Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Режимы работы биполярного транзистора | Основы электроакустики

Биполярный транзистор – полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис.7.1, а и б показаны их условные обозначения.

 Рис.7.1. Биполярные  транзисторы  и  их  диодные  эквивалентные   схемы:  а) p-n-p, б) n-p-n транзистор

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис.7.2.

Рис.7.2. Полярность включения: а) n-p-n, б) p-n-p транзистора 

Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

1. Коллектор имеет более положительный потенциал, чем эмиттер.

2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.7.1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением: UБ ≈ UЭ+0,6В; (UБ = UЭ + UБЭ).    

3. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.

4. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы. Соотношение токов коллектора и эмиттера приблизительно равно 

IК = αIЭ,    где α=0,95…0,99 – коэффициент передачи тока эмиттера. Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 7.2, а) представляет собой базовый ток IБ = IЭ – IК.    Ток коллектора зависит от тока базы в соответствии с выражением: IК = βIБ,   где β=α/(1-α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

 

 

Режимы работы и схемы включения биполярных транзисторов

 

Анализируя возможность использования биполярных транзисторов для усиления электрических сигналов, мы ограничивались только одним частным случаем подачи на электроды транзистора определенных напряжений и не рассматривали некоторые достаточно важные физические процессы в полупроводнике. Но помимо уже описанной ситуации возможны и другие, приводящие, например, к протеканию в \(n\)-\(p\)-\(n\)-структуре тока не от коллектора к эмиттеру, а, наоборот, от эмиттера к коллектору и т. п. В общем случае для биполярного транзистора возможны четыре устойчивых состояния (режима

). Они отличаются друг от друга тем, в каком состоянии (прямое или обратное смещение) находятся эмиттерный и коллекторный переходы транзистора. Приведем их полное описание.

Активный режим — соответствует случаю, рассмотренному при анализе усилительных свойств транзистора. В этом режиме прямосмещенным оказывается эмиттерный переход, а на коллекторном присутствует обратное напряжение. Именно в активном режиме транзистор наилучшим образом проявляет свои усилительные свойства. Поэтому часто такой режим называют основным или нормальным.

Инверсный режим — полностью противоположен активному режиму, т.е. обратносмещенным является эмиттерный переход, а прямосмещенным — коллекторный. В таком режиме транзистор также может использоваться для усиления. Однако из-за конструктивных различий между областями коллектора и эмиттера усилительные свойства транзистора в инверсном режиме проявляются гораздо хуже, чем в режиме активном. Поэтому на практике инверсный режим практически не используется.

Режим насыщения (режим двойной инжекции) — оба перехода транзистора находятся под прямым смещением. В этом случае выходной ток транзистора не может управляться его входным током, т.е. усиление сигналов невозможно. Режим насыщения используется в ключевых схемах, где в задачу транзисторов входит не усиление сигналов, а замыкание/размыкание разнообразных электрических цепей.

Режим отсечки — к обоим переходам подведены обратные напряжения. Такой режим также используется в ключевых схемах. Поскольку в нем выходной ток транзистора практически равен нулю, то он соответвует размыканию транзисторного ключа.

Заметим, что кроме названных основных рабочих режимов в транзисторе возможен режим пробоя на различных переходах. Обычно он возникает только в случае аварии и не используется в работе, однако существуют специальные лавинные биполярные транзисторы, в которых режим пробоя является как раз основным рабочим режимом.

Помимо режима работы для эксплуатации биполярных транзисторов имеет значение то, каким образом транзистор включен в каскад усиления (как поданы питающие напряжения на его электроды, в какие цепи включены нагрузка и источник сигнала). Различают три основных способа (рис. 1.3):

схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ).

 

Рис. 1.3. Схемы включения биполярных транзисторов (направления токов соответствуют активному режиму работы)

 

 

< Предыдущая   Следующая >

Режимы работы биполярного транзистора схемы

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.

Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.

Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).

Устройство биполярного транзистора.

Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.

Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.

В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.

Принцип работы биполярного транзистора.

При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.

Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.

Режимы работы.

Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:

  1. отсечка;
  2. активный режим;
  3. насыщение;
  4. барьерный режим.

Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.

1. Отсечка.

В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».

2. Активный режим.

В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.

3. Насыщение.

В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.

4. Барьерный режим.

Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.

Схемы включения биполярных транзисторов.

Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.

При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.

Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.

При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.

Основные параметры биполярных транзисторов:

  1. Максимально допустимый постоянный ток коллектора;
  2. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
  3. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
  4. Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
  5. Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
  6. Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
  7. Статический коэффициент передачи тока;
  8. Напряжение насыщения между коллектором и эмиттером;
  9. Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
  10. Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
  11. Граничная частота коэффициента передачи тока;
  12. Коэффициент шума;
  13. Емкость коллекторного перехода;
  14. Максимально допустимая температура перехода.

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме об

Входной характеристикой является зависимость:

IЭ = f(UЭБ) при UКБ = const (а).

Выходной характеристикой является зависимость:

IК = f(UКБ) при IЭ = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ; 2 – слабая зависимость Iк от UКБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

Характеристики транзистора, включённого по схеме оэ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (а).

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы – усиление, генерация.

Усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Ек, управляемый элемент – транзистор VT и резистор Rк. Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.

Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя IБ = Ек/RБ. С помощью резистора Rк создается выходное напряжение. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

5)Что такое полевой транзистор? Какие виды бывают?

Полевой транзистор (ПТ) – полупроводниковый прибор, в котором ре-

гулирование тока осуществляется изменением проводимости проводящего

канала с помощью поперечного электрического поля. В отличие от биполяр-

ного ток полевого транзистора обусловлен потоком основных носителей.

Электроды полевого транзистора называют истоком (И), стоком (С) и

затвором (З). Управляющее напряжение прикладывается между затвором и ис-

током. От напряжения между затвором и истоком зависит проводимость кана-

ла, следовательно, и величина тока. Таким образом, полевой транзистор можно

рассматривать как источник тока, управляемый напряжением затвор-исток. Ес-

ли амплитуда изменения управляющего сигнала достаточно велика, сопротив-

ление канала может изменяться в очень больших пределах. В этом случае поле-

вой транзистор можно использовать в качестве электронного ключа.

По конструкции полевые транзисторы можно разбить на две группы:

-с управляющим p–n-переходом;

-с металлическим затвором, изолированным от канала диэлектриком.

Транзисторы второго вида называют МДП-транзисторами (металл –

диэлектрик – полупроводник). В большинстве случаев диэлектриком является

двуокись кремния SiO2, поэтому обычно используется название МОП-

транзисторы (металл – окисел – полупроводник). В современных МОП-

транзисторах для изготовления затвора часто используется поликристаллический

кремний. Однако название МОП-транзистор используют и для таких приборов.

Проводимость канала полевого транзистора может быть электронной

или дырочной. Если канал имеет электронную проводимость, то транзистор

называют n-канальным. Транзисторы с каналами, имеющими дырочную про-

водимость, называют p-канальными. В МОП- транзисторах канал может быть

обеднён носителями или обогащён ими. Таким образом, понятие «полевой

транзистор» объединяет шесть различных видов полупроводниковых прибо-

МОП-транзисторы находят широкое применение в современной электро-

нике. В ряде областей, в том числе в цифровой электронике, они почти полно-

стью вытеснили биполярные транзисторы. Это объясняется следующими при-229

чинами. Во-первых, полевые транзисторы имеют высокое входное сопротивле-

ние и обеспечивают малое потребление энергии. Во-вторых, МОП-транзисторы

занимают на кристалле интегральной схемы значительно меньшую площадь,

чем биполярные. Поэтому плотность компоновки элементов в МОП-

интегральных схемах значительно выше. В-третьих, технологии производства

интегральных схем на МОП-транзисторах требуют меньшего числа операций,

чем технологии изготовления ИС на биполярных транзисторах.

6)Что такое стабилитрон? Объясните принцип его работы. Нарисуйте его вольт-амперные характеристики.

Стабилитронами называют полупроводниковые диоды, использующие особенность обратной ветви вольтамперной характеристики на участке пробоя изменяться в широком диапазоне изменения токов при сравнительно небольшом отклонении напряжения. Это свойство широко используется при создании специальных устройств – стабилизаторов напряжения.

Напряжение пробоя стабилитрона зависит от ширины р-n-перехода, которая определяется удельным сопротивлением материала полупроводника. Поэтому существует определенная зависимость пробивного напряжения (т. е. напряжения стабилизации) от концентрации примесей.

Низковольтные стабилитроны выполняют на основе сильно легированного кремния. Ширина р-n-перехода в этом случае получается очень маленькой, а напряженность электрического поля потенциального барьера – очень большой, что создает условия для возникновения туннельного пробоя. При большой ширине р-n-перехода пробой носит лавинный характер.

Вольт-амперная характеристика стабилитрона представлена на рис. 6.1 Рабочий ток стабилитрона (его обратный ток) не должен превышать максимально допустимого значения во избежание перегрева полупроводниковой структуры и выхода его из строя.

Рис. 6.1. Конструкция корпуса (а), вольт-амперная характеристика и условное графическое обозначение стабилитрона

Существенной особенностью стабилитрона является зависимость его напряжения стабилизации от температуры. В сильно легированных полупроводниках вероятность туннельного пробоя с увеличением температуры возрастает. Поэтому напряжение стабилизации у таких стабилитронов при нагревании уменьшается, т. е. они имеют отрицательный температурный коэффициент напряжения стабилизации (ТКН)

.

В слабо легированных полупроводниках при увеличении температуры уменьшается длина свободного пробега носителей, что приводит к увеличению порогового значения напряжения, при котором начинается лавинный пробой. Такие стабилитроны имеют положительный ТКН. (рис. 6.2).

Рис. 6.2. Температурная зависимость вольт-амперной характеристика стабилитрона

Для устранения этого недостатка и создания термокомпенсированных стабилитронов последовательно в цепь стабилитрона включают обычные диоды в прямом направлении. Как известно, у обычных диодов в прямом направлении падение напряжения на р-n-переходе при нагревании уменьшается. И если последовательно со стабилитроном (рис. 6.3) включить диодов в прямом направлении, где , (– изменение прямого падения напряжения на диоде при нагревании отдо), то можно почти полностью компенсировать температурную погрешность стабилитрона.

Рис. 6.3. Термокомпенсация стабилитрона

Основные параметры стабилитронов:

Напряжение стабилизации – напряжение на стабилитроне при про-текании через него тока стабилизации;

Ток стабилизации – значение постоянного тока, протекающего через стабидитрон в режиме стабилизации;

Дифференциальное сопротивление стабилитрона – дифференциальное сопротивление при заданном значении тока стабилизации, т. е.;

Температурный коэффициент напряжения стабилизации – отношение относительного изменения напряжения стабилизации стабилитрона к абсолютному изменению температуры окружающей среды при постоянном значении тока стабилизации:;

Предельные параметры стабилитронов:

Минимально допустимый ток стабилизации – наименьший ток через стабилитрон, при котором напряжение стабилизации находится в заданных пределах;

Максимально допустимый ток стабилизации – наибольший ток через стабилитрон, при котором напряжение стабилизациинаходится в заданных пределах, а температура перехода не выше допустимой;

Максимально допустимая рассеиваемая мощность – мощность, при которой не возникает теплового пробоя перехода.

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили. Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Инверсный режим работы транзистора

У транзистора между эмиттерным и коллекторным переходами нет принципиальных различий. Поэтому транзистор допускает инверсное включение, при котором коллектор выполняет роль эмиттера и наоборот (рис. 3.9).

Рис. 3.9. Инверсное включение транзистора

При инверсном включении улучшаются параметры транзистора:

уменьшается по модулю остаточное напряжение Uкэ  в режиме насыщения, что очень важно для транзисторных ключей, работающих в режимах малых токов;

уменьшается обратный ток Iэо в режиме отсечки.

Вместе с тем из-за не симметрии эмиттерного и коллекторного переходов уменьшается коэффициент усиления тока β. Это вызвано различием площадей, указанных p-n-переходов.

Статические характеристики инверсного режима подобны соответствующим характеристикам нормального режима.

Возможность прямого и инверсного включений транзистора позволяет упростить ряд устройств.

3.2.6. Максимально допустимые параметры транзистора

Превышение максимально допустимых параметров прибора приводит к нарушению режима нормальной работы, а часто и выводит его из строя.

Основными   максимально  допустимыми            параметрами транзистора являются:

а)         максимально  допустимый   ток      коллекторного           перехода

max

к

, причѐм максимально допустимый ток коллектора в режиме

насыщения     горазда           больше            максимально  допустимого  тока коллектора в режиме усиления;

б) максимально допустимое напряжение между коллектором

max

и эмиттером транзистора

Uкэ     ;

в)         максимально  допустимая    мощность,      рассеиваемая

max

коллекторным переходом Pк           ;

база

г) максимально допустимое напряжение перехода эмиттер

max

эб        ;

д) максимально допустимое напряжение между коллектором

Umax

и базой

кб        .

На рис. 3.7,в показано семейство статических выходных характеристик с нанесенными на них границами максимально допустимых   режимов. Линия максимально допустимой мощности

определяется выражением:

max

I           к

к          .

кэ

Область          гарантированной      надежной       работы            транзистора располагается ниже границы, очерченной штриховкой;

е)         диапазон        рабочих          температур:    для      германиевых транзисторов (-600…+250), для кремниевых (-1000…+1200).

3.3. Полевые транзисторы

В полевых транзисторах (ПТ) управление выходным током осуществляется электрическим полем, создаваемым внешним входным напряжением, а не током, как в биполярных транзисторах.

С другой стороны, работа ПТ основана на использовании носителей заряда одного знака: только дырок или только электронов, поэтому такие транзисторы называют униполярными.

Существуют два основных вида ПТ:

полевые транзисторы с p-n-переходом;

полевые транзисторы с изолированным затвором, которые иначе называют МДП транзисторы или МОП транзисторы.

Каждый из этих двух видов ПТ может быть n-канальным и

p-канальным.

Материал взят из книги Полупроводниковые приборы в системах транспортной телематики (Асмолов, Г.И.)

Активный режим работы биполярного транзистора

Добавлено 30 сентября 2017 в 15:13

Сохранить или поделиться

Когда транзистор находится в полностью выключенном (закрытом) состоянии (как разомкнутый ключ), говорится, что он в режиме отсечки. И наоборот, когда он полностью проводит ток между эмиттером и коллектором (пропускает ток такой величины, какую могут позволить источник питания и нагрузка), говорится, что он находится в режиме насыщения. Эти два режима работы были изучены ранее при использовании транзистора в качестве ключа.

Однако биполярные транзисторы не должны ограничиваться этими двумя экстремальными режимами работы. Как мы узнали в предыдущем разделе, ток базы «открывает клапан» для ограниченного количества тока через коллектор. Если это ограничение для управляемого тока больше нуля, но меньше максимального значения, разрешенного источником питания и схемой нагрузки, транзистор «удерживает» значение тока коллектора в режиме где-то между режимами отсечки и насыщения. Этот режим работы называется активным режимом.

По аналогии с автомобилем: отсечка – это состояние отсутствия движущей силы, создаваемой механическими частями автомобиля, чтобы заставить его двигаться. В режиме отсечки включается тормоз (нулевой ток базы), предотвращающий движение (ток коллектора). Активный режим – это режим круиз-контроль автомобиля на постоянной контролируемой скорости (постоянный, контролируемый ток коллектора), которую устанавливает водитель. Насыщение – это подъем автомобиля на крутой холм, который мешает ему двигаться так быстро, как пожелает водитель. Другими словами «насыщенный» автомобиль – это автомобиль с полностью вдавленной в пол педалью газа (ток базы допускает протекание тока коллектора, большего, чем может быть обеспечено схемой источника питания и нагрузки).

Давайте соберем схему для моделирования в SPICE, чтобы продемонстрировать, что происходит, когда транзистор находится в активном режиме работы.

Схема для SPICE моделирования «активного режима» (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 2 0.05 
.plot dc i(vammeter) 
.end 

«Q» – это стандартное буквенное обозначение для транзистора на принципиальной схеме (в России по ГОСТу принято обозначение VT), так же как «R» для резистора, а «C» для конденсатора. В этой схеме у нас есть NPN-транзистор, питаемый от батареи (V1) и управляемый источником тока (I1). Источник тока – это устройство, которое выдает заданную величину тока, генерируя такое напряжение на своих выводах, которое необходимо, чтобы обеспечить точную величину тока, протекающего через него. Как известно, источники тока трудно найти в природе (в отличие от источников напряжения, которые, наоборот, пытаются поддерживать постоянное значение напряжения, выдавая необходимое значение тока для выполнения этой задачи), но могут быть смоделированы с помощью небольшого набора электронных компонентов. Как мы сейчас увидим, транзисторы сами имеют тенденцию имитировать поведение, поддерживающее постоянную величину тока, как и источники тока, с помощью своей способности стабилизировать ток на фиксированном значении.

При SPICE моделировании мы установим источник тока в постоянное значение 20 мкА, затем будем изменять напряжение источника напряжения (V1) в диапазоне от 0 до 2 вольт и наблюдать, какой ток будет проходить через него. «Фиктивная» батарея (Vамперметр) на рисунке выше с выходным напряжением 0 вольт служит только для того, чтобы предоставить SPICE программе элемент схемы для измерения тока.

Изменение напряжения коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщения

Постоянный ток базы 20 мкА устанавливает предельное значение для тока коллектора в 2 мА, что в точности в 100 раз больше. Обратите внимание, как выравнивается график тока коллектора (на рисунке выше) при изменении напряжения батареи от 0 до 2 вольт. Единственные исключение из этого совершенно ровного графика – в самом начале, когда напряжение батареи увеличивается от 0 до 0,25 вольта. На этом участке ток коллектора быстро растет от 0 до предельных 2 мА.

Посмотрим, что произойдет, если мы будем изменять напряжение батареи в более широком диапазоне, на этот раз от 0 до 50 вольт. Ток базы будем поддерживать на постоянном уровне 20 мкА (рисунок ниже).

Изменение напряжения коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2
.plot dc i(vammeter) 
.end 

Тот же результат! Ток коллектора на рисунке выше удерживается точно на значении 2 мА, хотя напряжение (V1) изменяется от 0 до 50 вольт. Из нашего примера моделирования видно, что напряжение коллектор-эмиттер мало влияет на ток коллектора, за исключением очень низких уровней (чуть выше 0 вольт). Транзистор действует как стабилизатор тока, обеспечивая протекание через коллектор тока величиной 2 мА и не более.

Теперь давайте посмотрим, что произойдет, если мы будем увеличивать управляющий ток (I1) от 20 мкА до 75 мкА, снова изменяя напряжение батареи (V1) от 0 до 50 вольт, и выводя на график значения тока коллектора (рисунок ниже).

Изменение напряжения коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает в результате постоянный ток коллектора 7,5 мА. Другие графики генерируются при изменении значений тока (i1 15u 75u 15u) в операторе анализа DC (.dc v1 0 50 2 i1 15u 75u 15u) (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 75u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2 i1 15u 75u 15u
.plot dc i(vammeter)
.end 

Неудивительно, что SPICE дает нам аналогичный график: прямая линия, закрепившаяся на этот раз на 7,5 мА – ровно в 100 раз больше тока базы – в диапазоне напряжений батареи от чуть выше 0 вольт до 50 вольт. По-видимому, ток базы является решающим фактором для тока коллектора, напряжение батареи V1 не имеет значения, если оно превышает определенный минимальный уровень.

Эта связь между напряжением и током полностью отличается от того, что мы привыкли видеть на резисторе. Для резистора ток увеличивается линейно по мере увеличения напряжения. Здесь, для транзистора, ток от эмиттера к коллектору остается ограниченным на фиксированном максимальном значении независимо от того, насколько сильно увеличивается напряжение между эмиттером и коллектором.

Часто полезно накладывать несколько характеристик зависимости ток коллектора / напряжение для разных токов базы на одном графике, как на рисунке ниже. Набор характеристик, подобный этому (для каждого значения тока базы построен отдельный график), для конкретного транзистора называется выходными характеристиками транзистора:

Зависимость тока коллектора от напряжения между коллектором и эмиттером для разных токов базы

Каждая кривая на графике отражает ток коллектора транзистора, построенный для диапазона напряжений коллектор-эмиттер, для заданного значения тока базы. Поскольку транзистор стремится действовать как стабилизатор тока, ограничивая ток коллектора до пропорции, установленной током базы, полезно выразить эту пропорцию в качестве стандартного показателя работы транзистора. В частности, отношения тока коллектора к току базы известно как коэффициент бета (обозначенный греческой буквой β):

\[\beta = {I_{коллектор} \over I_{база}}\]

β также известен как hfe или h21э

Иногда коэффициент β обозначается как "hfe" или "h21э", метка, используемая в ветви математического анализа полупроводниковых приборов, известной как «гибридные параметры» или h-параметры, которая стремится достичь точных прогнозов работы транзисторов с помощью подробных уравнений. Переменных гибридных параметров много, но каждый из них обозначается буквой "h" и конкретным индексом. Переменная "hfe" ("h21э") представляет собой просто еще один (стандартизированный) способ выражения отношения тока коллектора к току базы и взаимозаменяема с “β”. Коэффициент β является безразмерной величиной.

β для любого транзистора определяется его конструкцией: он не может быть изменен после изготовления. Редко бывает, что β у двух транзисторов одной и той же конструкции точно совпадают из-за различий физических переменных, влияющих на этот коэффициент. Если работа схемы зависит от равенства β у нескольких транзисторов, за дополнительную плату могут быть приобретены «согласованные наборы» транзисторов. Однако, как правило, проектирование с такими зависимостями считается плохой практикой.

β транзистора не остается одинаковым во всех условиях эксплуатации. Для реального транзистора коэффициент β может изменяться в 3 раза в пределах его рабочих токов. Например, транзистор с объявленным значением β, равным 50, в реальных тестах отношения Iк/Iб может дать значения от 30 до 100, в зависимости от величины тока коллектора, температуры транзистора, частоты усиливаемого сигнала и других факторов. Для целей обучения для любого заданного транзистора достаточно принимать коэффициент β постоянным; и понимать, что реальная жизнь не так проста!

Иногда для понимания полезно «моделировать» сложные электронные компоненты с помощью набора более простых и понятных компонентов. Модель на рисунке ниже используется во многих вводных текстах по электронике.

Простая диодно-резисторная модель транзистора

Эта модель отображает транзистор как комбинацию диода и реостата (переменного резистора). Ток через диод база-эмиттер управляет сопротивлением реостата коллектор-эмиттер (как подразумевается пунктирной линией, соединяющей два компонента), тем самым контролируя ток коллектора. На рисунке приведена модель NPN-транзистора, но PNP-транзистор будет отличаться не сильно (будет изменено только направление диода база-эмиттер). Эта модель преуспевает в пояснении базовой концепции усиления транзистора: как сигнал тока базы может осуществлять управление током коллектора. Однако мне эта модель не нравится, потому что она неверно передает понятие установленного значения сопротивления коллектор-эмиттер для заданного значения тока базы. Если бы она была верна, транзистор не стабилизировал бы ток коллектора, как показывают графики выходных характеристик. Вместо характеристик тока коллектора, выровненных на графике после быстрого роста по мере увеличения напряжения коллектор-эмиттер, ток коллектора продолжал бы расти прямо пропорционально напряжению коллектор-эмиттер, и мы бы увидели на графике неуклонно растущие прямые.

В более продвинутых учебниках часто встречается более подходящая модель транзистора (рисунок ниже).

Модель транзистора на основе источника тока

Она отображает транзистор в виде комбинации диода и источника тока, причем выход источника тока задается умножением тока базы на коэффициент β. Эта модель гораздо более точна при отображении истинных входных/выходных характеристик транзистора: ток базы устанавливает определенное значение тока коллектора, а не определенное сопротивление коллектор-эмиттер, как предполагает первая модель. Кроме того, эта модель предпочтительна при проведении анализа транзисторных схем, причем источник тока является хорошо понятным теоретическим компонентом. К сожалению, использование источника тока для моделирования контролирующего ток поведения транзистора может вводить в заблуждение: транзистор никогда не будет служить источником электрической энергии. Источник тока не моделирует тот факт, что его источником энергии является внешний источник питания, как у усилителя.

Подведем итоги:

  • Говорят, что транзистор находится в активном режиме, если он работает где-то между полностью открытым режимом (насыщение) и полностью закрытым режимом (отсечка).
  • Ток базы регулирует ток коллектора. Под регулированием мы подразумеваем, что ток коллектора не может превышать значение, которое устанавливаемое током базы.
  • Отношение между током коллектора и током базы называется «бета» (β) или hfe или h21э.
  • Коэффициенты β у всех транзисторов различны; β изменяется в зависимости от условий эксплуатации.

Оригинал статьи:

Теги

Активный режимБиполярный транзисторОбучениеРежим насыщенияРежим отсечкиЭлектроника

Сохранить или поделиться

7 Режим работы транзистора в схеме усилительного каскада » СтудИзба

Режим работы транзистора в схеме усилительного каскада.

В зависимости от величин постоянной составляющей входного тока ( от положения рабочей точки покоя О) транзистор может работать без отсечки и с отсечкой тока.

При отсечке, ток коллектора протекает только в течение части периода входного сигнала.

Различают пять основных режимов работы транзистора: A, B, AB, C, D.

. Режим класса А. Ток выходной цепи существует в течение всего периода сигнала.

                                                                    

                
Достоинства:

1.    Малые нелинейные искажения, поскольку входной сигнал присутствует на линейном участке сквозной (входной)   

2.    Возможность применения  как однотактных, так и в двухтактных каскадах усиления сигналов любой формы.

Недостатки:1. Низкий КПД из-за большого среднего тока , как при наличии, так и при отсутствии сигнала.

Режим А чаще всего используется в каскадах предварительного усиления.

. Режим класса B. Ток выходной цепи существует в течение половины периода входного сигнала. .

Достоинства:

1.    Высокий КПД.

2.    Высокое использование Т по току и напряжению.

Недостатки:1. Высокий коэффициент гармоник.

Режим В чаще используется в УМ, построенных по двухтактной схеме.

. Режим класса АB. В отличие от режима B рабочая точка находится в начале нелинейного участка сквозной (входной) характеристики. .

В отличие от режима класса B в режиме класса AB уменьшается коэффициент гармоник.

. Режим класса С. Рабочая точка покоя располагается левее точки пересечения сквозной (входной) характеристики с осью абсцисс. Используется в резонансных усилителях, в умножителях частоты, а также для усиления одномерных импульсных сигналов.

Ток выходной цепи отсутствует при отрицательной полуволне входного сигнала  и при его малых уровнях. Применение двухтактной схемы не позволяет получить выходной сигнал той же формы, что и выходной.

. Режим класса Д (или ключевой режим). В этом режиме усилительный элемент находится в одном из двух состояний: или полностью открыт, или полностью заперт. Потери энергии при этом минимальны, КПД100%, по пропорциональности между входящими и выходящими сигналами нет.

принцип работы и как проверить

Существуют различные виды полупроводниковых приборов – тиристоры, триоды, они классифицируются по назначению и типу конструкции. Полупроводниковые биполярные транзисторы способны переносить одновременно заряды двух типов, в то время, как полевые только одного.

Конструкция и принцип работы

Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.

Фото — мпринципиальные схемы включения

Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.

Фото — конструкция

Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).

Фото — виды биполярных триодов

По виду подключения и уровню пропускаемого питания, они делятся на:

  1. Высокочастотные;
  2. Низкочастотные.

По мощности на:

  1. Маломощные;
  2. Средней мощности;
  3. Силовые (для управления необходим транзисторный драйвер).

Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.

Фото — пример

Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.

Существуют следующие ключевые виды работы:

  1. Активный режим;
  2. Отсечка;
  3. Двойной или насыщения;
  4. Инверсионный.

Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.

Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.

Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.

Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.

Видео: как работает биполярные транзисторы

Проверка

Самый простой способ измерить h31e мощных биполярных транзисторов – это прозвонить их мультиметром. Для открытия полупроводникового триода p-n-p подается отрицательное напряжение на базу. Для этого мультиметр переводится в режим омметра на -2000 Ом. Норма для колебания сопротивления от 500 до 1200 Ом.

Чтобы проверить другие участки, нужно на базу подать плюсовое сопротивление. При этой проверке индикатор должен показать большее сопротивление, в противном случае, триод неисправен.

Иногда выходные сигналы перебиваются резисторами, которые устанавливают для снижения сопротивления, но сейчас такая технология шунтирования редко используется. Для проверки характеристики сопротивления импульсных транзисторов n-p-n нужно подключать к базе плюс, а к выводам эммитера и коллектора — минус.

Технические характеристики и маркировка

Главными параметрами, по которым подбираются эти полупроводниковые элементы, является цоколевка и цветовая маркировка.

Фото — цоколевка маломощных биполярных триодовФото — цоколевка силовых

Также используется цветовая маркировка.

Фото — примеры цветовой маркировкиФото — таблица цветов

Многие отечественные современные транзисторы также обозначаются буквенным шифром, в который включается информация о группе (полевые, биполярные), типе (кремниевые и т. д.,) годе и месяце выпуска.

Фото — расшифровка

Основные свойства (параметры) триодов:

  1. Коэффициент усиления по напряжению тока;
  2. Входящее напряжение;
  3. Составные частотные характеристики.

Для их выбора еще используются статические характеристики, которые включают сравнение входных и выходных ВАХ.

Необходимые параметры можно вычислить, если произвести расчет по основным характеристикам (распределение токов каскада, расчет ключевого режима). Коллекторный ток: Ik=(Ucc-Uкэнас)/Rн

  • Ucc – напряжение сети;
  • Uкэнас – насыщение;
  • Rн – сопротивление сети.

Потери мощности при работе:

P=Ik*Uкэнас

Купить биполярные транзисторы SMD, IGBT и другие можно в любом электротехническом магазине. Их цена варьируется от нескольких центов до десятка долларов, в зависимости от назначения и характеристик.

транзисторов - learn.sparkfun.com

Добавлено в избранное Любимый 77

Режимы работы

В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)

Четыре режима работы транзистора:

  • Насыщение - Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
  • Отсечка - Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
  • Активный - Ток от коллектора к эмиттеру пропорционален току, протекающему в базу.
  • Reverse-Active - Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).

Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть напряжения на каждом из трех контактов и их соотношение друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) задают режим транзистора:

Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.

Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.

Примечание: Большая часть этой страницы посвящена NPN транзисторам . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.

Режим насыщенности

Насыщенность - это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.

В режиме насыщения оба «диода» транзистора смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , поэтому V BC должен быть. Другими словами, V B должен быть выше, чем V E и V C .

Поскольку переход от базы к эмиттеру выглядит как диод, на самом деле V BE должно быть больше, чем пороговое напряжение , чтобы войти в насыщение.Есть много сокращений для этого падения напряжения - V th , V γ и V d - несколько - и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.

Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определено как напряжение насыщения CE, В CE (насыщение) - напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор перешел в режим насыщения.

Режим отсечки

Режим отсечки противоположен насыщению. Транзистор в режиме отсечки выключен - нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.

Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжение эмиттера и коллектора.Оба V BC и V BE должны быть отрицательными.

На самом деле, V BE может быть где угодно между 0 В и th (~ 0,6 В) для достижения режима отсечки.

Активный режим

Для работы в активном режиме значение V BE транзистора должно быть больше нуля, а значение V BC должно быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.

На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.

Усиление в активном режиме

Активный режим - это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.

Наше сокращенное обозначение для усиление (коэффициент усиления) транзистора - β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):

Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 ... даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Если, например, у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.

Модель активного режима. V BE = V th и I C = βI B .

Что насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут на прибора, а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α - коэффициент усиления по току общей базы, он связывает эти токи как таковые:

α обычно очень близко к 1. Это означает, что I C очень близко, но меньше I E в активном режиме.

Вы можете использовать β для вычисления α или наоборот:

Если, например, β равно 100, это означает, что α равно 0,99. Так, если я C , например, 100 мА, то я E это 101 мА.

Реверс Активный

Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в противоположном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше.

Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).

Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.

Относительно PNP

После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN - у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится PNP-транзистор, поменяйте местами все знаки <и>.

Например, чтобы ввести PNP в насыщение, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, напряжение V E должно быть выше, чем напряжение V B , которое должно быть выше, чем V C .

Итого:

Соотношение напряжений Режим NPN Режим PNP
В E B C Активный Обратный
V E B > V C Насыщенность Отсечка
V E > V B C Отсечка Насыщенность
V E > V B > V C Задний ход Активный

Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP протекает от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.


Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, - это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!



← Предыдущая страница
Продолжение аналогии с водой

Работа в активном режиме (BJT) | Биполярные переходные транзисторы

Когда транзистор находится в полностью выключенном состоянии (например, разомкнутый переключатель), говорят, что это отсечка .И наоборот, когда он полностью проводящий между эмиттером и коллектором (пропускает через коллектор столько тока, сколько позволяют источник питания коллектора и нагрузка), говорят, что он насыщен, . Это два режима работы , исследованные до сих пор при использовании транзистора в качестве переключателя.

Однако биполярные транзисторы не должны ограничиваться этими двумя крайними режимами работы. Как мы узнали в предыдущем разделе, базовый ток «открывает ворота» для ограниченного количества тока через коллектор.Если этот предел для регулируемого тока больше нуля, но меньше максимального, разрешенного цепью питания и нагрузки, транзистор будет «дросселировать» ток коллектора в режиме где-то между отсечкой и насыщением. Этот режим работы называется активным режимом .

Отсечка, насыщенность и активный режим

Автомобильная аналогия для работы транзистора выглядит следующим образом:

Режим отключения - - это состояние отсутствия движущей силы, создаваемой механическими частями автомобиля, чтобы заставить его двигаться.В режиме отсечки тормоз включен (нулевой базовый ток), предотвращая движение (ток коллектора).

Активный режим - это автомобиль, движущийся с постоянной контролируемой скоростью (постоянный контролируемый ток коллектора) в соответствии с указаниями водителя.

S aturation - Автомобиль, движущийся по крутому склону, не позволяет ему двигаться так быстро, как этого хочет водитель.Другими словами, «насыщенный» автомобиль - это автомобиль с нажатой педалью акселератора (базовый ток требует большего тока коллектора, чем может обеспечить цепь питания / нагрузки). Давайте настроим схему для моделирования SPICE, чтобы продемонстрировать, что происходит, когда транзистор находится в активном режиме работы. (Рисунок ниже)

 
моделирование биполярного транзистора
i1 0 1 постоянного тока 20u
q1 2 1 0 mod1
вамметр 3 2 постоянного тока 0
v1 3 0 постоянного тока
.model mod1 npn
.dc v1 0 2 0,05
.plot dc i (вамметр)
.конец
 

Схема для моделирования SPICE в «активном режиме» и список соединений.

«Q» - это стандартное буквенное обозначение транзистора на принципиальной схеме, точно так же, как «R» - для резистора, а «C» - для конденсатора. В этой схеме у нас есть NPN-транзистор, питаемый от батареи (V1) и управляемый током через источник тока (I1).

Источник тока - это устройство, которое выводит определенное количество тока, генерируя такое же или меньшее напряжение на своих выводах, чтобы обеспечить точное количество тока через него.Источники тока, как известно, трудно найти в природе (в отличие от источников напряжения, которые, напротив, пытаются поддерживать постоянное напряжение, выдавая столько или меньше тока для выполнения этой задачи), но их можно смоделировать с помощью небольшого набора электронных компонентов. . Как мы скоро увидим, сами транзисторы имеют тенденцию имитировать поведение источника тока при постоянном токе в своей способности регулировать ток при фиксированном значении.

В моделировании SPICE мы установим источник тока (I1) на постоянное значение 20 мкА, затем изменим источник напряжения (V1) в диапазоне от 0 до 2 вольт и будем отслеживать, сколько тока проходит через него.«Пустая» батарея (вамметр) на рисунке выше с ее выходом 0 В служит просто для обеспечения SPICE схемным элементом для измерения тока.

A Переменное напряжение коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает постоянный ток коллектора 2 мА в области насыщения.

Постоянный базовый ток 20 мкА устанавливает ограничение тока коллектора в 2 мА, что ровно в 100 раз больше. Обратите внимание, насколько плоская кривая (рисунок выше) для тока коллектора в диапазоне напряжения батареи от 0 до 2 вольт.Единственное исключение из этого невыразительного графика - в самом начале, когда батарея увеличивается с 0 вольт до 0,25 вольт. Здесь ток коллектора быстро увеличивается от 0 ампер до своего предельного значения 2 мА.

Давайте посмотрим, что произойдет, если мы изменим напряжение батареи в более широком диапазоне, на этот раз от 0 до 50 вольт. Мы сохраним базовый ток на уровне 20 мкА. (Рисунок ниже)

моделирование биполярного транзистора
i1 0 1 постоянного тока 20u
q1 2 1 0 mod1
вамметр 3 2 постоянного тока 0
v1 3 0 постоянного тока
.модель mod1 npn
.dc v1 0 50 2
.plot dc i (вамметр)
.конец
 

Качающееся напряжение коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает постоянный ток коллектора 2 мА.

Тот же результат! Ток коллектора на рисунке выше стабильно составляет 2 мА, хотя напряжение аккумулятора (v1) варьируется от 0 до 50 вольт. Из нашего моделирования может показаться, что напряжение между коллектором и эмиттером мало влияет на ток коллектора, за исключением очень низких уровней (чуть выше 0 вольт).Транзистор действует как регулятор тока, пропуская через коллектор ровно 2 мА и не более.

Теперь посмотрим, что произойдет, если мы увеличим управляющий ток (I1) с 20 мкА до 75 мкА, снова изменим напряжение аккумулятора (V1) с 0 до 50 В и построим график тока коллектора, как показано на рисунке ниже.

моделирование биполярного транзистора
i1 0 1 постоянного тока 75u
q1 2 1 0 mod1
вамметр 3 2 постоянного тока 0
v1 3 0 постоянного тока
.model mod1 npn
.dc v1 0 50 2 i1 15u 75u 15u
.plot dc i (вамметр)
.конец
 

Качающееся напряжение коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном базовом токе 75 мкА дает постоянный ток коллектора 7,5 мА. Другие кривые генерируются с помощью развертки по току (i1 15u 75u 15u) в операторе анализа постоянного тока (.dc v1 0 50 2 i1 15u 75u 15u).

Неудивительно, что SPICE дает нам похожий график: ровная линия, стабильно удерживающаяся на этот раз на уровне 7,5 мА - ровно в 100 раз больше базового тока - в диапазоне напряжений батареи от чуть выше 0 вольт до 50 вольт. Похоже, что базовый ток является решающим фактором для тока коллектора, напряжение батареи V1 не имеет значения, пока оно выше определенного минимального уровня.

Это соотношение напряжение / ток полностью отличается от того, что мы привыкли видеть на резисторе. С резистором ток линейно увеличивается с увеличением напряжения на нем. Здесь, с транзистором, ток от эмиттера к коллектору остается ограниченным на фиксированном максимальном значении независимо от того, насколько высоко увеличивается напряжение на эмиттере и коллекторе.

Часто бывает полезно наложить несколько графиков ток / напряжение коллектора для разных базовых токов на один график, показанный на рисунке ниже.Набор подобных кривых - по одной кривой, построенной для каждого отдельного уровня тока базы - для конкретного транзистора называется характеристическими кривыми транзистора :

.

Зависимость тока коллектора от напряжения коллектор-эмиттер для различных токов базы.

Каждая кривая на графике отражает ток коллектора транзистора, построенный в диапазоне напряжений между коллектором и эмиттером для заданной величины тока базы. Поскольку транзистор имеет тенденцию действовать как регулятор тока, ограничивая ток коллектора до пропорции, установленной током базы, полезно выразить эту пропорцию как стандартную меру производительности транзистора.В частности, отношение тока коллектора к току базы известно как соотношение Beta (обозначается греческой буквой β):

Иногда коэффициент β обозначается как «h fe », - это метка, используемая в области математического анализа полупроводников, известной как « гибридных параметров », которая стремится достичь точного предсказания характеристик транзистора с помощью подробных уравнений. Переменных гибридных параметров много, но каждая помечена общей буквой «h» и определенным нижним индексом.Переменная «hfe» - это просто еще один (стандартизованный) способ выражения отношения тока коллектора к току базы, и она взаимозаменяема с «β». Коэффициент β безразмерный.

β для любого транзистора определяется его конструкцией: он не может быть изменен после изготовления. Точно совпадающие два транзистора одинаковой конструкции редко встречаются из-за физических переменных, влияющих на β. Если конструкция схемы основана на равном соотношении β между несколькими транзисторами, «согласованные наборы» транзисторов могут быть приобретены за дополнительную плату.Однако обычно считается плохой практикой проектирования конструировать схемы с такими зависимостями.

β транзистора не остается стабильным для всех условий эксплуатации . Для реального транзистора коэффициент β может изменяться более чем в 3 раза в пределах его рабочего тока. Например, транзистор с заявленным β, равным 50, может тестироваться с отношениями Ic / Ib от 30 до 100, в зависимости от величины тока коллектора, температуры транзистора и частоты усиленного сигнала, среди других факторов.Для учебных целей достаточно принять постоянное значение β для любого данного транзистора; поймите, что реальная жизнь не так проста!

Иногда для понимания полезно «смоделировать» сложные электронные компоненты с помощью набора более простых и понятных компонентов. Модель на рисунке ниже используется во многих вводных текстах по электронике.

Модель элементарного диодно-резисторного транзистора.

В этой модели транзистор представляет собой комбинацию диода и реостата (переменного резистора).Ток через диод база-эмиттер контролирует сопротивление реостата коллектор-эмиттер (как показано пунктирной линией, соединяющей два компонента), тем самым управляя током коллектора. Транзистор NPN смоделирован на показанном рисунке, но транзистор PNP будет немного отличаться (только диод база-эмиттер будет перевернут).

Эта модель успешно иллюстрирует основную концепцию транзисторного усиления: как сигнал тока базы может влиять на ток коллектора.Однако модель неверно передает понятие установленной величины сопротивления коллектор-эмиттер для данной величины базового тока. Если бы это было правдой, транзистор вообще не регулировал бы ток коллектора , как показывают характеристические кривые. Вместо того, чтобы кривые коллекторного тока сглаживались после их кратковременного подъема по мере увеличения напряжения коллектор-эмиттер, коллекторный ток был бы прямо пропорционален напряжению коллектор-эмиттер, постоянно возрастая по прямой линии на графике.

Лучшая модель транзистора, часто встречающаяся в более продвинутых учебниках, показана на рисунке ниже.

Модель источника тока транзистора.

Транзистор представляет собой комбинацию диода и источника тока, при этом выход источника тока установлен на кратное (коэффициент β) базовому току. Эта модель гораздо точнее отображает истинные характеристики входа / выхода транзистора: ток базы устанавливает определенную величину тока коллектора , а не определенную величину сопротивления коллектора-эмиттера , как предполагает первая модель.Кроме того, эта модель предпочтительна при выполнении сетевого анализа транзисторных схем, поскольку источник тока является хорошо изученным теоретическим компонентом. К сожалению, использование источника тока для моделирования поведения транзистора по управлению током может ввести в заблуждение: ни в коем случае транзистор никогда не будет действовать как источник электрической энергии. Источник тока не моделирует тот факт, что его источником энергии является внешний источник питания, подобный усилителю.

ОБЗОР:

  • Транзистор находится в активном режиме , если он работает где-то между полностью включенным (насыщение) и полностью выключенным (отсечка).
  • Базовый ток регулирует ток коллектора. Под правилом , регулирующим , мы подразумеваем, что ток коллектора не может быть больше, чем позволяет ток базы.
  • Соотношение между током коллектора и током базы называется «бета» (β) или «hfe».
  • Соотношение β
  • отличается для каждого транзистора, а
  • β изменяется для разных условий эксплуатации.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Режимы транзистора

Смещение транзистора - это процесс установки рабочего напряжения на выводах транзистора.BJT (биполярный переходный транзистор) имеет два перехода, один - переход база-эмиттер, а другой - переход база-коллектор. В зависимости от прямого и обратного смещения этого перехода различают три режима работы транзистора. Переход между базой транзистора и эмиттером зависит от его порогового напряжения. Когда уровень напряжения между базой и эмиттером падает ниже этого порогового значения, транзистор переходит в состояние отсечки. Когда уровень напряжения от базы к эмиттеру выше этого порогового напряжения, тогда транзистор находится либо в состоянии насыщения, либо в активном состоянии.Теоретически значение порогового напряжения диода составляет 0,7 В, но практически оно составляет 0,65 В.

Необходимые компоненты:

 BC547 Транзистор NPN

 Потенциометр 1к

 1k сопротивление

 Некоторые перемычки

 Макет

 Электропитание (+ 5В)

 Мультиметр

Рис.1: Принципиальная схема транзистора в режиме отсечки

Режим отсечки:

В этом режиме переходы база-эмиттер и база-коллектор имеют обратное смещение.Когда на базе транзистора очень низкое напряжение, тогда напряжение база-эмиттер ниже его порогового напряжения. Из-за этого транзистор находится в выключенном состоянии и действует как разомкнутый переключатель. Поскольку эмиттер подключен к земле, его ток равен нулю, но на коллекторе транзистора протекает небольшой ток из-за тепловых колебаний электронов. Этот небольшой ток известен как ток обратного насыщения (Ico). Поскольку базовое напряжение равно нулю, ток должен быть нулевым, но, тем не менее, на базе транзистора протекает небольшой отрицательный ток, противоположный обратному току насыщения (-Ico).Таким образом, из-за отрицательного тока на базе транзистора, переходы база-эмиттер и база-коллектор имеют обратное смещение. Следовательно, ток не будет течь от коллектора к эмиттеру транзистора, и мы получаем низкий уровень на выходе, который выключает светодиод.

Режим отсечки транзистора используется в операции переключения для приложения «Выключить».

Рис.2: Принципиальная схема транзистора в режиме насыщения

Состояние насыщения:

В этом режиме переход база-эмиттер и база-коллектор находятся в прямом смещении.Когда мы увеличиваем значение напряжения на базе транзистора, это приведет к тому, что напряжение база-эмиттер будет больше, чем пороговое напряжение. В этом случае транзистор находится в полностью открытом состоянии и действует как замыкающий или замыкающий переключатель. Поскольку базовый ток очень велик, чтобы получить большой ток коллектора, падение напряжения на сопротивлении R3 достаточно велико. Переход база-эмиттер находится в смещенном состоянии, поскольку эмиттер соединен с землей, а база - с положительным источником питания.Следовательно, путь от коллектора к эмиттеру действует как короткое замыкание, из-за которого ток в эмиттере и коллекторе транзистора почти равен. Теперь ток замыкается от коллектора к эмиттеру, проходит через коллектор транзистора к базе и идет к эмиттеру, который зажигает светодиод.

Режим насыщения транзистора используется в режиме переключения при включении.

Рис. 3: Принципиальная схема транзистора в активном режиме

Активный режим:

В этом режиме переход база-эмиттер транзистора находится в прямом смещении, а переход база-коллектор находится в обратном смещении.В этом режиме транзистор находится в середине состояния отсечки и насыщения. Напряжение на базе транзистора меньше, чем на коллекторе, поэтому переход база-коллектор имеет обратное смещение. С другой стороны, эмиттер находится на земле, поэтому его напряжение меньше, чем у базы, что создает переход между базой и коллектором в обратном смещении. Когда мы прикладываем напряжение между режимами отсечки и насыщения на базу транзистора, транзистор переходит в активное состояние. В этом состоянии электроны, которые текут к базе транзистора, больше притягиваются к коллектору из-за положительного напряжения на коллекторе (из-за обратного смещения).Таким образом, от коллектора к базе проходит большой ток, который больше, чем ток от эмиттера к базе. Поэтому, прикладывая небольшое напряжение к базе, мы получаем высокое значение тока на коллекторе. Это называется усилением входного сигнала. Благодаря этому свойству транзистора в активном состоянии он используется в усилении.

Определение режима работы транзистора

| ЭлектроникаBeliever

Режим работы транзистора легко определяется с помощью математических уравнений.Не волнуйтесь; это несложные уравнения. Транзистор может работать в трех режимах. Это отсечка, насыщенность и линейность. В отключенном состоянии транзистор просто не проводит ток; так что отправить транзистор в эту область не проблема. Вы можете просто сделать это, отключив базовый ток.

Режим насыщения требует большего тока базы, чтобы транзистор перестал обеспечивать усиление тока. В режиме насыщения коллекторный ток больше не будет увеличиваться независимо от тока базы.Ток коллектора ограничивается только сопротивлением коллектора.

Для линейного режима базовый ток не должен быть таким большим, чтобы сохранить свойство усиления транзистора. В принципе, при любом изменении тока базы происходит соответствующее изменение тока коллектора. Это изменение пропорционально усилению тока транзистора или бета.

Метод № 1 для определения режима работы транзистора: предположить насыщение

 

Первый способ - предположить, что цепь уже находится в состоянии насыщения.Когда цепь находится в состоянии насыщения, ток коллектора можно определить, используя питание коллектора и сопротивление коллектора. В худшем случае вы можете пренебречь падением VCE транзистора. В этом методе определения режима работы транзистора, если критерий верен, вычисленные токи являются фактическими токами цепи.

Как только базовый ток известен, можно решить проблему с бета-кодом цепи (βckt_max). Меньший базовый ток и более высокий ток коллектора дадут наихудший случай.

В вышеупомянутом методе, если результаты критерия верны, работа в транзисторном режиме определенно является насыщением.

Пример определения режима работы транзистора с использованием метода № 1

 

В приведенном выше примере допуски учитываются, чтобы получить минимальный базовый ток и максимальный ток коллектора. Расчетное значение бета наихудшей схемы намного ниже минимального коэффициента усиления транзистора по току, указанного в таблице данных, поэтому нет сомнений в том, что транзистор работает в режиме насыщения.

В приведенном выше примере мы просто сравниваем бета-версию схемы с минимальной бета-версией транзистора согласно информации из таблицы данных. Поскольку критерий верен, вычисленный ток коллектора является фактическим током цепи. Базовый ток всегда является фактическим, независимо от операции.

Метод № 2 для определения режима работы транзистора: предположим линейный

 

В этом конкретном методе определения режима работы транзистора мы предполагаем, что схема работает в линейной области.Если приведенный выше критерий верен, режим работы транзистора определенно линейный или активный.

Пример определения режима работы транзистора с использованием метода № 2

 

В приведенном выше примере заданное напряжение VCEsat транзистора составляет 0,7 В. Чтобы транзистор работал в режиме насыщения, вычисленное максимальное напряжение VCE должно быть ниже 0,7 В с большим запасом. Результирующее вычисленное значение VCE отрицательное, что означает значение ниже нуля и намного меньше нуля.7В, следовательно, режим работы транзистора однозначно насыщение.

Ограничения любого метода

Метод 1 проще использовать, когда нет эмиттерного резистора, как в наших примерах выше. Его все еще можно использовать в схемах с эмиттерными резисторами, но это сложно.

Мы собираемся сравнить методы 1 и 2 в схеме ниже с эмиттерным резистором.

 

Используя метод № 1
 
 

Используя метод № 2

 

Исходя из приведенных выше решений, очевидно, что метод №1 трудно использовать в схемах с эмиттерным резистором.Но его очень легко использовать со схемами, не имеющими эмиттерного резистора.

Связанные

Работа транзистора в качестве переключателя

В этом руководстве по транзистору мы узнаем о работе транзистора в качестве переключателя. Переключение и усиление - это две области применения транзисторов и транзисторов, поскольку коммутатор является основой для многих цифровых схем.

Введение

Как одно из важных полупроводниковых устройств, транзистор нашел применение в огромных электронных приложениях, таких как встроенные системы, цифровые схемы и системы управления.Как в цифровой, так и в аналоговой областях транзисторы широко используются для различных приложений, таких как усиление, логические операции, переключение и т. Д.

Эта статья в основном концентрируется и дает краткое объяснение применения транзистора в качестве переключателя.

Биполярный транзистор или просто BJT - это трехслойный полупроводниковый прибор с тремя выводами и двумя переходами. Почти во многих приложениях эти транзисторы используются для двух основных функций, таких как переключение и усиление.

Название «биполярный» указывает на то, что в работе БЮТ участвуют два типа носителей заряда. Этими двумя носителями заряда являются дырки и электроны, где дырки являются носителями положительного заряда, а электроны - носителями отрицательного заряда.

Транзистор имеет три области: базу, эмиттер и коллектор. Эмиттер является сильно легированным выводом и испускает электроны в базу. Вывод базы слегка легирован и передает электроны, инжектированные эмиттером, на коллектор.Коллекторный вывод промежуточно легирован и собирает электроны с базы. Этот коллектор больше по сравнению с двумя другими областями, поэтому он рассеивает больше тепла.

BJT бывают двух типов: NPN и PNP, оба функционируют одинаково, но различаются по смещению и полярности источника питания. В транзисторе PNP между двумя материалами P-типа материал N-типа расположен между двумя материалами N-типа. Эти два транзистора могут иметь разные типы, такие как общий эмиттер, общий коллектор и общая базовая конфигурация.

НАЗАД НАЗАД

Режимы работы транзисторов

В зависимости от условий смещения, таких как прямое или обратное, транзисторы имеют три основных режима работы, а именно области отсечки, активности и насыщения.

Активный режим

В этом режиме транзистор обычно используется как усилитель тока. В активном режиме два перехода смещены по-разному, что означает, что переход эмиттер-база смещен в прямом направлении, тогда как переход коллектор-база смещен в обратном направлении.В этом режиме ток течет между эмиттером и коллектором, и величина протекания тока пропорциональна току базы.

Режим отсечки

В этом режиме и коллекторный базовый переход, и эмиттерный базовый переход смещены в обратном направлении. Это, в свою очередь, не позволяет току течь от коллектора к эмиттеру, когда напряжение база-эмиттер низкое. В этом режиме устройство полностью выключено, в результате ток, протекающий через устройство, равен нулю.

Режим насыщенности

В этом режиме работы переходы эмиттер-база и коллектор-база смещены в прямом направлении.Ток свободно течет от коллектора к эмиттеру при высоком напряжении база-эмиттер. В этом режиме устройство полностью включено.

На рисунке ниже показаны выходные характеристики BJT-транзистора. На приведенном ниже рисунке область отсечки имеет рабочие условия, такие как нулевой выходной ток коллектора, нулевой базовый входной ток и максимальное напряжение коллектора. Эти параметры приводят к образованию большого обедненного слоя, который также не позволяет току течь через транзистор. Следовательно, транзистор полностью выключен.

Аналогично, в области насыщения транзистор смещен таким образом, что прикладывается максимальный ток базы, что приводит к максимальному току коллектора и минимальному напряжению коллектор-эмиттер. Это приводит к уменьшению размера обедненного слоя и пропусканию максимального тока через транзистор. Следовательно, транзистор полностью открыт.

Следовательно, из приведенного выше обсуждения мы можем сказать, что транзисторы можно заставить работать как твердотельный переключатель ВКЛ / ВЫКЛ, работая транзистором в областях отсечки и насыщения.Этот тип коммутации используется для управления двигателями, ламповыми нагрузками, соленоидами и т. Д.

НАЗАД НАЗАД

Транзистор как переключатель

Транзистор используется для переключения при размыкании или замыкании цепи. Твердотельное переключение этого типа обеспечивает значительную надежность и меньшую стоимость по сравнению с обычными реле.

В качестве переключателей можно использовать транзисторы NPN и PNP. В некоторых приложениях в качестве переключающего устройства используется силовой транзистор, при этом может потребоваться другой транзистор уровня сигнала для управления мощным транзистором.

Транзистор
NPN как переключатель

На основе напряжения, приложенного к клемме базы, выполняется операция переключения транзистора. Когда между базой и эмиттером приложено достаточное напряжение ( В в > 0,7 В), напряжение коллектор-эмиттер примерно равно 0. Следовательно, транзистор действует как короткое замыкание. Коллекторный ток V cc / R c протекает через транзистор.

Точно так же, когда на входе нет напряжения или нулевого напряжения, транзистор работает в области отсечки и действует как разомкнутая цепь.В этом типе коммутационного подключения нагрузка (здесь светодиодная лампа) подключается к коммутационному выходу с контрольной точкой. Таким образом, когда транзистор включен, ток будет течь от источника к земле через нагрузку.

НАЗАД НАЗАД

Пример транзистора NPN в качестве переключателя

Рассмотрим приведенный ниже пример, где сопротивление базы R b = 50 кОм, сопротивление коллектора R c = 0,7 кОм, V cc составляет 5 В, а значение бета равно 125.На базовом входе подается сигнал, варьирующийся от 0 до 5 В, поэтому мы собираемся увидеть выход на коллекторе, изменяя V и в двух состояниях: 0 и 5 В, как показано на рисунке.

I c = V cc / R c при V CE = 0

I c = 5 В / 0,7 кОм

I c = 7,1 мА

Базовый ток I b = I c / β

I b = 7,1 мА / 125

I b = 56.8 мкА

Из приведенных выше расчетов максимальное или пиковое значение тока коллектора в цепи составляет 7,1 мА, когда Vce равно нулю. И соответствующий ток базы, по которому протекает ток коллектора, составляет 56,8 мкА. Итак, ясно, что когда ток базы увеличивается выше 56,8 мкА, транзистор переходит в режим насыщения.

Рассмотрим случай, когда на входе подается нулевое напряжение. Это приводит к нулевому току базы, и, поскольку эмиттер заземлен, базовый переход эмиттера не смещен в прямом направлении.Следовательно, транзистор находится в выключенном состоянии, а выходное напряжение коллектора равно 5 В.

Когда V i = 0 В, I b = 0 и I c = 0,

V c = V cc - (I c R c )

= 5 В - 0

= 5 В

Предположим, что приложенное входное напряжение составляет 5 вольт, тогда базовый ток можно определить, применив закон Кирхгофа для напряжения.

Когда V i = 5V

I b = (V i - V be ) / R b

Для кремниевого транзистора V будет = 0.7 В

Таким образом, I b = (5 В - 0,7 В) / 50 кОм

= 86 мкА, что больше 56,8 мкА

Следовательно, базовый ток превышает 56,8 мкА, транзистор будет доведен до насыщения, которое полностью включено, когда на входе подается 5 В. Таким образом, выход на коллекторе становится примерно нулевым.

НАЗАД НАЗАД

Транзистор
PNP как переключатель
Транзистор

PNP работает так же, как NPN для операции переключения, но ток течет от базы.Этот тип переключения используется для конфигураций с отрицательным заземлением. Для транзистора PNP клемма базы всегда смещена отрицательно по отношению к эмиттеру. При этом переключении базовый ток течет, когда базовое напряжение более отрицательное. Просто низкое напряжение или более отрицательное напряжение приводит к короткому замыканию транзистора, в противном случае он будет иметь разомкнутую цепь или состояние с высоким импедансом.

В связи с этим, нагрузка подключена к выходу коммутационного транзистора с опорной точкой. Когда транзистор включен, ток течет от источника через транзистор к нагрузке и, наконец, к земле.

Пример транзистора PNP в качестве переключателя

Подобно схеме транзисторного переключателя NPN, вход схемы PNP также является базой, но эмиттер подключен к постоянному напряжению, а коллектор подключен к земле через нагрузку, как показано на рисунке.

В этой конфигурации база всегда смещена отрицательно по отношению к эмиттеру путем соединения базы на отрицательной стороне и эмиттера на положительной стороне входного источника питания. Таким образом, напряжение V BE отрицательное, а напряжение питания эмиттера относительно коллектора положительное (V CE положительное).

Следовательно, для проводимости транзистора эмиттер должен быть более положительным как по отношению к коллектору, так и по отношению к базе. Другими словами, база должна быть более отрицательной по отношению к эмиттеру.

Для расчета токов базы и коллектора используются следующие выражения.

I c = I e - I b

I c = β. Я б

I b = I c / β

Рассмотрим приведенный выше пример, что для нагрузки требуется ток 100 мА, а бета-значение транзистора равно 100.Тогда ток, необходимый для насыщения транзистора, равен

.

Минимальный базовый ток = ток коллектора / β

= 100 мА / 100

= 1 мА

Следовательно, когда базовый ток равен 1 мА, транзистор будет полностью открыт. Но для гарантированного насыщения транзистора требуется практически на 30% больше тока. Итак, в этом примере требуемый базовый ток составляет 1,3 мА.

НАЗАД НАЗАД

Общие практические примеры транзистора в качестве переключателя Транзистор
для переключения светодиода

Как обсуждалось ранее, транзистор можно использовать как переключатель.На схеме ниже показано, как транзистор используется для переключения светоизлучающего диода (LED).

  • Когда переключатель на клемме базы разомкнут, ток через базу не течет, поэтому транзистор находится в состоянии отсечки. Таким образом, цепь работает как разомкнутая, и светодиод гаснет.
  • Когда переключатель замкнут, базовый ток начинает течь через транзистор, а затем переходит в состояние насыщения, и светодиод загорается.
  • Резисторы
  • установлены для ограничения токов, протекающих через базу и светодиод.Также можно изменять интенсивность светодиода, изменяя сопротивление на пути тока базы.

НАЗАД НАЗАД

Транзистор
для работы реле

Также можно управлять работой реле с помощью транзистора. С помощью небольшой схемы транзистора, способного возбуждать катушку реле, так что внешняя нагрузка, подключенная к ней, контролируется.

  • Рассмотрим приведенную ниже схему, чтобы узнать, как работает транзистор для подачи питания на катушку реле.Входной сигнал, приложенный к базе, приводит к переходу транзистора в область насыщения, в результате чего в цепи происходит короткое замыкание. Таким образом, катушка реле находится под напряжением, и контакты реле срабатывают.
  • В индуктивных нагрузках, особенно при переключении двигателей и катушек индуктивности, внезапное отключение питания может поддерживать высокий потенциал на катушке. Это высокое напряжение может привести к значительному повреждению остальной цепи. Следовательно, мы должны использовать диод параллельно с индуктивной нагрузкой, чтобы защитить схему от индуцированных напряжений индуктивной нагрузки.

НАЗАД НАЗАД

Транзистор
для привода двигателя
  • Транзистор также может использоваться для управления и регулирования скорости двигателя постоянного тока в однонаправленном режиме путем переключения транзистора через равные промежутки времени, как показано на рисунке ниже.
  • Как упоминалось выше, двигатель постоянного тока также является индуктивной нагрузкой, поэтому мы должны разместить на нем диод свободного хода для защиты цепи.
  • Переключая транзистор в областях отсечки и насыщения, мы можем многократно включать и выключать двигатель.
  • Также можно регулировать скорость двигателя от состояния покоя до полной скорости, переключая транзистор на регулируемые частоты. Мы можем получить частоту переключения от управляющего устройства или микросхемы, например микроконтроллера.

У вас есть четкое представление о том, как транзистор можно использовать в качестве переключателя? Мы подтверждаем, что предоставленная информация разъясняет всю концепцию переключения с соответствующими изображениями и примерами. В дальнейшем любые сомнения, предложения и комментарии к этому посту вы можете писать ниже.

НАЗАД НАЗАД

ПРЕДЫДУЩИЙ - МОП-транзистор

ДАЛЕЕ - ПОЛЕВЫЙ ПЕРЕКЛЮЧАТЕЛЬ

Введение в транзисторы - типы, режимы объединения и преимущества

Введение в транзисторы:

Раньше критическим и важным компонентом электронного устройства была электронная лампа; это электронная трубка, используемая для управления электрическим током. Электронные лампы работали, но они громоздкие, требуют более высоких рабочих напряжений, высокого энергопотребления, дают более низкий КПД, а катодные материалы, излучающие электроны, расходуются в работе.Итак, это привело к нагреву, который сократил срок службы самой трубки. Чтобы преодолеть эти проблемы, Джон Бардин, Уолтер Браттейн и Уильям Шокли изобрели транзистор в Bell Labs в 1947 году. Это новое устройство было гораздо более элегантным решением для преодоления многих фундаментальных ограничений электронных ламп.

Транзистор - это полупроводниковый прибор, который может как проводить, так и изолировать. Транзистор может действовать как переключатель и усилитель. Он преобразует звуковые волны в электронные волны и резисторы, управляя электронным током.Транзисторы имеют очень долгий срок службы, меньше по размеру, могут работать от источников более низкого напряжения для большей безопасности и не требуют тока накала. Первый транзистор был изготовлен из германия. Транзистор выполняет ту же функцию, что и триод для вакуумной лампы, но с использованием полупроводниковых переходов вместо нагретых электродов в вакуумной камере. Это фундаментальный строительный блок современных электронных устройств, который можно найти повсюду в современных электронных системах.


Основы транзисторов:

Транзистор - это трехконтактное устройство.А именно

  • База: отвечает за активацию транзистора.
  • Коллектор: это положительный вывод.
  • Излучатель: это отрицательный провод.

Основная идея транзистора заключается в том, что он позволяет вам управлять потоком тока через один канал, изменяя интенсивность гораздо меньшего тока, протекающего через второй канал.

Типы транзисторов:

Есть два типа транзисторов; это биполярные переходные транзисторы (BJT), полевые транзисторы (FET).Между базой и эмиттером протекает небольшой ток; клемма базы может управлять большим током между клеммами коллектора и эмиттера. Для полевого транзистора он также имеет три вывода: затвор, исток и сток, а напряжение на затворе может управлять током между истоком и стоком. Простые схемы BJT и FET показаны на рисунке ниже:

Биполярный транзистор (BJT) Полевые транзисторы (FET)

Как видите, транзисторы бывают разных размеров и форм.Все эти транзисторы объединяет то, что каждый из них имеет по три вывода.

  • Биполярный переходной транзистор:

Биполярный переходный транзистор (BJT) имеет три вывода, подключенных к трем легированным полупроводниковым областям. Поставляется двух типов: P-N-P и N-P-N.

Транзистор P-N-P, состоящий из слоя полупроводника с примесью азота, расположенного между двумя слоями материала с примесью фосфора. Ток базы, поступающий на коллектор, усиливается на его выходе.

То есть, когда транзистор PNP включен, когда его база опущена относительно эмиттера. Стрелки на транзисторе PNP обозначают направление тока, когда устройство находится в активном режиме пересылки.

Транзистор N-P-N, состоящий из слоя полупроводника с примесью фосфора между двумя слоями материала с примесью азота. Усиливая ток базы, мы получаем высокий ток коллектора и эмиттера.

То есть, когда транзистор NPN включен, когда его база понижена относительно эмиттера.Когда транзистор находится во включенном состоянии, ток проходит между коллектором и эмиттером транзистора. На основе неосновных носителей в области P-типа электроны движутся от эмиттера к коллектору. Это позволяет больший ток и более быструю работу; по этой причине большинство используемых сегодня биполярных транзисторов являются NPN.

  • Полевой транзистор (FET):

Полевой транзистор представляет собой униполярный транзистор, для проводимости используются полевые транзисторы с N-каналом или P-каналом.Три вывода полевого транзистора - это исток, затвор и сток. Основные n-канальные и p-канальные полевые транзисторы показаны выше. Для n-канального полевого транзистора устройство выполнено из материала n-типа. Между истоком и стоком материал этого типа действует как резистор.

Этот транзистор контролирует положительные и отрицательные носители дырок или электронов. Канал полевого транзистора формируется перемещением положительных и отрицательных носителей заряда. Канал полевого транзистора из кремния.

Существует много типов полевых транзисторов, полевых МОП-транзисторов, полевых транзисторов и т. Д.Применение полевых транзисторов - малошумящий усилитель, буферный усилитель и аналоговый переключатель.

Смещение биполярного переходного транзистора

Транзисторы являются наиболее важными полупроводниковыми активными устройствами, необходимыми почти для всех схем. Они используются как электронные переключатели, усилители и т. Д. В схемах. Транзисторы могут быть NPN, PNP, FET, JFET и т. Д., Которые выполняют разные функции в электронных схемах. Для правильной работы схемы необходимо смещать транзистор с помощью резисторных цепей.Рабочая точка - это точка на выходных характеристиках, которая показывает напряжение коллектор-эмиттер и ток коллектора при отсутствии входного сигнала. Рабочая точка также известна как точка смещения или точка Q (точка покоя).

Под смещением подразумеваются резисторы, конденсаторы или напряжение питания и т. Д. Для обеспечения надлежащих рабочих характеристик транзисторов. Смещение постоянного тока используется для получения постоянного тока коллектора при определенном напряжении коллектора. Значение этого напряжения и тока выражается через точку Q.В конфигурации транзисторного усилителя IC (max) - это максимальный ток, который может протекать через транзистор, а VCE (max) - это максимальное напряжение, приложенное к устройству. Для работы транзистора в качестве усилителя к коллектору необходимо подключить нагрузочный резистор RC. Смещение устанавливает рабочее напряжение и ток постоянного тока на правильный уровень, так что входной сигнал переменного тока может быть должным образом усилен транзистором. Правильная точка смещения находится где-то между полностью включенным или полностью выключенным состояниями транзистора.Эта центральная точка является точкой Q, и если транзистор правильно смещен, точка Q будет центральной рабочей точкой транзистора. Это помогает выходному току увеличиваться и уменьшаться по мере того, как входной сигнал проходит через полный цикл.

Для установки правильной точки Q транзистора используется резистор коллектора, чтобы установить ток коллектора на постоянное и устойчивое значение без какого-либо сигнала в его базе. Эта устойчивая рабочая точка постоянного тока задается значением напряжения питания и значением резистора смещения базы.Резисторы смещения базы используются во всех трех конфигурациях транзисторов, таких как конфигурация с общей базой, общим коллектором и общим эмиттером.

Режимы смещения:

Ниже приведены различные режимы смещения базы транзистора:

1. Смещение тока:

Как показано на рисунке 1, два резистора RC и RB используются для установки смещения базы. Эти резисторы устанавливают начальную рабочую область транзистора с фиксированным током смещения.

Транзистор смещает в прямом направлении с положительным напряжением смещения базы через RB.Прямое падение напряжения база-эмиттер составляет 0,7 В. Следовательно, ток через RB равен I B = (V cc - V BE ) / I B

2. Смещение обратной связи:

На рисунке 2 показано смещение транзистора с помощью резистора обратной связи. . Смещение базы получается из напряжения коллектора. Коллекторная обратная связь обеспечивает постоянное смещение транзистора в активной области. Когда ток коллектора увеличивается, напряжение на коллекторе падает.Это уменьшает базовый привод, что, в свою очередь, снижает ток коллектора. Такая конфигурация обратной связи идеальна для транзисторных усилителей.

3. Смещение с двойной обратной связью:

На рис.3 показано, как смещение достигается с помощью резисторов с двойной обратной связью.

За счет использования двух резисторов RB1 и RB2 повышается стабильность в отношении вариаций бета за счет увеличения тока, протекающего через резисторы смещения базы. В этой конфигурации ток в RB1 равен 10% тока коллектора.

4. Смещение делителя напряжения:

На рисунке 4 показано смещение делителя напряжения, в котором два резистора RB1 и RB2 подключены к базе транзистора, образуя сеть делителя напряжения. Транзистор смещается из-за падения напряжения на RB2. Такая конфигурация смещения широко используется в схемах усилителя.

5. Двойное смещение базы:

На Рис.5 показана двойная обратная связь для стабилизации. Он использует как эмиттерную, так и коллекторную обратную связь для улучшения стабилизации за счет управления током коллектора.Значения резистора следует выбирать так, чтобы падение напряжения на резисторе эмиттера составляло 10% от напряжения питания, а ток через RB1 - 10% от тока коллектора.

Преимущества транзистора:

  1. Меньшая механическая чувствительность.
  2. Более низкая стоимость и меньший размер, особенно в схемах слабого сигнала.
  3. Низкое рабочее напряжение для большей безопасности, меньших затрат и меньших зазоров.
  4. Чрезвычайно долгий срок службы.
  5. Катодный нагреватель не потребляет электроэнергию.
  6. Быстрое переключение.

Он может поддерживать конструкцию схем дополнительной симметрии, что невозможно с электронными лампами. Если у вас есть какие-либо вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.

Режимы работы транзистора - Siplo

Транзисторы могут работать в 3-х режимах, таких как отключение выключенный режим, активный режим и режим насыщения. Режим отсечки действует как база-эмиттер. коллекторно-базовые переходы транзистора имеют обратное смещение.В переход база-эмиттер активного режима смещен вперед, тогда как коллектор базовый переход имеет обратное смещение. В режиме отключения нет тока между коллектор и эмиттер, который действует как разомкнутая цепь. Насыщенный режим в настоящее время свободный поток между коллектором и эмиттером, но не может усилить далее действовать как короткое замыкание. В активном режиме можно будет управлять усиление транзистора что-то среднее. Излучатель состоит из большинство носителей заряда, среднего размера и сильно сброшенных.коллектор состоит большинства носителей заряда большие по размеру и умеренно выпавшие. База состоит из управления потоком носителей от эмиттера к наименьшей по размеру базе и умеренно упал.

Полупроводниковые приборы играют важную роль в электроника. полупроводниковые устройства в основном используются для усиления или переключения электрические сигналы, но есть полупроводниковые устройства, которые могут обнаруживать и генерировать оптические сигналы. Есть два типа устройств, которые преобразуют оптические мощность в электрическую мощность.Два основных устройства - солнечные батареи и фото. детекторы. устройства, преобразующие электрическую энергию в оптическую, например как светодиоды (LED), так и лазерный диод. Солнечные элементы состоят из p-n переходное устройство, которое преобразует энергию фотонов в электрическую. Фотография детекторы устройства являются одними из полупроводниковых устройств, которые могут использоваться для обнаружения наличию фотонов. Есть два типа фотодетекторов, например, фотодетекторы. проводник и фотодиод. Это простой тип фотодетекторов и заряд проводимости за счет генерации избыточных электронов и дырок в Полупроводник - основа фотопроводника.

Фотодиод - это тип фотодетектора, способный преобразовывать световую энергию в электрическую. Он ведет себя аналогично обычному диоду, но генерирует фототок, когда свет поглощается в обедненной области перехода полупроводника, а фотодиод предназначен для работы с обратным смещением. Между фотодиодом и солнечными элементами есть много различий, которые являются одновременно представляют собой светящиеся диоды с PM-переходом, но конструкция фотодиода должна минимизировать фототок, минимизировать темновой ток, минимизировать шум, создаваемый диодом, и сделать его достаточно быстрым для работы в качестве хорошего фотодатчика.Если рассматривать солнечную батарею, то она оптимизирована для обеспечения максимальной эффективности преобразования падающего света в электрическую энергию. Это достигается за счет увеличения фототока и максимального выходного напряжения. Светодиод также играет важную роль в полупроводниках с p-n-переходом с приложенным напряжением, чтобы производить фотоны и световой поток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *