Сетевые источники питания » S-Led.Ru
Сетевой источник питания, – это устройство, при помощи которого можно питать от осветительной сети переменного тока (~220V) какое-то электронное устройство. Один из примеров таких источников – известные всем сетевые адаптеры.
Обычно они сделаны в виде такой крупной вилки, которую втыкают в розетку сети переменного тока, а на выходе адаптера получается какое-то постоянное напряжение, например, 9 V. В “стародавние времена”, до массового проникновения в нашу страну всего “импортного”, такие устройства назывались выпрямителями, хотя, конечно, это почти также верно, как называть транзисторный приемник “транзистором”. Поэтому, наиболее верное название – “сетевой источник питания”.
Сетевые источники питания бывают низкочастотными, импульсными и безтрансформаторными. Сейчас пойдет разговор о низкочастотных.
Структурная схема низкочастотного источника питания показана на рисунке. Сначала сетевое напряжение (-220V) понижается до какого-то уровня силовым трансформатором, на выходе которого получается более низкое переменное напряжение. Затем это переменное напряжение выпрямляется выпрямителем и становится пульсирующим. Далее, следует сглаживающий фильтр, который сглаживает пульсации выпрямленного напряжения и превращает его в постоянное напряжение.
Схема не стабилизированных источников питания на этом и заканчивается, – с выхода сглаживающего фильтра напряжение поступает на нагрузку (питающееся устройство). В стабилизированных источниках после сглаживающего фильтра есть стабилизатор, он нужен для того, чтобы выходное напряжение не сильно менялось при изменении сетевого напряжения и тока, потребляемого нагрузкой.
И так, – самая первая деталь – силовой трансформатор. Силовой трансформатор обычно состоит из двух или более обмоток, намотанных на общем железном сердечнике. Одна обмотка – сетевая (первичная), на неё подается переменное напряжение из сетевой розетки.
Это напряжение переменное, поэтому, магнитное поле, создаваемое этой обмоткой в сердечнике все время меняется и пронизывает витки вторичной обмотки (или вторичных обмоток, если их несколько). В результате, электроны в проводниках, которыми намотаны вторичные обмотки начинают двигаться и на их концах возникает переменное напряжение.В общем, теория работы трансформатора изучается в средней школе, поэтому заострять внимание на этом не будем.
Как и любой электрический прибор, трансформатор имеет какие-то технические параметры.
Номинальная мощность (Р) – сумма мощностей вторичных обмоток трансформатора, в которой мощность каждой обмотки определяется как произведения номинального выходного тока обмотки на номинальное напряжение. Например, номинальный выходной ток 2А, а, при таком токе, номинальное напряжение на концах обмотки 10 V. Таким образом, номинальная мощность будет 2А-10V = 20W.
Коэффициент трансформации (N) – соотношение входного напряжения и выходного, численно равное соотношению числа витков первичной (сетевой) обмотки к числу витков вторичной. Например, есть трансформатор, у которого на первичную обмотку подается 220V, при этом на вторичной будет 11 V. Коэффициент трансформации будет равен отношению 220/11 = 20.
Предположим, нам нужно сделать трансформатор, для этого нам нужно произвести некоторые приблизительные расчеты. И так, допустим нужен трансформатор, на первичную обмотку которого подается переменное напряжение 220V, при этом на вторичной обмотке должно быть напряжение 11V, а номинальный ток на выходе должен быть 1 А. Значит, мощность на нагрузке вторичной обмотки будет P=11V*1A=11W. Определим коэффициент трансформации : N=220/11=20. Определим мощность трансформатора:
Ра= 1,1*P*(1-1/N)=1,1*11*(1-1/20)=11,495W, на всякий случай возьмем Ра побольше, -13W.
Выбор источника питания – Control Engineering Russia
Выбор источника питания для встроенной системы напоминает заказ блюда из китайского меню: «Одно из колонки A, другое — из колонки B и третье — из колонки C».
Разница только в том, что колонки названы не «закуски», «первые блюда» и «основное блюдо», а «основной источник», «подзаряжаемый» и «резервный».Выбор основного источника питания для встроенной системы занимает немало времени. Для большинства встроенных устройств основной источник — сеть 220 В. Второй вариант — перезаряжаемая батарея, например литий-ионная (Li-ion). Растущее число сетевых приложений позволяет подавать основное питание непосредственно через сеть (например, используя USB). Количество встраиваемых систем, работающих на простых не перезаряжаемых батареях, очень быстро уменьшается.
Использование подзарядки говорит о том, что источник должен обеспечивать непрерывное питание системы. Многие устройства, от которых требуется высокая надежность, такие как системы наблюдения за состоянием пациента, имеют встроенные источники бесперебойного питания (ИБП). Система питания любого транспортного средства содержит основную батарею, заряжаемую от генератора при работе двигателя.
Резервные источники питания подключаются при отказе всех других источников. Как правило, такие источники рассчитаны на обеспечение работы минимально необходимого числа функций, таких как сохранение содержимого энергонезависимой памяти мобильных устройств при замене батареи. Большинство персональных компьютеров, например, имеет не перезаряжаемую литиевую батарею (в отличие от заряжаемой литий-ионной), для сохранения BIOS при отключении компьютера от сети питания.
Выбор подходящего источника питания для каждой категории целиком зависит от характеристик приложения. Например, беспроводные датчики, установленные в удаленных или труднодоступных местах, являются одним из немногих примеров, где долговечные, но не перезаряжаемые литиевые батареи являются лучшим выбором. Жаркие климатические условия ограничивают использование литий-ионных батарей, так как высокая температура очень сильно сокращает срок их службы.
Питание от батареи
Приложения, для которых лучшим решением является батарейное питание, делятся на три категории: с низкой потребляемой мощностью, с высокой потребляемой мощностью и с резервным питанием. Удаленные беспроводные датчики требуют минимального энергопотребления. Гибридные транспортные средства потребляют много электроэнергии, но аккумулятор должен быть основным источником питания по другим причинам. Медицинская аппаратура контроля является примером, когда для обеспечения высокой надежности системы устанавливаются резервные батареи, хотя основным источником остается электросеть.
При наличии ограничений по мощности разработчик системы должен включать в нее такие возможности, которые сводят потребляемую мощность к минимуму и увеличивают эффективность ее использования.
Рис. В типовой схеме сетевого линейного источника питания встраиваемой системы используются серийные трансформаторы и выпрямители. RC-фильтр устраняет оставшиеся пульсации напряжения. Недорогая ИС линейного регулятора стабилизирует выходное напряжение. Добавление делителя в обратную связь выводит напряжение на нужный уровень. Показана схема источника питания на 15 В с одним выходом и плавающим заземлением, и биполярного источника питания ±15 В
Выбор надлежащих устройств и видов схем — первый шаг к уменьшению потребляемой мощности. Например, тактовая частота микропроцессора оказывает очень сильное влияние, при этом энергопотребление одного и того же процессора растет нелинейно с ростом частоты. Точно так же «более широкие» микропроцессоры (32-разрядный по сравнению с 16-разрядным) требуют больше мощности, чем «узкие». Некоторые виды схем по своей сути более эффективны, чем другие. Например, импульсные источники питания намного эффективнее линейных. Разумеется, работа напрямую от батареи более экономична. Таким образом, лучшее решение для снижения энергопотребления — снижение тактовой частоты, уменьшение разрядности процессора и использование более эффективных видов схем, подходящих для процесса.
Рис. Импульсный блок питания обеспечивает регулирование постоянного напряжения с гораздо большей эффективностью, чем линейный блок питания. Недостаток — более сложная схема
Следующая после оптимизации схемы наиболее эффективная стратегия уменьшения потребляемой мощности связана с добавлением режима ожидания и сторожевого таймера. В режиме ожидания все второстепенные функции отключаются на длительный срок, и питание подается только на отдельную схему синхронизации. Назначение таймера — включить систему при вспышке активности.
Рис. Широтно-импульсный модулятор главный элемент каждого импульсного источника питания, использует технологию цифровой коммутации для управления выходным напряжение с минимальными диссипативными потерями
В задачах, требующих большой мощности, батареи сравнительно редко применяются в качестве основного источника питания. Проблема не в том, что аккумуляторы не в состоянии обеспечить большие токи, а в том, что они не могут делать это достаточно долго. Обычно инженеры выбирают батареи для основного источника питания в случае, когда другого выбора у них просто нет.
Например, мне часто приходилось создавать небольшие приборы для кратковременных экспериментов. Несколько лет назад я разработал генератор очень низкой частоты на базе сдвоенного ОУ a741 для проверки в дорожных условиях цифрового запоминающего осциллографа. Предполагаемое время работы не превышало двух часов, а у меня не было подходящего настольного источника питания.
У меня была пара батарей на 9 В и кассеты для их крепления. Итак, я припаял положительный вывод одной кассеты к отрицательному выводу другой и подключил оба вывода к общему проводу схемы. После этого я припаял свободный положительный контакт к положительной клемме ОУ, свободный отрицательный контакт кассеты — к отрицательной клемме. Выходное напряжение блока ±9 В находилось в рабочем диапазоне операционного усилителя, и вся схема практически ничего не стоила.
Более распространенным применением аккумуляторной батареи в качестве основного источника питания является двигатель транспортного средства, когда требуется несколько источников энергии. В гибридных и полностью электрифицированных транспортных средствах обычно устанавливаются работающие от батареи электрические приводные двигатели и дополнительный источник для подзарядки батарей.
Относительно новый элемент таких систем — суперконденсаторы. Стандартные батареи аккумулируют энергию, используя химические связи, и высвобождают ее посредством химических реакций. Максимальный выходной ток батареи в основном ограничивается скоростью протекания этих реакций. В отличие от этого суперконденсаторы накапливают энергию в виде электрического поля, и их пиковый ток ограничен только нагревом обкладок и внутренних проводников. Они также выдерживают больше циклов зарядки/разрядки.
Встроенные системы, использующие аккумуляторы для резервирования, содержат внутренний источник бесперебойного питания (ИБП). Я уже упоминал медицинское оборудование для наблюдения за состоянием пациента, в котором данная технология применяется для поддержания непрерывной работы при исчезновении питания. Это также позволяет обеспечивать непрерывное наблюдение при перемещении пациента: персонал просто вынимает вилку и монитор перемещается вместе с пациентом без выключения. Оборудование работает в основном от аккумуляторной батареи, в то время как сеть обеспечивает ее подзаряд небольшим током.
Питание от сети
Практически вся бытовая техника питается от сети 220 В. Поскольку использование встроенных систем управления в этих приборах растет, число систем, работающих непосредственно от сети, также выросло.
В отличие от стандартных релейных систем управления заменяющие их микропроцессорные системы не работают от переменного напряжения частотой 50 Гц. В них используется высокостабильное напряжение сравнительно низкого уровня (в большинстве случаев 5 В).
Существуют два основных класса схем источников питания, осуществляющих преобразование сетевого переменного напряжения в низкоуровневое постоянное: линейные и импульсные.
Схемы линейных источников питания начинаются с трансформатора, снижающего сетевое напряжение до необходимого уровня. Затем мостовой выпрямитель преобразует низковольтный переменный ток в пульсирующий постоянный. В фильтрующей части схемы для снижения пульсаций устанавливается большой электролитический конденсатор, за которым следует относительно низкоомный резистор.
В этой точке схемы мы получаем постоянное напряжение, которое зависит от напряжения сети, коэффициента трансформации, потребляемого тока и сопротивления. На это напряжение накладываются пульсации частотой 50 Гц, амплитуда которых зависит как от постоянной времени фильтра, так и от тока нагрузки. Другими словами, выходной ток и напряжение принимают какое угодно значение, только не то, что нужно!
Для улучшения качества постоянного тока разработчики источников питания добавляют линейный регулятор. Линейный регулятор представляет собой линейный усилитель мощности, запитываемый с выхода фильтра и усиливающий небольшое опорное напряжение до необходимого уровня. Элементы обратной связи позволяют изменять результирующее выходное напряжение или регулировать выходной ток.
Линейные источники питания очень неэффективны, т.к. рассеивают практически столько же энергии, сколько выдают. Очень часто этих потерь, зачастую очень дорогих, можно избежать, используя импульсный источник питания.
Импульсный источник питания имеет такие же трансформатор, выпрямитель и фильтр, как и линейный источник питания. Улучшения достигаются за счет замены линейного регулятора импульсным. Вместо использования линейного усилителя, где транзисторы никогда полностью не включаются или не выключаются, транзисторы в широтно-импульсном модуляторе попеременно переводятся в состояние насыщения (фактически короткого замыкания) и в состояние отсечки (бесконечного сопротивления). В том или ином состоянии рассеяние мощности минимально.
Рис. Программируемые источники питания поставляются в компактном, относительно недорогом корпусе промышленного исполнения
ШИМ выдает последовательность импульсов переменной скважности. Система обратной связи изменяет коэффициент заполнения импульсной последовательности для поддержания точного значения выходного напряжения на заданной нагрузке. Регенерирующий фильтр (фактически большая индуктивность) усредняет ток для сглаживания импульсов.
Спроектировать и создать импульсный источник питания достаточно сложно. К счастью, есть производители, выпускающие эти устройства в больших количествах по очень низкой цене, поэтому вряд ли вам придется разрабатывать его самому для своего приложения. В настоящее время разработчики встроенных систем рассматривают источники питания как черные ящики, берущие некачественное входное питание и выдающие «чистое» постоянное напряжение. Просто откройте каталог, выберете нужный блок питания по необходимому напряжению и току и закажите его. Самая сложная часть — выделить место в вашей системе для монтажа.
Питание системы
Часто питание для работы встраиваемых систем подается не от сети или аккумуляторов. Электропитание автомобиля, например, поступает от вращаемого двигателем генератора и регулятора напряжения, которые обеспечивают напряжение 12 В и сравнительно большой ток. Поезда, корабли, автомобили, космические корабли, ветряки и солнечные электростанции имеют отдельные источники питания. В большинстве случаев эти источники выдают несколько напряжений стандартного уровня, имеющих высокое качество.
Для работы встраиваемых электронных систем в такой ситуации разработчикам обычно приходится изменять напряжение и регулировать выход источника. Единственно возможный вариант — преобразователь DC-DC.
Преобразователь DC-DC использует подаваемое на него постоянное напряжение для генерации прямоугольных импульсов. Трансформатор повышает или понижает это переменное напряжение до необходимого уровня. После этого двухполупериодный мостовой выпрямитель восстанавливает постоянный ток и поскольку коэффициент заполнения равен 100%, на выходе выпрямителя получается относительно чистое постоянное напряжение с высокочастотными фильтруемыми помехами. Если необходима дальнейшая подстройка, импульсный регулятор выполняет эту задачу достаточно эффективно.
Другие системы позволяют передать требуемое электроникой питание по умолчанию. Так, в частности, устройства, подключенные к порту USB, получают питание 5 В через кабельUSB. Аналогично, пункт 33 стандарта Ethernet IEEE 802.3-2005 (IEEE 802.3af, часто называемый как «питание через Ehternet») рекомендует передавать постоянное напряжения 48 В по двум из четырех пар кабеля CAT-3 или CAT-5e для питания оборудования. В стандарте также оговаривается и максимальная величина тока — 400 мА.
Комбинирование и подбор доступных источников питания для использования в качестве основного, подзаряжаемого и резервного дает разработчикам встраиваемых систем большую свободу выбора. Выбор лучшей схемы — результат сравнения возможностей каждой из схем питания с требованиями вашей задачи.
Вконтакте
Google+
Импульсные источники питания, теория и простые схемы
Импульсный источник питания – это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.
Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы – ферритовые сердечники.
Рис. Как работает импульсный источник питания.
Выходное напряжение импульсного источника питания стабилизировано, это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.
Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.
Основные плюсы импульсных источников питания (ИИП):
- малый вес конструкции;
- небольшие размеры;
- большая мощность;
- высокий КПД;
- низкая себестоимость;
- высокая стабильность работы;
- широкий диапазон питающих напряжений;
- множество готовых компонентных решений.
К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.
Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.
Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.
Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.
Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.
Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).
Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.
Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.
Схема генератора импульсов регулируемой ширины
Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.
Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.
Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.
На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, C3, VD5) подаются прямоугольные импульсы.
Заряд конденсаторов С2, C3 происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или C3 достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.
Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1. 2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.
Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, C3) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.
Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.
При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.
В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.
Схема испульсного источника питания
Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.
Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DD1 .1, DD1 .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.
Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2. 3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.
На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.
Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).
На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.
Рис. 2. Схема импульсного источника питания.
Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.
При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.
При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи. 2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.
Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.
При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.
Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.
Сетевой импульсный источник питания
Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.
Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.
Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.
Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.
Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.
Рис. 3. Схема сетевого импульсного источника питания.
Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.
Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.
Высоковольтный источник постоянного напряжения
Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ.
Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.
Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, C3 и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.
Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.
Рис. 4. Схема высоковольтного источника питания постоянного тока.
Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.
В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.
Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.
Корректор коэффициента мощности
Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.
Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.
Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.
Импульсный источник питания с микросхемой
Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.
Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.
Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.
Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.
Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.
Тип микросхемы | Рmax, Вт | Ток срабатывания защиты, А | Сопротивление открытого транзистора, Ом |
TOP221Y | 7 | 0,25 | 31,2 |
T0P222Y | 15 | 0,5 | 15,6 |
T0P223Y | 30 | 1 | 7,8 |
T0P224Y | 45 | 1,5 | 5,2 |
T0P225Y | 60 | 2 | 3,9 |
T0P226Y | 75 | 2,5 | 3,1 |
T0P227Y | 90 | 3 | 2,6 |
Простой и высокоэффективный преобразователь напряжения
На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.
Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.
Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.
Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.
Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.
Источник: Шустов М.А. Практическая схемотехника. Преобразователи напряжения (2002).
Исправления: в схеме на рисунке 3 для катушки L2 изменена точка, указывающая начало намотки.
Сетевые источники питания. Изолированные AC-DC преобразователи.
Ассортимент сетевых источников питания (изолированных AC-DC преобразователей) представлен тремя производителями и разбит на категории для облегчения поиска.
AC-DC преобразователи для монтажа на плату – самый многочисленный и широко используемый тип сетевых источников питания. Выпускается в виде готового модуля со встроенными входными/выходными фильтрами и встроенными защитами, часто имеет пластиковый корпус, залитый компаундом. Модули питания выпускаются со стандартизированным расположением выводов и номиналами выходных напряжений стандартного ряда.
Бескорпусные AC-DC преобразователи для монтажа в корпус изделий и подключения с помощью разъёмов. Данные модули также содержат входные и выходные фильтры, соответствующие требованиям электромагнитной совместимости, но за счёт отсутствия заливки компаундом часто требуют внешнего воздушного охлаждения для работы на номинальной мощности.
AC-DC для применения в промышленности – большая категория сетевых источников питания с сертификатами для применения в промышленном оборудовании и производственных помещениях. Выпускаются в различных форм-факторах, для монтажа с помощью разъёмов или колодок, в защищённых металлических корпусах, для монтажа на DIN-рейку с помощью переходной платы и других.
AC-DC для медицинского оборудования – это преобразователи, отвечающие более строгим стандартам для медицинского оборудования. В частности, в таких источниках питания ограничен ток утечки на шину заземления, повышены требования к изоляции модуля и эмиссии электромагнитных помех. Выпускаются во всех видах корпусов.
AC-DC для монтажа на DIN-рейку. Данные модули имеют стандартизированный корпус для крепления на DIN-рейку в шкафах систем управления и другом промышленном оборудовании. Выпускаются для работы как в однофазной, так и в трёхфазной сети переменного тока. Выходная мощность от 45 Вт до 1 кВт; источники могут соединяться параллельно для увеличения выходного тока.
AC-DC с проводным монтажом – специальные сетевые источники питания в корпусе с повышенной защитой от влаги и пыли. Имеют пластиковый корпус, залитый компаундом, с выводами в виде изолированных проводов. Удобны для применения в оборудовании с повышенными требованиями к пыле- и влагозащите (IP).
Изолированные AC-DC преобразователи
Новости
Контакты
Инженер по применению |
Леонов Александр Михайлович |
alm@efo. ru |
Инженер по применению |
Серяпин Александр Александрович |
|
Начальник отдела дистрибуции |
Кривченко Игорь Владимирович |
Урок 4 – Источники питания
Источники питания радиолюбительских конструкций
Величина напряжения питания
Каждая электронная схема корректно работает в строго оговоренном диапазоне напряжения источника питания, и эту величину мы обязательно указываем в инструкции.
Например, в инструкции может быть написано так: «напряжение питания: 9…12В».
Если напряжение питания будет менее 9В, то схема может не включиться совсем, либо работать некорректно (тусклое свечение светодиодов, слабый звук и т.п.).
Гораздо более грубая ошибка – превышать напряжение питания. Например, при напряжении питания более 12В отдельные элементы схемы могут перегреваться или даже выйти из строя. Это может произойти через какое-то время (секунды, минуты, часы). В таком случае можно, заметив проблему в виде повышенного нагрева каких-то компонентов, успеть выключить питание и спасти конструкцию от выхода из строя.
Но процесс выхода из строя схемы может произойти и мгновенно после подачи напряжения питания – в таком случае придётся менять вышедшие из строя радиодетали.
Полярность напряжения питания
У любого источника питания, будь то батарея или сетевой блок питания, есть полярность: выводы «+» и «-». Очень часто в электронике вывод «-» называют «общим» проводом схемы, либо проводом «земли». По-английски вывод схемы «минус» иногда обозначают как «GROUND» или «GND». На схеме вывод для подключения плюсового вывода источника питания обозначается явно: «+», либо «+Vcc».
Очень часто в радиотехнике плюсовой вывод источника питания подключается проводом красного цвета, а минусовой – чёрным или синим проводом. Конечно, на качестве работы схемы цвет проводов не сказывается, да и не всегда это правило соблюдается, но знание этого правила может оказаться полезным, а соблюдение его означает высокий уровень радиолюбительской культуры разработчика.
Очень важно соблюдать правильную полярность подключения питания: в случае неправильного подключения полярности схема может не только не заработатЬ, но и моментально выйти из строя.
(Чтобы не запутывать начинающего радиолюбителя, здесь я не рассматриваю двуполярные источники питания со средней точкой – в схемах для начинающих радиолюбителей такое питание практически никогда не используется).
Тип источника питания
Вы можете питать свою конструкцию от батарей, аккумуляторов или сетевого источника питания.
Самые распространённые стандарты (или, как говорится, типоразмеры) батарей: элементы типа «АА» («пальчиковые» элементы питания напряжением 1,5В), «ААА» («мизинчиковые» элементы напряжением 1,5В), батареи типа «Крона» (9В).
Как же быть, если рекомендованное напряжение питания схемы, допустим, 5В?
Питать такую схему от батареи типа «Крона» напряжением 9 Вольт недопустимо – схема может выйти из строя. Но можно соединить несколько элементов напряжением 1,5 В последовательно, при этом напряжение получившейся батареи будет 4х1,5=6В. Как правило, для простых радиолюбительских конструкций такое превышение напряжения от номинального допустимо. Другой вариант: соединить последовательно три батареи и питать схему напряжением 4,5В: но в этом случае схема может либо изначально не заработать, либо по мере разряда батарей начать работать некорректно.
Принцип последовательного соединения батарей показан на рисунке:
Чтобы не паять контакты батарей, отдельные элементы удобно собирать в батарею с помощью так называемых батхолдеров – держателей батарей. На рисунке ниже показан батхолдер на 4 элемента типа «АА». Общее напряжение получившейся батареи – 6В. Держатели батарей можно купить в магазинах радиотоваров, либо заказать по почте в интернет-магазинах «Десси», «ДКО Электронщик» и подобных.
Батарейное (аккумуляторное) питание незаменимо для мобильных устройств.
Но батареи разряжаются, и их приходится заменять, что не всегда удобно и всегда невыгодно. Хорошая альтернатива – аккумуляторы, которые можно периодически заряжать. Аккумулятор стоит в среднем в пять раз дороже батарейки аналогичного типоразмера, кроме того, требуется приобрести зарядное устройство. Однако способность аккумулятора к многократной перезарядке делает такую покупку выгодной.
Но питать электронную конструкцию в домашних условиях от батарей или аккумуляторов – непозволительная роскошь. В таких случаях выгоднее применять сетевые источники питания (другое название – сетевые адаптеры). Вы можете приобрести новый сетевой адаптер, либо использовать уже имеющийся адаптер от ненужной бытовой техники.
Главные параметры адаптера: его номинальное напряжение и ток. Эти параметры указываются на корпусе адаптера. Например, ели на адаптере написано: «12V 0,5A» – это значит, что адаптер выдаёт 12 Вольт с максимальным током до 0,5 Ампер = 500 мА. Встречается другой вариант написания, например: «5V 10W». Это значит, что адаптер имеет выходное напряжение 5В и допустимую мощность нагрузки – 10 Вт, или допустимый ток нагрузки: 10/5=2A.
Адаптер, как правило, имеет на конце провода разъём. В радиолюбительской практике часто удобнее пользоваться двумя проводками – «+» и «-». В таком случае, просто откусите разъём кусачками. Как же определить, какой вывод адаптера – «плюс», а какой – «минус»?
Часто на проводе «+» есть белые метки, но это правило не обязательно всегда выполняется производителем. Проще всего для определения полярности воспользоваться мультиметром, о работе с которым мы поговорим в следующий раз.
Сетевой адаптер можно приобрести в магазинах радиотоваров, либо в интернет-магазинах «ДКО Электронщик», «Десси» и т. п.
Потребляемый ток
Любая электронная схема может быть более или менее «прожорливой». Например, радиоприёмник и фонарик питаются одним и тем же напряжением – 4,5В (от трёх батареек). Но приёмник может работать от батарей несколько суток, а фонарик разряжает эти же батарейки за несколько часов непрерывной работы. Дело в том, что разные электронные конструкции имеют разный ток потребления.
Ток потребления обычно указывается в миллиамперах. Зная ток потребления схемы, мы можем примерно оценить время работы конструкции от комплекта батарей или аккумуляторов.
Например, алкалиновый элемент типа «АА» имеет ёмкость около 1500…3000 мА/ч, алкалиновый элемент типа «АА» – около 1000 мА/ч, батарея типа «Крона» – около 100 мА/ч. Не ищите эти цифры на корпусе батареи: производители не считают нужным их указывать. Знайте только, что алкалиновые элементы питания имеют гораздо большую ёмкость и срок хранения, чем солевые. Поэтому, несмотря на несколько более высокую цену, рекомендую всегда приобретать алкалиновые элементы питания.
Таким образом, от комплекта батарей типа «АА» схема с током потребления100 мА может проработать ориентировочно 2000/100 = 20 часов. Эта же конструкция от батареи типа «Крона» проработает только 100/20 = 5 часов.
Если батарея собрана из нескольких последовательно соединённых элементов питания, ёмкость батареи определяется ёмкостью каждого элемента. Например, ёмкость батареи из десяти последовательно соединённых элементов ёмкостью по 1600 мА/ч каждая будет иметь ёмкость также 1600 мА/ч.
Это очень примерный расчёт. На практике время работы устройства зависит от многих факторов: фирмы-производителя батарей, режимом эксплуатации схемы (непрерывная работа или периодическое включение-выключение), температурой эксплуатации.
Значение тока потребления схемы важно знать и при выборе сетевого адаптера.
Каждый адаптер имеет максимально допустимый ток, который он может выдать в нагрузку. Этот параметр указывается на корпусе адаптера (см. выше).
Если схема потребляет 500 мА (0,5А), а адаптер способен выдавать только 0,3А – адаптер будет перегреваться и может необратимо выйти из строя (если это дешёвый адаптер), либо аварийно отключиться (это касается более качественных адаптеров, имеющих защитные цепи).
Обратная ситуация: если ток адаптера гораздо выше тока потребления схемы – абсолютно допустима и нормальна. Например, если адаптер способен обеспечить ток до 2А, а схема потребляет всего 50 мА (0,05A) – ничего страшного. Схема никогда не «возьмёт» от сетевого адаптер ток больший, чем ей необходимо.
Скачать урок в формате PDF
Motorola HPN4007 Блок питания сетевой
Описание
Motorola HPN4007D Сетевой источник питания
Motorola HPN4007D (Desktop Power Supply 1-60W) – Сетевой импульсный блок питания для радиостанций Motorola использующих мощность передатчиков до 60 Вт.
Обратите внимание, что в блоке питания Motorola HPN4007 не реализована возможность подключения резервного аккумулятора и он подходит только для объектов со стабильным энергообеспечением или на местах где отсутствие радиосвязи не критично.
Технические характеристики имульсного блока питания Motorola HPN4007:
- Номинальное входное напряжение, ток, частота: ~100-110 / ~220-240 В, 6 / 3 А, 50…60Гц
- Номинальное выходное напряжение, фиксированное: ±14.1 В
- Номинальное значение выходного тока, А: 8 (пиковое 15, беспрерывная нагрузка не более 20 минут)
Вес, кг: ~2 - Габаритные размеры, ШхВхГ, мм: 120 x 90 x 270
Комплект поставки блока питания Motorola HPN4007:
- Блок питания
Сетевой кабель - Тугоплавкий предохранитель, 3А / 250В
- Инструкция по эксплуатации HPN4007
Аналоги источника питания Motorola HPN4007:
Вы можете использовать источник питания Motorola HPN4007D для радиостанций Motorola:
APX1500, APX2500, APX6500, APX7500, DGM4100, DGM4100+, DGM6100, DGM6100+, DM3400, DM3401, DM3600, DM3601, DM4400, DM4400e, DM4401, DM4401e, DM4600, DM4600e, DM4601, DM4601e, GM3188, GM3189, GM338, GM339, GM3688, GM3689, GM398, GM399, MCX700, MCX760, MCX780, MTM700, MTM800, MTM5400, XiR M8220, XiR M8228, XiR M8260, XiR M8268, XiR M8620, XiR M8628, XiR M8660, XiR M8668, XPR4300, XPR4350, XPR4500, XPR4550, XPR5350, XPR5550, XTL1500, XTL2500, XTL5000
Источники питания HPN4007 также маркируются компанией Motorola под артикулами:
- HPN4007A HPN4007B HPN4007C HPN4007D HPN4007A-EU
Импульсные источники питания Общие тенденции и преимущества
В рубрику “Пожарная безопасность” | К списку рубрик | К списку авторов | К списку публикаций
Одним из важнейших компонентов любой низковольтной системы являются источники питания. Этот сегмент рынка, как и многие другие в сфере производства систем безопасности, находится в постоянном развитии и совершенствовании: идут процессы уменьшения габаритов, улучшения характеристик, адаптации под условия российских сетей и т.д. Какие же преимущества открывают перед пользователем импульсные источники питания и какие продукты существуют в данном сегменте?
Общие проблемы питания любой аппаратуры:
- глобальные перепады напряжения в сети;
- потери на проводах отдаленных узлов системы, что особенно характерно для крупных объектов;
- помехи и наводки одними узлами системы на другие от общего источника (проблемы электромагнитной совместимости).
Все эти проблемы с успехом решаются с помощью современных модификаций импульсных источников питания, которые все больше вытесняют с рынка традиционные трансформаторные (линейные) блоки питания. За примерами далеко ходить не надо – обратите внимание на источник питания, установленный в вашем компьютере или другой оргтехнике, на зарядное устройство мобильного телефона, блок питания, идущий в комплекте к любому бытовому устройству. Подавляющее большинство – импульсные источники питания. И это не случайно. Все больше и больше производителей электротехники отдают им предпочтение, считая надежными, технологичными и удобными в эксплуатации.
Производство современных импульсных источников питания предусматривает более качественную и надежную элементную базу, высокий уровень производственных мощностей, соблюдение технологий, новое оборудование для тестирования параметров в процессе производства, выходной контроль качества, а также глубокое понимание специфики работы электросетей в условиях российской действительности. В настоящее время при соблюдении вышеназванных требований и грамотном подходе к разработке схемотехники и конструктива изделие будет успешным на рынке.
Преимущества импульсных блоков
Широкий диапазон входных напряжений (от 80 до 265 В) при неизменных выходных параметрах
В нашей стране перепады напряжения в сети (особенно в сельской местности) – серьезная проблема, хотя, согласно существующему ГОСТу на электросети в РФ, напряжение должно быть в пределах 220 В (+-1105%), то есть в диапазоне от 187 до 242 В. Любой блок питания должен обеспечивать все указанные параметры в этом диапазоне входных напряжений. Это далеко не простая задача, особенно для мощных блоков, потому что при минимальном напряжении на входе и максимальном токе на выходе блок должен сохранить стабильность выходного напряжения, а при максимальном уровне напряжения в сети и максимальном токе нагрузки – не выйти из строя из-за перегрева при максимально допустимой температуре окружающей среды. Необходимо также учитывать кратковременные падения напряжения в сети, связанные с подключением мощных энергопотребителей.
Многие производители лукавят, указывая в паспорте более узкий диапазон входных напряжений, хотя известно, что во многих регионах РФ 190 В в сети – норма.
Более совершенная схемотехника высокочастотного преобразования (КПД до 95%)
Большинство потерь в импульсных источниках питания связано с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном устойчивом состоянии (включен или выключен), потери энергии минимальны. Трансформаторным (линейным) источникам питания для стабильности выходного напряжения требуется стабилизатор, вносящий дополнительные потери.
Качество выходного напряжения по шумам и электрическим наводкам позволяет одновременно осуществлять электропитание разного типа нагрузок
К источнику питания может быть подключена и нагрузка, работающая в линейном режиме, и нагрузка, работающая в динамическом режиме. В этом случае для стабилизации выходных параметров источника питания необходимо применение фильтров различного типа (индуктивных и емкостных) в выходной цепи.
Стабильность выходных параметров в широком температурном диапазоне
Особенно это касается выходного тока и напряжения. Еще одним элементом манипулирования цифрами со стороны производителя блоков является выходной ток: в паспорте на изделие зачастую указывается максимальный вместо номинального. При работе на максимальную нагрузку через непродолжительное время в блоке в лучшем случае срабатывает температурная защита (если она имеется). А чаще всего при продолжительной работе в режиме повышенной температуры компоненты блока с течением времени значительно теряют свои параметры, что особенно характерно для электролитических конденсаторов, емкость которых существенно понижается, что, в свою очередь, ведет к увеличению уровня выходных пульсаций. Номинальный же ток нагрузки – это ток, который должен отдаваться в нагрузку всегда независимо от обстоятельств, на протяжении длительного времени и при сохранении указанного уровня пульсаций.
Компенсация выходного напряжения при работе нагрузки на длинных линиях
Оборудование, подключаемое к источнику питания, рассчитано на определенное номинальное напряжение. Поскольку оно может находиться на значительном расстоянии от источника питания, то важным фактором являются потери в проводах. Компенсировать их можно путем увеличения сечения провода от источника питания до оборудования или с помощью под-строечного резистора, который позволит увеличить напряжение на выходе источника питания.
Значительно меньшие габариты и вес в сравнении с аналогичным по мощности линейным блоком питания (особенно это касается мощных линейных блоков)
При повышении частоты используются трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных, тяжелых низкочастотных силовых трансформаторов и радиаторов силовых элементов, работающих в линейном режиме.
Значительно меньшая стоимость изделий в производстве, что в конечном итоге отражается на цене для потребителя
В импульсных источниках питания отсутствует дорогостоящий низкочастотный трансформатор, который составляет большую часть стоимости линейных блоков питания.
Источники бесперебойного питания ACCORDTEC Все многообразие моделей источников питания торговой марки ACCORDTEC (Россия) выполнено на основе импульсных блоков питания. Высокие стандарты качества подтверждены проведенными испытаниями в рамках получения пожарного сертификата и сертификатов соответствия. Линейка включает в себя как источники бесперебойного питания, так и сетевые адаптеры.
Основные модели
ББП-20 – экономичный источник питания. Предназначен для питания нагрузки напряжением 12 В с током потребления не более 2 А. Данный источник питания может идти от сети переменного тока с напряжением от 80 до 265 В. Максимальный ток нагрузки – 2,5 А. ББП-20 имеет встроенную электронную защиту по выходу от короткого замыкания и превышения тока нагрузки. Цепь аккумулятора защищена предохранителем. Имеет индикацию наличия сети и индикацию наличия 12 В на выходе. Для компенсации падения выходного напряжения на соединительных проводах предусмотрена регулировка напряжения на выходе в диапазоне от 12 до 15 В.
ББП-30 предназначен для питания нагрузки напряжением 12 В с током потребления 3 А. Максимальный ток нагрузки – 4,9 А. Данный блок бесперебойного питания имеет встроенную электронную защиту от короткого замыкания и превышения нагрузки по току и мощности. ББП-30 также имеет функцию защиты
АКБ от глубокого разряда.
Обычный свинцовый 12-вольтовый аккумулятор при глубоком разряде и падении напряжения около 10 В выходит из строя из-за необратимых химических изменений. Однако этого недостатка лишены герметичные необслуживаемые АКБ с гелевым электролитом. Эти батареи (от производителей, поставляющих качественную продукцию) выдерживают до 200 циклов глубокого разряда, более того, 50–60 циклов “заряд – разряд” являются хорошей тренировкой АКБ и даже поднимают ее емкость.
Тем не менее считается, что необходимо встраивать в источник бесперебойного питания схему отключения АКБ при достижении опасного порога глубокого разряда. Связано это с тем, что на рынке появилось множество моделей АКБ китайского производства, которые из-за применения более дешевых технологий и материалов едва выдерживают несколько циклов. Устройства защиты выполняются на базе реле или мощного полевого транзистора, так как применение дешевых биполярных транзисторов в качестве ключей приводит к дополнительному падению напряжения на ключе и, как следствие, к сокращению времени резервной работы.
В ББП-30 имеются две спаренные колодки для подключения нагрузки, облегчающие процесс монтажа. Для компенсации падения выходного напряжения на соединительных проводах предусмотрена регулировка напряжения на выходе в диапазоне от 12 до 15 В. ББП-30 поставляется в настоящий момент в трех исполнениях: без корпуса, в корпусе для установки АКБ до 7 А/ч и в корпусе для установки АКБ 17 A/ч.
ББП-80 – функциональный аналог ББП-30, предназначенный для питания нагрузки напряжением 12 В с током потребления 8 А. Максимальный ток нагрузки – 10 А.
Поставляется в двух исполнениях: без корпуса и в корпусе для установки АКБ 17 A/ч. ББП-80 может работать с АКБ до 33 А/ч.
Сетевые адаптеры серии ACCORDTEC
Сетевые адаптеры серии ACCORDTEC включают в себя бюджетный вариант аналогов трансформаторных блоков. Модели AT-12/15, AT-12/30 предназначены для питания нагрузки постоянным напряжением 12 В с током потребления 1,5 и 3 А соответственно. Имеют электронную защиту по выходу от короткого замыкания и превышения по току и мощности. Для компенсации падения выходного напряжения на соединительных проводах предусмотрена регулировка напряжения на выходе в диапазоне от 12 до 15 В.
Данные источники питания выпускаются в стандартном исполнении, а также в корпусе для крепления на DIN-рейку. Блоки с таким креплением предназначены для установки в электротехнические шкафы и боксы. В линейке блоков питания ACCORDTEC имеется также адаптер для питания нагрузки напряжением 24 В и с током потребления не более 3 А. Модель AT-12/05 – сетевой адаптер для питания оборудования напряжением 12 В и током потребления не более 0,5 А. Для подключения нагрузки предусмотрен кабель со штырьковым разъемом.
Опубликовано: Журнал “Системы безопасности” #5, 2010
Посещений: 12940
В рубрику “Пожарная безопасность” | К списку рубрик | К списку авторов | К списку публикаций
Сетевой источник питания– обзор
20.1.2 PSC распределительной сети
PSC распределительной сети – это максимальная нагрузка, которую распределительная сеть может обеспечить в условиях ограничения мощности филиала и ограничения напряжения узла (Hong et al. др., 2017). Это определяется режимом работы торговой сети и динамикой роста нагрузки. Из-за большого количества доступов DER, распределительная сеть сталкивается с проблемами сетевого планирования, эксплуатации и управления, обеспечивая при этом достаточный PSC; это основная задача торговой сети.Особенно в текущем сценарии быстрого экономического развития, энергосбережения, защиты окружающей среды, более строгих требований к выбросам в окружающую среду, как точно оценить влияние DER на PSC с помощью оптимального доступа и работы DER для полного изучения PSC распределительной сети и достижения максимальная выгода от распределительной сети будет заключаться в проблеме в аспекте PSC распределительной сети, которую необходимо срочно решить.
Исследование PSC распределительной сети прошло следующие три этапа:
- •
Этап оценки PSC распределительной системы на основе мощности трансформатора.Это выполняется с помощью таких методов, как метод отношения мощности к нагрузке (Tan et al., 2016) и метод проб и ошибок (Fu et al., 2016). Этот этап был основан на мощности подстанции подстанции, а размер PSC был оценен с макроскопической точки зрения. Расчет этого метода относительно прост, но он не учитывает подробно влияние подстанции подчиненной распределительной сети подстанции на PSC.
- •
Этап расчета сетевого PSC.Используемые методы включали метод множественных пиковых нагрузок (Liu et al., 2015) и метод максимального потока в сети (Fu et al., 2016). Этот метод использовал фидер в качестве основы для расчета PSC энергосистемы и выдвинул идею расчета PSC передачи сети при вычислении мощности подстанции. Но использование только нагрузки фидера для оценки PSC передачи по сети недостаточно точно, поскольку игнорирует влияние PSC подстанции.
- •
Этап расчета с учетом критерия безопасности N – 1 и совмещения ЦОП подстанции с пропускной способностью сети.При проведении исследования возможностей электроснабжения распределительной сети на этом этапе учитывались рекомендации по безопасности электроснабжения N -1 при планировании городской сети, которые упоминаются в «Руководстве по планированию и проектированию городских электросетей», и выдвинули идею, как рассчитать мощность электроснабжения по определенному критерию надежности. В настоящее время исследования PSC в основном находятся на этой стадии.
В существующих исследованиях, связанных с PSC, чтобы соответствовать критериям безопасной эксплуатации N -1, в исследовании учитывалась максимальная нагрузка, которую мог обеспечить главный трансформатор, перегрузка главного трансформатора, ограничения контактной емкости и другие факторы. учтены, и создана аналитическая модель распределительной сети PSC (Jian et al., 2014а, б). Marzano et al. (2015) предложили метод оценки PSC распределительной сети с учетом ограничений по нагрузочной способности главного трансформатора. Этот метод включал три этапа: предварительную оценку, анализ ограничений и верификационную оценку. Окончательные результаты были получены путем рекурсивной оценки на основе метода повторяющихся трендов. В одном исследовании учитывались факторы нестабильности и прерывистости распределенного поколения, анализировался PSC в соответствии с теорией нечетких целей и улучшался PSC с помощью метода динамической оптимизации (Hashemi and Ostergaard, 2016).В другом исследовании рассматривалось ограничение мощности распределенной генерации электроэнергии и системы ES, а также была установлена модель PSC автономной зоны управления и активного кабеля распределительной сети. Наконец, в нем предложено распределение нагрузки на основе радиальных характеристик распределительной сети и фактического пошагового алгоритма оптимизации острова (Yu et al., 2015). Основываясь на рассмотрении надежности рабочей среды сети, для решения проблемы того, как оценить состояние безопасности сети на основе критерия N -1, отечественные и зарубежные ученые предложили: ряд показателей оценки безопасности.Эти оценочные индикаторы включали в себя оценочные индикаторы крупнейшего PSC распределительной сети (Sun et al., 2017; Xiaolong et al., 2014), индикаторы для оценки способности восстановления питания при переносе нагрузки (Liming and Xianjun, 2015) и статический анализ безопасности, учитываемый рейтинговой системой безопасности сети.
В соответствующем исследовании неопределенности для неопределенности выхода МЭД и состояния нагрузки в исследовании использовалась выборка латинского гиперкуба для моделирования максимальной выходной мощности ветра и случайного состояния мощности нагрузки узла (Li et al., 2013). Wang et al. (2015a, b, 2016) создали модель оценки вероятности с учетом случайности скорости ветра и ошибки прогноза PV и нагрузки. Ввиду сложности структуры сетки, вызванной отказом компонентов, Wang et al. (2015a, b) и Ву и Турицын (2015) отсортировали возможные отказы сети и эффективно упростили модель на основе учета неопределенности сети. Существующие исследования сосредоточены на неопределенности конкретных единиц и меньше внимания уделяют оценке влияния неопределенности элементов доступа на PSC.
Чтобы проанализировать влияние факторов неопределенности на PSC, в этой главе предлагается краткосрочная система оценки PSC, основанная на технологии мультисцен. Во-первых, на основе отказа N -1, который может произойти в распределительной сети, устанавливается модель вероятностного выхода для неопределенностей каждого блока. Во-вторых, он основан на технологии мультисцены для формирования ряда сценариев оценки PSC. В-третьих, ряд вероятностных оценочных индексов для оценки PSC выдвигается из идеи оценки вероятности.Наконец, оценивается PSC каждой сцены и получается индекс оценки, который может предоставить ссылку для оптимизации, работы и планирования системы распределения активной мощности.
Внешний источник питания переменного и постоянного тока для сетевых приложений
Компания Bel Fuse Inc. объявила о расширении линейки внешних источников питания переменного и постоянного тока от Bel Power Solutions за счет блока питания PFE1300-48-054NA с платиновым КПД, подходящего для для широкого спектра телекоммуникационных и сетевых приложений.
PFE1300-48-054NA – это высокоэффективный внешний источник питания переменного и постоянного тока мощностью 1300 Вт, который преобразует стандартную сетевую мощность переменного тока в основной выход 48 В постоянного тока для питания архитектур промежуточной шины (IBA) в высокопроизводительных и надежных серверах и маршрутизаторах. , и сетевые коммутаторы.
PFE1300-48-054NA обеспечивает удельную мощность 30,25 Вт / дюйм4 и достигает платиновой эффективности (КПД 94% при нагрузке 50%) в компактном корпусе размером 54,5 x 40,0 x 321,5 мм.
Каскад PFC гарантирует наилучший КПД и единый коэффициент мощности в широком рабочем диапазоне 90 – 264 В переменного тока.В каскаде DC-DC используются резонансные методы мягкого переключения для снижения напряжения компонентов, что обеспечивает повышенную надежность системы и очень высокий КПД в сочетании с синхронным выпрямлением.
Активное устройство ИЛИ на выходе гарантирует отсутствие обратного тока нагрузки и делает источник питания идеально подходящим для работы в системах с резервированием.
Блоки питанияподдерживают горячую замену и могут быть подключены параллельно с активным цифровым распределением тока.
Постоянно включенный программируемый резервный выход мощностью 16 Вт с выбираемым уровнем напряжения 3.3 / 5,0 Вольт обеспечивает питание внешних контроллеров распределения и управления электропитанием.
Источник охлаждается вентилятором и идеально подходит для интеграции с соответствующими воздушными путями. Скорость вентилятора регулируется автоматически в зависимости от фактического потребления энергии и температуры подаваемого воздуха.
Информация о состоянии отображается с помощью светодиодных индикаторов на передней панели.
Для мониторинга и управления блоком PFE1300-48-054NA поддерживает системную связь по протоколу I2C / PMBus ™. Шина I2C позволяет полностью контролировать питание, включая входное и выходное напряжение, ток, мощность и внутреннюю температуру.
Множественные защиты, такие как: перенапряжение, перегрузка по току, перегрев являются стандартными.
Соответствующий стандарту RoHSи маркировка CE, источник питания сертифицирован агентством по безопасности в соответствии с UL / CSA 60950-1 и соответствует требованиям EN60950-1. Он также соответствует требованиям к кондуктивным и излучаемым электромагнитным помехам стандарта EN55022-A.
Резервный источник питания против источника бесперебойного питания (RPS против ИБП) – блог Router Switch
Вы когда-нибудь видели резервные блоки питания (RPS) в серверах или некоторых коммутаторах, таких как коммутаторы Cisco, серверы HPE и т. Д.? В чем разница между RPS и обычным блоком питания?
Может быть, вы знаете значение и применение RPS, но знаете ли вы об ИБП, отключенном от сети источнике питания?
В этой статье давайте обсудим разницу между RPS и UPS.
Резервный источник питания
Резервный источник питания (RPS) – это источник питания, используемый в сервере. Он состоит из двух одинаковых блоков питания. Блок питания управления микросхемой выполняет балансировку нагрузки.Когда один блок питания выходит из строя, другой блок питания может немедленно взять на себя его работу. Заменить блок питания. Позже два блока питания работают вместе. Резервный источник питания предназначен для обеспечения высокой доступности серверной системы. Помимо серверов, широко используются также системы дисковых массивов.
Источник питания RPS (система резервного питания) используется в качестве внешнего источника питания постоянного тока для некоторых коммутаторов.
RPS может использоваться как резервный источник питания для коммутаторов или маршрутизаторов:
Если резервный источник питания и приемное оборудование используют одну и ту же систему питания переменного тока, когда внутренний источник питания приемного оборудования выходит из строя, резервный источник питания может продолжать подавать питание постоянного тока на вышедшее из строя оборудование, чтобы гарантировать непрерывную нормальную работу оборудование;
Если резервный источник питания и устройство с питанием используют разные системы питания переменного тока, источник питания постоянного тока может продолжать работать при выходе из строя внешнего источника питания переменного тока питаемого устройства, обеспечивая непрерывную нормальную работу устройства.
Источник бесперебойного питания
ИБП, то есть источник бесперебойного питания, представляет собой системное устройство, которое подключает батарею (в основном свинцово-кислотную необслуживаемую батарею) к хосту и преобразует мощность постоянного тока в коммерческую энергию через модульную схему главного инвертора. Он в основном используется для обеспечения стабильного и бесперебойного питания отдельного компьютера, компьютерной сетевой системы или другого силового электронного оборудования, такого как соленоидные клапаны и датчики давления.
При нормальном питании от сети ИБП подает питание от сети на нагрузку после ее стабилизации. В настоящее время ИБП является стабилизатором мощности переменного тока, а также заряжает аккумулятор в машине; когда питание от сети прерывается (аварийное отключение электроэнергии), ИБП немедленно подает питание постоянного тока от батареи на нагрузку через метод переключения инвертора, чтобы продолжать подавать питание 220 В переменного тока на нагрузку для поддержания нормальной работы и защиты программного обеспечения нагрузки и оборудование от повреждений.Оборудование ИБП обычно обеспечивает защиту от слишком высокого или слишком низкого напряжения.
ИБП– это третье поколение ИБП, разработанное с использованием новейших цифровых технологий для удовлетворения требований надежности источников питания для мониторинга сети, сетевых систем, медицинских систем и т. Д., Для преодоления все более плохой среды электросети, вызванной централизованным электроснабжением среды. и большие компьютерные сетевые системы. Интеллектуальный ИБП, работающий только на промышленной частоте Источник питания постоянного тока – это устройство, поддерживающее в цепи постоянный ток.Такие как сухие батареи, аккумуляторы, генераторы постоянного тока и т. Д.
ИБП и источники питания постоянного тока – важное оборудование для электроснабжения предприятий. Традиционное управление техническим обслуживанием включает:
① ежедневный осмотр внешнего вида, регулярная замена изнашиваемых деталей, таких как аккумуляторы, конденсаторы фильтров, вентиляторы и т. Д., Активация аккумуляторов во время капитального ремонта;
② модификация или использование сменного оборудования. Используйте передовые инструменты для проверки работоспособности аккумулятора. Такой метод управления связан с высокими инвестиционными затратами, большой нагрузкой на обслуживающий персонал, нелегко понять рабочее состояние оборудования и ключевые данные в режиме реального времени, а способность оборудования предотвращать несчастные случаи невысока.Внедрение управления техническим обслуживанием в режиме онлайн позволяет избежать недостатков традиционных методов и получить хорошие преимущества.
Разница между резервным источником питания и источником питания ИБП
Резервирование питания может быть использовано для резервирования емкости, резервного холодного резервирования, резервного параллельного распределения тока N 1, резервного горячего резервирования и других методов. Резервирование мощности означает, что максимальная допустимая нагрузка источника питания больше нагрузки, что не имеет большого значения для повышения надежности.
Резервное холодное резервирование означает, что источник питания состоит из модулей с несколькими функциями, которые обычно получают питание от одного из них. При выходе из строя модуль резервного копирования сразу же начинает работать. Недостатком этого метода является то, что существует временной интервал переключения мощности, который вызывает разрыв напряжения.
Режим резервирования N 1 с параллельным разделением тока означает, что источник питания состоит из нескольких блоков, и каждый блок подключается параллельно через диод затвора ИЛИ, и каждый блок подает питание на оборудование.Эта схема не повлияет на питание нагрузки при отказе источника питания, но повлияет на устройство при коротком замыкании на стороне нагрузки. Резервное горячее резервирование означает, что источник питания состоит из нескольких блоков и работает, но только один из них обеспечивает питание оборудования, а другой работает без нагрузки. При отключении основного питания резервное питание может быть немедленно включено, а колебания выходного напряжения очень малы.
Для длительной бесперебойной работы высоконадежных систем, таких как оборудование связи базовых станций, серверы и т. Д., часто высоконадежный источник питания. Дизайн резервного источника питания является его ключевой частью и играет важную роль в высоких системах. Резервный блок питания сконфигурирован с 2 блоками питания. При выходе из строя одного блока питания другие блоки питания можно включить немедленно, не прерывая нормальной работы оборудования. Это похоже на принцип работы источника питания ИБП: при отключении сетевого питания аккумулятор заменяет источник питания.
Разница между резервным источником питания и ИБП в основном заключается в питании от разных источников питания, в то время как ИБП питается от одного источника питания, а другой в любое время имеет резервную копию, иногда автоматически переключаемую.
Вы другого мнения? Оставляйте свои комментарии.
Связанные темы:
Как добавить источник питания PoE для маршрутизатора Cisco серии 890?
Как установить или заменить блок питания переменного тока в коммутаторе Cisco 2960-X?
Требования к питанию для AP 2800 и AP 3800
FAQ: Power over Ethernet (PoE) Требования к питанию
Резервный источник питания | WTI
Одна из проблем при работе с сетевым оборудованием заключается в том, что иногда сетевые устройства (особенно старые устройства) имеют только один вход питания.Хотя этот тип конфигурации питания отлично работает в некритичных сетевых приложениях, он совершенно не подходит для сетевых приложений в банковской сфере, правительстве или на транспорте, которым требуется резервирование источника питания для обеспечения надежности и постоянной доступности.
В случае отказа основного сетевого источника питания жизненно важно, чтобы ваша сеть могла быстро и автоматически восстанавливаться … прежде, чем вас захлестнет поток гневных запросов как от заказчиков, так и от руководителей.Резервирование источника питания гарантирует, что жизненно важные сетевые возможности всегда доступны, когда это необходимо, а также облегчает жизнь любому ИТ-администратору, который просто не хочет, чтобы его сон или выходные были прерваны несвоевременным обращением в службу поддержки из-за привередливого источника питания.
Установить сеть с резервированием источника питания просто, если каждое устройство в стойке для оборудования уже имеет два входа питания. Но что делать, если у вас уже есть стойка, полная старых сетевых устройств с одним вводом питания, или маршрутизаторов, коммутаторов или межсетевых экранов, в которых нет вторичного входа питания? Замена сетевых устройств с одним вводом питания может быть как дорогостоящей, так и трудоемкой, но без резервирования мощности совершенно очевидно, что простое отключение электроэнергии или отказ генератора могут быстро остановить работу вашей сети.
Наши автоматические выключатели питания серии PTS представляют собой простое и экономичное решение для резервирования источника питания для отдельных устройств ввода питания. Просто подключите маршрутизатор с одним входом питания, сервер или коммутатор к розетке PTS, подключите PTS к первичному и вторичному источнику питания, и вы получите мгновенное резервирование источника питания с возможностью автоматического восстановления питания … без замены старых, нестандартных оборудование резервного питания.
Что такое источник бесперебойного питания?
Источник бесперебойного питания (ИБП) – это устройство, которое позволяет компьютеру продолжать работу хотя бы в течение короткого времени при потере основного источника питания.Устройства ИБП также обеспечивают защиту от скачков напряжения.
ИБП содержит батарею, которая «срабатывает», когда устройство обнаруживает потерю мощности от основного источника. Если конечный пользователь работает на компьютере, когда ИБП уведомляет о потере питания, у него есть время, чтобы сохранить все данные, над которыми он работает, и выйти до того, как разрядится вторичный источник питания (батарея). Когда все электричество заканчивается, все данные в оперативной памяти (RAM) вашего компьютера стираются. Когда возникают скачки напряжения, ИБП перехватывает скачки напряжения, чтобы не повредить компьютер.
ИБП в дата-центреКаждый ИБП преобразует входящий переменный ток в постоянный с помощью выпрямителя и преобразует его обратно с помощью инвертора. Батареи или маховики накапливают энергию для использования в случае отказа электросети. Схема байпаса направляет мощность вокруг выпрямителя и инвертора, нагружая IT-нагрузку входящей мощностью от электросети или генератора.
В то время как системы ИБП обычно называют системами с двойным преобразованием, линейно-интерактивными и резервными, эти термины используются непоследовательно, и производители реализуют их по-разному: По крайней мере, одна система допускает любой из трех режимов.Международная электротехническая комиссия (МЭК) и приняла более технически описательную терминологию в стандарте IEC Std. 62040.
Типы ИБП и их основные характеристикиНезависимые от напряжения и частоты (VFI): Системы ИБП, не зависящие от напряжения и частоты (VFI), называются двойным или двойным преобразованием, поскольку входящий переменный ток выпрямляется в постоянный, чтобы поддерживать заряд аккумуляторов и управлять инвертором. Инвертор восстанавливает стабильную мощность переменного тока для работы ИТ-оборудования.
Рисунок 1.При сбое питания батареи приводят в действие инвертор, который продолжает работать с IT-нагрузкой. Когда питание восстанавливается от электросети или от генератора, выпрямитель подает постоянный ток (DC) на инвертор и одновременно заряжает батареи. Инвертор работает постоянно. Вход электросети полностью изолирован от выхода, а байпас используется только для обеспечения безопасности при техническом обслуживании или в случае внутренней неисправности электроники. Поскольку питание ИТ-оборудования не прерывается, вакуумный аварийный прерыватель (VFI) обычно считается наиболее надежной формой ИБП.Большинство систем синхронизируют выходную частоту с входной, но в этом нет необходимости, поэтому она по-прежнему считается частотно-независимой.
Рисунок 2.Каждое преобразование энергии приводит к потерям, поэтому потраченная впустую энергия исторически считалась ценой максимальной надежности.
Независимость от напряжения (VI): Независимость от напряжения (VI) или линейно-интерактивные ИБП имеют контролируемое выходное напряжение, но ту же выходную частоту, что и входную. В развитых странах частотная независимость редко вызывает озабоченность в связи с энергоснабжением.Электроэнергия подается непосредственно на выход и ИТ-оборудование, а выпрямитель поддерживает заряд аккумуляторов. Инвертор работает параллельно с выходом, компенсируя провалы напряжения и действуя как активный фильтр для скачков напряжения и гармоник. Потери выпрямителя и инвертора возникают только при колебаниях входящей мощности. Маховики и моторные / генераторные установки также квалифицируются как VI.
Рисунок 3.При пропадании входящего питания или выходе напряжения за допустимые пределы байпас быстро отключается от входа, и аккумулятор приводит в действие инвертор.Когда входная мощность восстанавливается, байпас повторно включает вход, повторно заряжает батареи и поддерживает постоянное выходное напряжение. Поставщики ИБП, использующие параллельные источники питания, не заявляют о потере надежности. Результат – около 98% энергоэффективности.
Рисунок 4.Зависимый от напряжения и частоты (VFD): Зависимый от напряжения и частоты (VFD), или резервный ИБП, по своим функциям аналогичен VI и иногда ошибочно называется линейно-интерактивным. В обычных системах VFD инвертор выключен, поэтому для начала выработки энергии может потребоваться от 10 до 12 миллисекунд (мс).Эта поломка может привести к сбою серверов, в результате чего устаревшие ИБП с частотно-регулируемым приводом плохо подходят для центров обработки данных.
Рисунок 5.В новых концепциях ЧРП инвертор вырабатывает мощность в течение 2 мс после активации. Байпас обычно задействован, как и в случае с VI, поэтому оборудование работает напрямую от электросети или генератора. Поскольку инвертор не работает до тех пор, пока не пропадет подача электроэнергии, отсутствует контроль напряжения или потребляемая мощность, что обеспечивает КПД до 99%. Сбой питания или напряжение вне допустимого диапазона размыкает переключатель байпаса, отключая вход от выхода; инвертор начинает работать от батарей.Выпрямитель достаточно большой, чтобы поддерживать заряд аккумуляторов.
Рисунок 6. Преимущества и недостатки ИБППреимущества использования источников бесперебойного питания:
- Нет задержки между переключением с основного источника питания на ИБП.
- Может лучше поддерживать критически важные инструменты по сравнению с генераторами.
- Потребители могут выбрать тип и размер ИБП в зависимости от количества энергии, которое им необходимо для подачи на устройство. ИБП
- молчат.
- Обслуживание систем ИБП дешевле по сравнению с генераторами.
К недостаткам использования источников бесперебойного питания относятся:
- Невозможность запускать тяжелые электроприборы из-за того, что ИБП разряжены от батарей.
- Если используются некачественные батареи, пользователи могут часто их заменять. ИБП
- может потребоваться профессиональная установка.
В отличие от ИБП, генераторы не обеспечивают бесперебойную работу устройств после потери основного устройства.Однако генераторы обеспечивают более длительный период времени по сравнению с ИБП. Системы ИБП не обеспечивают питание так долго, потому что они питаются от батарей.
Устройства защиты от перенапряжения (ограничители) помогают предотвратить скачки напряжения и скачки напряжения. Однако устройства защиты от перенапряжения не работают во время перебоев в подаче электроэнергии или в случаях отключения основного источника питания.
ИнверторыPower – это устройства, которые преобразуют постоянный ток в переменный. Силовые инверторы обычно подключаются к внешнему источнику постоянного тока и непрерывно преобразуют ток в переменный.В инверторах питания обычно используется одна или несколько батарей для хранения энергии. При использовании инверторов мощности возникает задержка в передаче мощности от первичного источника питания к вторичному источнику питания при отключении основного питания.
Автоматические регуляторы напряжения (АРН) будут контролировать входное напряжение, чтобы минимизировать колебания напряжения. АРН обычно используются как в преобразователях мощности, так и в инверторах.
Сетевой источник питания, поставщики и производители сетевого питания на Alibaba.com
Защита схем, независимо от того, предназначены ли они для жилых или коммерческих целей, теперь стала более удобной и простой с помощью сетевого источника питания аксессуаров на Alibaba.com. Эти продукты являются лучшими в линейке продуктов и производятся с максимальной заботой об электрических соединениях и цепях любой собственности. Предлагаемые здесь продукты не только обладают высокими эксплуатационными характеристиками, но также сертифицированы и устойчивы ко всем видам требовательного использования, тем самым обеспечивая более длительный срок службы. Приобретайте эти продукты у ведущих и проверенных поставщиков сетевых источников питания и оптовых продавцов на сайте по великолепным ценам.Независимо от размера или размера соединения, этот сетевой блок питания способен обрабатывать все виды сложных цепей и защищает их от всех типов помех.Эти продукты имеют дистанционное управление и могут управляться через смартфоны. Различные категории продуктов на сайте оснащены всеми новейшими функциями и различной емкостью для удовлетворения различных требований к напряжению и току. Эти изделия изготовлены из высококачественного пластика, серебра, меди для улучшения характеристик.
Просмотрите разнообразный сетевой блок питания на Alibaba.com и выберите один из множества продуктов в зависимости от требований. Эти аксессуары термостойкие, оснащены защитой от перегрузки по току, защитой от перегрузки, защитой от скачков напряжения и поставляются с кожухом для предотвращения контакта цепей с внешними помехами.Они оснащены функцией автоматического своевременного включения или выключения и могут управляться голосом с помощью Google Assistant или Alexa. Также можно найти изделия с функцией автоматического повторного включения, а также для солнечных батарей.
Ознакомьтесь с разнообразным ассортиментом сетевых блоков питания на сайте и купите продукты, соответствующие требованиям и бюджету. Доступны индивидуальные настройки, и потребители могут заказывать их как OEM-продукты. Послепродажное обслуживание также предлагается для отдельных продуктов в зависимости от потребностей.
Сетевые серверные ИБП | Источники Бесперебойного Питания
Сетевые ИБП для серверов и полных локальных сетей (LAN или WAN). EcoPowerSupplies UPS из этой коллекции может использоваться для защиты отдельных, кластерных, RAID и сетевых файловых серверов и даже целых локальных сетей. Представленные здесь источники бесперебойного питания обеспечат время автономной работы при отказе источника питания от внутренней аккумуляторной батареи и / или аккумуляторных блоков с увеличенным временем работы.При наличии сетевого питания они также обеспечивают фильтрацию и кондиционирование от электрических загрязнений и помех.
При выборе источников бесперебойного питания для локальных сетей и сетевых серверов не забудьте предусмотреть достаточное количество выходных розеток для питания ИБП и рассчитайте соответствующие размеры для всех связанных периферийных устройств, включая коммутаторы, концентраторы и маршрутизаторы. ИБП обычно имеет выходные розетки IEC, к которым можно подключать удлинители или блоки распределения питания (блоки распределения питания) с вилкой IEC.
Предполагая 300 Вт для сервера, следующая таблица дает некоторые рекомендации по выбору размера ИБП.
Типоразмер ИБП | Серверы |
---|---|
500 ВА | 1 |
1000 ВА | 2 |
1500 ВА | 3 |
2000 ВА | 4 |
2500 ВА | 5 |
3000 ВА | 6 |
Чтобы выбрать правильный ИБП для длительного резервного копирования, см. Нашу коллекцию ИБП с увеличенным временем работы.Для получения дополнительной информации посетите нашу страницу системных технологий ИБП, чтобы узнать больше о типах ИБП на этой странице.
Сетевой серверный ИБПможет быть напольным или монтируемым в стойку, а некоторые предлагают двойную функцию, которая позволяет устанавливать их в любом формате, обычно с дисплеем на передней панели, который может поворачиваться в зависимости от типа установки. EcoPowerSupplies может доставить готовую коробку для установки вашего сетевого сервера или обеспечить полный электромонтаж и услуги по вводу в эксплуатацию.
Свяжитесь с командой Eco Power Projects, чтобы заказать БЕСПЛАТНОЕ обследование объекта, обсудить нашу услугу обмена или проверку работоспособности существующей системы для получения плана обслуживания.
Замечания по защите электропитания для сетевых серверных приложений
Лучшая форма защиты для локальных сетей и сетевых серверов – это источник бесперебойного питания в режиме онлайн.