Ротор (якорь)
Основная статья: Ротор
Минимальное число зубцов ротора, при котором самозапуск возможен из любого положения ротора — три. Из трёх, кажущихся явно выраженными, полюсов, на самом деле один полюс всё время находится в зоне коммутации, то есть ротор имеет две пары полюсов (как и статор, так как в противном случае работа двигателя не возможна).
Ротор любого ДПТ состоит из многих катушек, на часть которых подаётся питание, в зависимости от угла поворота ротора, относительно статора. Применение большого числа (несколько десятков) катушек, необходимо для уменьшения неравномерности крутящего момента, для уменьшения коммутируемого (переключаемого) тока, и для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть для создания максимального момента на роторе).
При вычислении момента инерции ротора его, в первом приближении, можно считать сплошным однородным цилиндром с моментом инерции, равным:
,
где — масса цилиндра (ротора),
а — радиус цилиндра (ротора).
Коллектор[править | править исходный текст]
Основная статья: Щёточно-коллекторный узел
Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции: является датчиком углового положения ротора и переключателем тока со скользящими контактами.
Конструкции коллекторов имеют множество разновидностей.
Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных по оси (вдоль оси) ротора. Существуют и другие конструкции коллекторного узла.
Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый).
Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов.
При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора недопустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.
Принцип работы
Принципу работы электродвигателя постоянного тока может быть дано два описания:
1. подвижная рамка (два стержня с замкнутыми концами) с током в магнитном поле статора
или
2. взаимодействие магнитных полей статора и ротора.
Рамка с током, в однородном магнитном поле полюсов статора с индукцией , на два стержня рамки длиной , и с током , действует сила Ампера , постоянной величины, равные:
и направленные в противоположные стороны.
Эти силы прикладываются к плечам , равным:
, где — радиус рамки;
и создают крутящий момент , равный:
.
Для двух стержней рамки, суммарный крутящий момент равен:
.
Практически (из-за того, что угловая ширина щётки (в радианах) немного меньше угловой ширины зазора , между пластинами (ламелями) коллектора, чтобы источник питания не замыкался накоротко) четыре небольших части под кривой крутящего момента, равные:
, где ,
не участвуют в создании общего крутящего момента.
При числе витков в обмотке равном , крутящий момент будет равен:
.
Наибольший крутящий момент будет при угле поворота рамки равном: , то есть при угле 90°.
При этом угле поворота рамки с током, вектора магнитных полей статора и ротора (рамки) будут перпендикулярны друг к другу, то есть под углом 90°. При угле поворота ротора (рамки) равном 180°, крутящий момент равен нулю (из-за нулевого плеча), но силы не равны нулю и это положение ротора (рамки), при отсутствии переключения тока, весьма устойчиво и подобно одному шагу в шаговом двигателе.
Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой крутящего момента, делённой на длину периода :
.
При витков в обмотке:
studfiles.net
Что такое ротор, и где взялся якорь?
Термины “якорь” и “ротор” довольно давно пополнили словарный запас электротехников и механиков, но откуда взялись эти два выражения, несмотря на их широкое применение в наше время, известно немногим. Слово “якорь”, употребляемое для обозначения одной из составляющих двигателя, является довольно старым названием и, даже более того, по своему возрасту этот термин опережает большую массу электротехнических наименований. Впервые “якорем” в электротехнике был назван железный брусок, который притягивался к полюсам магнита.
Данное изобретение впервые нашло применение в производстве магнитных компасов, столь широко полюбившимся мореплавателям в эпоху географических открытий. Основной составной частью компаса являлась магнитная стрелка, изготавливаемая из железа и намагничиваемая природными магнитами. Работе компасов способствовал железный съемный брусок, который имел с одной стороны крючок либо миниатюрную декоративную копию морского якоря для подвешивания гиревой чашки. Гиря была необходима для определения силы прилипания магнита. Сам же брус с крюком, по причине внешнего сходства с общеизвестным приспособлением для кораблей, стал называться “якорем магнита”.
Как стало известно, первые компасы работали благодаря действию исключительно только природных магнитов. Для того, что обеспечить большую “притягательность” природных магнитов, их укрепляли железом, присоединяемым к поверхности камня при помощи немагнитных соединений из меди, серебра и золота.
В 1825 году благодаря труду английского инженера Уильяма Стерджена миру стал известен электромагнит. Изобретение представляло собой согнутый стержень из мягкого железа с обмоткой толстой проволоки. С целью изолирования данный стержень покрывался лаком. Пропуская электрический ток, стержень становился очень сильным магнитом, но полностью терял свойства притягивания, как только ток прерывался. Такая способность электромагнитов и послужила причиной того, что они практически полностью вытеснили из обихода природные магниты, заняв их место в промышленности. Однако, несмотря на появление нового изобретения, способ измерения магнитной силы так и не изменился. В 1838 году в Петербурге была опубликована совместная научная работа двух российских академиков – Б.С. Якоби и Э.Х. Ленца, в которой ученые указали, что “сила притяжения определяется весом гирь, которые накладывались до тех пор, пока якорь не отрывается”.
Открытие Уильяма Стерджена произвело настоящий фурор в области электротехники. Со временем это изобретение было несколько усовершенствовано и доработано, после чего нашло широкое применение в повседневной жизни. Создателем же первых мощных многовитковых электромагнитов является американский физик Джозеф Генри. Добиться большей силы притяжения ему удалось благодаря использованию провода, покрытого изоляцией. Конструкция “уплотненных” электромагнитов Дж. Генри была такова: на малой площади электромагнита размещалось несколько рядов витков изолированной шелком проволоки из меди, при этом каждый из рядов подсоединялся к отдельному аккумуляторы. Параллельно соединяя обмотки, американский ученый добивался существенного увеличения силы тока.
Благодаря изобретению многокатушечной обмотки получилось создать первые электромагниты с большой подъемной силой. Электромагниты Генри могли выдерживать груз от 30 до 325 килограмм при весе магнита всего в 10 килограмм. Примечательно то, что для определения подъемной силы электромагнита, физик пользовался все теми же гирями, закрепляемыми на якоре.
В 1831 году Джозеф Генри сконструировал первый в мире электромагнит, способный поднимать вес в одну тонну. Ещё одно достижение этого ученое – разработка электромагнитного звонка. Поставив якорь электромагнита на шарнир, Генри заставил его силой притяжения ударять по колоколу. Работая в области увеличения дальности передачи телеграфных сигналов, американец изобрел невиданный ранее прибор – реле, позволяющее усиливать начальный сигнал извне перед передачей его в последующую цепь. Данное устройство сделало возможной транспортировку телеграфных сигналов практически на любые расстояния.
Джозеф Генри
В том же 1831 году Генри предложил модель электрического двигателя с качающимся коромыслом магнитопривода с катушкой. Якорь совершал в модели двигателя Генри около 75 качений в минуту, мощность же двигателя составляла 0,044 Вт. Качаясь между полюсами постоянных магнитов, входящих в систему, контакты якоря периодически соприкасались с выводами аккумуляторных батарей, подпитывающих катушку электрическим током. В основе работа электрического двигателя Генри лежал принцип возвратно-поступательного движения. Джозеф Генри не возлагал больших надежд на свое изобретение, однако надеялся, что все-таки когда-нибудь оно пригодится для практических целей.
В наше время движущаяся часть магнитного привода уж никак не похожа на корабельный якорь, но по сей день это устройство все же продолжает носить его название. Хоть в эру властвования трехфазного переменного тока вращающаяся часть моторов и получила название ротора, терминология, касаемая двигателей постоянного тока, осталась прежней. Обсуждая конструктивные особенности этих двигателей нередко можно услышать о так называемом якоре. Что обозначает это слово, знает сегодня практически каждый технарь.
Терминология электротехники довольно занимательна – чего стоит только слово “башмак”, используемое для обозначения полюсного наконечника, или “cтатор”, что в переводе с латинского звучит не иначе как “cтоящий неподвижно”. Современная техника меняется год от года, не успеваешь даже следить за её конструктивным эволюционированием, не говоря уже о запоминании новых понятий. Возможно, потому и не стоит менять старую терминологию, что появление новых технических названий вызовет настоящую путаницу.
www.electra.com.ua
Чем отличается якорь от ротора электродвигателя. Большая энциклопедия нефти и газа
В отличие от асинхронных двигателей, некоторые виды двигателей имеют в конструкции подвижные элементы, изнашивающиеся в процессе трения. Без замены истершихся деталей функционирование эл двигателя невозможно. В этом случае есть два варианта: купить электродвигатель или его отремонтировать. Если причина выхода из строя оборудования – замыкание или обрыв обмотки якоря, то ремонт электродвигателя осуществляется при помощи перемотки якоря .
Другая стратегия, подтвержденная в этом последнем десятилетии и направленная на улучшение власти м. в то время как снижение расхода топлива и выбросов, является принятие более двух клапанов на цилиндр. Преимущество этого решения заключается в том, что, как и меньшие клапаны, чем один, можно достичь лучшего корпуса для этих в конечном счете, в камере сгорания, что способствует как процессу замещения заряда, так и уровню гомогенности воздушно-топливной смеси, отсасываемой двигателем.
Наиболее часто используемые решения – 3 клапана, 4 клапана и 5 клапанов соответственно. В этой связи следует отметить, что, хотя первые два решения также влияют на нормальное производство стандартных автомобилей, последнее применяется только в области автомобильных и мотоциклетных соревнований.
Самостоятельно определить неисправность якоря довольно трудно. Зачастую аварийные ситуации или износ одного узла или детали, могут привести сразу к нескольким поломкам или возникновению сопутствующих дефектов. Необходима проверка с помощью специального инструмента и проведение испытаний на стендах. Поэтому для ремонта якоря промышленных электродвигателей даже производственным и машиностроительным организациям, имеющим свои сервисные и ремонтные службы, рекомендуется обращаться в специализированные фирмы.
Применение устройств для снижения вредных выбросов в выхлоп двигателя. Устройства, созданные в последние годы, сначала в Соединенных Штатах и Японии, а затем в Европе, называются каталитическими преобразователями или глушителями. Основная функция этих устройств заключается в содействии окислению монооксида углерода и несгоревших углеводородов и восстановлению оксидов азота путем принятия подходящих катализаторов, осажденных в них.
Первоначально эти устройства были образованы двумя физически отличными элементами, расположенными последовательно вдоль выпускного коллектора. В настоящее время, благодаря развитию технологии катализаторов и электроники, был разработан новый тип преобразователей, который может одновременно конвертировать вышеупомянутые загрязняющие вещества.
Ремонт якоря электродвигателя включает следующие операции:
- перемотку якоря электродвигателя;
- балансировку.
Балансировка якоря электродвигателя
Вращение якоря электродвигателя происходит постоянно с высокой угловой скоростью, а равнодействующее сил не скомпенсировано. Разбалансировка приводит к быстрому выходу из строя подшипников и разрушения якоря электродвигателя. Поэтому кроме устранения механических повреждений и восстановления функционирования обмотки работы по ремонту якоря электродвигателя должны осуществляться с его последующей обязательной балансировкой.
Такие преобразователи или каталитические нейтрализаторы представляют собой в своем наиболее распространенном варианте подложку из керамического материала, размещенного внутри корпуса из нержавеющей стали и снабженного большим количеством параллельных и смежных прямоугольных каналов, образующих характерную сетчатую структуру, на стенках этих каналов осаждаются соответствующими химическими и физическими процессами, конкретными катализаторами, которые способны в очень высокой степени превращать три регулируемых загрязняющих вещества в безвредные продукты во впрыскиваемой смеси, очень близкой к стехиометрии.
Балансировка якоря электродвигателя осуществляется на балансировочном станке после проведения всех операций по ремонту обмотки якоря . Качество балансировочных работ зависит от опыта, знаний и умений специалиста, поэтому операцию должен проводить специально обученный ремонтный персонал. Несоблюдение этих требований: отсутствие специального оборудования, необученный персонал или организация ремонта якоря электродвигателя без последующей балансировки приводит к необходимости проведения ремонта после ремонта.
Важным элементом этих систем является так называемый лямбда-зонд, то есть специальный датчик, расположенный выше по потоку от каталитического нейтрализатора и который контролирует содержание кислорода в выхлопных газах. Характеристика этого датчика заключается в генерации электрического сигнала, соответствующего концентрации, взятой из кислорода в выхлопных газах, и с помощью соответствующих вмешательств в системе впрыска топлива для обеспечения практически стехиометрического значения измерения, необходимого для загрязнители могут быть преобразованы из катализатора в полные продукты сгорания.
Качественно выполнить ремонт якоря электродвигателя, произвести его балансировку, восстановить работоспособность эл двигателя после некачественного ремонта якоря поможет ООО ПТК «Электропромремонт». Ком
elec-master.ru
Ротор и статор электродвигателя: определение, виды, назначение
Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.Что такое ротор
Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.
Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:
- Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
- Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
- Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
- Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
- На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.
Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.
Что такое статор
Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.
Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.
Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:
Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.
Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.
Статор и ротор в асинхронных двигателях
Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.
В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.
Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.
Короткозамкнутый ротор
Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.
Фазный ротор
Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.
Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:
Материалы по теме:
Нравится(0)Не нравится(0)samelectrik.ru
О происхождении терминов “якорь” и “ротор”. Балансировка якоря электродвигателя
Cтраница 1
Якорь электродвигателя состоит из вала, на который напрессовывается сердечник, набранный из лакированной электротехнической стали толщиной 0 5 мм, с пазами для обмотки, и коллектор. Обмотка якоря двухслойная с диаметральным шагом из провода марки ПЭЛШКО. Коллектор набирается из пластин красной меди, изолированных друг от друга миканитовыми прокладками. Армирование коллектора выполняется на пластмассе и осуществляется при помощи стальных колец, укладываемых перед опрессовкой коллектора в выточки, имеющие форму ласточкиного хвоста. Для предотвращения замыкания коллекторных пластин кольца перед укладкой изолируются лентой из стекловолокна. В результате армирования прочность коллектора увеличивается. Присоединение обмотки к коллектору производится так же, как и в двигателях постоянного тока.
Якорь электродвигателя разбирают в такой последовательности: отвертывают конусный ролик 4 (см. рис. 82) с вала якоря; при помощи съемника спрессовывают подшипник 5 и вентилятор 8; снимают маслоотбойные кольца 2; заменяют негодные подшипники, снимают обмотку, наматывают новую, собирают якорь и электродвигатель. Центровку якоря по горизонтали производят крышкой (заглушкой) 19 подшипника.
Якорь электродвигателя состоит из пакета пластин трансформаторной стали, якорной обмотки, вентилятора (крыльчатки) и коллектора. Коллектор якоря имеет медные пластины (ламели), между которыми положены прокладки из миканита.
Схема вращения натирочных. |
Якорь электродвигателя состоит из пакета пластин трансфор-матерной стали, якорной обмотки, вентилятора (крыльчатки) и коллектора.
Якорь электродвигателя вращается на двух подшипниках, расположенных в подшипниковых щитах. На валу якоря для охлаждения электродвигателя имеется центробежный вентилятор. Воздух засасывается через жалюзи крышек подшипникового щита со стороны коллектора, проходит через машину и выбрасывается вентилятором через решетки верхнего подшипникового щита.
Якорь электродвигателя вращается в двух самоустанавливающихся бронзографитовых втулках, пропитанных турбинным маслом.
Якорь электродвигателя собран из листов 7 такой же формы, как и якорь двигателя ДП-4. Катушки 6 обмотки якоря намотаны на зубцы сердечника и изолированы от них полосками электрокартона. Три выводных конца катушек якоря соединены между собой, а три другие припаяны к трем коллекторным пластинам, запрессованным в пластмассу.
Вращающаяся часть машин – якорь 9 (рисунок 1.1) состоит из сердечника 7, обмотки 8 и коллектора 5.
Сердечник имеет цилиндрическую форму. Он набирается из колец или сегментов листовой электротехнической стали, на внешней поверхности которых выштампованы пазы. В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.
Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.
Принцип работы генератора основан на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС e 1 и e 2 , направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, – к нам. По ходу витка ЭДС складываются, результирующая ЭДС е = е 1 – е 2 .
Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него – к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя – отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя – с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.При отсутствии нагрузки (при разомнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе. При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Р эл, увеличиваются ток i, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Р мх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.
Таким образом, чем больше электрической энергии потребляется, например, электродви
levevg.ru
Происхождение терминов «якорь» и «ротор»
01.04.2015
Во времена развития мореплавания и географических открытий ощущалась острая необходимость в магнитных компасах, основным элементом которых являлась магнитная стрелка. Стрелки делали из металла и намагничивали при помощи природных магнитов, иного способа не было. Для качественного намагничивания требовались мощные магниты, которые усиливали армированием из железа и прикрепляли к камням оправами из меди, серебра или золота. Все это стилизовалось орнаментами, надписями и различными фигурками.
Стоили магниты в то время довольно дорого. В комплект с магнитом входил съемный железный брусок, который крепился к полюсам. С одной стороны брусочек имел кольцо, или крючок для подвешивания гиревой чашки. Силу с которой магнит держит брусочек всегда можно было измерить весом гирьки, которая укладывалась в чашку. Так сам брусок с крючком и был именован «якорь магнита».
С изобретением электромагнитов в 1825 году, способ измерения их силы не изменился. Так, в 1838 году российский академик Б.С. Якоби в своем труде «О притяжении магнитов» пишет о том, что сила притяжения магнитов определялась весом гирь, которые накладывались до тех пор, пока якорь не отрывался.
Позже, когда открылось, что электромагниты могут создавать сильные магнитные поля, американский ученый Дж. Генри разработал электромагнит, якорь которого мог удерживать тяжесть весом в одну тонну. Но главной его заслугой стало то, что он сумел поставить якорь электромагнита на шарнир и заставил его при притяжении ударять по специальному колокольчику. Именно так появился первый электромагнитный звонок. Позже, приспособив к подвижному якорю контакты, ученый смог получить ранее неизвестное приспособление — реле для автоматического преобразования электрических цепей по сигналу извне, что позволило передавать телеграфные сообщения на любые расстояния.
От простых изобретений к электродвигателю
После ряда своих открытий Дж. Генри сделал магнитопровод с катушкой, который устанавливался горизонтально, как коромысло лабораторных весов. Когда якорь качался, контакты, прикрепленные на концах коромысла, касались выводов двух гальванических элементов, которые питали катушку токами различного направления. Качаясь, коромысло притягивалось к двум постоянным магнитам, которые входили в систему.
Установка могла работать непрерывно, сообщая якорю в минуту 75 качаний. Именно так возникла одна из первых конструкций электродвигателя возвратно-поступательного движения. А превратить его в двигатель вращательного движения в то время труда не составляло. Стоит отметить, что машины с возвратно-поступательным движением в то время не поимели популярности, так как технологически более удобными были признаны электродвигатели с вращающимся якорем.
Позже пришла эра трехфазного переменного тока. Крутящиеся узлы двигателя переменного тока перестали называть якорем. Вращающееся магнитное поле стали именовать вихрем, а вращающуюся чать — ротором. Однако, в машинах постоянного тока терминология сохранилась. Якорь вращался, а полюсной наконечник получил название башмак.
Сегодня распространение получают многофазные линейные электродвигатели для поездов монорельсового типа. В качестве ротора применяется прикрепленный намертво монорельс, а статором служат обмотки, которые устанавливаются на магнитопроводе быстро мчащихся электропоездов.
Предприятие ЗАО «ПромЭлектроРемонт» имеет все необходимые сертификаты на оказание таких работ как:
Другие событияremonteldv.ru
Устройство ротора (якоря). — МегаЛекции
Глава1. Устройство и принцип действия генератора постоянного тока.
1.1. Принцип работы ГПТ.
Работа генератора постоянного тока основана на законе электромагнитной индукции
Рис. 1. Вращение в магнитном поле рамки
Рассмотрим рис. 1. При вращении в магнитном поле рамки, концы которой присоединены к двум полукольцам, вращающимся вместе с рамкой, в последней возникает переменная э.д.с.Как уже известно, эта э. д. с. изменяется по синусоиде и зависит от положения, занимаемого проводниками а и б в магнитном поле.
Наибольшая э. д. с. возникает в тот момент, когда проводник находится на оси полюсов N и S. В момент расположения проводников в плоскости, перпендикулярной оси полюсов, э. д. с. равна нулю — проводники находятся на нейтральной линии.
Предположим, что рамка вращается по часовой стрелке. Тогда ток в проводнике, находящемся под северным полюсом, направлен от нас за плоскость чертежа, а в проводнике, находящемся под южным полюсом, к нам. Пока проводника расположен под северным полюсом, соединенное с проводником полукольцо имеет контакт с неподвижной щеткой А. Соответственно проводник б имеет контакт через свое полукольцо со щеткой Б. По щетке А течет ток положительного направления, а по щетке Б — отрицательного.
Когда проводники находятся на нейтральной линии, т. е. э. д. с. в них равна нулю, щетки замыкают оба полукольца накоротко. Если бы эдс в этот момент не была равна нулю, в рамке бы возник ток КЗ, опасный для электрической части генератора. Прежде всего ток КЗ вызвал бы искрение в местах контакта щеток и полуколец.
Пройдя нейтральную линию, проводник а вступает в зону южного полюса, направление тока в нем изменится на обратное (к нам), но в это время данный проводник входит в контакт со щеткой Б. Следовательно, несмотря на то, что направление тока в проводнике изменилось, направление тока в щетке Б не меняется и по- прежнему остается отрицательным. Аналогичная картина происходит и с проводником б, после того как он перейдет в зону действия северного полюса.
Таким образом, по внешней цепи направление тока сохраняется постоянным.
В рассмотренном случае при сохранении постоянства направления ток будет изменяться от наибольшего значения до нуля, иначе говоря, будет пульсирующим.
Если в магнитном поле расположить не два проводника, а четыре, соединенные с четырьмя изолированными друг от друга частями кольца, то пульсация тока значительно сгладится (Рис.2.) Описанное устройство из двух или четырех частей кольца, служащее для выпрямления тока, является простейшим коллектором.
Фактически коллектор состоит из значительного числа сегментов, каждый из которых соединен с двумя проводниками обмотки якоря. В этом случае ток, вырабатываемый генератором, будет практически постоянным как по направлению, так и по величине.
Рис. 2. Четыре проводника в магнитном поле
Машина постоянного тока состоит из двух основных частей: неподвижной – статора и вращающейся – ротора, называемого в машинах постоянного тока якорем. Эскиз машины постоянного тока показан на рис. 1.1, а общий вид с разрезом — на рис.1.2.
Устройство статора.
Статор состоит из станины 1, главных полюсов 2, дополнительных полюсов 3, подшипниковых щитов 4 и щеточной траверсы со щетками 6.Станина имеет кольцевую форму и изготовляется из стального литья или стального листового проката. Она составляет основу всей машины и, кроме того, выполняет функцию магнитопровода. Главные полюсы служат для создания постоянного во времени и неподвижного в пространстве магнитного поля. С этой целью по обмотке полюсов пропускается постоянный ток, называемый током возбуждения (в машинах малой мощности в качестве полюсов могут использоваться постоянные магниты). Дополнительные полюсы устанавливаются между главным и служат для улучшения условий коммутации.
Подшипниковые щиты закрывают статор с торцов. В них впрессовываются подшипники, и укрепляется щеточная траверса, которая с целью регулирования может поворачиваться. На щеточной траверсе закреплены пальцы, которые электрически изолированы от траверсы. На пальцах установлены щеткодержатели со щетками, изготовленными из графита или
смеси графита с медью.
Устройство ротора (якоря).
Вращающаяся часть машин – якорь 9 (рис. 1.1, 1.2, а, б) состоит из сердечника 7, обмотки 8 и коллектора 5.Сердечник имеет цилиндрическую форму. Он набирается из колец или сегментов листовой электротехнической стали, на внешней поверхности которых выштампованы пазы. В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.
Устройство обмотки якоря генераторов постоянного тока. Самый сложный по исполнению узел ГПТ – это обмотка ротора, с которой снимается постоянной ток. (якорная обмотка).Якорная обмотка генераторов, применяемых в промышленности, сильно отличается от обмотки (рамок) вышерассмотренного условного генератора. Условный генератор имеет очень существенный недостаток: эдс в любой момент времени снимается только с одной рамки, что ограничивает вырабатываемое напряжение. Для того чтобы генератор вырабатывал больший ток, все рамки (секции обмотки) в реальном генераторе соединяются последовательно между собой через ламели
коллектора.
.
Рис. 3. Подключение обмотки генератора
Каждая секция состоит из двух сторон (в каждой стороне в зависимости от числа витков в секции имеется один или несколько проводников). Эти стороны называются активными частями секций, в них индуктируются э. д. с. Наружные (торцовые) части секций служат только для соединения активных сторон и присоединения их к коллекторным пластинам.
Каждую секцию укладывают так, что одна ее сторона располагается в верхней части паза под полюсом одной полярности, а другая — в нижней части другого паза под полюсом другой полярности (рис. 3).
Расположение активных сторон секций под полюсами разных полярностей является основным правилом выполнения обмоток, так как только при этом условии индуктирующиеся в них э. д. с. будут складываться.
Второе важное отличие реального ГПТ от условного: каждая рамка(секция) подключена (приварена) своим концами к соседним ламелям коллектора, а не к противоположным, как это было в условном генераторе. (Рис.3.)Такое подключение приводит к тому что эдс последовательно подключенных обмоток складываются (как последовательно соединенные источники питания) и генератор выдает через щетки гораздо большую мощность. (Рис 4,а) Самая большая из суммируемых эдс индуцируется в обмотке, которая в данный момент находится вертикально. В рамке(секции) расположенной горизонтально, эдс отсутствует. Обмотка работает как простой проводник, передавая вырабатываемую эдс на щетки. Т.о. существует третье важное реального ГПТ от условного: токосъемные щетки реально генератора находятся на физической нейтрали – линии перпендикулярной параллельно магнитного потока проходящей через ось вращения ротора. Важно отметь, что именно в обмотке, находящейся на физической нейтрали, отсутствует эдс. Рис 4,б.
а) б)
Рис 4. Рис .5. Укладка обмотки
.
На рис. 8 для простоты показано шесть одновитковых секций; в каждой стороне секции имеется один провод. Верхние стороны секций имеют нечетные номера; нижние — четные.
Первая секция состоит из двух сторон 1 и 6; вторая — 3 и 8; третья — 5 и 10; четвертая — 7 и 12; пятая — 9 и 2; шестая 11 и 4.
Все секции соединяются через коллекторные пластины и представляют замкнутую цепь. Пунктиром показаны соединения активных сторон секции со стороны, противоположной коллектору; сплошными линиями — соединение сторон секции через коллектор.
На коллектор накладываются неподвижные щетки для отвода тока во внешнюю цепь, как показано на рис. 5. Одна щетка является положительным полюсом генератора, другая — отрицательным.
Устройство коллектора.Обычно коллектор (рис. 1.3) выполняют в виде цилиндра, собранного из клинообразных пластин 3 твердотянутой меди; между пластинами располагают изоляционные прокладки из слюды или миканита 2. Узкие края коллекторных пластин имеют форму ласточкина хвоста; после сборки коллектора их зажимают между корпусом и нажимным фланцем и изолируют манжетами из миканита. Секции обмотки якоря впаивают в прорези, имеющиеся в выступающей части коллекторных пластин.
В машинах малой и средней мощности широко применяют коллекторы, в которых медные пластины и миканитовые прокладки запрессованы в пластмассу. Поверхность собранного коллектора обтачивают на токарном станке и тщательно шлифуют. Чтобы миканитовые прокладки при срабатывании коллектора не выступали над пластинами и не вызывали вибрации щеток, их профрезеровывают на 0,8—1,5 мм ниже поверхности коллектора.
По цилиндрической части коллектора скользят щетки, установленные в щеткодержателях. Щетки представляют собой прямоугольные бруски, изготовленные путем прессовки и термической обработки из порошков графита, кокса и других компонентов. Они предназначены для соединения коллектора с внешней цепью и прижимаются к поверхности коллектора пружинами.
Рис. 1.3
При вращении якоря щетки сохраняют неизменное положение относительно полюсов машины. Щеткодержатели укрепляют на щеточных пальцах и изолируют от них. Щеточные пальцы, в свою очередь, крепят либо к подшипниковому щиту, либо к траверсе, которая позволяет при необходимости поворачивать всю систему щеток относительно полюсов машины. В машинах малой мощности часто применяют трубчатые щеткодержатели, устанавливаемые непосредственно в подшипниковом щите.
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
megalektsii.ru