до 130 вольт и не выходящие из строя при кратковременном повышении до 380В.

    Пример использования данного стабилизатора тока в схеме светодиодного драйвера.

    Данная схема получила логическое продолжение в ходе которого выяснилось несколько интересных вещей.
    Разумеется, что схема была смоделирована в MicroCap и для данных параметров получилось следующее:

    На схеме установлено 84 светодиода и номинал измерительного резистора составил 3,6 Ома. Однако при первичных тестах от пониженного напряжения стало понятно, что ток в 0,15 А для этих светодиодов слишком велик и после нескольких подюоров измерительный резистор стабилизатора тока приобрел номинал равный 26 Омам.

Плата со светодиодами была установлена на радиаотор через термопасту и через 20-30 минут нагревается до температуры 60 градусов, т.е. как бы и этого многовато.

    По поводу этой матрицы было снято видео и благодаря подписчику LINKS_234 стала доступна более расширенная информация по пооводу этих и им аналогичных светодиодов.

    Использования данного стабилизатора тока в схеме светодиодного драйвера на светодиодах SMD.

    Прежде всего удалось выявить более-менее надежного продавца, чьи светодиоды соответствуют заявленым в описании характеристикам. Светодиоды конечно же несколько дороже, однако тут уж выбирайте сами – либо цена, либо качество.

    Я покупал ЗДЕСЬ, а надо было покупать светодиоды ЗДЕСЬ.
    Кроме всего прочего так же выяснилось, что совсем не обязательно самому паять SMD светодиоды, поскольку уже есть уже ГОТОВЫЕ СВЕТОДИОДНЫЕ МАТРИЦЫ на различные мощности.

Разннобразие и мощностной диапазон просто огромный и я обязательно что то для себя приобрету.
    Было бы не справедливо умолчать еще об одной интересной ссылке – светодиодные лампы на 220 вольт нового поколения.

Конструктив данных ламп провел впечатление, а положительный отзыв давнего проверенного подписчика позволяет верить тому, что лампы действительно хороши. Лампы на 3, 7, 9 и 12 Вт.

    Как и положено есть возможность выбора ТЕПЛОГО или ХОЛОДНОГО света, впрочем подробности смотрите сами ЗДЕСЬ.
    Пожалуй это все, что хотелось сказать по поводу данной схемотехники и привязки ее к светодиодам, следующий вариант уже будет более расширенная информация по поводу импульсного драйвера для светодиодов с током до 1 А.

Адрес администрации сайта: [email protected]    

Стабилизатор тока для светодиодов: виды, схемы, как сделать

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт).

Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя.

Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  • Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  • Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  • Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.
  • В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

    Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

    Обзор известных моделей

    Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

    Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

    Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

    Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

    Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

    Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

    Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

    Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

    Стабилизатор на LM317

    В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

    Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

    Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

    R1=1.25*I0.

    Мощность, рассеиваемая на резисторе равна:

    W=I2R1.

    Регулируемый стабилизатор

    Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

    Как сделать стабилизатор для светодиода своими руками

    Во всех приведенных схемах стабилизаторов используется минимальное количество деталей.

    Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317.

    Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

    Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

    Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0. 3 мм.

    Какой стабилизатор использовать в авто

    Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто).

    Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора.

    Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

    Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

    Вывод

    Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

    Стабилизатор тока. Простейший стабилизатор постоянного тока :

    Для того чтобы справляться с помехами в сети, необходимы стабилизаторы тока. Данные устройства могут сильно отличаться по своим характеристикам, а связано это с источниками питания.

    Бытовые приборы в доме являются не сильно требовательными в плане стабилизации тока, однако измерительное оборудование нуждается в стабильном напряжении.

    Благодаря беспомеховым моделям у ученых появилась возможность получать достоверную информацию в своих исследованиях.

    Как устроен стабилизатор?

    Основным элемент стабилизатора принято считать трансформатор. Если рассматривать простую модель, то там имеется выпрямительный мост. Соединяется он с конденсаторами, а также с резисторами. В цепи они могут устанавливаться различных типов и предельное сопротивление они выдерживают разное. Также в стабилизаторе имеется конденсатор.

    Принцип работы

    Когда ток попадает на трансформатор, его предельная частота изменяется. На входе данный параметр находится в районе 50 Гц. Благодаря преобразованию тока предельная частота на выходе составляет 30 Гц.

    Высоковольтные выпрямители при этом оценивают полярность напряжения. Стабилизация тока в данном случае осуществляется благодаря конденсаторам. Снижение помех происходит в резисторах.

    На выходе напряжение вновь становится постоянным, и в трансформатор поступает с частотой не выше 30 Гц.

    Принципиальная схема релейного устройства

    Релейный стабилизатор тока (схема показана ниже) включает в себя компенсационные конденсаторы. Мостовые выпрямители в этом случае используются в начале цепи. Также следует учитывать, что транзисторов в стабилизаторе имеется две пары. Одна из них устанавливается перед конденсатором.

    Необходимо это для поднятия предельной частоты. В данном случае выходное напряжение постоянного тока будет находиться на уровне 5 А. Чтобы номинальное сопротивление выдерживалось, используются резисторы. Для простых моделей свойственны двухканальные элементы.

    Процесс преобразования в таком случае происходит долго, однако коэффициент рассеивания будет незначительным.

    Устройство симисторного стабилизатора LM317

    Как видно из названия, основным элементом LM317 (стабилизатор тока) является симистор. Он дает устройству колоссальную прибавку в предельном напряжении. На выходе данный показатель колеблется в районе 12 В.

    Внешнее сопротивление системой выдерживается в 3 Ом. Для высокого коэффициента сглаживания используются многоканальные конденсаторы. Для высоковольтных устройств применяются транзисторы только открытого типа.

    Смена их положения в такой ситуации контролируется за счет изменения номинального тока на выходе.

    Дифференциальное сопротивление LM317 (стабилизатор тока) выдерживает 5 Ом. Для измерительных приборов этот показатель обязан составлять 6 Ом. Неразрывный режим тока дросселя обеспечивается за счет мощного трансформатора.

    Устанавливается он в стандартной схеме за выпрямителем. Диодные мосты для низкочастотных приборов применяются редко. Если рассматривать приемники на 12 В, то для них свойственны резисторы балластного типа.

    Это необходимо для того, чтобы снизить колебания в цепи.

    Высокочастотные модели

    Высокочастотный стабилизатор тока на транзисторе КК20 отличается быстрым процессом преобразования. Происходит это за счет смены полярности на выходе. Частотозадающие конденсаторы устанавливаются в цепи попарно. Фронт импульсов в такой ситуации не должен превышать 2 мкс.

    В противном случае стабилизатор тока на транзисторе КК20 ждут значительные динамические потери. Насыщение резисторов в цепи может осуществляться при помощи усилителей. В стандартной схеме их предусмотрено не менее трех единиц. Для уменьшения тепловых потерь используются емкостные конденсаторы.

    Скоростные характеристики ключевого транзистора зависят исключительно от величины делителя.

    Широтно-импульсные стабилизаторы

    Широтно-импульсный стабилизатор тока отличается большими значениями индуктивности дросселя. Происходит это за счет быстрой смены делителя. Также следует учитывать, что резисторы в данной схеме применяются двухканальные.

    Ток они способны пропускать в различных направлениях. Конденсаторы в системе используются емкостные. За счет этого предельное сопротивление на выходе выдерживается на уровне 4 Ом.

    В свою очередь, максимальную нагрузку стабилизаторы способны держать 3 А.

    Для измерительных приборов такие модели используются довольно редко. Источники питания в данном случае предельное напряжение должны иметь не более 5 В. Таким образом, коэффициент рассеивания будет находиться в пределах нормы.

    Скоростные характеристики ключевого транзистора в стабилизаторах данного типа не сильно высокие. Связано это с низкой способностью резисторов блокировать ток от выпрямителя. В результате помехи с высокой амплитудой приводят к значительным тепловым потерям.

    Спады импульсов в данном случае происходят исключительно за счет снижения нейтрализации свойств трансформатора.

    Процессом преобразования занимается только балластный резистор, который располагается за выпрямительным мостом. Полупроводниковые диоды в стабилизаторах используется редко. Необходимость в них отпадает из-за того, что фронт импульсов в цепи, как правило, не превышает 1 мкс. В результате динамические потери в транзисторах не являются фатальными.

    Схема резонансных устройств

    Резонансный стабилизатор тока (схема показана ниже) включают в себя малоемкостные конденсаторы и резисторы с различным сопротивлением. Трансформаторы в данном случае являются неотъемлемой частью усилителей.

    Для увеличения коэффициента полезного действия используется множество предохранителей. Динамические характеристики резисторов от этого возрастают. Низкочастотные транзисторы монтируются сразу за выпрямителями.

    Для хорошей проводимости тока конденсаторы способны работать при различной частоте.

    Стабилизатор переменного тока

    Стабилизатор тока данного типа является неотъемлемой частью источников питания с мощностью до 15 В. Внешнее сопротивление устройствами воспринимается до 4 Ом. Напряжение переменного тока на входе в среднем составляет 13 В.

    В данном случае коэффициент сглаживания контролируется за счет конденсаторов открытого типа. Уровень пульсации на выходе зависит исключительно от схемы построения резисторов.

    Пороговое напряжение стабилизатор тока должен быть способным выдерживать 5 А.

    В таком случае параметр дифференциального сопротивления обязан находиться на отметке в 5 Ом. Максимально допустимая мощность рассеивания в среднем составляет 2 Вт.

    Это говорит о том, что стабилизаторы переменного тока имеют существенные проблемы с фронтом импульсов. Понизить их колебания в данном случае способны только мостовые выпрямители. При этом в обязательном порядке учитывается величина делителя.

    Для снижения тепловых потерь в стабилизаторах применяются предохранители.

    Модель для светодиодов

    Для регулировки светодиодов большой мощностью стабилизатор тока не должен обладать. В данном случае задача состоит в том, чтобы максимально снизить порог рассеивания.

    Сделать стабилизатор тока для светодиодов это может несколькими способами. В первую очередь, в моделях применяются преобразователи. В результате предельная частота на всех этапах не превышает 4 Гц.

    В данном случае это дает значительную прибавку к производительности стабилизатора.

    Второй способ заключается в использовании усилительных элементов. В такой ситуации все завязывается на нейтрализации переменного тока. Для уменьшения динамических потерь транзисторы в схеме используются высоковольтные.

    Справиться с излишним насыщением элементов способны конденсаторы открытого типа. Для наибольшего быстродействия трансформаторов применяются ключевые резисторы. В схеме они располагаются стандартно за выпрямительным мостом.

    Стабилизатор с регулятором

    Регулируемый стабилизатор тока является востребованным в промышленной сфере. С его помощью пользователь имеет возможность проводить настройку устройства.

    Дополнительно многие модели рассчитаны на дистанционное управление. С этой целью в стабилизаторах монтируются контроллеры. Предельное напряжение переменного тока такие устройства выдерживают на уровне 12 В.

    Параметр стабилизации в этом случае должен составлять не менее 14 Вт.

    Показатель порогового напряжения зависит исключительно от частотности прибора. Для изменения коэффициента сглаживания регулируемый стабилизатор тока использует емкостные конденсаторы. Максимальный ток системой поддерживается на уровне 4 А.

    В свою очередь, показатель дифференциального сопротивления допускается на уровне 6 Ом. Все это говорит о хорошей производительности стабилизаторов. Однако мощность рассеивания может довольно сильно отличаться.

    Также следует знать, что неразрывный режим тока дросселя обеспечивается за счет трансформатора.

    На первичную обмотку напряжение подается через катод. Блокировка тока на выходе зависит только от конденсаторов. Для стабилизации процесса предохранители, как правило, не используются. Быстродействие системы обеспечивается за счет спадов импульсов. Быстрый процесс преобразования тока в цепи приводит к понижению фронта. Транзисторы в схеме применяются исключительно ключевого типа.

    Стабилизаторы постоянного тока

    Стабилизатор постоянного тока работает по принципу двойного интегрирования. Преобразователи во всех моделях отвечают за этот процесс. Для увеличения динамических характеристик стабилизаторов используются двухканальные транзисторы.

    Чтобы минимизировать тепловые потери, емкость конденсаторов должна быть значительной. Точный расчет значения позволяет сделать показатель выпрямления. При выходном напряжении постоянного тока в 12 А предельное значение максимум должно составлять 5 В.

    В таком случае рабочая частота устройства будет поддерживаться на отметке в 30 Гц.

    Пороговое напряжение зависит от блокировки сигнала от трансформатора. Фронт импульсов в данном случае не должен превышать 2 мкс. Насыщение ключевых транзисторов происходит только после преобразования тока.

    Диоды в данной схеме могут использоваться исключительно полупроводникового типа. Балластные резисторы приведут стабилизатор тока к значительным тепловым потерям. В результате коэффициент рассеивания очень возрастет.

    Как следствие – амплитуда колебаний увеличится, процесс индуктивности не произойдет.

    Стабилизаторы тока

    Содержание:

    В каждой электрической сети периодически возникают помехи, отрицательно влияющие на стандартные параметры тока и напряжения.

    Данная проблема успешно решается с помощью различных устройств, среди которых очень популярны и эффективны стабилизаторы тока.

    Они имеют различные технические характеристики, что делает возможным их использование совместно с любыми бытовыми электроприборами и оборудованием. Особые требования предъявляются к измерительному оборудованию, требующему стабильного напряжения.

    Общее устройство и принцип работы стабилизаторов тока

    Знание основных принципов работы стабилизаторов тока способствует наиболее эффективному использованию этих устройств. Электрические сети буквально насыщены различными помехами, негативно влияющими на работу бытовых приборов и электрооборудования. Для преодоления отрицательных воздействий используется схема простого стабилизатора напряжения и тока.

    В каждом стабилизаторе имеется основной элемент – трансформатор, обеспечивающий работу всей системы. Самая простая схема включает в свой состав выпрямительный мост, соединенный с различными типами конденсаторов и резисторов. Их основными параметрами считаются индивидуальная емкость и предельное сопротивление.

    Сам стабилизатор тока работает по очень простой схеме. Когда ток поступает на трансформатор, его предельная частота изменяется. На входе она будет совпадать с частотой электрической сети и составит 50 Гц.

    После того как будут выполнены все преобразования тока, предельная частота на выходе снизится до 30 Гц. В схеме преобразования участвуют высоковольтные выпрямители, с помощью которых определяется полярность напряжения.

    Конденсаторы непосредственно участвуют в стабилизации тока, а резисторы снижают помехи.

    Диодный стабилизатор тока

    Во многих конструкциях светильников имеются диодные стабилизаторы, более известные как стабилизаторы тока для светодиодов. Как и все типы диодов, светодиоды обладают нелинейной вольтамперной характеристикой. То есть, при изменяющемся напряжении на светодиоде, происходит непропорциональное изменение тока.

    С ростом напряжения вначале наблюдается очень медленное возрастание тока, в результате, свечение светодиода отсутствует.

    Затем, когда напряжение достигает порогового значения, начинается излучение света и очень быстрое возрастание тока. Дальнейший рост напряжения приводит к катастрофическому увеличению тока и перегоранию светодиода.

    Значение порогового напряжения отражается в технических характеристиках светодиодных источников света.

    Светодиоды с высокой мощностью требуют установки теплоотвода, поскольку их работа сопровождается выделением большого количества тепла. Кроме того, для них требуется и достаточно мощный стабилизатор тока. Правильная работа светодиодов также обеспечивается стабилизирующими устройствами.

    Это связано с сильным разбросом порогового напряжения даже у однотипных источников света. Если два таких светодиода подключить параллельно к одному источнику напряжения, по ним будет проходить ток разной величины.

    Разница может быть настолько существенной, что один из светодиодов сразу же сгорит.

    Таким образом, не рекомендуется включение светодиодных источников света без стабилизаторов. Данные устройства устанавливают ток заданного значения без учета напряжения, приложенного к схеме.

    К наиболее современным приборам относится двухвыводной стабилизатор для светодиодов, применяющийся для создания недорогих решений по управлению светодиодами.

    В его состав входит полевой транзистор, обвязочные детали и другие радиоэлементы.

    Схемы стабилизаторов тока на КРЕН

    Данная схема стабильно работает с использованием таких элементов, как КР142ЕН12 или LM317. Они являются регулируемыми стабилизаторами напряжения, работающими с током до 1,5А и входным напряжением до 40В.

    В нормальном тепловом режиме эти устройства способны рассеивать мощность до 10Вт. Эти микросхемы обладают низким собственным потреблением, составляющим примерно 8мА.

    Данный показатель остается неизменным даже при изменяющемся токе, проходящем через КРЕН и измененном входном напряжении.

    Элемент LM317 способен удерживать на основном резисторе постоянное напряжение, регулируемое в определенных пределах с помощью подстроечного резистора. Основной резистор с неизменным сопротивлением обеспечивает стабильность проходящего через него тока, поэтому он известен еще, как токозадающий резистор.

    Стабилизатор на КРЕН отличается простотой и может использоваться в качестве электронной нагрузки, зарядки аккумуляторов и в других областях.

    Стабилизатор тока на двух транзисторах

    Благодаря своему простому исполнению, в электронных схемах очень часто используются стабилизаторы на двух транзисторах. Их основным недостатком считается не вполне стабильный ток в нагрузках при изменяющемся напряжении. Если же не требуется высоких токовых характеристик, то данное стабилизирующее устройство вполне сгодится для решения многих несложных задач.

    Кроме двух транзисторов в схеме стабилизатора присутствует токозадающий резистор. Когда на одном из транзисторов (VT2) увеличивается ток, возрастает напряжение на токозадающем резисторе.

    Под действием этого напряжения (0,5-0,6В) начинает открываться другой транзистор (VT1). При открытии этого транзистора, другой транзистор – VT2 начинает закрываться.

    Соответственно, уменьшается и количество тока, протекающего через него.

    В качестве VT2 используется биполярный транзистор, однако в случае необходимости возможно создать регулируемый стабилизатор тока на полевом транзисторе MOSFET, используемом в качестве стабилитрона. Его выбор осуществляется исходя из напряжения 8-15 вольт.

    Данный элемент используется при слишком высоком напряжении источника питания, под действием которого затвор в полевом транзисторе может быть пробит. Более мощные стабилитроны MOSFET рассчитаны на более высокое напряжение – 20 вольт и более. Открытие таких стабилитронов происходит при минимальном значении напряжения на затворе 2 вольта.

    Соответственно, происходит и увеличение напряжения, обеспечивающего нормальную работу схемы стабилизатора тока.

    Регулируемый стабилизатор постоянного тока

    Иногда возникает необходимость в стабилизаторах тока с возможностью регулировок в широком диапазоне. В некоторых схемах может использоваться токозадающий резистор с пониженными характеристиками. В этом случае необходимо применять усилитель ошибки, основой которого служит операционный усилитель.

    С помощью одного токозадающего резистора происходит усиление напряжения в другом резисторе. Это состояние называется усиленным напряжением ошибки. С помощью опорного усилителя сравниваются параметры опорного напряжения и напряжения ошибки, после чего выполняется регулировка состояния полевого транзистора.

    Для такой схемы требуется отдельное питание, которое подается к отдельному разъему. Питающее напряжение должно обеспечивать нормальную работу всех компонентов схемы и не превышать уровня, достаточного для пробоя полевого транзистора.

    Правильная настройка схемы требует установки ползунка переменного резистора в самое верхнее положение. С помощью подстроечного резистора выставляется максимальное значение тока.

    Таким образом, переменный резистор позволяет выполнять регулировку тока от нуля до максимального значения, установленного в процессе настройки.

    Мощный импульсный стабилизатор тока

    Широкий диапазон питающих токов и нагрузок не всегда является основным требованием к стабилизаторам. В некоторых случаях решающее значение отводится высокому коэффициенту полезного действия прибора.

    Эту задачу успешно решает микросхема импульсного стабилизатора тока, заменяющая компенсационные стабилизаторы.

    Приборы этого типа позволяют создавать высокое напряжение на нагрузке даже при наличии невысокого входного напряжения.

    Кроме того, существует повышающий стабилизатор тока импульсного типа. Они используются вместе с нагрузками, питающее напряжение которых превышает входное напряжение стабилизирующего устройства. В качестве делителей выходного напряжения используются два резистора, задействованные в микросхеме, с помощью которой входное и выходное напряжение поочередно уменьшается или увеличивается.

    Стабилизатор на LM2576

    2576T adj схема включения – Тарифы на сотовую связь

    ПунктОписание
    Катушка индуктивности220-330 мкГн 1A постоянного тока (см. текст)
    R1Проволочный, 2 kОм
    C1330 мкФ 35VDC, с малым ESR
    C21200 мкФ 35VDC
    D11N4001
    D21N5819
    1CLM2576T-ADJ