Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Поваренная книга разработчика аналоговых схем: Операционные усилители 12

7 февраля

Тим Грин, Пит Семиг, Колин Веллс (Texas Instruments)

Перед вами – глава из «Поваренной книги разработчика аналоговой электроники», созданной инженерами компании Texas Instruments (TI). Поваренная книга – сборник рецептов, а данный цикл статей – сборник стандартных схем с операционными усилителями. Каждой схеме посвящена отдельная статья, содержащая пример типового расчета с указанием формул и последовательности действий. Результаты расчетов дополнительно проверяются в программе SPICE-моделирования. Расчеты выполнены для конкретных усилителей из производственной линейки TI. Разработчик может использовать и другие изделия, широкий выбор которых представлен на страницах каталога компании КОМПЭЛ

. От читателя требуется понимание базовых принципов работы операционных усилителей. Если же знаний недостаточно, следует вначале ознакомиться с учебными курсами TI Precision Labs (TIPL). Авторы обещают обновлять и дополнять статьи цикла.

Мы публикуем главы Поваренной книги на нашем сайте регулярно – дважды в месяц.

Подписаться на получение уведомлений о публикации новых глав

ШИМ-генератор на ОУ

Исходные данные к расчету представлены в таблице 34.

Таблица 34. Исходные данные к расчету

ВходВыходПитание
ViMinViMaxVoMinVoMaxVccVeeVref
-2,0 В2,0 В0 В5 В5 В0 В2,5 В

Описание схемы

Данная схема использует генератор треугольных импульсов и компаратор для формирования ШИМ-сигнала с частотой 500 кГц и коэффициентом заполнения, обратно пропорциональным входному напряжению (рисунок 42). Операционный усилитель (U

3) и компаратор (U4) генерируют треугольный сигнал, подаваемый на инвертирующий вход второго компаратора (U2). Входное напряжение схемы поступает на инвертирующий вход усилителя рассогласования (U1) и далее на неинвертирующий вход компаратора (U2). Выходной ШИМ-сигнал формируется при сравнении входного напряжения и треугольного сигнала. Сигнал с выхода U2 используется для обратной связи и подается на вход усилителя рассогласования (U1). Это сделано для улучшения точности и линейности при генерации ШИМ-сигнала.

Рис. 42. Схема ШИМ-генератора

Рекомендуем обратить внимание:

  • используйте компаратор c выходом типа “push-pull” и минимальным временем задержки;
  • Применяйте ОУ с подходящими значениями скорости нарастания, GBW и диапазона выходных напряжений;
  • частота полюса, создаваемого конденсатором С, должна лежать ниже частоты переключений и значительно выше слышимого звукового диапазона;
  • импеданс источника опорного напряжения должен быть минимальным. Для этой цели может быть использован выход ОУ.

Порядок расчета

  • Выбираем коэффициент усиления для входного сигнала по формуле 1:

$$GAIN=-\frac{R_{4}}{R_{3}}=-1\frac{В}{В}\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

Задаем R3 = R4 = 10 кОм.

  • Выбираем сопротивления R1 и R2 для деления опорного напряжения и получения единичного усиления сигнала на неинвертирующем входе (формула 2):

$$V_{O\_DC}=\left(1+\frac{R_{4}}{R_{3}} \right)\times \left(\frac{R_{2}}{R_{1}+R_{2}} \right)\times V_{REF}\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

R1 = R2 = R3 = R4 = 10 кОм.

Тогда VO_DC = 2,5 В.

  • Амплитуда Vtri должна быть выбрана выше максимальной амплитуды входного напряжения (2,0 В), чтобы избежать коэффициента заполнения ШИМ-сигнала 0% и 100%. Выбираем Vtri = 2,1 В. Амплитуда V1 = 2,5 В (формула 3):

$$V_{tri}\:(амплитуда)=\frac{R_{5}}{R_{6}}\times V_{1}\:(амплитуда)\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

Задаем R6 = 10 кОм и определяем R5 по формуле 4:

$$R_{5}=\frac{V_{tri}\:(амплитуда)\times R_{6}}{V_{1}\:(амплитуда)}=8.4\:кОм\approx 8.45\:кОм\:(номинал)\qquad{\mathrm{(}}{4}{\mathrm{)}}$$

  • Задаем частоту ШИМ 500 кГц, исходя из формулы 5:

$$f_{t}=\frac{R_{6}}{4\times R_{7}\times R_{5}\times C_{3}}\qquad{\mathrm{(}}{5}{\mathrm{)}}$$

Задаем С3 = 100 пФ и рассчитываем R7 по формуле 6:

$$R_{7}=\frac{R_{6}}{4\times f_{t}\times R_{5}\times C_{3}}=5.92\:кОм\approx 5.90\:кОм\:(номинал)\qquad{\mathrm{(}}{6}{\mathrm{)}}$$

  • Выбираем С1 для ограничения полосы пропускания усилителя ниже частоты ШИМ (формула 7):

$$f_{p}=\frac{R_{6}}{2\pi \times R_{4}\times C_{1}}\qquad{\mathrm{(}}{7}{\mathrm{)}}$$

С1 = 100 пФ → fp = 159 кГц

  • Выбираем С2 для фильтрации шума Vref и подставляем в формулу 8:

C2 = 100 нФ (номинал).

$$f_{div}=\frac{R_{6}}{2\pi \times R_{1}\parallel R_{2}\times C_{2}}=320\:кГц\qquad{\mathrm{(}}{8}{\mathrm{)}}$$

Моделирование схемы

Моделирование в режиме постоянных токов (DC-анализ) изображено на рисунке 43.

Рис. 43. Зависимость выходного напряжения усилителя от входного

Осциллограмма переходных процессов представлена на рисунке 44.

Рис. 44. Осциллограммы переходных процессов

Рекомендации

Параметры ОУ, используемого в расчете, приведены в таблице 35.

Таблица 35. Параметры ОУ, используемого в расчете

OPA2365
Vss 2,2…5,5 В
VinCM Rail-to-rail
Vout Rail-to-rail
Vos 100 мкВ
Iq 4,6 мА
Ib 2 пА
UGBW50 МГц
SR25 В/мкс
Число каналов2

В качестве альтернативы могут использоваться ОУ, параметры которых представлены в таблице 36

Таблица 36. Параметры альтернативных ОУ

TLV3502OPA2353
Vss 2,2…5,5 В2,7…5,5 В
VinCM
Rail-to-railRail-to-rail
Vout Rail-to-railRail-to-rail
Vos 1 мВ3 мкВ
Iq 3,2 мА5,2 мА
Ib 2 пА0,5 пА
UGBW44 МГц
SR22 В/мкс
Число каналов22

Оригинал статьи

Список ранее опубликованных глав

  1. Поваренная книга разработчика аналоговых схем: Операционные усилители
  2. Инвертирующий усилитель
  3. Неинвертирующий усилитель
  4. Инвертирующий сумматор
  5. Дифференциальный усилитель
  6. Интегратор
  7. Дифференциатор
  8. Трансимпедансный усилитель
  9. Однополярная схема измерения тока
  10. Биполярная схема измерения тока
  11. Однополярная схема измерения тока с широким рабочим диапазоном (3 декады)

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

•••

Наши информационные каналы

www.compel.ru

ШИМ схема на популярном операционном усилителе


Простейшая ШИМ схема с использованием распространенных операционных усилителей


ШИМ схема — представленный здесь вариант построения электронных регуляторов напоминает ранее описанную схему, но отличается от нее большей простотой. Схема формирует прямоугольные импульсы, коэффициент заполнения которых изменяется между 0 и 100% в соответствии с входным сигналом постоянного напряжения, изменяющимся от 0 до 5 В (Рисунок 1).

Как и в вышеупомянутой ШИМ схеме, частота не постоянна (Рисунок 2), но схема настолько проста, что в определенных приложениях может быть полезна.

Благодаря гистерезису, создаваемому резистором R2, и RC-цепочке с постоянной времени R

3C1 компаратор превращается в генератор прямоугольных импульсов (Рисунок 3).

Напряжение V- на инвертирующем входе колеблется между двумя пороговыми уровнями VTH и VTL. Если предположить, что R2 >> R1, то напряжение V+ всегда будет очень близким к VIN. Цепь R3C1 усредняет выходной сигнал VOUT, a постоянное напряжение на входе V- пропорционально коэффициенту заполнения VOUT. Замкнутая петля обратной связи стремится сделать напряжение V- равным V+, поэтому коэффициент заполнения импульсов на выходе VOUT пропорционален VIN.

Напряжение VOH определяет как высокий уровень выходного сигнала, так и диапазон полной шкалы управляющего напряжения VIN. Оно может иметь любое значение, не выходящее из диапазона допустимых синфазных входных напряжений компаратора. Математический анализ ШИМ схемы будет прост, если, учитывая, что разность V

TH — VTL мала, экспоненциальную характеристику заряда и разряда C1 аппроксимировать линейной зависимостью. Во время фазы заряда ток приблизительно равен (VOH-VIN)/3, поэтому:

Аналогично, во время фазы разряда можно считать, что ток равен VIN/3, и

Сопоставление двух уравнений дает

и коэффициент заполнения D равен

Можно видеть, что коэффициент заполнения прямо пропорционален VIN. При VIN = 0 В он равен 0%, а при VIN = VOH равен 100%. Более того, коэффициент заполнения по существу не зависит от номиналов компонентов, при соблюдении ограничения R2 >> R1( необходимого для того, чтобы гистерезис оставался небольшим. Обратная зависимость между коэффициентом заполнения и V

OH может быть полезна в некоторых приложениях, поэтому VOH можно рассматривать как дополнительный вход. Выходная частота соответствует соотношению

достигая своего максимума при VIN = VOH/2.

Сравнительные испытания ШИМ схемы с КМОП компаратором TLC393 и биполярным LM393 показали, что с TLC393 схема лучше работает при низких входных напряжениях V,N благодаря более низкому уровню нуля на выходе. Не допускайте перегрузки выхода компаратора; используйте при необходимости буфер, поскольку нагрузка может ухудшать уровни выходных сигналов.

usilitelstabo.ru

Радиосхемы. – ШИМ-регулятор на операционном усилителе

Схемы источников питания

материалы в категории

Достоинства  ШИМ-регуляторов с применением операционных усилителей так это то что можно применять практически любой ОУ (в типовой схеме включения, конечно).

 

Уровень выходного эффективного напряжения регулируется путём изменения уровня напряжения  на  неинвертирующем  входе ОУ, что позволяет  использовать схему как составную часть различных регуляторов напряжения и тока, а также  схем с плавным зажиганием и гашением ламп накаливания. 
Схема легка в повторении, не содержит редких элементов и при исправных элементах начинает работать сразу, без настройки. Силовой полевой транзистор подбирается по току нагрузки, но для уменьшения  тепловой рассеиваемой мощности желательно использовать транзисторы, рассчитанные на большой ток, т.к. у них наименьшее сопротивление  в открытом состоянии. 
Площадь радиатора  для полевого транзистора полностью определяется выбором его типа  и током нагрузки .  Если схема будет использоваться  для регулирования напряжения  в  бортовых сетях + 24В,  для предотвращения пробоя затвора полевого транзистора, между коллектором транзистора VT1 и затвором VT2 следует включить резистор сопротивлением 1 К, а  резистор R6  зашунтировать любым подходящим стабилитроном на 15 В, остальные элементы схемы  не изменяются.

Во всех ранее рассмотренных схемах  в качестве  силового полевого транзистора используются   n- канальные транзисторы, как наиболее распространённые и имеющие наилучшие характеристики. 

Если требуется  регулировать напряжение на нагрузке, один из выводов которой подключен к “массе” , то  используются схемы, в которых  n -канальный полевой транзистор  подключается стоком к + источника питания, а в цепи истока включается нагрузка.

 

Для обеспечения  возможности полного открытия полевого транзистора  схема  управления должна содержать  узел повышения напряжения  в цепях управления  затвором  до 27 – 30 В, как это сделано в специализированных микросхемах U6080B … U6084B,  L9610,  L9611,  тогда между затвором и истоком  будет напряжение не менее 15 В.  Если ток нагрузки не превышает 10А, можно использовать силовые полевые   p- канальные транзисторы, ассортимент которых  гораздо уже  из – за технологических причин.  В схеме изменяется и тип транзистора VT1,  а регулировочная характеристика R7 меняется на обратную. Если  у первой схемы увеличение напряжения управления  (движок переменного резистора перемещается  к  ” +”  источника питания) вызывает уменьшение выходного  напряжения на нагрузке, то у второй схемы эта зависимость обратная.  Если от конкретной схемы требуется инверсная от исходной зависимость  выходного напряжения от входного, то в схемах  необходимо поменять структуру транзисторов VT1, т.е транзистор VT1  в первой схеме необходимо подключить как VT1  у второй схемы и наоборот.

Автор Кравцов В.Н. http://kravitnik.narod.ru
Обсудить на форуме

radio-uchebnik.ru

Операционный усилитель | Электроника для всех

Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? 😉 Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас Uвых= K*Uвх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления 😉 И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

Uout=(U2-U1)*K

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях про использование аналогового компаратора и про создание на его базе АЦП. Также компаратор замечательно используется для создания всяких ШИМ сигналов.

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

Что получим? А ничего интересного, процесс пойдет по следующей цепочке событий.

Uout = (0 — U1)*К = — К*U1
Uout’ = (-K*U1 — U1)*K1

В общем, выход мгновенно свалится в бесконечные минуса, а в реале ляжет на шину отрицательного питания и усе. Поэтому такое включение применяется крайне редко. Например в триггере Шмитта для обеспечения гистерезиса.

Триггер Шмитта
Представим себе компаратор включенный по такой вот схеме и запитанный от +/- 15 вольт:

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:

Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:

В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U1, на инверсном входе Uout = U1. Ну и получается, что Uout = U1.

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:

Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель
А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U1 на прямом. На инверсном Uout/2 = U1 или Uout = 2*U1.

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

Uout = U1*(1+R1/R2)

Мнемонически запоминается что на что делится очень просто:

Таким образом, можно очень легко умножать аналоговые значения на числа больше 1. А как быть с числами меньше единицы?

Инвертирующий усилитель
Тут поможет только инверсный усилитель. Разница лишь в том, что мы берем и прямой вход коротим на землю.

При этом получается, что входной сигнал идет по цепи резисторов R2, R1 в Uout. При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что Uout=0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно Uout. Делитель из R1 и R2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

Uout = — Uin * R1/R2

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Вычитающая схема
Однако никто же не мешает подать на прямой вход не ноль, а любое другое напряжение. И тогда усилитель будет пытаться приравнять свой инверсный вход уже к нему. Получается вычитающая схема:

Допустим U2 и U1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно 🙂

Если U1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U1 и Uout станет 30 вольт. Ток через резистор R4 будет при этом (U1-Uout)/(R3+R4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R4 составит R4*I4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

Uout = U2*K2 — U1*K1

K2 = ((R3+R4) * R6 ) / (R6+R5)*R4
K1 = R3/R4

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Если же вводные резисторы (R4 и R5) равны друг другу. И резистор обратной связи и резистор на землю (R3 и R6) тоже равны друг другу. То формула упрощается до

Uout = R3/R4 (U2 — U1).

Таким образом, на одном усилке можно два сигнала сначала вычесть, а потом умножить на константу. Этим, кстати, я воспользовался в схеме реобаса, чтобы привести милливольтный сигнал с датчика температуры к вменяемому виду.

Раз можно вычитать, то можно и суммировать

Сумматор инвертирующий

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

Uout = -1(R3*U1/R1 + R3*U2/R2)

Резисторы на входе (R1, R2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И Uout = -1(U1+U2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.

Uout = U1*K1 + U2*K2

K1 = R5/R1
K2 = R5/R2

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R3/R4 = K1+K2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками 🙂

Продолжение следует, когда-нибудь 🙂

easyelectronics.ru

Мощный ШИМ регулятор своими руками


Приветствую, Самоделкины!
Совсем недавно Роману, автору YouTube канала «Open Frime TV», понадобился мощный ШИМ-регулятор. Начались поиски и проверки разных схем. В итоге он остановился на данном варианте:

Автор уже не однократно снимал ролики про шим-регуляторы, но на момент их создания не особо разбирался в схемотехнике, да и не было оборудования для того, чтобы полностью протестировать получившиеся устройства.

Теперь же у автора появился осциллограф, с помощью которого можно увидеть все косяки.

Давайте разберемся в ошибках, чтобы в дальнейшем их не допускать. Самая важная ошибка – это непонимание принципа работы полевого транзистора. Те, кто не первый год занимается электроникой знают, что для открытия полевика нужно не только напряжение, но некий ток.


Это же касается и закрытия. Если этого тока недостаточно, то транзистор будет медленнее открываться и, следовательно, сильнее греться.

Нагрев мосфетов в ключевом режиме появляется именно в моменты переключения, и чем быстрее мы будем коммутировать транзистор, тем меньше он будет нагреваться. Большинство новичков этого не знают и поэтому, в некоторых схемах, силовой транзистор довольно сильно нагревается. У автора было точно также и на тот момент ему было непонятно почему так происходит.

Думаю, все кто искал схему шим-регулятора, натыкались на вариант с микросхемой ne555 и кучей транзисторов, но стоит заглянуть в ее datasheet и мы увидим максимальный выходной ток 200 мА.


Этого тока явно недостаточно для корректной работы устройства. Как же тогда собрать отличный шим-регулятор и уменьшить его нагрев? Все очень просто, необходимо на выход управляющей микросхемы поставить драйвер, который сможет обеспечить достаточный ток для открытия и закрытия мосфетов.

На осциллограммах четко видно, как переключается транзистор без драйвера и когда он есть. Тут даже невооруженным взглядом можно увидеть преимущества драйвера.


Теперь давайте взглянем на схему устройства:

Как видим, в качестве задающий микросхемы, автор применил TL494. Почему именно ее? Да потому, что она очень популярна и легка в настройке.

Автор также пробовал собирать ШИМ на Uc3843, но там есть свои особенности, которые затрудняют сборку. Делал и на 555-ой, но больше всего приглянулась именно 494-ая. В нее можно без особых проблем добавить ограничитель тока, но это уже будете делать под ваши нужды.

Теперь пару слов про работу схемы. TL494 генерирует прямоугольные импульсы, частота которых задается с помощью вот этого конденсатора и резистора:


Потом эти импульсы усиливаются драйвером и поступают на затворы транзисторов.


У каждого транзистора на затворе свой резистор. Это сделано с целью убрать звон при закрытии.

Так как это полевые транзисторы, то при параллельном включении им не нужны токоограничивающие резисторы, что повышает КПД схемы. Также на схеме можем видеть 2 входных напряжения.

Это сделано с целью расширения пределов работы самого шим-регулятора. Если входное напряжение находится в районе 13-30В, то можно установить перемычку и питать схему одним напряжением.

Также нужно сказать пару слов про транзисторы.

IRFZ44N рассчитан на напряжение 50В.

Если вам нужно управлять более высоким напряжением, то необходимо заменить транзисторы под ваши параметры. К примеру, IRF540 рассчитаны уже на напряжение 100В.

Со схемой закончили, рассмотрим печатную плату.

Тут в глаза бросаются силовые дорожки. Они не очень большие, но все компенсируется после сборки устройства. Их придется пропаять медным проводом для повышения токопроводимости. Это будет лучшим решением, так как делать саму дорожку еще больше нету смысла, она имеет маленькое сечение и не сможет провести большой ток.

С платой тоже разобрались. Давайте ее соберем. Это не составит трудностей, деталей немного и сложность минимальная.
э


С обратной стороны пропаяли силовые дорожки. Теперь необходимо установить транзисторы на радиатор, вы же не думаете, что мы полностью избавились от нагрева.


При установке можно не использовать изолирующие подложки, так как транзисторы включены параллельно.

С таким радиатором можно коммутировать токи до 20А. При б0льших токах требуется б0льший радиатор.

Ну и в конце можно производить тесты. Подаем напряжение на схему (в данном случае оно составляет 28В) и производим включение.

Для начала подключаем 2 лампы накаливания мощностью 100Вт, рассчитанные на напряжение 36В.


Но это такое, детский сад, схема справляется на раз-два. Теперь можно взять нагрузку помощнее, к примеру, вот такую нихромовую спираль.

Как видим ток идет довольно таки большой, но схема держится молодцом. Саму плату автор собирал одному человеку для мощного двигателя постоянного тока. Пока жалоб не было, поэтому можно советовать ее к повторению. Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

ШИМ-регулятор. Широтно-импульсная модуляция. Схема :: SYL.ru

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B … U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат – использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов. Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных источников питания для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно – делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь – опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

www.syl.ru

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

 

В наше время весь мир крутится вокруг широтно-импульсной модуляции (ШИМ), да что и говорить, даже день и ночь – и те подвластны ШИМу (зимой день короче чем ночь и наоборот J ). ШИМ сейчас используется везде, где только можно представить его применение: регуляторы, стабилизаторы, преобразователи, блоки питания и прочие устройства. Учитывая тенденцию увеличения мощности, неуклонного роста используемых частот в силовой и преобразовательной технике, а также уменьшению массо – габаритных показателей, я решил что иметь у каждого в домашней лаборатории широкодиапазонный генератор ШИМ просто обязательно. Но это, конечно же, должен быть не просто генератор. Нужно что бы он имел регулировку частоты в широком диапазоне, регуляторы коэффициента заполнения, регуляторы DEAD TIME, однотактный и двухтактный выходы, а также инверсию выходов  для каждого. Инверсия выходов необходима для проверки мостового преобразователя. Да и мало ли чего ещё захочется исследовать. Но в тоже время он должен быть простым для сборки, наладки и повторения. В данном случае будет достаточно перекрыть диапазон частот в однотактном режиме от 60  кГц до 2 МГц, в двухтактном режиме  от 30 кГц до 1 МГц. Регулировать коэффициент заполнения в  однотактном режиме от 1 % до 99%, а в двухтактном режиме  от 2 % до 98%, с возможностью регулирования паузы DEAD TIME («мертвая зона»). Генератор должен иметь минимальное число переключателей по диапазонам. Все должно регулироваться плавно и без скачков. Желательно иметь настройку грубо и точно на каждый параметр регулирования.

С помощью  такого генератора можно проверять качество работы драйверов управления полевых транзисторов, скоростные показатели работы различных компонентов и многое–многое другое.

Чтобы не утомлять прочтением всей статьи, сразу покажу, какой сигнал получился на выходах в разных режимах и на разных частотах:

 

 

С помощью этого генератора я запускаю любой блок питания, в котором микросхема не дает импульсов на запуск, или уходит в защиту по непонятной причине. Плавно увеличивая коэффициент заполнения, смотрю, что происходит на выходе блока, или токовом шунте ключевого транзистора. Отыскание неисправности в любых импульсных блоках с этим генератором – просто сказка и занимает по времени считанные минуты. Откидываю, например, затвор силового транзистора от родной микросхемы, и цепляю его к своему генератору с драйвером. Для того что бы подключаться например по высокой стороне к двухтактникам, иногда такое надо, необходимо использовать оптодрайвер на 6N137 или любых других быстрых оптопарах.

Ещё можно проверять на что годны операционные и аудио усилители. Поскольку самые низкие искажения имеют только повторители напряжения, проверку буду производить именно в этом режиме. Приведу пример проверки самого распространенного операционного усилителя типа LM358. Тем самым ввергну в шок некоторых аудиофилов. Так вот, использовать LM358 в аудиоусилителях даже низкого класса категорически не рекомендую.

 

 

Ради прикола, беру самый первый советский операционник К140УД1Б и загоняю его на испытания. Показатели у него значительно лучше, чем у LM358.

 

 

Можно проверять время задержки в логических элементах и минимальную длительность импульса для триггеров.

 

 

Даже проверил, как себя поведет стабилитрон TL431 на частоте 1,3 МГц:

 

 

Желтым – вход, синим – выход.

А также испытать и проверить многое другое…….

Вот, вкратце, возможности моего генератора.

Когда я поставил перед собой задачу, попробовал погуглить и найти готовое решение. Поиски не увенчались успехом. В итоге было решено самому создать схему отвечающую запросам. Теперь я ознакомлю вас с результатами моих исследований длившихся около года

Мои исследования

 

   На первый взгляд самой привлекательной и простой схемой, найденной в даташитах и интернете, показалась схема на основе готового PULSE WIDTH MODULATION контроллера типа TL494 и её аналогах КА7500.  TL 494 и ее последующие версии – наиболее часто применяемая микросхема для построения двухтактных преобразователей питания.

 Но на деле это решение подходит под наши задачи только на 1/10 решения и её нельзя использовать на частотах более 100 кГц – в однотактном режиме и до 50 кГц – в двухтактном режиме.  Почему? Хотя по даташиту она может использоваться и до 300кГц, мне не понравилось, как она себя ведет на частотах выше 100 кГц.

Что гласит даташит:

Допустимы рабочие частоты от 1 до 300 кГц, рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты без учета дрейфа навесных компонентов +/-3%, а уход частоты в зависимости от напряжения питания – в пределах 0.1% во всем допустимом диапазоне.  Да только дело то не в уходе частоты, а в непостоянстве регулирования коэффициента заполнения в зависимости от частоты.

Я попробовал испытать её возможности, и хотел перекрыть нужный мне диапазон в 2 МГц, но на частоте выше 1 МГц она нормально так и не запустилась. Пришлось пока ограничиться только 1 МГц. Сделал пять диапазонов регулирования частоты, поставил стабилизатор напряжения на 12 вольт по питанию с блокировочными конденсаторами, чтобы не нарушалась чистота эксперимента и начал испытание.

 

Схема:

 

 

Макетная плата подопытной схемы:

 

 

 

Джамперы для выбора частоты:

 

 

Результаты проведенного испытания возможностей TL494:

Данная микросхема для моего требования к генератору не подходит, и никакие средства и ухищрения разогнать её на большую частоту так ни к чему и не привели. Предел мечтаний с ней это 100 кГц (с большой натяжкой 150 кГц). На более высокой частоте даёт о себе знать очень уж медленный компаратор, использующийся в схеме кристалла. Также мешает повышению частоты и встроенная коррекция. Читаем из даташита особенности данной микросхемы:

Для стабильной работы триггера – время переключения цифровой части TL494 составляет 200 нс. На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс. Так как в ней очень медленные усилители ошибки  (фактически, операционные усилители с Ку = 70..95 дБ по постоянному напряжению, Ку = 1 на 300 кГц), я их не использую в схеме испытания вообще, и они заблокированы. Эти усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах преобразователей напряжения частота среза цепи ОС выбирается порядка 2  – 10кГц.

    Замечания по работе микросхемы 494 на повышенной частоте, которые меня не устраивают:

1. Встроенный генератор пилообразного напряжения на большое время замыкает конденсатор, вследствие этого перед новым циклом заряда появляется площадка с нулевым потенциалом.

    Осциллограммы работы генератора на разных частотах:

     

     2. Сильная зависимость коэффициента заполнения от частоты, которая проявляется с нарастающим эффектом после прохождения частоты 100 кГц.

      Рассматривая осциллограммы работы ШИМ регулятора с TL494 на разных частотах, при максимальном и минимальном коэффициенте заполнения, чётко заметны изменения минимального и максимального коэффициента заполнения в зависимости от частоты.

       

       

       

      Как видно, изменение минимального коэффициента заполнения на частоте 50 кГц =5% и на частоте 1 МГц = 14,3% отличаются почти в три раза. А вот изменение максимального коэффициента заполнения, тут вообще удивляет: на частоте 50 кГц = 93% и на частоте 1 МГц = 60,7% отличаются на 32%!!!

         Вот почему эту простую и удобную схему я отложил в сторонку. Она мне еще пригодится в дальнейшем: я к ней все-таки вернусь, но уже на дискретных быстрых компараторах и нормальных быстрых триггерах.

       

       

         Дальше на пути у меня была схема на NE555 таймере, которую я использовал лишь только в качестве генератора пилообразного напряжения. Я и не предполагал, что он тоже окажется довольно медленным, но все же, немного лучше, чем предыдущая TL494. С ним можно подняться к частотам около 200 кГц в однотактном режиме. Только надо добавить компаратор и триггер с логикой ИЛИ-НЕ.

      Схема генератора на 555 таймере:

       

       

      Осциллограммы работы генератора пилообразного напряжения на 555 таймере на частотах  332 кГц и 462 кГц.

       

       

      Тут видно округление вершин и спада импульса. На частоте более 500 кГц пила становится неузнаваема.

       

      Разочаровавшись в готовых решениях только на аналоговых элементах, я пробовал синтезировать ШИМ чисто на цифровых логических элементах и счетчиках с триггерами, без использования аналоговых компонентов, но там меня подстерегали другие, куда более сложные проблемы. Выравнивание задержек распространения сигнала по элементам и т.п. Особенно большую проблему составляют триггеры и счетчики, которые совсем не хотят щелкать на малой длительности импульса и просто тупо пропускают счет. А это значит, что ключам, на которые будет работать генератор, очень скоро придет конец. Отказался от этой затеи через неделю боя с 561 логикой. Она, оказывается, ну уж очень медленная для таких частот – 20 МГц при делении ШИМа по 10 %. Ещё через две недели отказался и от 1533 тоже.

      Финальная схема генератора.

       

           После нескольких неудачных попыток воплотить мечту в реальность (иметь в своей домашней лаборатории генератор с 2 МГц ШИМа), недельку- другую отдохнул, подумал, набрался сил и снова приступил к решению проблемы. На этот раз без выкрутасов и лёгких путей, учитывая предыдущие наработки и ошибки. Из всех опробованных решений самое большее удобство пользования предоставляла схема на TL494 или на таймере. Поэтому было решено клонировать начинку NE555 и TL494 на быстродействующих компонентах и собирать некий «симбиоз» двух микросхем на отдельных  компараторах и логике. Компараторы с ТТЛ выходом я взял те, что были у меня в столе – КР597СА2, но можно и любые другие, главное быстродействующие и с ТТЛ выходом. Ну, если вдруг захочется позверствовать, то ЭСЛ будет куда круче (тогда и 20 МГц не предел), но мне пока не нужна такая большая частота (разве для преобразователя с индуктивностью без ферритового сердечника). Тогда надо ставить КР597СА1, и логику серии К500.

      После первого запуска схемы обнаружилось много казусов, но по мере отладки многие грабли были убраны, и схема заработала как часы.

       

      Схема:

       

       

       

            Схема состоит из генератора пилообразного напряжения (состоящего из стабилизатора тока на транзисторах VT1, VT2, VT3; двух компараторов DA1, DA2; триггера DD1 и разрядного транзистора VT4), схемы выделения прямоугольных импульсов (с шириной зависящей от порогового напряжения на DA3), двух стабилизаторов опорного напряжения (2,5в и 2,9в), формирователя двухтактного сигнала (на триггере DD2  и элементах DD3 DD4 2-ИЛИ-НЕ), повторителя и инвертора для однотактного выхода (на DD5, DD6).

      Фото макетной платы:

       

       

      Для облегчения процесса настройки я приведу осциллограммы напряжений в каждой важной точке схемы. Итак…

      Генератор пилообразного напряжения. Конденсатор заряжается через стабилизатор тока. Канал 1 – напряжение на конденсаторе С5, канал 2 – напряжение на базе разрядного транзистора VT4.

       

       

       

       

      По графикам заметен необъяснимый факт ухода напряжения в область отрицательных значений, но это работе не мешает, так как в схему выделения прямоугольных импульсов в задающее напряжение позже я также внесу небольшое отрицательное смещение с помощью делителя R6, R10 для охвата всего диапазона изменения напряжения «пилы». R1 подбирается для ограничения верхней максимальной частоты (я ограничился лишь 2 МГц, хотя вся схема нормально работает и до 5 МГц).

      Осциллограммы напряжений на выходах компараторов DA1, DA2 на разной частоте. Канал 1 – напряжение на компараторе DA1 вывод 14, канал 2 – напряжение на компараторе DA2 вывод 14:

       

       

       

      Для борьбы со «звоном» компаратора вблизи зоны переключения, в схеме выделения прямоугольных импульсов на DA3, я ввел резисторы ПОС (положительной обратной связи) R16, R15 на одноименных входах – выходах компаратора. ПОС нужна на частоте ниже 1 МГц. На частоте в 2МГц данная цепь не требуется и сама перестает участвовать в работе, что видно по осциллограммам.  Осциллограммы напряжений на входах компаратора DA3 на разной частоте. Канал 2 – напряжение на компараторе DA3 вывод 2 – задание порога переключения, канал 1 – напряжение на компараторе DA3 вывод 3 с генератора «пилы». Осциллограмма на частоте 96 кГц. Канал 2 увеличено. Видна волнистая линия синхронно переключению компаратора – это и есть работа ПОС для задания гистерезиса. Глубину гистерезиса можно было бы и уменьшить, но на карту поставлены ключи, которыми будет управлять генератор, поэтому оставим все без изменения.

       

       

       

      Далее схема выделения прямоугольных импульсов с шириной зависящей от порогового напряжения на DA3. На прямой вход компаратора подается пилообразное напряжение, а на инверсный вход – напряжение задания порога переключения компаратора. На выходе получается прямоугольный импульс. Смотрим осциллограммы, разбираемся и вникаем.

       

       

       

      Здесь все понятно. Только если нужен для работы двухтактный выход, то увлекаться очень малым (99%) коэффициентом заполнения не стоит. Так как триггер на малой длительности входного импульса не успевает переключаться, и будет просто пропускать периоды,  выдавая на выходе вместо двухтактных импульсов по очереди – два одинаковых, однотактных, а это чревато нехорошими последствиями, типа сквозного пробоя одновременно открытых ключей.

      Дальше я покажу, как переключается триггер, когда длительность импульса достаточна для его нормальной работы на разных входных частотах. Частота на выходе D триггера равна половине  частоты на входе, и всегда имеет коэффициент заполнения 50% независимо от коэффициента заполнения на входе. Все это видно ниже на графиках.

       

      А вот так хулиганит триггер при входных импульсах недостаточной длительности:

       

      Видно как сбивается развертка и просматривается тот самый пропуск импульса. А это приводит например в полумостовом преобразователе к сквозному «кототоку».

       

      Далее покажу, как формируется полтакта двухтактного импульса, пройдя компаратор,  триггер и логический элемент 2ИЛИ-НЕ:

       

      То, что получилось на выходных контактах, я поместил в первой картинке. Внимательно смотрим, изучаем.  Как видно из графиков, минимальная длительность импульсов на двухтактном выходе завышена до 5%, для того, чтобы триггер четко переключался при входной частоте 2 МГЦ. На частотах до 500 кГц её можно установить и 1 % не опасаясь за пропуски импульса.

      Основной нюанс по настройке генератора: самое главное – чтобы стояли блокировочные керамические конденсаторы типа КМ-5 по 0,1 мкф минимум, или SMD импортные, на каждом корпусе микросхемы. Без них схема работает очень неустойчиво.  Одна сторона платы используется для дорожек, а вторая  используется как экран, её нужно соединить с корпусом в нескольких точках.

      Блок питания каких–либо особенностей не имеет. Для канала +12в используется КРЕНка или 7812, а для канала – 6в используется 7906

      Об выходных драйверах на 2 МГц напишу позже, а то и так много читать надо. Можно использовать готовые микросхемы драйверов, можно собирать на дискретных элементах.

      Спасибо за внимание, и за терпение, и за то, что хватило сил дочитать до этой строки.

      Ещё поздравляю и желаю много валерианки!!!

       

       

      Макетная плата в Layout 5, видео работы генератора в разных режимах и картинки отдельно в файлах.

      Файлы:
      плата
      архив картинок
      видео

      Все вопросы в Форум.

      www.radiokot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *