Регулятор оборотов электродвигателя без потери мощности 400Вт 220В переменного тока, цена 640 грн.
Регулятор оборотов электродвигателя UX-52 представляет собой модуль Китайского производства. В отличии от модуля US-52 имеет в наличии встроенный электронный тахометр и цифровой дисплей. Подходит для регулировки асинхронных двигателей переменного тока 220VAC со встроенным тахогенератором, а так же коллекторных двигателей переменного тока 220VAC со встроенным тахогенератором, чаще всего это двигатели стиральных машин. Может быть использован как для замены при ремонте в различном оборудовании, так и для управлении оборотами электродвигателя в различных самодельных конструкциях таких как, точильные станки, токарные, фрезерные и сверлильные станки, медогонки, гончарные круги, и другое широко применяемое оборудование. Данный модуль заявлен, как регулятор оборотов электродвигателя мощностью до 180 ватт. Однако при незначительных доработках, таких как установка радиатора на симистор и/или его замена на более мощный позволит подключить и более мощный двигатель ( ≈ до 400W).
Параметры регулятора оборотов электродвигателя UX-52
- Тип модуля: регулятор оборотов электродвигателя
- Вход напряжение: 220VAC
- Выходное напряжение: 220 В
- Диапазон рабочего напряжения: -10% ~ + 10%
- Частота: 50 Гц,≤-2% ~ + 2%
- Мощность двигателя: 180 Вт
- Диапазон регулировки скорости: 90~1400 об/мин
- Скорость изменения: ≤1%
- Устоечивая скорость: 1%
- Мягкий стоп/старт: Да
- Режим отображения: цифровой дисплей
- Режим работы: ручная регулировка
- Размер окна для установки: 53*81 мм
- Вес: прибл. 300 грамм
Подключение модуля UX-52
Подключите COM и CW, двигатель вращается в прямом направлении;
Подключите COM и CCW, двигатель вращается в обратном направлении.
Соедините последовательно щетки и обмотку коллекторного двигателя.
К оставшимся двум выводам щеток и обмотки подключаем красный и черный выводы регулятора.
Перед включением установите регулятор скорости на «0», чтобы избежать внезапного сильного тока и повреждения контроллера.
Регулятор оборотов коллекторного двигателя – своими руками, схема
При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.
Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.
Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:
- Коллекторные двигатели.
- Асинхронные двигатели.
В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.
Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».
Эту закономерность можно использовать для работы коллекторного двигателя.
Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.
Сложности и особенности
Сложность создания регулятора оборотов коллекторного двигателя заключается в том, что устройство потребляет не только активную, но и реактивную мощность, которая увеличивается при повышении оборотов. Главной задачей является выравнивание и сокращение разрыва между двумя этими характеристиками.
Мощность коллекторного двигателя это произведение потребляемого им тока, на напряжение сети. Общее ее значение складывается из активной и реактивной.
В домашних условиях довольно тяжело привести к пустые потери к нуля. Для этого необходимо, чтобы прибор испытывал только активную нагрузку, что можно получить, только используя полупроводниковые резисторы.
Устройство
Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:
- Ротор — это вращающаяся часть, статор — это внешний магнит.
- Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
- Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
- Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.
Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.
Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.
Если говорить об их классификации, то можно говорить о:
- Коллекторных двигателях постоянного тока.
- Коллекторных двигателях переменного тока.
В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.
Разница состоит в том, как организованы эти подключения.
Тут принято различать:
- Параллельное возбуждение.
- Последовательное возбуждение.
- Параллельно-последовательное возбуждение.
Принцип работы
Для сборки лучше всего выбрать тиристорный преобразователь, он позволит осуществлять изменение режима работы без существенных потерь.
К тому же, благодаря нему будут настроены такие функции как:
- Разгон-торможение.
- Жесткое регулирование характеристик.
- Переключение на реверсивное движение.
К тому же у него импульсно-фазовое управление. Которое, позволяет не терять момент вращения ротора, не увеличивая потери на реактивной характеристике.
Схема регулятора оборотов будет состоять из следующих ключевых узлов:
- Управляемый выпрямитель сигнала.
- Блок регулирования.
- Система обратной связи.
- Регулятор мощности сети.
Изменение скорости АД с короткозамкнутым ротором
Существует несколько способов:
- Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
- Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).
Частотное регулирование
В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:
Двигатель
В зависимости от принципа управления и характеристик, существуют различные типы двигателей. Остановиться стоит только на двух, в одном используется обмотка возбуждения, а в другом постоянный магнит. В зависимости от выполняемой работы нужно правильно подобрать тип агрегата.
Если необходимо регулировать частоту вращения от минимального до конкретного значения, например в дрели. То лучше выбирать схему с постоянным магнитом.
В тех же случаях, когда минимальное значение вращения будет равняться 0 оборотов, лучше использовать обмотку возбуждения. Такая схема подойдет для регуляторов оборотов кулера компьютера.
Двигатель конструктивно состоит из следующих узлов:
- Якорь, он же ротор, на котором имеется обмотка.
- Коллектор, который выпрямляет ток.
- Статор, обмоткой которого создается магнитное поле.
Частотное регулирование
Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.
Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.
На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
Однофазные двигатели могут управляться:
- специализированными однофазными ПЧ
- трёхфазными ПЧ с исключением конденсатора
Преобразователи для однофазных двигателей
В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.
Это модель Optidrive E2
Для стабильного запуска и работы двигателя используются специальные алгоритмы.
При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
f — частота тока
С — ёмкость конденсатора
В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.
Преимущества специализированного частотного преобразователя:
- интеллектуальное управление двигателем
- стабильно устойчивая работа двигателя
- огромные возможности современных ПЧ:
- возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
- многочисленные защиты (двигателя и самого прибора)
- входы для датчиков (цифровые и аналоговые)
- различные выходы
- коммуникационный интерфейс (для управления, мониторинга)
- предустановленные скорости
- ПИД-регулятор
Минусы использования однофазного ПЧ:
Использование ЧП для трёхфазных двигателей
Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:
Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:
Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.
В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.
При работе без конденсатора это приведёт к:
- более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
- разному току в обмотках
Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна
Читать также: Что такое тигли фото
Преимущества:
- более низкая стоимость по сравнению со специализированными ПЧ
- огромный выбор по мощности и производителям
- более широкий диапазон регулирования частоты
- все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)
Недостатки метода:
- необходимость предварительного подбора ПЧ и двигателя для совместной работы
- пульсирующий и пониженный момент
- повышенный нагрев
- отсутствие гарантии при выходе из строя, т. к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями
Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.
Регулятор
Закончив с двигателем и разобравшись с его показателями и режимом работы можно делать регулятор оборотов асинхронного двигателя своими руками.
Необходимо добиться следующих целей:
- Регулировка должна осуществляться от нуля оборотов до максимально возможных значений.
- На низких скоростях крутящий момент должен быть самым высоким.
- Нужно добиться плавного изменения количества оборотов.
Особенности подключения
При подключении проводов и соединении основных узлов между собой следует придерживаться следующим рекомендаций:
- Провода не должны быть слишком длинными. Особенно если речь идет о регуляторе оборотов бесколлекторного двигателя.
- Обмотка не должна быть повреждена.
- Места соединения должны быть надежно запаяны и изолированы друг от друга.
Плавный пуск асинхронных электродвигателей
АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:
- переключение обмоток по схеме звезда – треугольник;
- включение электродвигателя через автотрансформатор;
- использование специализированных устройств для плавного пуска.
В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.
Пошаговая инструкция
Классическая схема синистора работает по принципу зарядки конденсатора через мало ёмкий резистор. После того, как напряжение между обкладками достигнет нужного значения, симистор начинает пропускать ток к нагрузке.
Таким образом, можно контролировать емкость конденсатора, изменяя напряжение, которое пойдет на нагрузку. Для этого отлично подойдет реостат, который устанавливается на место резистора.
К сожалению, такая схема быстро нагревается из-за чего нужно устанавливать дополнительный радиатор позволяющий эффективно отводить тепло.
Более подходящей схемой, позволяющей сохранить потерянную мощность и точнее контролировать работу, является коммутация с силовыми резисторами. Их работа основана многократном открытии и закрытии за один период электрической синусоиды.
Данная установка может осуществлять работу от внутреннего накопителя с напряжением 12 В и внешнего 220 В. Однако в таком случае требуется гасящая схема.
В таком режиме работы можно изменять пороговую мощность, это напрямую влияет на мощность работы ротора. Силовые резисторы выставляются на определенные показания входящего тока, собирая его в нужных объемах.
Принцип управления
При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.
Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:
- Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
- Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
- Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
- Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
- Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
- Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.
Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.
При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.
Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.
Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:
- Коллекторные двигатели.
- Асинхронные двигатели.
В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.
Фото регулятора оборотов своими руками
Регулятор оборотов коллекторного двигателя 220В. Схема
Данная схема регулятора оборотов коллекторного двигателя 220В оснащена мощным симистором BTA26-600, который необходимо установить на радиатор. Результатом этого является способность управлять нагрузкой до 4 кВт, что особенно важно для мощного электроинструмента.
Схема разработана для использования совместно с электроинструменами, например, дрель, электролобзик или угловая шлифовальная машина.
Схема регулятора мощности также может быть успешно использована для плавного регулирования мощности нагревательных приборов или использована в качестве диммера для ламп накаливания. Устройство не подходит для управления двигателями постоянного тока.
В регуляторе применена микросхема U2008. В качестве справки, следует отметить, что чип U2008 имеет в структуре модуль, обеспечивающий плавный пуск управляемого двигателя, модуль обнаружения перегрузки, а так же стабилизатор скорости вращения двигателя. Кроме того, в микросхеме интегрирован стабилизатор напряжения, прецизионный компаратор и источник опорного напряжения.
Диод VD1 (1N4007) играет роль однополупериодного выпрямителя, а резистор R5 ограничивает напряжение до безопасного значения. Конденсатор С1 фильтрует напряжение питания, С4 отвечает за так называемый плавный пуск. Резисторы R1, R3 и потенциометр R2 используются для определения величины мощности, подаваемой на нагрузку.
Благодаря применению резистора R7, подключенного непосредственно к фазному проводу, внутренняя схема U2008 управляет переключением симистора при переходе через ноль. Это в значительной степени сводит к минимуму уровень генерируемых помех.
Потенциометр R6 устанавливает максимальный угол включения симистора, то есть минимальное напряжение (и ток), подаваемое на нагрузку. На практике потенциометр R6 необходимо выставить таким образом, чтобы при крайнем левом положении R2 (минимум) получить минимальные обороты двигателя.
Монтаж является типичным и не должен вызвать проблем. Необходимо позаботиться о правильной полярности элементов и изолировать симистор от радиатора с помощью термостойкой прокладки. Устройство после сборки готово к работе, только необходимо осуществить вышеупомянутую простую регулировку.
Для этого необходимо подключить к регулятору нагрузку, например, двигатель или лампочку и установить потенциометры R2 и R6, в соответствии с потребностями. Потенциометром R2 можно плавно регулировать обороты, а потенциометром R6 задается начальный угол включения симистора, т. е. минимальное эффективное напряжение на нагрузке.
Hantek 2000 – осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц. …
Внимание! Схема не имеет гальванической развязки с электросетью. Поэтому сборку и настройку необходимо производить при отключение от сети.
Скачать рисунок печатной платы регулятора (12,5 KiB, скачано: 4 820)
Двигатели переменного тока, контроллеры и частотно-регулируемые приводы
Что такое двигатель переменного тока?
Основы электродвигателя переменного тока
Стандартное определение двигателя переменного тока – это электродвигатель, приводимый в действие переменным током. Двигатель переменного тока используется для преобразования электрической энергии в механическую. Эта механическая энергия создается за счет использования силы, создаваемой вращающимися магнитными полями, создаваемыми переменным током, протекающим через его катушки.Двигатель переменного тока состоит из двух основных компонентов: стационарного статора, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутреннего ротора, который прикреплен к выходному валу.
Как работает двигатель переменного тока?
Основная работа двигателя переменного тока основана на принципах магнетизма. Простой двигатель переменного тока содержит катушку с проводом и два фиксированных магнита, окружающих вал. Когда электрический заряд (переменного тока) прикладывается к катушке с проволокой, она становится электромагнитом, генерирующим магнитное поле.Проще говоря, когда магниты взаимодействуют, вал и катушка проводов начинают вращаться, приводя в движение двигатель.
Обратная связь двигателя переменного тока
ПродуктыAC Motor имеют два варианта управления с обратной связью. Этими вариантами являются либо резольвер двигателя переменного тока, либо энкодер двигателя переменного тока. И резольвер двигателя переменного тока, и энкодер двигателя переменного тока могут определять направление, скорость и положение выходного вала. Хотя и преобразователь двигателя переменного тока, и энкодер двигателя переменного тока предлагают одно и то же решение для различных приложений, они сильно различаются.
В резольверах двигателей переменного тока используется второй набор катушек статора, называемый трансформатором, для создания напряжения на роторе в воздушном зазоре. Поскольку в резольвере отсутствуют электронные компоненты, он очень прочный и работает в широком диапазоне температур. Резольвер двигателя переменного тока также естественно устойчив к ударам благодаря своей конструкции. Резольвер часто используется в суровых условиях.
В оптическом кодировщике двигателя переменного тока используется затвор, который вращается для прерывания луча света, пересекающего воздушный зазор между источником света и фотодетектором.Вращение заслонки со временем вызывает износ энкодера. Этот износ снижает долговечность и надежность оптического кодировщика.
Тип приложения определяет, требуется ли преобразователь или кодировщик. Энкодеры двигателей переменного тока проще в реализации и более точны, поэтому им следует отдавать предпочтение в любом приложении. Резолвер следует выбирать только в том случае, если этого требует среда, в которой он будет использоваться.
Основные типы двигателей переменного тока
Электродвигатель переменного тока бывает трех различных типов: индукционный, синхронный и промышленный.Эти типы двигателей переменного тока определяются конструкцией ротора, используемого в конструкции. В линейке продуктов Anaheim Automation представлены все три типа.
Асинхронный двигатель переменного тока
Асинхронные двигатели переменного тока называются асинхронными двигателями или вращающимися трансформаторами. Этот тип двигателя переменного тока использует электромагнитную индукцию для питания вращающегося устройства, которым обычно является вал. Ротор в асинхронных двигателях переменного тока обычно вращается медленнее, чем его частота.Наведенный ток – это то, что вызывает магнитное поле, окружающее ротор этих двигателей. Этот асинхронный двигатель переменного тока имеет одну или три фазы.
Синхронный двигатель переменного тока
Синхронный двигатель обычно представляет собой двигатель переменного тока, ротор которого вращается с той же скоростью, что и переменный ток, который к нему подается.
Промышленный двигатель переменного тока
Промышленные двигатели переменного токаразработаны для применений, требующих трехфазного асинхронного двигателя большой мощности. Номинальная мощность промышленного двигателя превышает номинальную мощность стандартного однофазного асинхронного двигателя переменного тока. Anaheim Automation предлагает промышленные электродвигатели переменного тока мощностью от 220 до 2200 Вт, работающие в трехфазном режиме при 220 или 380 В переменного тока.
Где используются двигатели переменного тока?
В каких отраслях используются двигатели переменного тока?
Асинхронные двигатели в основном используются в быту из-за их относительно низких производственных затрат и долговечности, но также широко используются в промышленных приложениях.
Для чего используются двигатели переменного тока?
Асинхронные двигатели используются во многих бытовых приборах и приложениях, в том числе:
– Часы
– Электроинструменты
– Дисковые накопители
– Стиральные машины и другая бытовая техника
– Проигрыватели виниловых пластинок
– Вентиляторы
Их также можно найти в промышленности:
– Насосы
– Воздуходувки
– Конвейеры
– Компрессоры
Как управляются двигатели переменного тока?
Контроллеры переменного тока:
Основы
Контроллер переменного тока (иногда называемый драйвером) известен как устройство, которое контролирует скорость двигателя переменного тока.Контроллер переменного тока может также упоминаться как преобразователь частоты, преобразователь частоты, преобразователь частоты и т. Д. Двигатель переменного тока получает мощность, которая в конечном итоге преобразуется контроллером переменного тока в регулируемую частоту. Этот регулируемый выход позволяет точно контролировать скорость двигателя.
Компоненты контроллера переменного тока
Обычно контроллер переменного тока состоит из трех основных частей: выпрямителя, инвертора и звена постоянного тока для их соединения.Выпрямитель преобразует входной переменный ток в постоянный ток (постоянный ток), а инвертор переключает постоянное напряжение на выходное переменное напряжение с регулируемой частотой. Инвертор также можно использовать для управления выходным током, если это необходимо. И выпрямитель, и инвертор управляются набором элементов управления для генерации определенного количества переменного напряжения и частоты, чтобы соответствовать системе двигателя переменного тока в данный момент времени.
Приложения
Контроллер переменного тока может использоваться во многих различных промышленных и коммерческих приложениях.Контроллер переменного тока, который чаще всего используется для управления вентиляторами в системах кондиционирования и отопления, позволяет лучше контролировать воздушный поток. Контроллер переменного тока также помогает регулировать скорость насосов и воздуходувок. В последнее время применяются конвейеры, краны и подъемники, станки, экструдеры, линии для производства пленки и прядильные машины для текстильного волокна.
Преимущества и недостатки
Преимущества
– Увеличивает срок службы двигателя за счет высокого коэффициента мощности
– Экономичное регулирование скорости
– Оптимизация пусковых характеристик двигателя
– Более низкие затраты на обслуживание, чем при управлении постоянным током
Недостатки
– генерирует большое количество тепла и гармоник
История
Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока.Однако регулирование скорости переменного тока было сложной задачей. Когда требовалось точное управление скоростью, двигатель постоянного тока стал заменой двигателя переменного тока из-за его эффективных и экономичных средств точного управления скоростью. Только в 1980-х годах регулятор скорости переменного тока стал конкурентом. Со временем технология привода переменного тока в конечном итоге превратилась в недорогого и надежного конкурента традиционному управлению постоянным током. Теперь контроллер переменного тока может управлять скоростью с полным крутящим моментом, достигаемым от 0 об / мин до максимальной номинальной скорости.
Частотно-регулируемые приводы
Основы
Частотно-регулируемый привод – это особый тип привода с регулируемой скоростью, который используется для управления скоростью двигателя переменного тока. Чтобы управлять скоростью вращения двигателя, частотно-регулируемый привод регулирует частоту подаваемой на него электроэнергии. Добавление частотно-регулируемого привода к приложению позволяет регулировать скорость двигателя в соответствии с нагрузкой двигателя, что в конечном итоге позволяет экономить энергию.Частотно-регулируемый привод, обычно используемый во множестве приложений, работает в системах вентиляции, насосах, конвейерах и приводах станков.
Как работает частотно-регулируемый привод
Когда полное напряжение подается на двигатель переменного тока, он сначала ускоряет нагрузку и снижает крутящий момент, сохраняя ток особенно высоким, пока двигатель не достигнет полной скорости. Частотно-регулируемый привод работает иначе; он устраняет чрезмерный ток, контролируемое повышение напряжения и частоты при запуске двигателя.Это позволяет двигателю переменного тока генерировать до 150% от номинального крутящего момента, который потенциально может быть создан с самого начала, вплоть до полной скорости, без потерь энергии. Частотно-регулируемый привод преобразует мощность через три различных этапа. Сначала мощность переменного тока преобразуется в мощность постоянного тока, после чего включаются и выключаются силовые транзисторы, вызывая форму волны напряжения на желаемой частоте. Эта форма сигнала затем регулирует выходное напряжение в соответствии с предпочтительным обозначенным значением.
Физические свойства
Обычно система частотно-регулируемого привода включает двигатель переменного тока, контроллер и интерфейс оператора. Трехфазный асинхронный двигатель чаще всего применяется в частотно-регулируемом приводе, поскольку он обеспечивает универсальность и экономичность по сравнению с однофазным или синхронным двигателем. Хотя в некоторых случаях они могут быть полезными, в системе частотно-регулируемого привода часто используются двигатели, предназначенные для работы с фиксированной скоростью.
Интерфейсы оператора частотно-регулируемого привода позволяют пользователю регулировать рабочую скорость, а также запускать и останавливать двигатель. Интерфейс оператора может также позволить пользователю переключаться и реверсировать между автоматическим управлением или ручным регулированием скорости.
Преимущества частотно-регулируемого привода
– Температуру технологического процесса можно контролировать без отдельного контроллера
– Низкие затраты на обслуживание
– Более длительный срок службы двигателя переменного тока и другого оборудования
– Более низкие эксплуатационные расходы
– Оборудование в системе, с которым невозможно справиться чрезмерный крутящий момент защищен
Типы частотно-регулируемых приводов
Существует три распространенных частотно-регулируемых привода (VFD), которые обладают как преимуществами, так и недостатками в зависимости от приложения, для которого они используются. Три распространенных конструкции ЧРП включают: инвертор источника тока (CSI), инвертор источника напряжения (VSI) и широтно-импульсную модуляцию (ШИМ). Однако существует четвертый тип частотно-регулируемого привода, называемый векторным приводом потока, который становится все более популярным среди конечных пользователей благодаря своей функции управления с обратной связью. Каждый частотно-регулируемый привод состоит из преобразователя, промежуточного звена постоянного тока и инвертора, но конструкция каждого из них варьируется от привода к приводу. Хотя секции каждого частотно-регулируемого привода похожи, они требуют изменения схемы в том, как они подают частоту и напряжение на двигатель.
Инвертор источника тока (CSI)
Инвертор источника тока (CSI) – это тип преобразователя частоты (VFD), который преобразует входящее напряжение переменного тока и изменяет частоту и напряжение, подаваемое на асинхронный двигатель переменного тока. Общая конфигурация этого типа частотно-регулируемого привода аналогична конфигурации других частотно-регулируемых приводов в том, что он состоит из преобразователя, звена постоянного тока и инвертора. В преобразовательной части CSI используются кремниевые выпрямители (SCR), тиристоры с коммутацией затвора (GCT) или симметричные тиристоры с коммутацией затвора (SGCT) для преобразования входящего переменного напряжения в переменное постоянное напряжение.Чтобы поддерживать правильное соотношение напряжения к частоте (Вольт / Герц), напряжение должно регулироваться путем правильной последовательности SCR. В звене постоянного тока для этого типа частотно-регулируемого привода используется индуктор для регулирования пульсаций тока и для хранения энергии, используемой двигателем. Инвертор, который отвечает за преобразование постоянного напряжения обратно в синусоидальную форму сигнала переменного тока, состоит из SCRS, тиристоров отключения затвора (GTO) или симметричных тиристоров с коммутацией затвора (SGCT). Эти тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выхода с широтно-импульсной модуляцией (ШИМ), который регулирует частоту и напряжение на двигателе. Частотно-регулируемые приводы CSI регулируют ток, для работы требуется большой внутренний индуктор и нагрузка двигателя. Важным примечанием к конструкциям ЧРП CSI является требование входных и выходных фильтров, которые необходимы из-за высоких гармоник на входе мощности и низкого коэффициента мощности. Чтобы обойти эту проблему, многие производители используют либо входные трансформаторы, либо реакторы и фильтры гармоник в точке общего соединения (электрическая система пользователя, подключенная к приводу), чтобы уменьшить влияние гармоник на систему привода.Из обычных приводных систем с частотно-регулируемым приводом, частотно-регулируемые приводы CSI являются единственным типом приводов, которые имеют возможность рекуперации энергии. Возможность рекуперации энергии означает, что мощность, передаваемая от двигателя обратно к источнику питания, может быть поглощена.
Преимущества CSI
• Возможность рекуперации энергии
• Простая схема
• Надежность (операция ограничения тока)
• Чистая форма кривой тока
Недостатки CSI
• Зубцы двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Используемые индукторы большие и дорогие
• Генерация больших гармоник мощности отправляется обратно в источник питания
• Зависит от нагрузки двигателя
• Низкий коэффициент входной мощности
Инвертор источника напряжения (VSI)
Секция преобразователя VSI аналогична секции преобразователя CSI в том, что входящее напряжение переменного тока преобразуется в напряжение постоянного тока. Отличие от секции преобразователя CSI и VSI заключается в том, что VSI использует выпрямитель на диодном мосту для преобразования напряжения переменного тока в напряжение постоянного тока. В звене постоянного тока VSI используются конденсаторы для сглаживания пульсаций постоянного напряжения, а также для хранения энергии для системы привода. Секция инвертора состоит из биполярных транзисторов с изолированным затвором (IGBT), тиристоров с изолированным затвором (IGCT) или транзисторов с инжекционным затвором (IEGT). Эти транзисторы или тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выходного сигнала широтно-импульсной модуляции (ШИМ), который регулирует частоту и напряжение двигателя.
Преимущества VSI
• Простая схема
• Может использоваться в приложениях, требующих нескольких двигателей
• Не зависит от нагрузки
Недостатки VSI
• Генерация больших гармоник мощности в источнике питания
• Зубчатая передача двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Безрегенеративный режим
• Низкий коэффициент мощности
Широтно-импульсная модуляция (ШИМ)
Частотно-регулируемый привод с широтно-импульсной модуляцией (ШИМ) является одним из наиболее часто используемых контроллеров и зарекомендовал себя как хорошо работающий с двигателями мощностью от 1/2 до 500 л. с.Большинство частотно-регулируемых приводов с ШИМ рассчитаны на работу в трехфазном режиме 230 В или 460 В и обеспечивают выходные частоты в диапазоне 2–400 Гц. Как и VSI VFD, PWM VFD использует выпрямитель на диодном мосту для преобразования входящего переменного напряжения в постоянное. В звене постоянного тока используются конденсаторы большой емкости для устранения пульсаций, возникающих после выпрямителя, и создания стабильного напряжения на шине постоянного тока. Шестиступенчатый инверторный каскад этого драйвера использует IGBT высокой мощности, которые включаются и выключаются для регулирования частоты и напряжения двигателя. Эти транзисторы управляются микропроцессором или ИС двигателя, который контролирует различные аспекты привода, чтобы обеспечить правильную последовательность.В результате на двигатель выводится сигнал синусоидальной формы. Так как же включение и выключение транзистора помогает создать синусоидальный выходной сигнал? Изменяя ширину импульса напряжения, вы получаете среднюю мощность, которая представляет собой напряжение, подаваемое на двигатель. Частота, подаваемая на двигатель, определяется количеством переходов из положительного положения в отрицательное в секунду.
Преимущество ШИМ
• Отсутствие зубчатого зацепления двигателя
• КПД от 92% до 96%
• Превосходный коэффициент входной мощности благодаря фиксированному напряжению шины постоянного тока
• Низкая начальная стоимость
• Может использоваться в приложениях, требующих нескольких двигателей
Недостатки ШИМ
• Безрегенерационный режим
• Высокочастотное переключение может вызвать нагрев двигателя и пробой изоляции
Как выбрать двигатель переменного тока
Чтобы выбрать подходящий двигатель переменного тока для конкретного применения, необходимо определить основные характеристики.Рассчитайте требуемый момент нагрузки и рабочую скорость. Помните, что асинхронные и реверсивные двигатели нельзя регулировать; они требуют редуктора. Если это необходимо, выберите подходящее передаточное число. Затем определите частоту и напряжение питания двигателя.
Преимущества и недостатки
Преимущества электродвигателя переменного тока
– Низкая стоимость
– Длительный срок службы
– Высокая эффективность и надежность
– Простая конструкция
– Высокий пусковой момент (индукция)
– Отсутствие скольжения (синхронное)
Недостатки двигателя переменного тока
– Частота вызывает проскальзывания вращения (индукция)
– Требуется пусковой переключатель (индукция)
Поиск и устранение неисправностей двигателя переменного тока
ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: Техническая помощь в отношении продуктовой линейки двигателей переменного тока, а также всех продуктов, производимых или распространяемых Anaheim Automation, предоставляется бесплатно.Эта помощь предлагается, чтобы помочь клиенту в выборе продуктов Anaheim Automation для конкретного применения. Во всех случаях ответственность за определение пригодности индивидуального двигателя переменного тока для конкретной конструкции системы лежит исключительно на заказчике. Несмотря на то, что мы прилагаем все усилия, чтобы предложить надежные рекомендации относительно линейки двигателей переменного тока, а также других продуктов для управления движением, а также для точного создания технических данных и иллюстраций, такие советы и документы предназначены только для справки и могут быть изменены без предварительного уведомления.
Для устранения неполадок в системе двигателя и контроллера переменного тока могут быть предприняты следующие шаги:
Шаг 1. Проверьте запах двигателя. При появлении запаха гари немедленно замените двигатель.
Шаг 2: Проверьте входное напряжение двигателя. Убедитесь, что провода не повреждены и подключен надлежащий источник питания.
Шаг 3. Прислушайтесь к громкой вибрации или скрипу. Такие шумы могут указывать на повреждение или износ подшипников. По возможности смажьте подшипники, в противном случае замените двигатель полностью.
Шаг 4: Проверить на перегрев. С помощью сжатого воздуха очистите двигатель от мусора, дайте ему остыть и перезапустите.
Шаг 5: Двигатели переменного тока, которые пытаются запуститься, но выходят из строя, могут быть признаком плохого пускового конденсатора. Проверьте наличие каких-либо признаков утечки масла и замените конденсатор, если это так.
Шаг 6: Убедитесь, что приложение, в котором вращается двигатель, не заблокировано. Для этого отсоедините механизм и попробуйте запустить двигатель самостоятельно.
Сколько стоят изделия с электродвигателями переменного тока?
Двигатель переменного тока может быть разумным экономичным решением для ваших требований. Конструкционные материалы, а также конструкция двигателя делают системы двигателей переменного тока доступным решением. Двигатель переменного тока работает с вращающимся магнитным полем и не использует щеток. Это позволяет снизить стоимость двигателя и исключает компонент, который может со временем изнашиваться. Для работы двигателей переменного тока не требуется драйвер.Это экономит начальные затраты на установку. Сегодняшние производственные процессы делают производство двигателей переменного тока проще и быстрее, чем когда-либо. Статор изготовлен из тонких пластин, которые можно прессовать или штамповать на станке с ЧПУ. Многие другие детали можно быстро изготовить и усовершенствовать, сэкономив время и деньги! Anaheim Automation предлагает на выбор полную линейку продукции для двигателей переменного тока.
Физические свойства двигателя переменного тока
Обычно двигатель переменного тока состоит из двух основных компонентов: статора и ротора.Статор – это неподвижная часть двигателя, состоящая из нескольких тонких пластин, намотанных изолированным проводом, образующих сердечник.
Ротор соединен с выходным валом изнутри. Наиболее распространенным типом ротора, используемого в двигателях переменного тока, является ротор с короткозамкнутым ротором, названный в честь его сходства с колесами для упражнений на грызунах.
Статор устанавливается внутри корпуса двигателя, ротор установлен внутри, а между ними имеется зазор, отделяющий их от соприкосновения. Кожух представляет собой корпус двигателя, содержащий два подшипниковых узла.
Формулы для двигателя переменного тока
Синхронная скорость:
Частота:
Количество полюсов:
Мощность в лошадиных силах:
Пробуксовка двигателя:
Глоссарий двигателей переменного тока
Двигатель переменного тока – Электродвигатель, приводимый в действие переменным током, а не постоянным.
Переменный ток – Электрический заряд, который часто меняет направление (противоположно постоянному току, с зарядом только в одном направлении).
Центробежный переключатель – Электрический переключатель, который регулирует скорость вращения вала, работающий за счет центробежной силы, создаваемой самим валом.
Передаточное число – Передаточное число, при котором скорость двигателя уменьшается редуктором. Скорость на выходном валу равна 1 передаточному отношению x скорость двигателя.
Инвертор – Устройство, преобразующее постоянный ток в переменный. Реверс выпрямителя.
Асинхронный двигатель – Может упоминаться как асинхронный двигатель; тип двигателя переменного тока, в котором электромагнитная индукция питает ротор. Для создания крутящего момента требуется скольжение.
Скорость холостого хода – Обычно ниже синхронной скорости, это скорость, когда двигатель не несет нагрузки.
Номинальная скорость – Скорость двигателя при номинальной выходной мощности.Обычно самая востребованная скорость.
Выпрямитель – Устройство, преобразующее переменный ток в постоянный в двигателе. Они могут использоваться в качестве компонента источника питания или могут обнаруживать радиосигналы. Обычно выпрямители могут состоять из твердотельных диодов, ртутных дуговых клапанов или других веществ. Реверс инвертора.
Выпрямление – Процесс преобразования переменного тока в постоянный с помощью выпрямителя в двигателе переменного тока.
Асинхронный двигатель с разделенной фазой – Двигатели, которые могут создавать больший пусковой крутящий момент за счет использования центробежного переключателя в сочетании со специальной пусковой обмоткой.
Момент опрокидывания – Максимальный крутящий момент, с которым двигатель может работать, при определенном напряжении и частоте. Превышение этого количества приведет к остановке двигателя.
Пусковой крутящий момент – крутящий момент, который мгновенно создается при запуске двигателя. Двигатель не будет работать, если нагрузка трения превышает крутящий момент.
Статический момент трения – Когда двигатель останавливается, например, тормозом, это выходной крутящий момент, необходимый для удержания нагрузки при остановке двигателя.
Синхронный двигатель – В отличие от асинхронного двигателя, он может создавать крутящий момент с синхронной скоростью без скольжения.
Синхронная скорость – Обозначается скоростью в минуту, это внутренний фактор, определяемый количеством полюсов и частотой сети.
Привод с регулируемой скоростью – Оборудование, используемое для управления частотой электроэнергии, подаваемой на двигатель переменного тока, с целью управления его скоростью вращения.
Блок-схема для систем, в которых используется двигатель переменного тока
Срок службы двигателя переменного тока
Двигатели переменного токаAnaheim Automation обычно имеют срок службы около 10 000 часов работы, если двигатели работают в надлежащих условиях и в соответствии со спецификациями.
Требуемое обслуживание двигателя переменного тока
Профилактическое обслуживание – ключ к долговечной системе электродвигателя переменного тока.Следует проводить плановую проверку. Всегда проверяйте двигатель переменного тока на предмет загрязнения и коррозии. Грязь и мусор могут закупорить воздушные каналы и уменьшить поток воздуха, что в конечном итоге приведет к сокращению срока службы изоляции и возможному отказу двигателя. Если мусор не виден явно, убедитесь, что поток воздуха постоянный и не слабый. Это также может указывать на засорение. Во влажной, влажной или влажной среде проверьте клеммы в распределительной коробке на предмет коррозии и при необходимости отремонтируйте.
Прислушайтесь к чрезмерному шуму или вибрации и почувствуйте чрезмерное нагревание.Это может указывать на необходимость смазки подшипников. Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к грязи и маслам, забивающим воздушный поток. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.
Примечание. Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потока масла маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.
Электропроводка двигателя переменного тока
Следующая информация предназначена в качестве общего руководства для электромонтажа линейки двигателей переменного тока Anaheim Automation. Имейте в виду, что при прокладке силовой и сигнальной проводки на машине или системе излучаемый шум от близлежащих реле, трансформаторов и других электронных устройств может индуцироваться в двигателе переменного тока и сигналах энкодера, входных / выходных коммуникациях и других чувствительных низковольтных устройствах. сигналы. Это может вызвать сбои в системе.
ПРЕДУПРЕЖДЕНИЕ – В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть. Соблюдайте особую осторожность при обращении, подключении, тестировании и регулировке во время установки, настройки, настройки и эксплуатации. Не делайте чрезмерных корректировок или изменений в параметрах системы двигателя переменного тока, которые могут вызвать механическую вибрацию и привести к поломке и / или потерям. После того, как система электродвигателя переменного тока подключена, не запускайте ее путем прямого включения / выключения источника питания. Частое включение / выключение питания приведет к быстрому старению компонентов системы, что сократит срок службы системы электродвигателя переменного тока.
Строго соблюдать следующие правила:
• Следуйте схеме подключения к каждому двигателю переменного тока и / или контроллеру.
• Прокладывайте силовые кабели высокого напряжения отдельно от силовых кабелей низкого напряжения.
• Отделите входную силовую проводку и силовые кабели двигателя переменного тока от проводки управления и кабелей обратной связи двигателя. Сохраняйте это разделение на всем протяжении провода.
• Используйте экранированный кабель для силовой проводки и обеспечьте заземленное зажимное соединение на 360 градусов к стене корпуса.Оставьте на вспомогательной панели место для изгибов проводов.
• Сделайте все кабельные трассы как можно короче.
• Обеспечьте достаточный воздушный поток
• Сохраняйте окружающую среду как можно более чистой
ПРИМЕЧАНИЕ: Кабели заводского изготовления рекомендуются для использования в наших системах двигателей переменного тока. Эти кабели приобретаются отдельно и предназначены для минимизации электромагнитных помех. Эти кабели рекомендуется использовать вместо кабелей, изготовленных заказчиком, чтобы оптимизировать работу системы и обеспечить дополнительную безопасность для системы электродвигателя переменного тока, а также для пользователя.
ПРЕДУПРЕЖДЕНИЕ – Во избежание поражения электрическим током выполните все монтажные и электромонтажные работы двигателя переменного тока перед подачей питания. После подачи питания на соединительные клеммы может присутствовать напряжение.
Монтаж двигателя переменного тока
Следующая информация предназначена в качестве общего руководства по установке и монтажу системы электродвигателя переменного тока. ПРЕДУПРЕЖДЕНИЕ – В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть.Соблюдайте особую осторожность при обращении, тестировании и регулировке во время установки, настройки и эксплуатации. При установке и монтаже очень важно учитывать проводку двигателя переменного тока. Субпанели, устанавливаемые внутри корпуса для монтажа компонентов системы, должны иметь плоскую жесткую поверхность, не подверженную ударам, вибрации, влаге, маслу, парам или пыли. Помните, что двигатель переменного тока выделяет тепло во время работы; поэтому при проектировании компоновки системы следует учитывать рассеивание тепла.Размер корпуса не должен превышать максимально допустимую температуру окружающей среды. Рекомендуется устанавливать двигатель переменного тока в положение, обеспечивающее достаточный воздушный поток. Электродвигатель переменного тока должен быть устойчиво закреплен и надежно закреплен.
ПРИМЕЧАНИЕ: Между электродвигателем переменного тока и любыми другими устройствами, установленными в системе / электрической панели или шкафу, должно быть не менее 10 мм.
Чтобы соответствовать требованиям UL и CE, система электродвигателя переменного тока должна быть заземлена в заземленном проводящем корпусе, обеспечивающем защиту, как определено в стандарте EN 60529 (IEC 529) до IP55, таким образом, чтобы они были недоступны для оператора или неквалифицированного человека. .Как и любую движущуюся часть системы, двигатель переменного тока следует держать вне досягаемости оператора. Корпус NEMA 4X превосходит эти требования, обеспечивая степень защиты IP66. Чтобы улучшить соединение между шиной питания и дополнительной панелью, сконструируйте дополнительную панель из оцинкованной (не содержащей краски) стали. Кроме того, настоятельно рекомендуется защитить систему электродвигателя переменного тока от электрических помех. Шум от сигнальных проводов может вызвать механическую вибрацию и неисправности.
Экологические аспекты двигателя переменного тока
Следующие меры по охране окружающей среды и безопасности должны соблюдаться на всех этапах эксплуатации, обслуживания и ремонта системы электродвигателя переменного тока. Несоблюдение этих мер предосторожности нарушает стандарты безопасности при проектировании, производстве и предполагаемом использовании двигателя переменного тока. Обратите внимание, что даже правильно построенная система электродвигателя переменного тока, неправильно установленная и эксплуатируемая, может быть опасной. Пользователь должен соблюдать меры предосторожности в отношении нагрузки и условий эксплуатации. В конечном итоге заказчик несет ответственность за правильный выбор, установку и работу двигателя переменного тока и / или регулятора скорости.
Атмосфера, в которой используется двигатель переменного тока, должна способствовать соблюдению общих правил работы с электрическим / электронным оборудованием.Не эксплуатируйте систему электродвигателя переменного тока в присутствии легковоспламеняющихся газов, пыли, масла, пара или влаги. При использовании вне помещений двигатель переменного тока должен быть защищен от атмосферных воздействий соответствующей крышкой, обеспечивая при этом достаточный поток воздуха и охлаждение. Влага может вызвать опасность поражения электрическим током и / или вызвать поломку системы. Следует уделять должное внимание недопущению попадания любых жидкостей и паров. Свяжитесь с заводом-изготовителем, если для вашего приложения требуются определенные степени защиты IP. Разумно устанавливать двигатель переменного тока в среде, свободной от конденсации, электрических шумов, вибрации и ударов.
Кроме того, предпочтительно работать с системой электродвигателя переменного тока в нестатической защитной среде. Открытые цепи всегда должны быть надлежащим образом ограждены и / или закрыты для предотвращения несанкционированного контакта человека с цепями под напряжением. Никакие работы не должны выполняться при включенном питании.
ЗАПРЕЩАЕТСЯ включать и отключать питание при включенном питании. После выключения питания подождите не менее 5 минут, прежде чем проводить инспекционные работы в системе двигателя переменного тока, потому что даже после отключения питания в конденсаторах внутренней цепи системы двигателя переменного тока будет оставаться некоторая электрическая энергия.
Спланируйте установку двигателя переменного тока в конструкции системы, свободной от мусора, такого как металлический мусор от резки, сверления, нарезания резьбы и сварки, или любого другого постороннего материала, который может контактировать с схемами системы. Если не предотвратить попадание мусора в систему двигателя переменного тока, это может привести к повреждению и / или поражению электрическим током.
История двигателя переменного тока
Изобретение двигателя переменного тока Асинхронные двигатели переменного тока
используются в отрасли уже более 20 лет.Идея двигателя переменного тока пришла от Николы Теслы в 1880-х годах. Никола Тесла заявил, что двигателям не нужны щетки для переключения ротора. Он сказал, что они могут быть вызваны вращающимся магнитным полем. Никола Тесла обнаружил использование переменного тока, который индуцирует вращающиеся магнитные поля. Тесла подал патент США номер 416194 на работу над двигателем переменного тока. Этот тип двигателя сегодня мы называем асинхронным двигателем переменного тока.
Эволюция двигателя переменного тока
Двигатель переменного тока сделал себе имя благодаря простой конструкции, простоте использования, прочной конструкции и рентабельности для множества различных применений.Достижения в области технологий позволили производителям развить идею Telsa и обеспечили большую гибкость в регулировании скорости асинхронного двигателя переменного тока. От простого фазового управления до более надежных систем с обратной связью, использующих векторно-ориентированное управление полем; Двигатель переменного тока усовершенствовался за последние сто двадцать лет.
Принадлежности для двигателей переменного тока
Для двигателей переменного тока существует широкий выбор принадлежностей. Доступные аксессуары включают тормоз, сцепление, вентилятор, разъем и кабели. Дополнительные сведения и варианты см. На странице «Аксессуары» Anaheim Automation.
Тормоза двигателя переменного тока представляют собой систему 24 В постоянного тока. Эти тормоза идеально подходят для любых удерживающих устройств, которые вы можете использовать с электродвигателем переменного тока. Тормоза электродвигателя переменного тока имеют низковольтную конструкцию для приложений, которые подвержены разряду батареи, потере энергии или длинной проводке.
Муфта двигателя переменного тока используется для управления крутящим моментом, прилагаемым к нагрузке. Муфту двигателя переменного тока также можно использовать для увеличения скорости нагрузки с высоким моментом инерции.Муфты идеально подходят для использования с электродвигателем переменного тока, когда вы хотите точно контролировать крутящий момент или медленно прикладывать мощность. Муфты электродвигателя переменного тока также помогают предотвратить резкие скачки тока.
Вентиляторы двигателя переменного тока используются для охлаждения двигателей. Обычно они не встречаются в небольших двигателях, потому что они не нужны, но чаще встречаются в более крупных асинхронных двигателях переменного тока из-за тепловыделения. Есть два типа вентиляторов, которые используются для двигателя переменного тока. Типы бывают внутренние и внешние вентиляторы. Вентиляторы электродвигателей переменного тока идеально подходят для использования, когда возникает проблема перегрева.
Кабели двигателя переменного тока могут быть изготовлены по индивидуальному заказу с поставляемым разъемом двигателя переменного тока в соответствии с заданными спецификациями. Кабели также можно приобрести в компании Anaheim Automation.
Если двигатели переменного тока не идеальны для вашего применения, вы можете рассмотреть бесщеточные двигатели постоянного тока, щеточные двигатели постоянного тока, сервоприводы или шаговые двигатели и их совместимые драйверы / контроллеры. Наряду с двигателями переменного тока Anaheim Automation предлагает коробки передач и регуляторы скорости. Дополнительные продукты Anaheim Automation предлагает: энкодеры, HMI, муфты, кабели и соединители, линейные направляющие.
Настройка двигателя переменного тока
Anaheim Automation была основана в 1966 году как производитель систем управления перемещением «под ключ». Его упор на исследования и разработки обеспечил постоянное внедрение передовых продуктов управления движением, таких как линейка продуктов AC Motor. Сегодня Anaheim Automation занимает высокое место среди ведущих производителей и дистрибьюторов продукции для управления движением, и это положение усиливается ее отличной репутацией в области качественной продукции по конкурентоспособным ценам.Линия продуктов AC Motor не является исключением из целей компании.
Anaheim Automation предлагает широкий выбор стандартных двигателей переменного тока. Иногда OEM-заказчики со средним и большим количеством требований предпочитают иметь двигатель переменного тока, который настраивается или модифицируется в соответствии с их точными проектными требованиями. Иногда настройка настолько проста, как модификация вала, тормоз, масляное уплотнение для степени защиты IP65, установочные размеры, цвета проводов или этикетка. В других случаях заказчик может потребовать, чтобы двигатель переменного тока соответствовал идеальным характеристикам, таким как скорость, крутящий момент и / или напряжение. Для получения более подробной информации обсудите требования к вашему приложению с инженером по автоматизации в Анахайме.
Двигатель переменного тока Anaheim Automation
Инженерыценят то, что линейка двигателей переменного тока Anaheim Automation может удовлетворить их стремление к творчеству, гибкости и эффективности системы. Покупатели ценят простоту «универсального магазина» и экономию затрат на индивидуальную конструкцию двигателя переменного тока, в то время как инженеры довольны тем, что Anaheim Automation уделяет особое внимание их конкретным системным требованиям.
Стандартная линейка двигателей переменного тока Anaheim Automation представляет собой экономичное решение, поскольку они известны своей прочной конструкцией и отличными характеристиками. Значительный рост продаж компании явился результатом целенаправленного проектирования, дружелюбного обслуживания клиентов и профессиональной поддержки приложений, что часто превосходит ожидания клиентов в отношении выполнения их индивидуальных требований. Хотя значительная часть продаж двигателей переменного тока Anaheim Automation связана с особыми, индивидуальными требованиями или требованиями частной маркировки, компания гордится своей стандартной базой на складе, расположенной в Анахайме, Калифорния, США.Чтобы сделать индивидуальную настройку двигателя переменного тока доступной, требуется минимальное количество и / или плата за непериодическое проектирование (NRE). Свяжитесь с заводом-изготовителем для получения подробной информации, если вам потребуется специальный двигатель переменного тока в конструкции вашей системы управления движением.
Все продажи индивидуализированного или модифицированного двигателя переменного тока не подлежат отмене и возврату, и для каждого запроса клиент должен подписывать соглашение NCNR. Все продажи, включая индивидуальный двигатель переменного тока, осуществляются в соответствии со стандартными положениями и условиями Anaheim Automation и заменяют любые другие явно выраженные или подразумеваемые условия, включая, помимо прочего, любые подразумеваемые гарантии.
Anaheim Automation заказывает линейку продуктов AC Motor разнообразно: компании, эксплуатирующие или проектирующие автоматизированное оборудование или процессы, которые включают в себя пищевую, косметическую или медицинскую упаковку, требования к маркировке или защите от несанкционированного вскрытия, сборку, конвейер, погрузочно-разгрузочные работы, робототехнику, специальную съемку и т. Д. проекционные эффекты, медицинская диагностика, устройства контроля и безопасности, управление потоком насосов, изготовление металла (станки с ЧПУ) и модернизация оборудования. Многие OEM-заказчики просят, чтобы мы использовали двигатели переменного тока «частной торговой марки», чтобы их клиенты оставались верными им при обслуживании, замене и ремонте.
Тест двигателя переменного тока
В: Какие три основных типа электродвигателей переменного тока предлагает Anaheim Automation?
A: Индукционные, синхронные и промышленные
Q: Каковы компоненты частотно-регулируемого привода?
A: Частотно-регулируемый привод включает двигатель переменного тока, контроллер и интерфейс оператора.
В: Какой двигатель обычно используется в частотно-регулируемом приводе?
A: Трехфазный асинхронный двигатель
В: Каковы основные компоненты двигателя переменного тока?
A: Стационарный статор, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутренний ротор, прикрепленный к выходному валу.
В: Почему необходимо подключать конденсатор к асинхронному двигателю переменного тока?
A: Любой двигатель ACP-M, считающийся однофазным асинхронным двигателем, является двигателем с конденсаторным приводом. Следовательно, для его запуска необходимо создать вращающееся магнитное поле. Конденсаторы создают источник питания с фазовым сдвигом, который необходим для создания необходимого вращательного магнитного поля. С другой стороны, трехфазные двигатели всегда подают питание с разными фазами, поэтому им не нужны конденсаторы.
В: Что подразумевается под реверсивным двигателем, рассчитанным на 30 минут?
A: Двигатель рассчитан на оптимальную работу не более 30 минут. Если работать постоянно, двигатель перегорит.
Часто задаваемые вопросы по двигателям переменного тока:
В: Почему следует выбрать трехфазный двигатель вместо однофазного?
A: Однофазные двигатели переменного тока мощностью более 10 л.с. (7,5 кВт) обычно не так распространены. Трехфазные двигатели менее вибрируют, что продлевает срок их службы по сравнению с однофазными двигателями той же мощности, используемыми в тех же условиях.
В: В чем разница между частотно-регулируемым приводом и частотно-регулируемым приводом?
A: Приводы с переменной частотой (VFD) обычно относятся только к приводам переменного тока, в то время как приводы с регулируемой скоростью (VSD) могут относиться либо к приводу переменного тока, либо к приводу постоянного тока. VFD управляет скоростью двигателя переменного тока, изменяя частоту двигателя. С другой стороны, преобразователи частоты изменяют напряжение для управления двигателем постоянного тока.
В: Могу ли я изменить направление вращения асинхронного двигателя переменного тока, если я подключил его, как показано в каталоге, например, ACP-M-4IK25N-AU?
A: Да, можно.Однако перед переключением направления убедитесь, что двигатель полностью остановлен. Если требуется немедленное реверсирование, реверсивный двигатель лучше подходит для данной области применения; например ACP-M-4RK25N-AU.
В: Можно ли изменить скорость асинхронных двигателей переменного тока и реверсивных двигателей?
A: Частота источника питания определяет скорость однофазных (переменного тока) асинхронных и реверсивных двигателей. Если ваше приложение требует изменения скорости, рекомендуется использовать двигатель с регулировкой скорости.
В: Будет ли временное хранение моего асинхронного двигателя переменного тока при температуре от 0 ° F до -20 ° F создавать какие-либо проблемы?
A: Резкие перепады температуры могут привести к конденсации влаги внутри двигателя. В этом случае компоненты могут заржаветь, что значительно сократит срок службы. Постарайтесь избежать образования конденсата.
В: Это плохо, если мой асинхронный двигатель переменного тока сильно нагревается?
A: При преобразовании электрической энергии во вращательное движение внутри двигателя выделяется тепло, что делает его горячим.Температура двигателя переменного тока равна повышению температуры, вызванному потерями в двигателе, плюс температура окружающей среды. Если температура окружающей среды составляет 85 ° F, а внутренние потери в двигателе составляют 90 ° F (32 ° C), поверхность двигателя будет 175 ° F (79 ° C). Это не типично для маленького мотора.
В: Почему некоторые редукторы электродвигателя переменного тока выводят выходной сигнал противоположно двигателю, а другие – в том же направлении?
A: Редукторы снижают скорость двигателя от 1/3 до 1/180 (для асинхронных двигателей переменного тока.) Это снижение скорости является результатом использования нескольких передач; количество передач в зависимости от величины снижения скорости. Однако вращение последней шестерни определяет направление выходного вала.
В: Будет ли асинхронный двигатель переменного тока подвержен сильным колебаниям напряжения питания?
A: Напряжение источника питания влияет на крутящий момент, создаваемый двигателем. Крутящий момент примерно в два раза больше напряжения источника питания. Таким образом, при использовании двигателей с большими колебаниями напряжения питания важно помнить, что создаваемый крутящий момент будет изменяться.
50 Гц v 60 Гц | КСБ
Источники питания 50 Гц и 60 Гц наиболее часто используются в международных энергосистемах. В некоторых странах (регионах) обычно используется электросеть с частотой 50 Гц, в то время как в других странах используется электросеть с частотой 60 Гц.
- Переменный ток (AC) периодически меняет направление тока.
- Цикл – это время циклического изменения тока.
- Частота – это время изменения тока в секунду в герцах (Гц).
- Направление переменного тока изменяется 50 или 60 циклов в секунду, в соответствии со 100 или 120 изменениями в секунду, тогда частота составляет 50 Гц или 60 Гц.
ЧТО ТАКОЕ ГЕРЦ?
Герц, или коротко Гц, – основная единица измерения частоты в ознаменование открытия электромагнитных волн немецким физиком Генрихом Рудольфом Герцем. В 1888 году немецкий физик Генрих Рудольф Герц (22 февраля 1857 г. – 1 января 1894 г.) первым подтвердил существование радиоволн и внес большой вклад в электромагнетизм, поэтому единица измерения частоты в системе СИ названа в честь Герца. его.
ДЛЯ ЧЕГО ИСПОЛЬЗУЕТСЯ Hz?
Гц (Герц) – это единица измерения времени цикла вибрации электрической, магнитной, акустической и механической вибрации, т.е.е. количество раз в секунду (цикл / сек).
ЧТО ТАКОЕ 50 ГЕРЦ?
50 Гц (Гц) означает, что ротор генератора вращается 50 циклов в секунду, ток изменяется 50 раз в секунду вперед и назад, направление изменяется 100 раз. Это означает, что напряжение изменяется с положительного на отрицательное и с отрицательного на положительное напряжение, этот процесс преобразуется 50 раз в секунду. Электричество 380 В переменного тока и 220 В переменного тока имеют частоты 50 Гц.
Частота вращения двухполюсного синхронного генератора 50 Гц составляет 3000 об / мин.Частота переменного тока определяется числом полюсов генератора p и скоростью n , Гц = p * n /120. Стандартная частота сети составляет 50 Гц, что является постоянным значением. Для 2-полюсного двигателя частота вращения n = 50 * 120/2 = 3000 об / мин; для 4-х полюсного двигателя частота вращения n = 50 * 120/4 = 1500 об / мин.
ЗАЧЕМ ИСПОЛЬЗОВАТЬ 50 ГЕРЦ?
При увеличении частоты потребление меди и стали в генераторе и трансформаторе уменьшается, а также уменьшается вес и стоимость, но при этом увеличиваются индуктивности электрического оборудования и линии передачи, уменьшаются емкости и увеличиваются потери, тем самым снижение эффективности передачи. Если частота слишком низкая, материалы электрооборудования увеличатся, а также станут тяжелыми и дорогостоящими, и огни будут явно мигать. Практика показала, что использование частот 50 Гц и 60 Гц является приемлемым.
МОЖЕТ ЛИ МОТОР 50 ГЕРЦ РАБОТАТЬ НА 60 ГЕРЦ?
Так как формула для управления синхронной скоростью трехфазного двигателя равна n = (120 * Гц ) / p , если это 4-полюсный двигатель, то при 50 Гц скорость будет 1500 Об / мин, тогда как при 60 Гц скорость будет 1800 об / мин.Поскольку двигатели являются машинами с постоянным крутящим моментом, то, применив формулу л.с. = ( крутящий момент * n ) / 5252, вы можете увидеть, что при увеличении скорости на 20% двигатель также сможет производить 20% больше лошадиных сил. Двигатель сможет создавать номинальный крутящий момент на обеих частотах 50/60 Гц. Применяется только в том случае, если соотношение В / Гц является постоянным, что означает, что при 50 Гц напряжение питания должно быть 380 В, а при 60 Гц напряжение питания потребуется. составлять 460 В. В обоих случаях отношение В / Гц равно 7.6 В / Гц.
ЧТО ТАКОЕ 60 ГЕРЦ?
При 60 Гц ротор генератора вращается 60 циклов в секунду, ток меняется 60 раз в секунду вперед и назад, направление меняется 100 раз. Это означает, что напряжение изменяется с положительного на отрицательное и с отрицательного на положительное напряжение, этот процесс преобразуется 60 раз в секунду. Электричество 480 В переменного тока и 110 В переменного тока имеют частоты 60 Гц.
Скорость двухполюсного синхронного генератора 60 Гц составляет 3600 об / мин. Частота переменного тока определяется числом полюсов генератора p и скоростью n, частот.= р * п / 120. Стандартная частота сети составляет 60 Гц, что является постоянным значением. Для 2-полюсного двигателя частота вращения n = 60 * 120/2 = 3600 об / мин; для 4-полюсного двигателя частота вращения n = 60 * 120/4 = 1800 об / мин.
КАК ИЗМЕНИТЬ 60 Гц НА 50 Гц
Преобразователь частоты может преобразовывать постоянную частоту (50 Гц или 60 Гц) переменного тока в переменную частоту, переменное напряжение через преобразование переменного → постоянного → переменного тока, выводить чистую синусоидальную волну, и регулируемая частота и напряжение. Это отличается от частотно-регулируемого привода, который предназначен только для управления скоростью двигателя, а также от обычного стабилизатора напряжения.Идеальный источник питания переменного тока – это стабильная частота, стабильное напряжение, сопротивление примерно равно нулю и форма волны напряжения – чистая синусоида (без искажений). Выходной сигнал преобразователя частоты очень близок к идеальному источнику питания, поэтому все больше и больше стран используют источник питания преобразователя частоты в качестве стандартного источника питания, чтобы обеспечить наилучшую среду электропитания для приборов для оценки их технических характеристик.
50 Гц против 60 Гц ПРИ РАБОЧЕЙ СКОРОСТИ
Основная разница между 50 Гц (Герцы) и 60 Гц (Герцы) просто состоит в том, что частота 60 Гц на 20% выше.Для генератора или насоса с асинхронным электродвигателем (простыми словами) это означает 1500/3000 об / мин или 1800/3 600 об / мин (для 60 Гц). Чем ниже частота, тем меньше потери в стали и потери на вихревые токи. Уменьшите частоту, скорость асинхронного двигателя и генератора будет ниже. Например, при 50 Гц генератор будет работать со скоростью 3000 об / мин против 3600 об / мин при 60 Гц. Механические центробежные силы будут на 20% выше в случае 60 Гц (стопорное кольцо обмотки ротора должно выдерживать центробежную силу при проектировании).
Но с более высокой частотой выходная мощность генератора и асинхронных двигателей будет выше для двигателя / генератора того же размера из-за более высокой скорости на 20%.
50 Гц VS 60 Гц ПО КПД
Конструкция таких магнитных машин такова, что они действительно одно или другое. В некоторых случаях это может сработать, но не всегда. Переключение между разными частотами источника питания, безусловно, повлияет на эффективность и может означать необходимость снижения номинальных значений. Между системами 50 Гц и 60 Гц существует небольшая реальная разница, если оборудование спроектировано соответствующим образом для этой частоты.
Важнее иметь стандарт и придерживаться его. Более существенное различие состоит в том, что системы 60 Гц обычно используют 110 В (120 В) или около того для внутреннего источника питания, в то время как системы 50 Гц, как правило, используют 220 В, 230 В и т. Д. Для разных стран. Это приводит к тому, что домашняя проводка должна быть в два раза больше сечения для системы 110 В при той же мощности. Однако оптимальной считается система около 230 В (размер провода и требуемая мощность по сравнению с безопасностью).
60 Гц ЛУЧШЕ, ЧЕМ 50 Гц?
Нет большой разницы между 50 Гц и 60 Гц, в принципе ничего плохого или хорошего.Для независимого энергетического оборудования, такого как корабли, самолеты или изолированные области, такие как газовые / масляные установки, может быть разработана любая частота (например, 400 Гц) в зависимости от пригодности.
Источник: http://www.gohz.com/difference-between-50hz-and-60hz-frequency
РАБОТА ДВИГАТЕЛЕЙ 60 ГЦ, 50 ГЦ быть специально спроектированным и изготовленным для 50 Гц. Часто доставка продуктов с частотой 50 Гц такова, что желателен альтернативный образ действий с использованием продуктов с частотой 60 Гц.
Общие правила эксплуатации двигателей 60 Гц в системах 50 Гц касаются того факта, что напряжение за цикл должно оставаться постоянным при любом изменении частоты. Кроме того, поскольку двигатель будет работать только на пяти шестых от скорости 60 Гц, выходная мощность в лошадиных силах при 50 Гц ограничена максимум пятью шестыми от номинальной мощности.
Источник: U.S. Motors http://www.usmotors.com/TechDocs/ProFacts/50Hz-Operation-60Hz.aspx
НАЧАЛО РАБОТЫ ОБОРУДОВАНИЯ 50 ГЦ ПРИ 60 ГЦ?
Машины, импортируемые в США, часто рассчитаны на рабочую частоту 50 Гц, если только они не предназначены для работы на частоте 60 Гц.. Это может быть проблематично для электродвигателей. Это особенно актуально при работе с насосом и вентилятором.
Часто дистрибьюторы и покупатели этого оборудования предполагают, что производитель оригинального оборудования принял это во внимание. Это распознается, когда двигатели поступают в ремонт, разгоряченные от перегрузки.
Преобразователь частоты (VFD) может использоваться для правильного решения проблем, связанных с работой оборудования с частотой 50 Гц и частотой 60 Гц.
Скорость двигателя прямо пропорциональна рабочей частоте.Изменение рабочей частоты насоса или вентилятора увеличивает рабочую скорость и, следовательно, увеличивает нагрузку на двигатель. Нагрузка насоса или вентилятора – это нагрузка с переменным крутящим моментом. Нагрузка с переменным крутящим моментом зависит от куба скорости.
Двигатель 50 Гц, работающий на частоте 60 Гц, будет пытаться вращаться с увеличением скорости на 20%. Нагрузка станет в 1,23 раза (1,2 x 1,2 x 1,2) или в 1,73 раза больше (173%), чем на исходной частоте. Переконструировать двигатель для такого увеличения мощности невозможно.
Одним из решений может быть модификация приводного оборудования для уменьшения нагрузки. Это может включать в себя обрезку диаметра крыльчатки вентилятора или крыльчатки для обеспечения такой же производительности при 60 Гц, как и у агрегата при 50 Гц. Для этого потребуется консультация с производителем оборудования. Есть и другие соображения, связанные с увеличением скорости помимо увеличения нагрузки. К ним относятся механические ограничения, пределы вибрации, рассеивание тепла и потери.
Лучшее решение – использовать двигатель с той скоростью, на которую он был рассчитан.Если это 50 Гц, то можно установить частотно-регулируемый привод. Эти приводы преобразуют сетевую мощность 60 Гц в мощность 50 Гц на клеммах двигателя.
Это решение дает множество других преимуществ. Эти преимущества включают в себя:
- повышенный КПД
- регулирование мощности (часто лучше, чем предоставит электросеть)
- защита двигателя от перегрузки по току
- улучшенное управление скоростью
- программируемый выход для выполнения других задач
- повышенная производительность.
Источник: Precision Electric, Inc., Автор: Крейг Чемберлин , 25 ноября 2009 г.
http://www.precision-elec.com/faq-vfds-are-there- вещи, которые следует учитывать при эксплуатации-50-Гц-оборудование-при-60-Гц /
Страница не найдена – Промышленные устройства и решения
Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как в качестве общих электронных устройств, оргтехники, оборудования для передачи данных и связи, измерительных приборов, бытовой техники и аудио-видео оборудования.Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания в достаточной степени проверит пригодность наших продуктов для этого применения.
Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.
Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения. Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.
Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.
Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.
Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.
Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению.Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.
<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.
Уведомление о передаче полупроводникового бизнеса
Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, перейдет под эгидой Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей полупроводниковая продукция, размещенная на этом веб-сайте, будет считаться продукцией, произведенной NTCJ, после 1 сентября 2020 года. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковых продуктах, размещенных на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.
Трехфазный двигатель, работающий от однофазного источника питания
Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.) .), особенно в бытовой технике.В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:
- Перемотка мотора
- Купить GoHz VFD
- Купить преобразователь частота / фаза
I: Перемотка двигателя
Необходимо выполнить некоторые работы для преобразования работы трехфазного двигателя в однофазное питание. Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.
Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. . Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора.В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле. Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.
Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе.В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз. Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на Рисунке 1.
Малогабаритные двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.
Если вы не хотите повышать напряжение, блок питания 220 В также может использовать это. Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.
Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.
На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .
Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5).Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.
Значение резистора доступа R (рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, который в 0,1-0,12 раза больше пускового момента.
Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ – это исходный номинальный ток двигателя, номинальное напряжение и скачки мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор. Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель перегорит.
Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie.Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.
Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка выполняется легко. Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.
II: Купите GoHz VFD
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью.Однофазный преобразователь частоты в трехфазный – лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать от нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная. Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы могут быть настроены в соответствии с конкретными двигателями.
Видео с подключением однофазного и трехфазного частотно-регулируемого привода с частотой ГГц
Преимущества использования частотно-регулируемого привода с частотой дискретизации 1 ГГц для трехфазного двигателя:
- Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено на несколько секунд или даже десятки.
- Функция бесступенчатого регулирования скорости для обеспечения оптимальной работы двигателя.
- Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности. ЧРП
- имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций.
- Может быть легко запрограммирован с клавиатуры для автоматического управления.
III: Купите преобразователь частоты / фазы
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.
Статья по теме: Воздействие двигателя 60 Гц (50 Гц), используемого на блоке питания 50 Гц (60 Гц)
Блок питания от 220 В до 24 В, 15 А, 750 Вт, УПРАВЛЕНИЕ СКОРОСТЬЮ ДВИГАТЕЛЯ постоянного тока
youtube.com/embed/NNLmAYVIDyU” frameborder=”0″ allowfullscreen=””/>
Выбор блока питания
Я использую СТАРЫЙ КОМПЬЮТЕРНЫЙ БП около 300w китайского производства. Перерезать всю проволоку не надо.
Возьмите необходимый компонент
Первый я использовал железный припой для двух больших радиаторов. Мы используем только радиатор, все транзисторы и МОП-транзисторы, которые мы не используем после этого, я беру 2 конденсатора 330 мкФ / 200 В, конденсатор 105
Трансформатор и индуктор
У нас есть трансформатор, индуктор, 2 больших конденсатора 330uF / 200v, 2 радиатора, 2 резистора 330K, 1 предохранитель 5A / 250V, 1 NTC MF725D9.Трансформатор не имеет вывода CT. Индуктор имеет 6 контактов. 2 контакта небольшого провода, который мы не используем.
Купите больше компонентов
Нам нужно купить какой-то компонент.
2 конденсатора 1 мкФ / 275в.
Трансформатор с 1 линейным фильтром.
1 Мостик диодный KBL610.
1 Конденсатор 220 мкФ / 16 В
1 Конденсатор 1 мкФ / 50 В
1 диод UF4007
1 Резистор 47К / 5Вт
1 Резистор 10К
2 Резистор 22 Ом
1 конденсатор 1n (102)
2 Mosfet irf730 (irf740, irf840..)
1 Двойной диод 20100CT
1 Конденсатор 100н (104)
1 резистор 10К
1 светодиод 5 мм
1 конденсатор 1000 мкФ / 50 В
1 розетка 8 контактов
1 микросхема IR2153
Для получения дополнительной информации: скопируйте имя компонента и вставьте его в поиск изображений Google
Схема и печатная плата
Схема i, разработанная Eagle Software, заставляет печатную плату использовать программное обеспечение Sprintlayout. Я прилагаю PDF-файл, чтобы вы сделали его дома сами.Если вам нужна хорошая печатная плата, вы можете загрузить файл gerber на https://jlcpcb.com/m, я всегда делаю печатную плату онлайн с https://jlcpcb. com/m Они дешевые и хорошего качества. Вы можете скачать их все ниже файла Gerber, схемы и печатной платы в PDF-файле
. https://drive.google.com/file/d/1wT_dql6bW_GdBXzPENKiXInLvPPmjw78/view
Припой компонент, кое-что о Контроллер скорости двигателя постоянного тока 750 Вт 24 В
В верхней части печатной платы у нас есть название компонента, вы просто помещаете компонент и припой.Контроллер скорости двигателя 750 Вт 24 В постоянного тока, который я показывал вам в предыдущем проекте, вы можете проверить еще раз для получения более подробной информации
Firts Test 24V 15 Источник питания
Для первого теста. Мы должны подключить лампочку 220V / 100W. Если ваш проект провалится, загорится свет, и вы будете в безопасности.
Подключение источника питания постоянного тока 24 В / 15 А и регулятора скорости двигателя постоянного тока 24 В 750 Вт
Подключите источник питания 24 В / 15 А постоянного тока и регулятор скорости двигателя постоянного тока 24 В, 750 Вт.