описание, принцип работы в асинхронных электродвигателях, их функции
Электрооборудование Автор: profelectroСодержание
Очень многие приборы и устройства, окружающие нас в быту, имеют в своей конструкции двигатель.
Мощные электрические моторы приводят в движение транспортные средства на улицах городов и на железных дорогах, используются в поднятии и перемещении тяжелых грузов.
Из школьных программ мы помним, что электромоторы это устройства для преобразования энергии из одного вида в другой. Чтобы понять, как этот процесс происходит, нужно разобрать электромотор и посмотреть, как он устроен внутри.
В наших статьях мы детально рассказываем о предназначении ротора и статора, о том, как они работают.
Итак, давайте детально разберемся с двумя основными его частями:
Ротор(другое название этой детали – якорь) это подвижная, точнее сказать, вращающаяся деталь электромотора.
Конструкция ротора зависит от типа устройства, в котором он используется. Если это коллекторный агрегат, то ротор производится из следующих частей:
- Сердечник. Эта деталь состоит из пакета металлических пластин. Они переслаиваются диэлектриком или обычной оксидной пленкой. В результате получается «слоеный пирог», основная функция которого – тормозить разгон электронов и предотвращать разогрев ротора. Дело в том, что для приведения мотора во вращение производится перемагничивание сердечника. В результате возникают вихревые токи, или так называемые «токи Фуко», нагревающие ротор и снижающие эффективность работы мотора;
- Обмотки. Сердечник обматывают витками медной проволоки. Каждый проводок покрыт слоем прочного лака. Дополнительно обмотку пропитывают эпоксидными смолами и фиксируют особым лаком. Такая защита предотвращает возможность повреждения обмоток и препятствует возникновению пробоя и образования короткозамкнутых витков, что может нарушить работу двигателя;
- Вал. Это металлический стержень. Своими торцевыми частями он устанавливается в подшипниках качения. Кроме того, на валу может быть резьба, а также имеются профильные углубления для шпонок фиксации шестерен и крепления шкивов, которые приводятся во вращение электромотором;
- Крыльчатка. Эта деталь устанавливается на валу ротора и служит для охлаждения электромотора во время работы. Благодаря такому приспособлению мотор сам себя охлаждает и нет нужды в использовании других устройств для охлаждения;
- Коллектор. Это деталь цилиндрической формы, наружная стенка которой составлена из медных контактов, так называемых ламелей. Коллектор установлен на валу, снаружи его окружают графитовые щетки.
Отдельно отметим, что,по сути,обмотки ротора являются электромагнитом и не все типы ротора устроены именно таким способом.
Цилиндр статора интегрирован в корпус электромотора. Он является его неподвижной частью. Вместе статор и корпус составляют единый моноблок.
Сердечник статора набран из металлических пластин. Они изолированы одна от другой слоем лака. Назначение такого устройства сердечника – противодействие нагреву вихревыми токами Фуко.
В собранном виде пакет статора впрессовывают в корпус. Сердечник статора формируется витками обмотки.
Их пропивают субстанциями особого состава, защищающего витки от повреждений, и укладывают в специально выточенные во внутренней стенке цилиндра пазы.
Схема подключения статора к электрической сети выглядит следующим образом:
На корпусе двигателя имеется так называемый БРНО, блок расключения начал обмоток. Иначе говоря, это распределительная коробка, внутри которой находятся клеммники.
Конструктивно, они различаются между собой. Устройство клеммников зависит от мощности двигателя и вида работы, которую этот двигатель выполняет. Концевые части всех обмоток подключаются к клеммам БРНО.
От мощности электромотора и его функционального предназначения зависит также и способ подключения обмоток.
Есть два способа подключения. Один это так называемая«Звезда», другой — «Треугольник». От способа подключения зависит то, как будет работать электромотор.
При способе соединении «Звезда»мотор плавно увеличивает обороты, причем быстрый разгон оборотов до максимума невозможен.
А если обмотки соединены треугольником, мотор может сразу развить те обороты, на который он конструктивно рассчитан, но и стартовые токи будут адекватно велики.
Устройство асинхронного двигателя
Особенность работы асинхронного мотора заключается в следующем:на обмотки статора питание подается пошагово. В статоре возникает вращающееся поле. Это магнитное поле вызывает ток индукции в роторной обмотке.
Ротор приходит во вращение и стремится уровнять частоту своего вращения с частотой вращения магнитного поля.
Как только такое происходит, исчезает ток индукции в роторных обмотках и ротор начинает терять обороты. И тут же начинает ускоряться вновь под влиянием опережающей частоты оборотов поля.
Таким образом двигатель стабилизирует свою работу, Именно в этой особенности состоит достоинство асинхронного мотора, которое выделяет его среди других типов электромоторов.
Асинхронные двигатели имеют и некоторые конструктивные особенности. Так, на этих двигателях устанавливают роторы разных конструкций:
- Короткозамкнутый ротор.Сердечник такого ротора набран из металлических пластин, как и обычный тип, но на нем нет медной обмотки. На пакете сердечника установлены металлические стержни. Они установлены не параллельно пластинам сердечника, но под некоторым углом. Они так же не касаются один другого, но замкнуты на короткоторцевыми дисками.
- Фазный ротор отличается от короткозамкнутого тем, что у него нет короткозамкнутых стержней, а использованы трехфазные обмотки. Кроме того на роторе такого типа применен не обычный коллектор с ламелями, а особая конструкция, состоящая из трех колец.
В конструктивном смысле такие роторы являются более сложными изделиями и процесс их производства более трудоемок.
Но они не вызывают высокие пусковые токи и их работу можно плавно регулировать.
Похожие публикации:
Статор и ротор – что это такое?
Автор Aluarius На чтение 4 мин. Просмотров 13.7k. Опубликовано
Содержание
Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).
Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.
Виды преобразователей
Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).
Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны. У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.
Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.
Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.
Асинхронные электродвигатели
Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.
Итак, что собой представляет асинхронный электродвигатель? Это обычно чугунный корпус, в который запрессован магнитопровод. В нем сделаны специальные пазы, куда укладывается обмотка статора, собранная из медной проволоки. Пазы сдвинуты относительно друг друга на 120º, поэтому их всего три. Они же образуют три фазы.
Ротор в свою очередь – это цилиндр, собранный из стальных листов (сталь штампованная электротехническая), и насажанный на стальной вал, который в свою очередь при сборке электрического движка устанавливается в подшипники. В зависимости от того, как собраны фазные обмотки агрегата, роторы двигателя могут быть фазными или короткозамкнутыми.
- Фазный ротор – это цилиндр, на котором собраны катушки, сдвинутые относительно друг друга на 120º. При этом в его конструкцию установлены три контактных кольца, которые не соприкасаются ни с валом, ни между собой. К кольцам присоединены с одной стороны концы трех обмоток, а с другой графитовые щетки, которые относительно колец располагаются в скользящем контакте. Пример такой машины – это крановые электродвигатели с фазным ротором.
- Короткозамкнутый ротор собирается из медных стержней, которые укладываются в пазы. При этом их соединяют специальным кольцом, изготовленном из меди.
Асинхронный электрический двигатель с фазным ротором является обладателем больших размеров и веса. Но у него отличные свойства, касающиеся пусковых и регулировочных моментов. Двигатели, у которых установлен короткозамкнутый ротор, считаются самыми надежными на сегодняшний день.
Разница между статором и ротором (со сравнительной таблицей)
Статор и ротор являются частями электродвигателя. Существенная разница между ротором и статором заключается в том, что ротор является вращающейся частью двигателя, тогда как статор является неподвижной частью двигателя. Другие различия между статором и ротором показаны ниже в сравнительной таблице.
Корпус статора , сердечник статора и обмотка статора являются частями статора . Рама поддерживает сердечник статора и защищает их трехфазную обмотку. Сердечник статора несет вращающееся магнитное поле, которое индуцирует из-за трехфазного питания.
Ротор расположен внутри сердечника статора . Беличья клетка и ротор с фазовой обмоткой являются типами ротора. Обмотка ротора возбуждается источником постоянного тока. Обмотка возбуждения индуцирует постоянное магнитное поле в сердечнике ротора.
Содержание: статор и ротор
- Сравнительная таблица
- Определение
- Ключевые отличия
- Заключение
Сравнительная таблица
Основание для сравнения | Статор | Ротор |
---|---|---|
Определение | Неподвижная часть машины | Это вращающаяся часть двигателя. |
Детали | Внешняя рама, сердечник статора и обмотка статора. | Обмотка ротора и сердечник ротора |
Источник питания | Трехфазный источник питания | Источник постоянного тока |
Схема обмотки | Сложная | Легкая |
Изоляция | Тяжелая | Менее |
Потери на трение | Высокая | Низкая |
Охлаждение | Простой | Сложный |
Определение статора
Статор — это статическая часть двигателя. Основная функция статора заключается в создании вращающегося магнитного поля. Каркас статора, сердечник статора и обмотка статора являются тремя частями статора. Сердечник статора поддерживает и защищает трехфазную обмотку статора. Штамповка из высококачественной кремнистой стали делает сердечник статора.
Определение ротора
Вращающаяся часть двигателя называется ротором. Сердечник ротора и обмотка ротора являются частью ротора. Обмотка ротора возбуждается источником постоянного тока. Беличья клетка и фазовая обмотка являются типами ротора.
Сердечник короткозамкнутого ротора изготовлен из цилиндрического железного сердечника. Сердечник имеет на своей внешней поверхности полукруглую прорезь, на которую надеваются медные или алюминиевые жилы. Проводники замыкаются на концах с помощью алюминиевых или медных колец.
Работа ротора и статора
Статор создает вращающееся магнитное поле благодаря трехфазному питанию. Если ротор находится в состоянии покоя, то в них индуцируется электромагнитная сила из-за явлений электромагнитной индукции.
Электромагнитная индукция – это явление, при котором ЭДС индуцируется в проводнике с током из-за переменного магнитного поля. В роторе индуцируется ток, который заставляет ротор двигаться.
Основные различия между статором и ротором
- Статор — это неподвижная часть машины, а ротор — подвижная часть машины.
- Сердечник статора, обмотка статора и внешняя рама являются тремя частями статора, тогда как сердечник ротора и обмотка возбуждения являются частями ротора.
- Трехфазное питание подается на обмотку статора. Ротор возбуждается источником постоянного тока.
- Устройство обмотки статора более сложное по сравнению с ротором.
- Обмотка статора хорошо изолирована, так как в ней индуцируется высокое напряжение. Принимая во внимание, что ротор имеет низкую изоляцию.
- Размер обмотки статора больше для пропускания сильного тока по сравнению с обмоткой возбуждения.
- Система охлаждения статора хороша по сравнению с ротором. Поскольку статор неподвижен.
- Потери на трение в роторе меньше, чем в статоре из-за его малого веса.
Заключение
Статическая часть машины известна как статор. А вращающаяся часть машины известна как ротор. Ротор размещен внутри сердечника статора. Трехфазный ток подается на обмотку статора, которая создает вращающееся магнитное поле. Ротор вращается внутри вращающегося магнитного поля. Таким образом, ЭДС индуцируется из-за взаимодействия магнитных полей ротора и статора.
Двигатель переменного тока– основные свойства, терминология и теория Двигатель переменного тока
преобразует электрическую энергию в механическую. В двигателе переменного тока используется переменный ток, другими словами, направление тока периодически меняется. В случае обычного переменного тока, который используется на большей части территории Соединенных Штатов, ток меняет направление 120 раз в секунду. Этот ток называется «переменный ток 60 циклов» или «переменный ток 60 Гц» в честь г-на Герца, который первым придумал концепцию переменного тока. Другая характеристика текущего потока состоит в том, что он может изменяться по количеству. Например, поток может встречаться в 5 ампер, 10 ампер или 100 ампер.
Было бы довольно сложно, если бы ток, скажем, 100 ампер в один момент протекал в положительном направлении, а затем протекал с такой же силой в отрицательном направлении. Вместо этого, по мере того, как ток готовится изменить направление, он сужается до тех пор, пока не достигнет нулевого потока, а затем постепенно нарастает в другом направлении. Максимальный ток (пики линии) в каждом направлении превышает указанное значение (в данном случае 100 ампер). Поэтому указанное значение дано как среднее. Важно помнить, что сила магнитного поля, создаваемого электромагнитной катушкой переменного тока, увеличивается и уменьшается с увеличением и уменьшением этого переменного тока.
Магазин ПРИВОДЫ ПЕРЕМЕННОГО ТОКА
Двигатель переменного тока состоит из двух основных электрических частей: «статора» и «ротора», как показано на рисунке 8. Статор является неподвижным электрическим компонентом. Он состоит из группы отдельных электромагнитов, расположенных таким образом, что они образуют полый цилиндр, причем один полюс каждого магнита обращен к центру группы. Термин «статор» происходит от слова «стационарный». Тогда статор является неподвижной частью двигателя. Ротор представляет собой вращающийся электрический компонент. Он также состоит из группы электромагнитов, расположенных вокруг цилиндра, полюса которых обращены к полюсам статора. Ротор расположен внутри статора и закреплен на валу двигателя. Термин «ротор» происходит от слова вращающийся. Таким образом, ротор является вращающейся частью двигателя. Задача этих компонентов двигателя — заставить вращаться ротор, который, в свою очередь, будет вращать вал двигателя. Это вращение произойдет из-за ранее обсуждавшегося магнитного явления, когда разные магнитные полюса притягиваются друг к другу, а одинаковые полюса отталкиваются. Если вы постепенно меняете полярность полюсов статора таким образом, что их объединенное магнитное поле вращается, то ротор будет следовать и вращаться вместе с магнитным полем статора.Как показано на рис. 9, статор имеет шесть магнитных полюсов, а ротор — два полюса. В момент времени 1 полюса статора A-1 и C-2 являются северными полюсами, а противоположные полюса, A-2 и C-1, являются южными полюсами. S-полюс ротора притягивается двумя N-полюсами статора, а два южных полюса статора притягиваются к N-полюсу ротора. Во время 2 полярность полюсов статора меняется так, что теперь полюса C-2, B-1 и N, а C-1 и B-2 являются полюсами S. Затем ротор вынужден повернуться на 60 градусов, чтобы выровняться с полюсами статора, как показано на рисунке. В момент 3 B-1 и A-2 равны N. В момент 4 A-2 и C-1 равны N. При каждом изменении противоположные полюса статора притягиваются к полюсам ротора. Таким образом, когда магнитное поле статора вращается, ротор вынужден вращаться вместе с ним.
Одним из способов создания вращающегося магнитного поля в статоре двигателя переменного тока является использование трехфазного источника питания для катушек статора. Чтобы создать вращающееся магнитное поле в статоре трехфазного двигателя переменного тока, все, что нужно сделать, это правильно намотать катушки статора и правильно подключить провода питания. Соединение для 6-полюсного статора показано на рисунке 11. Каждая фаза трехфазного источника питания подключена к противоположным полюсам, а соответствующие катушки намотаны в одном направлении. Полярность полюсов электромагнита определяется направлением тока, протекающего через катушку. Следовательно, если два противоположных электромагнита статора намотаны в одном направлении, полярность противоположных полюсов должна быть противоположной. Когда полюс A1 — это N, полюс A2 — это S, а когда полюс B1 — это N, B2 — это S и так далее.
На рис. 12 показано, как создается вращающееся магнитное поле. В момент времени 1 ток в полюсах фазы «A» положительный, а в полюсе A-1 — N. Ток в полюсах фазы «C» отрицательный, что делает C-2 полюсом N, а C-1 — S. В фазе «В» ток отсутствует, поэтому эти полюса не намагничены. В момент времени 2 фазы сместились на 60 градусов, в результате чего полюса C-2 и B-1 стали оба N, а C-1 и B-2 оба S. Таким образом, по мере того, как фазы сдвигают свой ток, результирующие полюса N и S перемещаются. по часовой стрелке вокруг статора, создавая вращающееся магнитное поле. Ротор действует как стержневой магнит, притягиваемый вращающимся магнитным полем.До сих пор мало что было сказано о роторе. В предыдущих примерах предполагалось, что полюса ротора были намотаны катушками, как и полюса статора, и питались постоянным током для создания полюсов с фиксированной полярностью. Кстати, именно так работает синхронный двигатель переменного тока. Однако большинство двигателей переменного тока, используемых сегодня, не являются синхронными двигателями. Вместо этого так называемые «асинхронные» двигатели являются рабочими лошадками промышленности. Так чем же отличается асинхронный двигатель? Большая разница заключается в том, как ток подается на ротор. Это не внешний источник питания. Как вы можете догадаться из названия двигателя, вместо него используется индукционная технология. Индукция – еще одна характеристика магнетизма. Это естественное явление, которое возникает, когда проводник (алюминиевые стержни в случае ротора, см. рис. 13) проходит через существующее магнитное поле или когда магнитное поле проходит мимо проводника. В любом случае их относительное движение вызывает протекание электрического тока в проводнике. Это называется «индуцированным» током. Другими словами, в асинхронном двигателе протекание тока в роторе вызвано не каким-либо прямым подключением проводников к источнику напряжения, а скорее влиянием проводников ротора, пересекающих линии потока, создаваемые магнитными полями статора. Индуцированный ток, создаваемый в роторе, приводит к возникновению магнитного поля вокруг проводников ротора, как показано на рисунке 14. Это магнитное поле вокруг каждого проводника ротора заставляет каждый проводник ротора действовать как постоянный магнит на рисунке 9.