Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Резисторы 10 Ом по 10 Вт и еще одна идея для применения

У каждого радиоэлектронщика рано или поздно наступает момент осознания, что без электронной нагрузки никуда.

Пришла посылка за 17 дней до глубинки в России. Все было запаковано в бумажный пакет с обклеенной пупыркой изнутри. Тут ломаться нечему, но почта России может сломать несломаемое.
Когда покупал, ошибся с номиналом. Изначально планировалось 20 двадцатиоммных резисторов в параллель, но и так сойдет. Можно было уменьшить количество резисторов и тогда пришлось бы серьезно думать об охлаждении. Я же надеялся упростить эту задачу до минимума, либо вообще обойтись только пассивным охлаждением.
Во внешнем виде ничего интересного, обычные параллелепипеды с размерами 47*9*9мм с «усами», размеры колеблятся ±1мм.

Строим небольшой кубик с помощью паяльника и припоя. Сначала две половинки по 10 резисторов параллельно и две половинки последовательно. Сорри за непотребный вид, все делалось чисто ради тестов.

В теории должно быть около 2 Ом. Но на практике получается 2,5Ом, значит в среднем, один резистор «сопротивляется на » 12,5Ом

Начнем тестирование.
Имитируем тест телефонного зарядного, подав 5,15В и ток 2,36А через лабораторный блок питания. Через 30 минут температура устаканивается в районе 67 градусов, что является приемлемой для меня.
Увеличиваем напряжение таким образом, чтобы выходная мощность примерно равнялась 30Вт. Цифра взята из потолка, именно такую мощность я хочу заявить для моей электронной нагрузки для длительной работы. Еще через 40 минут температура достигла 106 грудусов и я тест остановил. Очень много получилось, все таки придется добавить вентилятор.

Предоставляю небольшой таймлапс. Из-за автоотключения мультиметра, видео вышло некачественным, но что поделать

Подводя итоги по резисторам, можно отметить, что они достаточно точны для меня. Для тестирования блоков питания вполне подойдут. Если добавить преобразователь с функцией контроля тока и амперметр, то появляется неплохое устройство с плавной регулировкой нагрузки

mysku.ru

Резистор. Параметры резисторов.

Его параметры и обозначение на схеме

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов.

  • Номинальное сопротивление.

    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.

  • Рассеиваемая мощность.

    Более подробно о мощности резистора я уже писал здесь.

    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.

    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.

    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.

  • Допуск.

    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.

    Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.

    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.

    Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.

    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.

    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.

  • Температурный коэффициент сопротивления (ТКС).

    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.

    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)

  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)

  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования.

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Резистор. Резисторы постоянного сопротивления | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы разобрались, какие бывают соединительные провода и линии электрической связи и как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление.

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению, номинальной мощности и допуску. Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом), килоомах (кОм) и мегаомах (МОм):

1кОм = 1000 Ом;
1МОм = 1000 кОм = 1000000 Ом.

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0; 1,1; 1,2; 1,5; 2,0; 2,2; 2,7; 3,0; 3,3; 3,9; 4,3; 4,7; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10.

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой, цифровой или цветовой маркировки.

Буквенно-цифровая маркировка.

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е» и «R», единицу килоом буквой «К», а единицу мегаом буквой «М».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е» и «R». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω»:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R» на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К»:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М»:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е, R, К и М, обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка.

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают численную величину сопротивления в Омах, третье кольцо является множителем, а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2)
фиолетовое — (7)
красное — (100)
серебристое — (10%)
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10%.

Резистор маркирован пятью кольцами:

красное — (2)
фиолетовое (7)
красное (2)
красное (100)
золотистое (5%)
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета.

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в этой статье.

Цифровая маркировка.

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм.

Если последняя цифра ноль, то множитель будет равен единице, так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом.

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм.

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода, состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку. Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в этой статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.

2.1. Непроволочные резисторы.

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

3. Обозначение резисторов на принципиальных схемах.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника, а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R» и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах, но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R:

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к»:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М»:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью последовательное и параллельное соединение резисторов, в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления. Во второй части статьи мы познакомимся с резисторами переменного сопротивления.
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

sesaga.ru

Резисторы 10 Ом по 10 Вт и еще одна идея для применения

В каждый радиоэлектронщик рано или поздно наступает момент осознания, что без электронной нагрузки никуда.

Пришла посылка за 17 дней до глубинки в России. Все было запаковано в бумажный пакет с обклеенной пупыркой изнутри. Тут ломаться нечему, но почта России может сломать несломаемое.
Когда покупал, ошибся с номиналом. Изначально планировалось 20 двадцатиоммных резисторов в параллель, но и так сойдет. Можно было уменьшить количество резисторов и тогда пришлось бы серьезно думать об охлаждении. Я же надеялся упростить эту задачу до минимума, либо вообще обойтись только пассивным охлаждением.
Во внешнем виде ничего интересного, обычные параллелепипеды с размерами 47*9*9мм с «усами», размеры колеблятся ±1мм.

Строим небольшой кубик с помощью паяльника и припоя. Сначала две половинки по 10 резисторов параллельно и две половинки последовательно. Сорри за непотребный вид, все делалось чисто ради тестов.

В теории должно быть около 2 Ом. Но на практике получается 2,5Ом, значит в среднем, один резистор «сопротивляется на » 12,5Ом

Начнем тестирование.
Имитируем тест телефонного зарядного, подав 5,15В и ток 2,36А через лабораторный блок питания. Через 30 минут температура устаканивается в районе 67 градусов, что является приемлемой для меня.
Увеличиваем напряжение таким образом, чтобы выходная мощность примерно равнялась 30Вт. Цифра взята из потолка, именно такую мощность я хочу заявить для моей электронной нагрузки для длительной работы. Еще через 40 минут температура достигла 106 грудусов и я тест остановил. Очень много получилось, все таки придется добавить вентилятор.

Предоставляю небольшой таймлапс. Из-за автоотключения мультиметра, видео вышло некачественным, но что поделать

Подводя итоги по резисторам, можно отметить, что они достаточно точны для меня. Для тестирования блоков питания вполне подойдут. Если добавить преобразователь с функцией контроля тока и амперметр, то появляется неплохое устройство с плавной регулировкой нагрузки

mysku.me

Декодер цветовой маркировки резисторов. 3,4,5,6 полос

Примеры цветовой маркировки 1% резисторов
(5 полос)
1-9.76 Ом10-97.6 Ом100-976 Ом1-9.76 кОм10-97.6 кОм100-976 кОм1-9.76 МОм
Вариант1: для расчета цвет — номинал выберите цвет полос и Примеры цветовой маркировки 5% резисторов (4 полосы) 0.1-910 Ом1кОм-10 MОм

0.1 Ом, цветовая маркировка: коричневый, черный, серебристый, золотистый

0.11 Ом

0.12 Ом

0.13 Ом

0.15 Ом

0.16 Ом

0.18 Ом

0.2 Ом

0.22 Ом

0.24 Ом

0.27 Ом

0.3 Ом

0.33 Ом

0.36 Ом

0.39 Ом

0.43 Ом

0.47 Ом

0.51 Ом

0.56 Ом

0.62 Ом

0.68 Ом

0.75 Ом

0.82 Ом

0.91 Ом

1 Ом цветовая маркировка резистора: коричневый, черный, золотистый, золотистый

1.1 Ом

1.2 Ом

1.3 Ом

1.5 Ом

1.6 Ом

1.8 Ом

2 Ом

2.2 Ом

2.4 Ом

2.7 Ом

3 Ом

3.3 Ом

3.6 Ом

3.9 Ом

4.3 Ом

4.7 Ом

5.1 Ом

5.6 Ом

6.2 Ом

6.8 Ом

7.5 Ом

8.2 Ом

9.1 Ом

10 Ом , цветовая маркировка резистора: коричневый, черный, черный, золотистый

11 Ом

12 Ом

13 Ом

15 Ом , цветовая маркировка резистора: коричневый, зеленый, черный, золотистый

16 Ом

18 Ом

20 Ом

22 Ом

24 Ом

27 Ом

30 Ом

33 Ом

36 Ом

39 Ом

43 Ом

47 Ом

51 Ом

56 Ом

62 Ом

68 Ом

75 Ом

82 Ом

91 Ом

100 Ом , цветовая маркировка резистора: коричневый, черный, коричневый, золотистый

110 Ом

120 Ом

130 Ом

150 Ом

160 Ом

180 Ом

200 Ом

220 Ом

240 Ом

270 Ом

300 Ом

330 Ом

360 Ом

390 Ом

430 Ом

470 Ом

510 Ом

560 Ом

620 Ом

680 Ом

750 Ом

820 Ом

910 Ом

1к 5%, цветовая маркировка: коричневый, черный, красный, золотистый

1.1к

1.2к

1.3к

1.5к 5%, цветовая маркировка: коричневый, зеленый, красный, золотистый

1.6к

1.8к

2.2к

2.4к

2.7к

3.3к

3.6к

3.9к

4.3к

4.7к

5.1к

5.6к

6.2к

6.8к

7.5к

8.2к

9.1к

10к 5%, цветовая маркировка: коричневый, черный, оранжевый, золотистый

11к

12к

13к

15к 5%, цветовая маркировка: коричневый, зеленый, красный, золотистый

16к

18к

20к

22к

24к

27к

30к

33к

36к

39к

43к

47к

51к

56к

62к

68к

75к

82к

91к

100к 5%, цветовая маркировка: коричневый, черный, Желтый, золотистый

110к

120к

130к

150к

160к

180к

200к

220к

240к

270к

300к

330к

360к

390к

430к

470к

510к

560к

620к

680к

750к

820к

910к

1 M 5%, цветовая маркировка: коричневый, черный, зеленый, золотистый

1.1 M

1.2 M

1.3 M

1.5 M 5%, цветовой код: коричневый, зеленый, зеленый, золотистый

1.6 M

1.8 M

2 M

2.2 M

2.4 M

2.7 M

3 M

3.3 M

3.6 M

3.9 M

4.3 M

4.7 M

5.1 M

5.6 M

6.2 M

6.8 M

7.5 M

8.2 M

9.1 M

E12 E24 E48 E96 E192
10% 5% 2% 1% 0.5%

Возможности декодера цветовой маркировки резисторов.

Расчет номинала резистора по цветовому коду:
укажите количество цветных полос и выберите цвет каждой из них (меню выбора цвета находится под каждой полоской). Результат будет выведен в поле «РЕЗУЛЬТАТ»

Расчет цветового кода для заданного значения сопротивления:
Введите значение в поле «РЕЗУЛЬТАТ» и укажите требуемую точность резистора. Полоски маркировки на изображении резистора будут окрашены соответствующим образом. Количество полос декодер подбирает по следующему принципу: приоритет у 4-полосной маркировки резисторов общего назначения, и только если резисторов общего назначения с таким номиналом не существует, выводится 5-ти полосная маркировка 1% или 0.5% резисторов.

Назначение кнопки «РЕВЕРС»:
При нажатии на эту кнопку цветовой код резистора будет перестроен зеркальным образом от исходного. Таким образом можно узнать, возможно ли чтение цветового кода в обратном направлении (справа — налево). Эта функция калькулятора нужна в том случае, когда сложно понять, какая полоска в цветовой маркировке резистора является первой. Обычно первая полоска или толще остальных, или расположена ближе к краю резистора. Но в случаях 5-ти и 6-ти полосной цветовой маркировки прецизионных резисторов может не хватить места, чтобы сместить полоски маркировки к одному краю. А толщина полосок может отличаться весьма незначительно… С 4-полосной маркировкой 5% и 10% резисторов общего назначения все проще: последняя полоска, обозначающая точность — золотистого или серебристого цвета, а эти цвета никак не могут быть у первой полоски.

Назначение кнопки «М+»:
Эта кнопка позволит сохранить в памяти текущую цветовую маркировку. Сохраняется до 9 цветовых маркировок резисторов. Кроме того, автоматически сохраняются в память калькулятора все значения, выбранные из колонок примеров цветовой маркировки,  из таблицы значений в стандартных рядах, любые значения (правильные и неправильные), введенные в поле «Результат», и только правильные значения, введенные с помощью меню выбора цвета полосок либо кнопок «+» и «-«. Функция удобна, когда требуется определить цветовую маркировку нескольких резисторов — всегда можно быстро вернуться к маркировке любого из уже проверенных. Красным цветом в списке обозначаются значения с ошибочной
и нестандартной цветовой маркировкой (значение не принадлежит к стандартным рядам, кодированный цветом допуск на резисторе не соответствует допуску стандартного ряда, к которому относится значение и т.д.).

Кнопка «MC»: — очистка всей памяти. Для удаления из списка только одной записи покройте оную двойным кликом.

Назначение кнопки «Исправить»:
При нажатии на эту кнопку (если в цветовом коде резистора допущена ошибка) будет предложен один из возможных правильных вариантов.

Назначение кнопок «+» и «-» :
При нажатии на них значение в соответствующей полоске изменится на один шаг в большую или меньшую сторону.

Назначение информационное поля (под полем «РЕЗУЛЬТАТ»):
В нем выводятся сообщения, к каким стандартным рядам принадлежит
введенное значение (с какими допусками резисторы этого номинала
выпускаются промышленностью), а так же сообщения об ошибках. Если
значение не является стандартным, то либо вы допустили ошибку, либо
производитель резистора не придерживается общепринятого стандарта (что
случается).

Примеры цветовой кодировки резисторов:
Слева приведены примеры цветовой маркировки 1%, а справа — 5% резисторов. Кликните по значению в списке, и полоски на изображении резистора будут перекрашены в соответствующие цвета.

Таблица, расположенная выше, содержит стандартные значения сопротивлений. Таблица автоматически прокручивается до значений, которые находятся ближе всего к величине, заданной цветовым кодом на изображении резистора. Практически все номиналы постоянных резисторов, которые выпускаются промышленностью, берутся из стандартных рядов и получены умножением значения из стандартного ряда на 10 в определенной степени (номинал в данном случае  в Омах, т.е. 28.7кОм = стандартное значение 287, умноженное на 10 в степени 2  /Ом/). Каждому ряду соответствует своя точность резисторов.

www.searchingtabs.com

SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов  – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо  две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 100 равно 45 Ом
  • 273 = 27 х 103 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 102 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 103 равно 173000 Ом (173 кОм)

 

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные)  в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

www.joyta.ru

Как выглядит резистор на 10 ком. Что такое резистор? Принцип работы. Применение. Маркировка. Единицы измерения сопротивления резисторов

При создании радиоэлектронных схем применяется множество различных элементов. Одни из наиболее используемых, без которых практически невозможно обойтись, — это резисторы. Что они собой являют? Какие типы есть? Какой их параметр наиболее важен? И какие особенности есть при последовательном и параллельном соединении?

Что такое резистор?

Так называют пассивный элемент который оказывает сопротивление току во время его протекания. В больших схемах они применяются чаще, чем любой другой элемент электроники. Важным является обеспечение режима смещения транзисторов при использовании в усилительных каскадах. Но наиболее значимой функцией признают контроль и регулирование напряжения и значений токов в электрических цепях. Мы позднее рассмотрим, какие их типы бывают. В рамках статьи будет уделено внимание 5 основным, которые чаще всего используются, но могут быть и другие. Когда проводится расчет резисторов, то обязательно следует оценить, какая необходима мощность.

В зависимости от формы мы можем разделить их на круговые или скользящие. Основное различие между триммером и потенциометром заключается в том, как гонщик двигается вдоль пути сопротивления. В триммере мы перемещаем всадника с помощью инструмента, такого как отвертка, в то время как потенциометр можно перемещать маховичком, вращая вал потенциометра.

Потенциометры используются, например, для регулирования громкости радио. Очень часто результирующее сопротивление фиксированных резисторов необходимо увеличить или уменьшить. Точный размер полученного сопротивления рассчитывается в соответствии с данными формулами.

Хотите понять, что необходимо в конкретном случае?

Как узнать, какой резистор нужен при создании схем? Первоначально следует понять, что обязательным является знание силы тока или значение сопротивления нагрузки. В рамках статьи будет рассмотрено два варианта влияния на характеристики схемы:

Сегодня, в большинстве случаев, значение резистора резистора обозначается цветовым кодом, отображаемым непосредственно на его корпусе. На рисунке 2 мы видим таблицу с соответствующими цифрами и цветами. Первые три полосы указывают числовые значения, четвертая полоса — множитель, а пятая полоса указывает допуск или возможное отклонение сопротивления резистора. Используя этот код, мы можем быстро и легко найти номинальное сопротивление резистора. Каждый резистор также имеет максимальную мощность потери, которая не может быть превышена, она будет уничтожена.

1) Если ничего неизвестно, то берём и подключаем его последовательно с нагрузкой. Вращаем регулятор до того момента, пока у нас не будет нужное напряжение. Теперь вместо переменного сопротивления подключаем постоянное с необходимыми параметрами. Измерьте ток, что идёт после резистора и перемножает полученное значение с напряжением, что подаётся. Тогда будем знать, сколько и куда подавать.

В следующей части мы поговорим о конденсаторах. Похоже, вы новичок здесь, если вы зарегистрируетесь для своей учетной записи, вы легко получите информацию о новом материале здесь. Резисторы являются одним из основных компонентов всех электронных схем. Поскольку это действительно простой и общий элемент, мы попытаемся узнать об этом несколько вещей.

Важной особенностью электронных схем является то, что если у нас есть некоторое напряжение в цепи, если цепь замкнута, напряжение будет падать на все компоненты таким образом, что суммируя напряжение на каждом компоненте, мы получим напряжение от нашего источника. Это соответствует интуитивному пониманию — напряжение нигде не происходит и не может исчезнуть нигде.

2) Необходимо знать ранее указанные величины тока и нагрузки. Для повышения точности вычисления желательно также знать и значение источника питания.

Давайте смоделируем немного другие условия действий. Есть один резистор в качестве нагрузки, закон Ома и необходимость рассчитать необходимое для цепи сопротивление. Это довольно интересный момент и он заслуживает, чтобы ему было уделено внимание. Почему была выбрана именно такая формулировка? Дело в том, что люди, которые только начинают заниматься созданием схем, очень часто задают такой вопрос. Но, увы, цепь рассуждений, которой они идут, является немного неверной. Рассчитать необходимое значение с одним законом Ома здесь не выйдет. Необходимо дополнительно воспользоваться формулой вычисления добавочного резистора: СДБ = СН(НИП-НН)/НН=СН(х-1). Разберём формулу:

Вторая важная часть информации — то, что напряжение на данном элементе пропорционально проходящему через него току, и каково конкретное значение, которое говорит нам сопротивление. Очевидно, речь идет о резистивных элементах — тол

levevg.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о