Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Симисторный ключ вместо реле – Морской флот

Твердотельное реле (ТТР) – прибор из серии электронных компонентов немеханического действия. Отсутствие механики открывает больше возможностей любителям электроники сделать твердотельное реле своими руками для личного пользования.

Рассмотрим такую возможность подробнее.

Конструкция и принцип действия ТТР

Если большая часть подобной электроники традиционно содержит подвижные детали контактных групп, твердотельное реле таких деталей не имеет совсем. Коммутация цепи схемой устройства осуществляется по принципу электронного ключа. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники – силовые транзисторы, симисторы, тиристоры.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования.

В рамках плотного изучения прибора сразу же следует выделить преимущественные стороны ТТР:

  • коммутация мощной нагрузки;
  • высокая скорость переключения;
  • идеальная гальваническая развязка;
  • способность кратковременно держать высокие перегрузки.

Среди механических конструкций найти реле с подобными параметрами реально не представляется возможным. Вообще, преимущества относительно механических собратьев у твердотельных реле выражаются внушительным списком.

Условия эксплуатации для ТТР практически не ограничивают применение этих устройств. К тому же отсутствие подвижных механических деталей благоприятно сказывается на продолжительности службы приборов. Так что есть все основания, чтобы заняться твердотельным реле – собрать устройство своими руками.

Однако, справедливости ради, наряду с положительными моментами следует отметить свойства реле, характеризуемые как недостатки. Так, для эксплуатации мощных приборов, как правило, требуется дополнительный компонент конструкции, который предназначен отводить тепло.

Радиаторы охлаждения твердотельных реле имеют габаритные размеры в несколько раз превосходящие габариты ТТР, что снижает удобство и рациональность монтажа.

Приборы ТТР в процессе эксплуатации (в закрытом состоянии) дают обратный ток утечки и показывают нелинейную вольт-амперную характеристику. Не все твердотельные реле допустимо использовать без ограничений в характеристиках коммутируемых напряжений.

Отдельные виды устройств предназначены коммутировать только постоянный ток. Внедрение твердотельных реле в схему обычно требует обращения к дополнительным мерам, направленным на блокировку ложных срабатываний.

Твердотельные реле часто можно встретить в общем электрощитке квартиры.

Как работает твердотельное реле?

Управляющий сигнал (обычно напряжение низкого уровня, исходящее, к примеру, от контроллера управления) подаётся на светодиод оптоэлектронной пары, присутствующей в схеме ТТР. Светодиод начинает излучать свет в сторону фотодиода, который в свою очередь открывается и начинает пропускать ток.

Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Ключ открывается, замыкает цепь нагрузки.

Так работает функция коммутации прибора. Вся электроника традиционно заключена в монолитный корпус. Собственно, поэтому устройство и получило название твердотельного реле.

А о том, как подключить твердотельное реле можно прочесть в этом материале.

Разновидности твердотельных переключателей

Весь существующий ассортимент приборов условно можно разделить по группам, исходя из категории подключаемой нагрузки, особенностей контроля и коммутации напряжений.

Таким образом, в общей сложности наберётся три группы:

  1. Устройства, действующие в цепях постоянного тока.
  2. Устройства, действующие в цепях переменного тока.
  3. Универсальные конструкции.

Первая группа представлена приборами с параметрами рабочих управляющих напряжений 3 – 32 вольта. Это относительно малогабаритная электроника, наделённая светодиодной индикацией, способная функционировать без перебоев при температурах -35 / +75 ºС.

Вторая группа – устройства, предназначенные под установку в сетях переменного напряжения. Здесь представлены конструкции ТТР для установки в сетях переменного тока, управляемые напряжением 24 – 250 вольт. Есть устройства, способные коммутировать нагрузку высокой мощности.

Третья группа – приборы универсального назначения. Схемотехника этого вида устройств поддерживает ручную настройку на использование в тех или иных условиях.

Если отталкиваться от характера подключаемой нагрузки, следует выделить два вида твердотельных реле переменного тока: однофазные и трёхфазные. Оба вида рассчитаны на коммутацию достаточно мощной нагрузки при токах 10 – 75 А. При этом пиковые кратковременные значения тока могут достигать величины 500 А.

В качестве нагрузки, коммутируемой твердотельными реле, могут выступать ёмкостные, резистивные, индукционные цепи. Конструкции переключателей позволяют без лишнего шума, плавно управлять, к примеру, нагревательными элементами, лампами накаливания, электродвигателями.

Надёжность работы в достаточной степени высока. Но во многом стабильность и долговечность твердотельных реле зависит от качества производства изделий. Так, устройства, выпускаемые под некой торговой маркой «Impuls», часто отмечаются непродолжительным сроком службы.

С другой стороны, изделия фирмы «Schneider Electric» не оставляют повода для критики.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Выводы и полезное видео по теме

Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:

Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:

Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках “zero crossing detector circuit” или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

мощный ключ на симисторе

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Создать учетную запись

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Симистор. Принцип работы, параметры и обозначение на схеме.

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ.

слова gate – “затвор”). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности.

В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключается”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Тиристор и симистор.Способы и схемы управления

Тиристор и симистор.Способы и схемы управления

Тиристор – это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Симиcтop – полупроводниковый прибор, который широко используется в системах, питающихся переменным напряжением. Упрощенно он может рассматриваться как управляемый выключатель.

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах.

Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики              

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

1. Падение напряжения при максимальном токе анода (VT или Uос).

2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

3. Обратное напряжение (VR(PM) или Uобр).

4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

6. Обратный ток (IR) — ток при определенном обратном напряжении.

7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

8. Постоянное отпирающее напряжение управления (VGT или UУ).

9. Ток управления (IGT).

10. Максимальный ток управления электрода IGM.

11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках “zero crossing detector circuit” или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Ранее ЭлектроВести писали, почему в современных инверторах используют транзисторы, а не тиристоры.

По материалам electrik.info

Тиристорный ключ постоянного тока

Тиристоры составляют наиболее широкий класс полупроводниковых приборов с отрицательным сопротивлением и предназначены в основном для коммутации токов и напряжений в сильноточных схемах. Большое число типов тиристоров с разнообразными характеристиками определяют многообразие ключевых и коммутирующих схем на их основе, тем не менее, общее свойство этих приборов – S-образная вольтамперная характеристика – позволяет обобщенно подходить к анализу статических и динамических свойств тиристорных ключей.

Для обеспечения работы ключа в двух устойчивых режимах его нагрузочная прямая должна пересекать вольт-амперную характеристику в трех точках (/, 2, 3) (рис. ???)) из которых положения 1 и 3 являются устойчивыми. Если при отсутствии входного сигнала приложенное к тиристору прямое напряжение не превышает U ВКЛ , то ключ находится в закрытом состоянии. Однако с приближением напряжения на тиристоре к величине, равной U ВКЛ , закрытое состояние оказывается неустойчивым. Более того, некоторые образцы тиристоров могут самопроизвольно отпираться при выдержке под напряжением, значительно меньшем U ВКЛ , что проявляется особенно сильно с увеличением, температуры. Поэтому закрытое состояние тиристора характеризуется лишь частью напряжения U ВКЛ , т. е. максимально допустимым прямым напряжением U ПР.МАКС , находясь под которым прибор должен оставаться закрытым в течение всего срока службы.

Для трехэлектродных тиристоров значение U ПР.МАКС можно увеличить, если зашунтировать управляющий переход или подать на него отрицательное смещение, что вызывает протекание в цепи управляющего электрода запирающего тока I У.ОБР , причем в случае шунтирования управляющего перехода ток I У.ОБР является частью тока анода, ответвляющейся в цепь шунта.

Сопротивление тиристорного ключа в закрытом состоянии определяется током утечки в прямом направлении I УТ , измеренным при напряжении U ПР.МАКС и максимально допустимой температуре, и током I К0 центрального перехода П 2 . Это позволяет использовать в качестве эквивалентной схемы тиристора в закрытом состоянии сопротивление, величина которого равна R ОБР , и источник тока I К0 .

Сопротивление ключа в открытом состоянии определяется остаточным напряжением U ОБР , измеренным при протекании максимального прямого тока I ПР.МАХ , который задается исходя из максимально допустимой мощности рассеивания на тиристоре Р МАХ . Это позволяет заменить открытый тиристор эквивалентным сопротивлением R ПР . величина которого равна R ПР = U ОСТ/ I ПР.МАХ и источником напряжения U ОСТ .

Переключение тиристора из закрытого состояния в открытое должно осуществляться подачей отпирающего импульса в цепь управления для трехэлектродных приборов – триодных (ТТ) и запираемых (ЗТ) тиристоров или в цепь анод-катод для диодных тиристоров (ДТ). Между амплитудой импульса U ВКЛ.ИМП , переключающего ДТ в открытое состояние, которую в соответствии со справочными обозначениями, принятыми для диодных тиристоров, будем обозначать U ПУСК , и статическим значением U ВКЛ не существует корреляционного соответствия. Амплитуда U ПУСК в основном зависит от длительности фронта импульса отпирающего напряжения на аноде тиристора t Ф , емкости участка анод-катод закрытого диодного тиристора C ДТ C П2 где C П2 – емкость центрального р-n перехода, а следовательно, и от внутреннего сопротивления генератора отпирающих импульсов R ВН .

Для отпирания импульсного ключа, выполненного на трехэлектродном приборе (ТТ или ЗТ), и запирания ключа на ЗТ необходимо обеспечить протекание определенного импульса тока в цепи управления тиристора. Амплитуда этого импульса, прежде всего, зависит от его длительности, а при запирании – и от величины прямого тока анода I ПР , протекающего через открытый тиристор.

Одним из основных параметров, характеризующих процесс отпирания трехэлектродных тиристоров, является импульсный ток спрямления I СПР , под которым следует понимать минимальную амплитуду положительного импульса тока управления заданной длительности, переключающего тиристор в открытое состояние при определенном напряжении на аноде.

Поскольку импульсный ток управления I У.ОБР запирающий тиристор, зависит от тока анода I ПР , то управляемость запираемого тиристора характеризуется импульсным коэффициентом запирания B ЗАП = I ПР / I ЗАП (при I У.ОБР = I ЗАП тиристор запирается).

Длительность процесса отпирания характеризуется временем задержки t З (ток анода возрастает до 0,1 I ПР ) и временем установления прямого сопротивления t УСТ (ток анода изменяется от 0, I ПР до 0,9 I ПР ), которые в сумме составляют время включения t ВКЛ , а длительность процесса запирания характеризуется временем запаздывания t ЗП (ток анода уменьшается до 0,9 I ПР ) и временем спада t СП (ток анода изменяется от 0,9 I ПР до 0,1 I ПР ), которые в сумме составляют время запирания t ЗАП .

Время переключения тиристорного ключа, несмотря на действие сильной внутренней положительной обратной связи составляет существенно большую величину, чем аналогичный параметр у транзисторных ключей. Это объясняется режимом глубокого насыщения p-n-p-n – структуры и связанным с ним накоплением и рассасыванием большого объемного заряда. Из-за этого время включения тиристора составляет единицы микросекунд, а выключения – десятки и сотни микросекунд, уменьшаясь у высокочастотных тиристоров и тиристоров, прямой ток которых существенно меньше максимально допустимого.

Заметим, что при активно-индуктивном характере нагрузки тиристорного ключа нарастание прямого тока определяется не только и не столько инерционностью самого прибора, сколько постоянной времени нагрузки. Для таких ключей длительность управляющих импульсов выбирается не только по минимально заданным справочным данным, но и в зависимости от постоянной времени нагрузки, учитывая, что в течении длительности импульса управления прямой ток должен успеть превысить величину I ВЫКЛ .

К числу параметров, характеризующих отпирание тиристорного ключа, следует отнести и максимально допустимую скорость нарастания анодного тока (dI ПР /dt) MAX . Ограничение скорости (dI ПР /dt) сверху обусловлено влиянием неодномерных явлений на процесс отпирания тиристора и оказывается особенно сильным в режимах, когда амплитуда импульса прямого тока I ПР.ИМП >> I ПР.МАХ . Значения (dI ПР /dt) иI ПР.ИМП.МАХ . зависят от длительности импульсов прямого тока и частоты ихследования.

Построение и расчет цепей отпирания, выключения и запирания тиристорных ключей являются первоочередными задачами, которые приходится решать при проектировании тиристорных устройств. При этом под выключением тиристоров понимается их выключение пo анодной цепи, а под запиранием – выключение по цепи управляющего электрода.

Анализ цепей отпирания. Цепь отпирания должна обеспечить включение от импульса сигнала управления, защиту тиристора от отпирающего импульса помехи и запас по минимально допустимому режиму входной цепи прибора. Эти требования необходимо удовлетворить в заданном диапазоне внешних, например, температурных, воздействий для любого тиристора выбранного типа.

Для обеспечения гарантированного включения тиристора и исключения его срабатывания от сигнала помехи U ПОМ необходимо удовлетворить неравенства

где U ПОМ.У и I ПОМ.У – допустимые значения напряжения и тока помехи, действующей в управляющей цепи.

В случае индуктивного характера нагрузки (рис. 4.7.1-а) длительность импульса управления необходимо увеличить до значения


где I ПР – установившееся значение тока нагрузки; – постоянна» времени цепи нагрузки; τ Н = L Н /R Н ; t ВКЛ – длительность импульса управления при чисто активной нагрузке.

Для уменьшения длительности управляющих импульсов индуктивную нагрузку целесообразно шунтировать активным сопротивлением или последовательной R С -цепью (рис. 4.7.1-б и -в), параметры которых для схемы рис. 4.7.1, а выбираются из условия


а для схемы рис. 4.7.1.


;

Применение резистивно-емкостного шунта уменьшает потери мощности по сравнению с чисто резистивным шунтом, однако при



в схеме могут возникнуть колебательные процессы.Основные схемы цепей отпирания ключей на тиристорах показаны на рис. 4.7.2. Включение диода в управляющую цепь тиристора (рис. 4.7.2, –а и –б ) исключает протекание обратного тока через управляющий переход, что не допускается для обычных триодных тиристоров, а включение R Ш повышает устойчивость тиристоров против самопроизвольного включения В схеме (рис. 4.7.2-б ) роль сопротивления шунта играет малое по постоянному току сопротивление выходной обмотки трансформатора. Включение разделительной емкости C Р в схеме рис. 4.7.2-в позволяет сформировать управляющий импульс с формой, близкой к оптимальной, т. е. крутым и большим по амплитуде передним фронтом и экспоненциально убывающей вершиной.

Схемы цепей отпирания ключей на диодных тиристорах приведены на рис. 4.7.2 г-е. При подаче короткого импульса положительной (рис 4.7.2-г ) или отрицательной (рис. 4.7.2-д) полярности в цепи анод – катод тиристора через емкость центрального перехода C П2 =C S протекает ток, который обеспечивает накопление в базах S заряда Q ВКЛ , необходимого для отпирания прибора. Диод D 1 увеличивает входное сопротивление схемы. Для отпирания S в схеме рис. 4.7.2-д должны выполняться неравенства


и

а в схеме рис. 4.7.2 –г и д – неравенства


и

где t Ф.МАХ – максимальная длительность фронта входного импульса C S емкость тиристора.

А

нализ цепей выключения. Для выключения тиристора по аноду необходимо уменьшить протекающий через тиристор ток до величины меньшей I ВЫКЛ.MIN , на время большее t ВЫКЛ . В цепях постоянного тока эта задача решается с помощью транзисторного ключа или коммутирующих реактивных элементов

Схемы выключения тиристорного ключа с последовательным и параллельным транзисторами показаны на рис. 4.7.3 –а и –б. Последовательный

транзистор, запираясь оложительным импульсом, прерывает протекание тока через тиристор на время t И > t ВЫКЛ . Дополнительное подключение Е 0 повышает надежность выключения, компенсируя ток I К0 закрытого транзистора, и способствует повышению скорости рассасывания объемного заряда и, тем самым, уменьшает время выключения тиристора.

В схеме с параллельным транзистором при его отпирании основная часть анодного тока тиристора ответвляется через транзистор, прямой ток тиристора уменьшается ниже I ВЫКЛ.MIN и тиристор запирается. Для повышения надежности запирания последовательно с тиристором можно включить диод D , который увеличивает остаточное напряжение и сопротивление шунтируемой транзистором цепи и тем самым уменьшает протекающий в ней при открытом транзисторе ток.

Поскольку в тиристорных ключах с транзисторными схемами выключения рассасывание накопленного в структуре заряда происходит только за счет процессов рекомбинации, то время выключения тиристоров затягивается, а амплитуды коммутируемых токов и напряжений, определяемые характеристиками транзисторов, ограничивают область применения тиристорных ключей. Такие схемы выключения применяются только для маломощных тиристоров.

Б

олее широко в импульсной технике используются схемы выключения с помощью заряженного конденсатора и вспомогательного тиристора. Суть работы этих схем выключения заключается в том, что предварительно заряженный конденсатор с помощью вспомогательного тиристора подключается к основному тиристору таким образом, что ток его разряда направлен навстречу прямому току основного тиристора, что обеспечивает его форсированное запирание. Коммутирующий конденсаторС может быть подключен с помощью вспомогательного тиристора S2 параллельно основному тиристору S1 (рис. 4.7.4 –а-в), параллельно нагрузке (рис. 4.7.5 -г и д) или к соединенным последовательно тиристору S1 и нагрузке (рис. 4.7.4-е). Соответственно различают параллельную (рис. 4.7.4, а-д) и последовательную (рис. 4.7.4 -е) коммутации.

П

араметры коммутирующей емкостиС и дросселя L рассчитывают исходя из условия, при котором на основном тиристоре за время перезаряда конденсатора до нуля сохраняется обратное напряжение течение отрезка времени длительностью не меньше t ВЫКЛ . Заряд конденсаторов С обеспечивается специальной зарядной цепью, которая на рис. 4.7.4-б-е не показана.

Для формирования мощных коротких импульсов используется выключение тиристоров с помощью последовательного LC -контура. Основное преимущество способа заключается в простоте коммутирующих цепей (рис. 4.7.5), не содержащих вспомогательных тиристоров и зарядных цепей. Для выключения тиристора с помощью LC -контура ударного возбуждения при R Е/ I ВЫКЛ прежде всего необходимо, чтобы конденсатор разряжался (рис. 4.7.5- а и б) или заряжался (рис. 4.7.6-в) по колебательному закону и при этом выполнялось условие


где I 1 – значение первого отрицательного экстремума переменной составляющей тока, протекающего через индуктивность контура; R1 сопротивление, учитывающее омическое сопротивление катушки и нагрузки.

В схеме рис. 4.7.5 -а после отпирания тиристора S и изменения направления тока, протекающего через индуктивность контура, открывается диод D . К тиристору в течение времени ∆t (пока открыт диод D и ток контура С – R1 – L D превышает ток, равный E/(R+R1) ) прикладывается обратное напряжение. Значения L и С можно рассчитать по формулам


Коммутирующая цепь рис. 4.7.5-а позволяет построить схемы формирователей импульсов длительностью t И > t ВЫКЛ . Для формирования мощных коротких импульсов длительностью t И t ВЫКЛ можно использовать схемы рис. 4.7.5-б и в. В этой схеме коммутационный ток контура протекает через тиристор S в запирающем направлении, что форсирует процесс его запирания.

Анализ цепей запирания. Существует два вида цепей запирания ключей на запираемых тиристорах: с накопителем и без накопителей энергии.

Цепи с накопителем энергии представлены на рис. 4.7.6. В этих схемах включение (рис. 4.7.6 -а) или отключение (рис. 4.7.6 -б) ключа SA приводит к разряду энергии, накопленной в конденсаторе или индуктивности, в направлении, запирающем тиристор S . Схемы включения тиристора для простоты не показаны. Параметры элементов запирающей цепи выбираются из условия:



для схемы рис. 4.7.6 -б


;


Цепи запирания, не содержащие накопителей энергии, благодаря простоте, малым размерам и массе, а также высокому быстродействию могут наиболее успешно использоваться при построении тиристорных ключей на запираемых тиристорах.

Принцип запирания S без накопителей энергии показан на рис. 4.7.7-а. Запирание тиристора S , включенного ранее положительным импульсом через диод D при разомкнутом ключе SA, осуществляется замыканием ключа SA . При этом через управляющую цепь протекает обратный ток I У.ОБР , величина которого, согласно упрощенной эквивалентной схеме (рис. 4

.7.7-б), равна


Если соблюдается условие I У.ОБР ≥ I ПР /B ЗАП то тиристор закрывается. Минимальная величина R Н , при которой можно использовать этот метод, имеет место при R Б = 0 и может быть найдена из соотношения


(4.7.3)

В качестве ключа SA можно использовать маломощные транзистор или тиристор (рис. 4.7.8).

В

отсутствии запирающего сигналаU ЗАП транзистор T и тиристор S2 заперты, а тиристор S1 может быть включен сигналом U ОТП . При поступлении сигнала U ЗАП ключ в запирающей цепи открывается, пропуская через себя ток запирания S1 . В схеме 4.7.8 -в, где используется разделенная нагрузка, величина сопротивления R Н2 может быть выбрана из условия (4.7.3) при R Н = R Н2 .

Для коммутации силовых цепей переменного тока используются преиму­щественно тиристоры. Они способны пропускать большие токи при малом падении напряжения, включаются сравнительно просто подачей на управляющий электрод маломощного импульса управления. При этом их основной недоста­ток – трудность выключения – в цепях переменного тока не играет роли, так как переменный ток обязательно два раза за период проходит через нуль, что обеспечивает автоматическое выключение тиристора.

Схема однофазного тиристорного ключа приведена на рис. 8.7. Им­пульсы управления формируются из анодных напряжений тиристоров.

Если на аноде тиристора Д1 положительная полуволна напряжения, то при замыкании ключа К через диод ДЗ и резистор К пройдет импульс тока управления тиристором Д1. В результате тиристор Д1 включится, анодное напряжение упадет почти до нуля, сигнал управления исчезнет, но тири­стор останется в проводящем состоянии до конца полупериода, пока анодный ток не пройдет через нуль. В другой полупериод, при противоположной полярности напряжения сети, аналогично включается тиристор Д2. Пока ключ К будет замкнут, тиристоры будут автома­тически поочередно включаться, обеспечивая прохождение тока от источника к нагрузке.

Такие тиристорные ключи являются основой однофазных и трехфазных коммутирующих устройств.

В качестве примера рассмотрим тиристорный контактор переменного тока с управлением от анодного напряжения.


Особенность полупроводниковых коммутационных устройств состоит в том, что они без принципиальных изменений в сило­вой части могут выполнять различные функции. Так, тиристорный блок, выполненный по схеме на рис. 8.5, одинаково успешно может работать и в качестве контактора, и в качестве выклю­чателя. Только заменой тиристоров (изменяется тип, класс по напряжению или группа прибора по динамическим параметрам) обеспечивается расширение области применения аппаратов по току или напряжению. Существенно можно повлиять на работу схемы и с помощью системы управления, что будет показано на примере работы тиристорного контактора (рис. 8.8).

Силовой блок контактора выполнен по схеме с встречно-па­раллельным соединением тиристоров VS1 и VS2. Управление им осуществляется с помощью цепи, состоящей из резисторов R1, R2, R3 и механического контакта S. Эта цепь подключена парал­лельно тиристорам, поэтому при замкнутом ключе S напряже­ние на ее элементах, и в частности на резисторах R1 и R3, из­меняется синхронно с анодным напряжением на тиристорах. А так как эти резисторы подключены параллельно управляю­щим цепям тиристоров, то напряжение одной полярности одно­временно нарастает и на аноде тиристора, и на его управляю­щем электроде.

Если это напряжение является положительным, например, по отношению к тиристору VS1, и снимаемое с рези­стора R1 напряжение превышает значение отпирающего напря­жения, тиристор VS1 включается. При изменении полярности напряжения таким же образом происходит включение тири­стора VS2.

Диоды VD1 и VD2 в схеме необходимы для защиты управляющих цепей тиристоров от обратного напряжения при отрицательном напряжении на их анодах.

Регулируемый резистор R2 в управляющей цепи выбирается из условия ограничения амплитуды импульса тока управления до допустимого для используемых тиристоров значения. Учитывая, что контакт S может быть замкнут в интервале полу­периода в любой момент времени, в том числе и в момент до­стижения напряжением сети амплитудного значения Um, сопро­тивление резистора определяем из выражения

,

где R G – собственное сопротивление управляющей цепи тири­стора.

Изменением сопротивления резистора R2 можно управлять током во входных цепях тиристоров и, следовательно, моментом включения их по отношению к началу полупериода напряжения (рис. 8.9). В результате контактор становится способным вы­полнять еще одну функцию – регулирование тока в нагрузке. Предельный угол задержки включения тиристоров a max , который можно обеспечить резисторной управляющей цепью, равен 90°. Сам процесс регулирования тока (напряжения, мощности) в цепи посредством изменения угла задержки включения тиристора a называют фазовым регулированием.

Зависимости изменения напряжения на активной нагрузке и тока в ней от угла a для рассматриваемой схемы определяются выраже­ниями

Минимальный угол задержки включения тиристоров при ак­тивной нагрузке a » 2°. Это объясняется тем, что все тиристоры имеют порог чувствительности по управляющей цепи, и, кроме того, изменяющееся по синусоидальному закону анод­ное напряжение тоже должно превысить пороговое значение, по крайней мере, в два раза.

Эти факторы приводят к по­явлению бестоковых пауз в кривой тока нагрузки (t п на рис. 8.9). Из-за разброса характеристик управления тиристо­ров эти паузы могут быть неодинаковы по длительности, что приводит к появлению постоянной составляющей в токе на­грузки.


При необходимости углы задержки включения тиристо­ров выравнивают регулированием токов управления посредством изменения сопротивления подстроечных резисторов R1 и R3 (рис. 8.8).

Ноу-хау разработки, а именно данное изобретение автора относится к области электротехники, а именно используется в аналоговых электронных схемах: электронном реле, следящих устройствах, генераторных схемах; в источниках питания постоянного тока, и предназначено использование тиристора (симистора) в переключающих устройствах для управления транзисторным ключом в динамичном режиме сравнимым логическим уровнем 1 и 0.

Целью является расширение функциональных возможностей тиристора в источнике постоянного тока, который направлен именно управлять транзисторным ключом с мощным выходом в динамичном режиме для коммутирования любой нагрузки.

Поставленная цель достигается тем, что способ управления транзисторным ключом на тиристоре (симисторе) заключается в том, что управляющий электрод транзисторного ключа любой проводимости подключают положительным смещением к тиристорному переключателю между анодом тиристора и катодом диода, коллектором или эмиттером транзистора, таким образом закрывают цепь управляющего электрода ключа транзистора от связи с минусом, в том числе и через управляющий электрод тиристора, а нагрузку подключают в цепь коллектора или эмиттера ключа транзистора между источником питания плюс или минус, через тиристорный переключатель протекает переменно изменяющийся рабочий ток от цепи питающего входа, тиристор открывается током больше удерживающего и переводит базу ключа транзистора в отрицательное смещение, а отключается током меньше удерживающего и переводит базу ключа транзистора в положительное смещение, причем ток через тиристор раскладывают на два плеча и устанавливают следующую оптимальную пропорцию тока удерживания, переменно изменяющий ток через цепь тиристорного переключателя 10%…20%, при менее котором тиристор отключается, остальной установочный ток через резистор положительного смещения базы ключа транзистора.

Установочный ток через тиристор раскладывают дополнительно через третье плечо задатчика тока, который подключают параллельно резистору положительного смещения ключа транзистора.

Рабочий ток через тиристорный переключатель устанавливают подбором токоограничивающего резистора, который вводят между общей точкой анода тиристора и катода диода, коллектором или эмиттером транзистора тиристорного переключателя.

Рабочим током тиристорного переключателя управляют транзистором любой проводимости, который вводят в цепь питающего входа тиристорного переключателя.

Принцип работы способа управления поясняется чертежами фиг.1-3.

Схема управления (фиг.1) содержит источник питания, транзисторный ключ 7, база которого через резистор 5 и плюс источника питания через резистор 4 подключена между анодом тиристора 8 и катодом диода 9 тиристорного переключателя 2. К тиристорному переключателю 2 подключен вход питающей цепи 6. Управляющий электрод тиристора 8 через резистор 3 подключен в цепь питающего входа 6, а через резистор 1 подключен с катодом тиристора 8 к минусу. Коллектор ключа транзистора 7 подключен к плюсу, а эмиттер через нагрузку Rн подключен к минусу.

Транзисторный ключ 7 может быть любой проводимости, а нагрузка Rн подключается к цепи эмиттера или коллектора между плюсом или минусом источника питания. Диод 9 закрывает базу ключа транзистора от связи с минусом, в том числе и через цепь управляющего электрода тиристора 8. Такую же функцию может выполнить переход коллектор-эмиттер или эмиттер-коллектор транзистора.

Управляющий электрод тиристора 8 может подключаться к питающему входу 6 через резистор, или конденсатор, или диод, или стабилитрон, или комбинированно. Резистор 5 с транзистором n-p-n проводимостью в некоторых случаях может не устанавливаться, который в основном ограничивает импульсы высокого напряжения при переключениях.

Схема работает следующим образом: с включением источника питания при закрытом состоянии тиристора 8 положительное смещение на базе закроет транзисторный ключ 7 с p-n-p проводимостью, а с n-p-n проводимостью откроет. При увеличении напряжения в цепи питающего входа 6, при токе больше удерживающего тиристор 8 откроется и перекинет в отрицательное смещение базу транзисторного ключа 7. Транзисторный ключ 7 с p-n-p проводимостью откроется и включит нагрузку Rн, а с n-p-n проводимостью закроется и отключит нагрузку Rн.

Для эффективной работы схемы подбирают оптимальную пропорцию распределения минимального тока удерживания тиристора 8. Ток тиристора 8 устанавливают подбором сопротивления резистора 4 из расчета около 80…90% от тока удерживания и 10…20% через цепь питающего входа 6 тиристорного переключателя 2, меньше при котором тиристор 8 будет закрываться. Для примера, испытания проводились в цепи источника питания 12 В на симисторе ТС10-6 и на тиристорах КУ101Е, КУ101Г, удерживающий ток у которых составлял 2 мА…5 мА, при этом величина тока порога отключения тиристора 8 была всегда постоянна. Вновь тиристор 8 открывался при повышении напряжения на 0,7…0,9 В на питающем входе 6, который был подключен к тиристорному переключателю 2 через резистор 3 к. При токе удерживания тиристора более 7 мА установку тока удерживания тиристора через вход питающей цепи 6 производят по способу, изложенному в чертеже фиг.2.

Фиг.2 отличается от фиг.1 тем, что цепь базы смещения ключа транзистора 7 подключена к общей точке анода тиристора 8 через введенный диод 11, а катод диода 11 подключен к плюсу через задатчик тока 10. Между общей точкой анода тиристора 8 и диода 9 введен токоограничивающий резистор 12. В этой схеме рассматриваются два способа управления: через задатчик тока 10 и через введенный резистор 12.

Диод 11 запирает от связи задатчик тока 10 с базой ключа транзистора 7 и улучшает динамику коммутации. Задатчик тока 10 является балластным элементом, может содержать построечный и токоограничивающий резистор. Им устанавливают минимальный ток удерживания тиристора 8 по цепи питающего входа 6.

Токоограничивающий резистор 12 может дополняться построечным резистором. Данным способом задают момент включения и отключения тиристора 8 в зависимости от величины напряжения цепи питающего входа 6.

Фиг.3 отличается от фиг.1 тем, что питающий вход 6 подключен к тиристорному переключателю 2 через введенный транзистор 14 и токоограничивающий резистор 13, а к базе подключен управляющий вход. Транзистор 14 может быть любой проводимости, который управляет рабочим током тиристора 8 или переводит тиристор 8 в открытое и закрытое состояние, который переключает транзисторный ключ 7.

К примеру, при подключении к управляющему входу генератора пилообразных импульсов на выходе ключа транзистора 7 будут сигналы прямоугольных импульсов, а на примере чертежа фиг.9 и фиг.10 показана работа простого электронного реле.

Устройство реализации способа, содержащее источник питания, транзисторный ключ n-p-n проводимости, база которого через защитный резистор и плюс источника питания через резистор смещения подключены между анодом тиристора и катодом диода, а управляющий электрод тиристора через резистор, или резистор, последовательно соединенный стабилитрон или диод подключен к аноду диода или к эмиттеру транзистора, через другой резистор подключен к минусу с катодом тиристора, а коллектор ключа транзистора подключен к плюсу источника питания или подключен через нагрузочный резистор, а общая точка эмиттера через промежуточный резистор подключена к аноду диода тиристорного переключателя, а вторая параллельная цепь эмиттера – к выходу генератора, причем эмиттер и точка смещения базы транзистора подключены к минусу через конденсатор, а база транзистора подключена с эмиттером через защитный резистор, а с минусом через защитный конденсатор.

Общая точка промежуточного резистора и конденсатора соединена с эмиттером транзистора через введенный диод.

Параллельно ключу транзистора подключен второй составной транзисторный ключ p-n-p проводимости, эмиттер выходного транзистора подключен с плюсом источника питания, а коллекторы обоих транзисторов подключены к минусу через нагрузку, а вход базы составного транзистора подключен через один резистор к плюсу источника питания, а через второй резистор к точке смещения базы ключа транзистора.

К выходу генератора подключен через токоограничивающий резистор анод диода второго тиристорного переключателя, а между катодом диода и анодом тиристора подключен управляющий электрод симистора, а фаза L через нагрузку и симисторный ключ подключена к общему проводу рабочего нуля N и корпуса.

Параллельно аноду и катоду тиристора подключен блокировочный транзистор любой проводимости, а база подключена к управляющему входу.

Между коллектором транзистора и источником питания плюс или нагрузочным резистором введен светодиод оптопары, а параллельно светодиоду подключен защитный стабилитрон или резистор, а коллектор транзистора оптопары подключен к плюсу, а эмиттер подключен через резистор к базе первого транзистора усилительного каскада, причем база которого подключена к минусу через защитный конденсатор, а к эмиттеру через защитный резистор, а коллектор подключен к плюсу источника питания через резистор или подключен к коллектору второго транзистора усилительного каскада, который подключен к плюсу источника питания через нагрузку, а база подключена к эмиттеру первого транзистора и подключена к минусу и эмиттеру через резистор или последовательно соединенный диод.

Устройство генератора (фиг.4) содержит источник питания, транзисторный ключ 7, база которого через резистор 5 и плюс источника питания через резистор 4 подключены между анодом тиристора 8 и катодом диода 9. Управляющий электрод тиристора 8 через резистор 3 подключен к аноду диода 9, а через резистор 1 подключен к минусу с катодом тиристора 8. Коллектор транзистора 7 подключен к плюсу источника питания. Общая точка эмиттера транзистора 7 через диод 19 и промежуточный резистор 18 подключена к диоду 9 тиристорного переключателя 2, а общая точка диода 19 и промежуточного резистора 18 подключена с минусом через конденсатор 20, а к эмиттеру подключен выход генератора. К точке смещения базы транзистора 7 подключен конденсатор 15, а база с минусом подключена через защитный конденсатор 16, а с эмиттером через защитный резистор 17.

Устройство работает следующим образом: с включением источника питания положительное смещение на базе откроет транзисторный ключ 7. Плюс эмиттера через диод 19 и промежуточный резистор 18 запитает тиристорный переключатель 2. Тиристор 8 откроется при токе, большем, чем ток удерживания, и переведет базу транзистора 7 в отрицательное смещение, ключ закроется. Ток через тиристор 8 станет меньше удерживающего, и тиристор 8 закроется. Вновь на базе транзистора 7 окажется положительное смещение, и цикл будет повторяться. Конденсатор 15 растягивает верхний (положительный) фронт открытого состояния транзистора 7, а конденсатор 20 растягивает нижний фронт закрытого состояния транзистора 7, и дополнительно подбором номинала промежуточного резистора 18 изменяют частоту переключений генератора. Промежуточный резистор 18 содержит один постоянный, или один построечный, или построечный дополняется последовательно и параллельно подключенными резисторами. Причем построечный резистор может быть в виде регулятора. Диод 19 запирает обратный разряд конденсатора в цепь выхода генератора. Управляющий электрод тиристора 8 подключают дополнительно с резистором 3 к аноду диода 9 или к эмиттеру транзистора 7 через стабилитрон или диод в случаях для установки порога открытия тиристора или для компенсации разницы падения напряжения перехода на диоде 9. Управляющему входу и питающему входу тиристора 8 при необходимости дополнительно подключают конденсатор для импульсного открытия тиристора.

Фиг.5 – устройство двухтактного генератора, отличающееся от фиг.4 тем, что коллектор ключа транзистора 7 подключен к источнику питания через нагрузочный резистор 24, а промежуточный резистор 18 подключен в виде построечного резистора, а к выходу генератора подключен контрольный светодиод 23 через резистор 22. Параллельно ключу транзистора 7 подключен составной транзисторный ключ на транзисторах 26 и 27 p-n-p проводимости. Вход базы составного транзисторного ключа 26 подключен через резистор 25 к плюсу источника питания, а через резистор 21 – к общей точке смещения базы ключа транзистора 7. Эмиттер выходного транзистора 27 подключен к плюсу, а коллекторы обоих транзисторов 26 и 27 подключены к минусу, через нагрузку – лампу 28.

Нагрузочный резистор 24 позволяет расширять диапазон регулирования сопротивления промежуточного резистора 18, с уменьшением которого улучшается динамика открывания ключа транзистора 7, но при этом ухудшается его закрывание.

Составной транзисторный ключ p-n-p проводимости открывается и закрывается синхронно с тиристором 8, а транзисторный ключ 7 работает асинхронно.

Испытания проводились на лампе накаливания до 80 Вт.

Коммутирование лампы 28 производилось низкой частотой и регулирование накала – большой частотой подбором конденсаторов 15 и 20 и регулятора промежуточного резистора 18. Схема работает при токе удерживания тиристора 8 в пределах 3-15 мА, при этом паспорта транзисторов могут отличаться, в том числе в других схемах.

Выделенные элементы в рамке под цифрой 29 – тиристорный переключатель 2, транзисторный ключ 7 и составной транзисторный ключ 26 и 27 – можно назвать тиристорно-транзисторный коммутатор или тиристорно-транзисторный ключ. Пример реализации в интегральном исполнении.

схемы устройства высоковольтного преобразователя

Фиг.7 и фиг.8 – схемы устройства высоковольтного преобразователя, отличающиеся тем, что в генераторе параллельно аноду и катоду тиристора 8 подключен транзистор 38 p-n-p проводимости, а к базе подключен управляющий вход 37, которая блокирует и включает генератор, или управляющий вход может работать, как задающий генератор. Причем транзистор 38 может быть любой проводимости.

Генератор схемы фиг.8 отличается от фиг.7 тем, что между нагрузочным резистором 24 и коллектором транзистора 7 введен светодиод 56 оптопары, а параллельно светодиоду 56 подключен стабилитрон 55. Коллектор транзистора 57 оптопары подключен к плюсу, а эмиттер подключен (фиг.7 – выход генератора подключен) через резистор 42 к базе первого транзистора 49 усилительного каскада. Причем база первого транзистора 49 подключена к минусу через защитный конденсатор 44, а к эмиттеру через защитный резистор 45. Коллектор первого транзистора 49 подключен через резистор 48 к плюсу между защитным диодом 47 и резистором 46 или подключается к коллектору второго транзистора 53, который подключен через защитный диод 52, нагрузка 54 (катушка зажигания) – к плюсу источника питания. Эмиттер первого транзистора 49 подключен к базе второго транзистора 53, база которого через резистор 50 и диод 51 подключена вместе с эмиттером к минусу. Плюс источника питания через защитный диод 47 и защитный резистор 46 подключен в схему питания генератора, а к плюсу и минусу генератора подключены параллельно конденсатор 39 и стабилитрон 43.

В качестве нагрузочного элемента и контроля к выходу генератора подключают контрольный светодиод 41 через резистор 40 или только резистор, который особенно необходим при недостаточном токе, через светодиод 56 оптопары для открытия транзисторного ключа 57, а при большом токе параллельно светодиоду 56 оптопары устанавливают шунтирующий резистор. С оптопарой типа РС817 (SHARP) схема может работать без дополнительного нагрузочного элемента.

Сигнал низкого уровня на управляющем входе 37 открывает транзистор 38, генератор при этом отключается. Положительный уровень на входе 37 закрывает транзистор 38, и генератор включится, который запустит выходной каскад усилителя.

Испытания проводились на катушке зажигания автомобиля Б117 автотрансформаторного типа, устойчивая пробойная дуга достигала максимально до 40 мм по схеме фиг.7, а по схеме фиг.8 до 30 мм. Снижение напряжения на выходе катушки производят подбором номиналов конденсатора 44, резистора 45, или дополнительно подключаются параллельно коллектору и эмиттеру выходного транзистора 53 конденсатор и стабилитрон.

Устройство может служить как многоимпульсный преобразователь для бесконтактных устройств зажигания на автомобиле и в сварочном производстве для работы оссилятора, или могут подключаться другие нагрузки, к примеру коммутироваться лампы накаливания или подключаться звуковая сирена и т.д. Причем схема может работать без защитных элементов 43, 46, 47 и 52.

Фиг.9 – устройство электронного реле. База транзистора 14 подключена к времязадающей цепочке, коллектор подключен к плюсу источника питания, а эмиттер подключен к питающему входу цепи тиристора 8 через токоограничивающий резистор 13 и диод 9. Резистор R4 – регулятор выдержки времени.

Устройство работает следующим образом

включаем источник питания, транзисторный ключ 7 закрыт. При кратковременном нажатии кнопки SB1 зарядится конденсатор С1, откроется транзистор 14, который откроет тиристор 8, а тиристор переключит транзисторный ключ 7, катушка реле К1 включится. По мере разряда конденсатора С1 происходит снижение напряжения на нем. Это приводит к снижению напряжения на эмиттере транзистора 14, и при токе, меньше удерживающего, тиристор 8 закроется. Положительное смещение на базе закроет транзисторный ключ 7, и реле К1 отключится. Устройство при данных номиналах элементов и при удерживающем токе тиристора 8 – в пределах 3-5 мА. Время выдержки может доходить до 30 минут, а погрешность при стабильном источнике питания – в пределах 2-3%.

Фиг.10 – устройство электронного реле на симисторе оптопары. Принцип работы аналогичен. Симистор оптопары типа МОС3063 или МОС3082, удерживающий ток у них в пределах 0,4-0,6 мА. По этой причине подключен составной транзисторный ключ (аналогично составному ключу на чертеже фиг.5) с большим входным сопротивлением. Управляющий вход светодиода оптопары подключен через стабилитрон и резистор, параллельно которым подключен вспомогательный конденсатор для импульсного открытия симистора. Стабилитрон служит для отсекания тока через светодиод оптопары при снижении напряжения на эмиттере транзистора 14. Этим добиваются увеличения времени выдержки.

При испытаниях время выдержки составило около 40 минут, а погрешность – в пределах 2%. Показатели значительно выше, чем на тиристоре КУ101.

Предлагается способ определения минимального тока удерживания тиристора любой структуры. Между источником питания плюс и минус подключают тиристорный ключ через токоограничивающий резистор и последовательно соединенный миллиамперметр или другой регистрирующий прибор. Причем параллельно источнику питания подключают электролитический конденсатор большой емкости. К управляющему входу через токоограничивающий резистор или конденсатор кратковременно подают импульс положительного напряжения. Фиксируют ток через тиристор по миллиамперметру, затем отключают источник питания. По мере разряда конденсатора будет снижаться ток через тиристор, и по моменту резкого отклонения стрелки миллиамперметра определяют минимальный ток удерживания.

Использование способа управления транзисторным ключом найдет применение в следующих электрических схемах устройств: электронное реле времени, к примеру коммутация катушек реле; следящих схемах, к примеру аварийные переключатели на блоках питания; генераторных схемах, к примеру высокочастотные сирены в охранных устройствах, высоковольтные преобразователи для катушек зажигания.

Составную часть устройства: тиристорный переключатель и транзисторный ключ – можно назвать тиристорно-транзисторный коммутатор или тиристорно-транзисторный ключ, который может реализоваться как единая интегральная схема. В этом случае понадобится регламентировать паспортные данные на минимальные токи удерживания.

На изобретение выдан патент Российской Федерации RU2343622
Автор(ы): Алексеев Альберт Герасимович, Алексеев Виталий Альбертович


Принцип работы тиристора

Абсолютно любой тиристор может быть в двух устойчивых состояниях – закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости и ток почти не идет, в открытом, наоборот полупроводник будет находится в состоянии высокой проводимости, ток проходит через него фактически без сопротивления

Можно сказать, что тиристор это электрический силовой управляемый ключ. Но по сути управляющий сигнал может только открыть полупроводник. Чтобы запереть его обратно, требуется выполнить условия, направленные на снижение прямого тока почти до нуля.

Структурно тиристор представляет последовательность четырех, слоев p и n типа, образующих структуру р-n-р-n и соединенных последовательно.

Одна из крайних областей, на которую подключают положительный полюс питания называют анод , р – типа
Другая, к которой подсоединяют отрицательное полюс напряжения, называют катод , – n типа
Управляющий электрод подключен к внутренним слоям.

Для того чтоб разобраться с работой тиристора рассмотрим несколько случаев, первый: напряжение на управляющий электрод не подается , тиристор подсоединен по схеме динистора – положительное напряжение поступает на анод, а отрицательное на катод, смотри рисунок.

В этом случае коллекторный p-n-переход тиристора находится в закрытом состоянии, а эмиттерный – открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение, следующее от источника питания, приложено к коллекторному переходу, из-за высокого сопротивления которого протекающий через полупроводниковый прибор ток имеет очень низкое значение.

На графике ВАХ это состояние актуально для участка отмеченного цифрой 1 .

При увеличении уровня напряжения, до определенного момента ток тиристора почти не растет. Но достигая условного критического уровня – напряжение включения U вкл , в динисторе появляются факторы, при которых в коллекторном переходе начинается резкий рост свободных носителей заряда, которое почти сразу же носит лавинный характер . В результате происходит обратимый электрический пробой (на представленном рисунке – точка 2). В p -области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -области, наоборот происходит накопление электронов. Рост концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах , через эмиттерные переходы начинается инжекция носителей заряда. Лавинообразный характер еще сильнее увеличивается, и приводит к переключению коллекторного перехода в открытое состоянии. Одновременно увеличивается ток по всем областям полупроводника, в результате происходит падением напряжения между катодом и анодом, показанный на графике выше отрезком отмеченным цифрой три. В этот момент времени динистор обладает отрицательным дифференциальным сопротивлением. На сопротивлении R n растет напряжение и полупроводник переключается.

После открытия коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви – отрезок №4. После переключения полупроводникового прибора, напряжение снижается до уровня одного вольта. В дальнейшем увеличение уровня напряжения или снижение сопротивления приведет к увеличению выходного тока, один в один, как и работе диода при его прямом включении. Если же уровень напряжение питания снизить, то высокое сопротивление коллекторного перехода, практически мгновенно восстанавливается, динистор закрывается, ток резко падает .

Напряжение включения U вкл , можно настраивать, внося в любой из промежуточных слоев, рядом с к коллекторным переходом, неосновные, для него носители заряда.

С этой целью используется специальный управляющий электрод , запитываемый от дополнительного источника, с которого следует управляющее напряжение – U упр . Как хорошо видно из графика – при росте U упр напряжение включения снижается.

Основные характеристики тиристоров

U вкл напряжение включения – при нем осуществляется переход тиристора в открытое состояние
U o6p.max – импульсное повторяющееся обратное напряжение при нем происходит электрический пробой p-n перехода. Для многих тиристоров будет верно выражение U o6p.max . = U вкл
I max – максимально допустимое значение тока
I ср – среднее значение тока за период U np – прямое падение напряжения при открытом тиристоре
I o6p.max – обратный максимальный ток начинающий течь при приложении U o6p.max , за счет перемещения неосновных носителей заряда
I удерж ток удержания – значение анодного тока, при котором осуществляется запирание тиристора
P max – максимальная рассеиваемая мощность
t откл – время отключения необходимое для запирания тиристора

Запираемые тиристоры – имеет классическую четырехслойную p-n-p-n структуру, но при этом обладает рядом конструктивных особенностей, дающих такую функциональную возможность, как полная управляемость. Благодаря такому воздействию от управляющего электрода, запираемые тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод поступает напряжение, противоположное тому, которое ранее открывает тиристор. Для запирания тиристора на управляющей электрод следует мощный, но короткий по длительности импульс отрицательного тока. При применении запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных. В схемотехнике, запираемые тиристоры активно применяются в роли электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников – тиристоров, они имеют пятислойную структуру.

Благодаря такой структуре полупроводника они имеют возможность пропускать ток в обоих направлениях – как от катода к аноду, так и от анода к катоду, а на управляющий электрод поступает напряжение обоих полярностей. Благодаря этому свойству вольт-амперная характеристика симистора имеет симметричный вид в обоих осях координат. Узнать о работе симистора вы можете из видеоурока, по ссылке ниже.


Принцип работы симистора

Если у стандартного тиристора имеются анод и катод то электроды симистора так описать нельзя т.к каждый уго электрод является и анодом и катодом одновременно. Поэтому симистор способен пропускать ток в обоих направлениях. Именно поэтому он отлично работает в цепях переменного тока.

Очень простой схемой, поясняющей принцип симистора является регулятор симисторный регулятор мощности.

После подачи напряжения на один из выводов симистора поступает переменное напряжение. На электрод, являющийся управляющим с диодного моста поступает отрицательное управляющее напряжение. При превышении порога включения симистор отпирается и ток поступает в подключенную нагрузку. В момент времени, когда на входе симистора меняется полярность напряжения он запирается. Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения тем быстрее срабатывает симистор и длительность импульса на нагрузке увеличивается. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также снижается. На выходе симисторного регулятора напряжение будет пилообразной формы с регулируемой длительностью импульса. Таким образом, регулируя управляющее напряжение мы можем изменять яркость лампочки накаливания или температуру жала паяльника подключенных в качестве нагрузки.

Итак симистор управляется как отрицательным так и положительным напряжением. Давайте выделим его минусы и плюсы.

Плюсы: низкая стоимость, большой срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и его обычно монтируют на радиаторе. Не работает на высоких частотах, так как не успевает переходить из открытого состояния в закрытое. Реагирует на внешниепомехи, вызывающие ложное срабатывание.

Следует также упомянуть о особенностях монтажа симисторов в современной электронной техники.

При малых нагрузках или если в ней протекают короткие импульсные токи, монтаж симисторов можно осуществлять без теплоотводящего радиатора. Во всех остальных случаях – его наличие строго обязательно.
К теплоотводу тиристор может фиксироваться крепежным зажимом или винтом
Для снижения вероятности ложного срабатывания из-за шумов, длина проводов должна быть минимальна. Для подсоединения рекомендуется использовать экранированный кабель или витую пару.

Или оптотиристоры специализированные полупроводники, конструктивной особенностью которого является наличие фотоэлемента, который является управляющим электродом.

Современной и перспективной разновидностью симистора являетсяо оптосимистор. Вместо управляющего электрода в корпусе имеется светодиод и управление происходит с помощью изменения напряжения питания на светодиоде. При попадании светового потока задонной мощности фотоэлемент переключает тиристор в открытое положение. Самой основной функцией в оптосимисторе является то, что между цепью управления и силовой имеется полная гальваническая развязка. Это создает просто отличный уровень и надежности конструкции.

Силовые ключи . Одним из главных моментов, влияющих на востребованность таких схем, служит низкая мощность, которую способен рассеять тиристор в схемах переключения. В запертом состоянии мощность практически не расходуется, т.к ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность невелика благодаря низким значениям напряжения

Пороговые устройства – в них реализуется главное свойство тиристоров – открываться при достижении напряжением нужного уровня. Это используется в фазовых регуляторах мощности и релаксационных генераторах

Для прерывания и включения-выключения используются запирающие тиристоры. Правда, в данном случае схемам необходима определенная доработка.

Экспериментальные устройства – в них применяется свойство тиристора обладать отрицательным сопротивление, находясь в переходном режиме

Принцип работы и свойства динистора, схемы на динисторах

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.

Ключ на базе симистора для коммутации нагрузок переменного тока Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

Ключ на базе симистора для коммутации нагрузок переменного тока

В.Г Петько, д.т.н, профессор, И.А. Рахимжанова, д.с.-х.н, А.М. Старожуков, ст. преподаватель, ФГБОУ ВО Оренбургский ГАУ

Для коммутации входных цепей контакторов и магнитных пускателей с целью автоматического управления электродвигателями (ЭД) и другими нагрузками часто используются бесконтактные ключи на тиристорах и симисторах, на управляющие входы которых в течение полупериода напряжения подаётся или постоянный управляющий ток, или серии импульсов [1—3]. Однако для открытия ключа и удержания его в открытом состоянии в течение всего полупериода сетевого напряжения достаточно подавать управляющие импульсы только в начале каждого из полупериодов. Постоянный ток управления или все остальные следующие друг за другом в течение полупериода импульсы после открытия ключа приводят лишь к излишней загрузке источника питания. Использование простого по устройству и малогабаритного бестрансформаторного источника питания на делителях напряжения приводит к снижению напряжения на выходе источника и возможному сбою других питаемых от этого источника узлов схемы управления состоянием ключа.

Недостатком управления ключом серией импульсов является также и то, что за короткое время импульса при индуктивной нагрузке ключа, каковой является катушка магнитного пускателя или контактора, ток не успевает возрасти до тока удержания симистора или тиристора, и они снова закрываются, как только импульс исчезает. Для устранения этого явления катушка магнитного пускателя шунтируется конденсатором, включённым последовательно с резистором, ограничивающим броски тока при подаче напряжения на конденсатор [4]. По сравнению с другими элементами устройства управления и конденсатор, и резистор относительно громоздки. Это создаёт проблемы при их размещении в блоке устройства управления.

Материал и методы исследования. Свободным от указанных недостатков является предлагаемый авторами ключ на базе симистора, на управляющий электрод которого подаются одиночные импульсы в начале каждого полупериода питающего напряжения. При этом длительность импульса ограничивается временем открытия симистора. На рисунке изображена схема этого ключа, в таблице — параметры элементной базы ключа.

Ключ состоит из симистора VS1, включённого последовательно с катушкой КМ1 магнитного пускателя, рассчитанного на переменное напряжение 220В, а также выполненного на комплементарной паре транзисторов VT1 и VT2 и резисторах R1…

R4 коммутатора тока, протекающего через управляющий электрод симистора. В свою очередь управление коммутатором (включение и отключение), а следовательно, и состоянием симистора осуществляется подачей тока управления 1у с выхода логического блока устройства управления во входную цепь ключа, содержащего конденсатор С1 и диоды УО1…УО4.

Дополнительно в схему ключа введён второй коммутатор, на транзисторах УТ3 и УТ4, блокирующий включение первого коммутатора в периоды, когда симистор открыт. Блокировка осуществляется по сигналу, поступающему на вход коммутатора (база транзистора УГ3) от схемы контроля состояния симистора, выполненной на транзисторах УТ5 и УТ6.

Источник питания ключа выполнен по простой бестрансформаторной схеме, включающей резистор R10, стабилитрон У05, диод УОб и конденсатор С2.

Результаты исследования. Работа ключа осуществляется в следующей последовательности. Если на вход ключа поступает сигнал отключения в виде тока положительной полярности ц конденсатор С1 заряжается положительно, транзистор УТ1, а следовательно, и транзистор УТ2 закрыты. Закрыт и симистор УБ1. Катушка КМ1 магнитного пускателя обесточена, нагрузка, в качестве которой чаще всего выступает электродвигатель той или иной технологической установки, отключена. При этом напряжение на аноде симистора близко к фазному напряжению сети, под действием которого через резистор R6 и диод УО4 на обкладку конденсатора С1 в положительный полупериод сетевого напряжения поступает положительный ток обратной связи, усиливающий действие входного сигнала. Отрицательная полуволна тока обратной связи будет сбрасываться через диод УО3 на нулевую шину.

Под действием напряжения с анода закрытого симистора через резистор R9 и базы транзисторов УТ5 и УТ6 на нулевую шину будет протекать ток

Вход

Рис. – Ключ переменного тока

Параметры элементной базы ключа [5, 6]:

R1 Рез-р С2-23-0,25-7,5Юм±10%-А-В-В 0Ж0467081ТУ

R2, R5, Рез-р С2-23-0,25-33к0м±5%-А-В-В 0Ж0467081ТУ

R3 Рез-р С2-23-0,25-200 Ом±5%-А-В-В 0Ж0467081ТУ

R4 Рез-р С2-23-0,25-360к0м±5%-А-В-В 0Ж0467081ТУ

R6 Рез-р С2-23-0,25-3 МОм±5%-А-В-В 0Ж0467081ТУ

R7, R8 Рез-р С2-23-0,5-56к0м±10%-А-В-В 0Ж0467081ТУ

R9 Рез-р С2-23-0,25-1,6 МОм±5%-А-В-В 0Ж0467081ТУ

R10 Рез-р С2-23-2-51 кОм±5%-А-В-В 0Ж0467081ТУ

C1 Конд-р К-53-19-6,3В-47мкФ±20%- ОЖО. 464 133ТУ

VS1 Триак ВТ 136 600D

VT1, VT3, VT5 Транзистор КТ3107Б ААО.336170ТУ

VT2, VT4, VT6 Транзистор КТ3102Б ААО.336122ТУ

VD5 Стабилитрон КС215Ж аАО.336211ТУ

VD1…VD4, VD6 Диод 1N4007

(в положительный полупериод через базу транзистора УТ6, а в отрицательный — через базу транзистора УТ5). Оба транзистора будут открыты, шунтируя переход эмиттер-база транзистора УТ3. Вследствие этого транзистор УТ3, а вместе с ним и транзистор УТ4 будут закрыты.

При разрешающем включение нагрузки сигнале поступление тока положительной полярности от логического блока устройства управления на вход ключа прекратится, и конденсатор С1 отрицательным током через резистор R5 зарядится отрицательно. Это приведёт к возникновению тока по цепи: «нулевая шина — эмиттер — база транзистора УТ1 — резистор R1 — обкладка конденсатора С1». Транзистор откроется. По цепи «нулевая шина — эмиттер — коллектор транзистора УГ1 — резистор Я2 — и (при закрытом транзисторе УТ4) база — эмиттер транзистора УТ2 — шина -15 В источника питания». Это повлечёт за собой открытие транзистора УТ2. На коллекторе транзистора УТ2 установится напряжение, близкое к -15В, под действием которого через управляющий переход симистора VS1 по цепи «нулевая шина — катод-управляющий электрод симистора — резистор R3 — коллектор — эмиттер транзистора УТ2 — шина -15В источника тока».

Симистор откроется, что приведёт в конечном итоге к подаче напряжения ~220В на катушку КМ1 магнитного пускателя, срабатыванию магнитного пускателя и включению нагрузки. А так как напряжение на аноде симистора упадёт до нуля, закроются транзисторы УТ5 и УТ6, откроются транзисторы УТ3 и УТ4. Последний зашунтирует переход эмиттер — база транзистора УТ2, что приведёт к его закрытию и прекращению протекания импульса тока через управляющий переход си-мистора. Следовательно, ток через управляющий переход симистора будет протекать ровно столько, сколько нужно для открытия симистора.

В начале следующего полупериода, пока си-мистор ещё не открыт, появившееся на его аноде

напряжение снова откроет транзисторы VT5 и VT6. Закроются транзисторы VT3 и VT4, расшунтируется переход эмиттер — база транзистора VT2 и при открытом транзисторе VT1 транзистор VT2 также откроется, подав ток управления на симистор ровно настолько, как было показано выше, насколько необходимо для открытия симистора.

Выводы. Предложенный ключ загружает источник питания ключа ничтожно малым током, не приводящим к понижению напряжения на выходе источника. Не требуется также и установка громоздких конденсатора и резистора, шунтирующих обмотку магнитного пускателя. Достоинством ключа является также и то, что за счёт наличия внутренней (через резистор R4) и внешней (через резистор R6) положительных обратных связей характеристика вход-выход ключа имеет гистерезис-ный характер. Это исключает вибрацию магнитной системы и дребезг контактов магнитного пускателя при переключении.

Ключ может быть изготовлен самостоятельно в условиях любого сельскохозяйственного предприятия (табл.).

Литература

1. АС СССР 1042145 А1, Тиристорный регулятор / Петько В.Г.; Заявит. и патентообладатель Оренбургский сельскохозяйственный институт; опубл. 15.09.1983. Бюл. № 34.

2. АС СССР 995193 А1, Устройство для предпусковой защиты трёхфазного электродвигателя от обрыва цепи обмоток и пробоя изоляции на корпус / Петько В.Г.; Заявит. и патентообладатель Оренбургский сельскохозяйственный институт; опубл. 15.09.1983. Бюл. № 34.

3. Петько В.Г. Комбинированная защита электродвигателей от аварийных режимов // Техника в сельском хозяйстве. 2000. № 4. С. 26-28.

4. Петько В.Г., Рахимжанова И.А., Старожуков А.М. Ключ для коммутации входных цепей контакторов и магнитных пускателей // Известия Оренбургского государственного аграрного университета. 2016. № 2 (58). С. 68-71.

5. Полупроводниковые приборы. Диоды выпрямительные, стабилитроны, тиристоры: справочник // А.Б. Гитцевич, А.А. Зайцев, В.В. Мокряков [и др.] / Под ред. А.В. Голо-медова. М.: Радио и связь, 1989. 528 с.

6. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: справочник / Н.Н. Акимов, Е.П. Ващуков, В.А. Прохоренко, Ю.П. Ходоренок. Минск: Беларусь, 1994. 591 с.

Симистор – это… Что такое Симистор?

Обозначение на схемах Эквивалентная схема симистора Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

Отличия тиристорных стабилизаторов от симисторных


В этой статье мы расскажем вам об основном отличии тиристорных стабилизаторов от симисторных, о деталях и нюансах этих двух типов электронных стабилизаторов напряжения.

Тиристорный и симисторный стабилизатор

 

Все стабилизаторы переменного напряжения моделей Ампер и Герц производства ЧП “НПФ “Элекс” по принципу действия относятся к типу ступенчатых автотрансформаторных стабилизаторов с коммутацией отводов трансформатора с помощью электронных ключей (реализованных на основе высоконадежных мощных полупроводниковых приборов – тиристоров или симисторов), управляемых высокоскоростным микроконтроллером. Во всех однофазных стабилизаторах Ампер и Герц в диапазоне до 40А включительно применены симисторы BTA41-600B производства STMicroelectronics (максимальное напряжение пробоя 600В, постоянный ток нагрузки 40А, ударный не повторяющийся ток в открытом состоянии равен 400А). 

Во всех однофазных стабилизаторах Ампер и Герц в диапазоне от 50А, а также во всех трехфазных стабилизаторах, силовые электронные ключи реализованы на тиристорах производства Ixys Semiconductor GmbH.

Фактически, симистор – это “симметричный тиристор”, он проводит ток в двух направлениях, и состоит из двух тиристоров в одном корпусе. 

симистор BTA41-600B
производства STMicroelectronics

Соответственно, для реализации электронного переключающего ключа достаточно всего одного симистора. Поскольку тиристор проводит ток только в одном направлении, то для работы в цепях переменного тока применяется встречно-параллельное соединение двух тиристоров.

Следовательно, один ключ, подключающий часть обмотки трансформатора, будет состоять уже не из одного, а двух тиристоров. Предотвратить возможный выход из строя стабилизатора из-за перегрева полупроводниковых приборов в процессе интенсивной работы и обеспечить качественный отвод тепла с применением системы принудительного охлаждения проще в случае ключа на двух корпусных тиристорах, чем на одном симисторе. Применение тиристоров обеспечивает еще более высокую кратковременную перегрузочную способность по току, что повышает надежность при коммутации таких нагрузок, как асинхронные электродвигатели, которым свойственны большие пусковые токи.

Электронные ключи однофазного стабилизатора Элекс Герц V3.0

Конструктивно все однофазные симисторные стабилизаторы «Элекс» (до 40А включительно) собраны на одной печатной плате, а все однофазные тиристорные (от 50А) – на 3-ёх печатных платах (плата входных ключей, плата выходных ключей и плата управления). Т.е., при более высокой себестоимости полупроводниковых приборов и их большем количестве и, соответственно, большей прайсовой цене тиристорные стабилизаторы обладают более высокой кратковременной перегрузочной способностью по току по сравнению с симисторными стабилизаторами при прочих равных условиях. Каких-либо принципиальных эксплуатационных отличий между симисторными и тиристорными стабилизаторами торговой марки Элекс Engineering нет.

Однофазный стабилизатор напряжения Элекс Ампер 16-1/25А в разобранном виде

Пульсар Лимитед – Энергия для Лучшей Жизни!

 

 


Что такое симистор – переключатель симистора »Электроника

Симисторы – это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности – их преимущество в том, что они могут переключать обе половины переменного цикла.


Triac, Diac, SCR Учебное пособие включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Симисторы – это электронные компоненты, которые широко используются в системах управления питанием переменного тока.Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока. Это делает схемы симистора идеальными для использования в различных приложениях, где требуется переключение мощности.

В частности, симисторные схемы используются в регуляторах освещенности для домашнего освещения, а также во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.

Благодаря своим характеристикам симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, а тиристоры используются для коммутации мощности переменного тока в очень тепловых режимах.

Среднетоковый симистор

Основы симистора

Симистор является развитием тиристора. В то время как тиристор может управлять током только в течение одной половины цикла, симистор управляет им в течение двух половин формы волны переменного тока.

Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя затворами, соединенными вместе, и анодом одного устройства, соединенным с катодом другого, и т. Д.

Форма сигнала переключения симистора

Тот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока может использоваться полный цикл.Для базовых схем с тиристорами используется только половина формы волны, а это означает, что в базовых схемах, в которых используются тиристоры, не будут использоваться обе половины цикла. Для использования обеих половин требуются два устройства. Однако симистору требуется только одно устройство для управления обеими половинами формы волны переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.

Символ симистора

Как и другие электронные компоненты, симистор имеет свой собственный символ схемы, который используется на принципиальных схемах, и это указывает на его двунаправленные свойства.Символ симистора можно рассматривать как пару символов тиристоров в противоположных смыслах, объединенных вместе.

Обозначение схемы симистора

Симистор, как и тиристор, имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие выводы подключены к тому, что фактически является катодом одного тиристора и анодом другого в пределах всего устройства.

Есть вентиль, который действует как спусковой крючок для включения устройства. В дополнение к этому, другие клеммы оба называются анодами или главными клеммами. Обычно они обозначаются как анод 1 и анод 2 или главный вывод 1 и главный вывод 2 (MT1 и MT2).При использовании симисторов MT1 и MT2 имеют очень похожие свойства.

Как работает симистор?

Прежде чем смотреть, как работает симистор, полезно понять, как работает тиристор. Таким образом, можно понять основные концепции более простого полупроводникового прибора, а затем применить их к более сложному симистору.

Что касается работы симистора, то из условного обозначения схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному.Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне гораздо сложнее.

Эквивалентная схема симистора

Структура симистора показана ниже, и можно увидеть, что есть несколько областей материала N-типа и P-типа, которые образуют фактически пару встречных тиристоров.

Базовая структура симистора

Симистор может работать разными способами – больше, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2.Он также может запускаться как положительными, так и отрицательными токами затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима или квадранта запуска:

  • I + Mode Ток MT2 равен + ve, ток затвора + ve
  • I- Mode Ток MT2 + ve, ток затвора -ve
  • III + Mode: Ток MT2 -ve, ток затвора + ve
  • III- Режим: Ток MT2 -ve, ток затвора -ve

Установлено, что чувствительность триггерного триггера по току максимальна, когда токи MT2 и затвор имеют одинаковую полярность, т.е.е. оба положительные или оба отрицательные. Если токи затвора и MT2 имеют противоположную полярность, тогда чувствительность обычно составляет примерно половину значения, когда они одинаковы.

Типичную ВАХ симистора можно увидеть на диаграмме ниже с обозначенными четырьмя различными квадрантами.

IV характеристика симистора

Применение симистора

Симисторы

используются во многих приложениях. Эти электронные компоненты часто используются при коммутации переменного тока малой и средней мощности.Там, где требуется переключение больших уровней мощности, обычно используются два тиристора / тиристора, поскольку ими легче управлять.

Тем не менее, симисторы широко используются во многих приложениях:

  • Управление освещением – особенно бытовые диммеры.
  • Управление вентиляторами и небольшими двигателями.
  • Электронные переключатели для общего переключения и управления переменным током

Естественно, существует множество других применений симисторов, но это одни из самых распространенных.

В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, включающим твердотельное реле в соответствии с входным сигналом.

Обычно в твердотельных реле светодиодный источник света или инфракрасного излучения и оптический симистор содержатся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.

Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.

Использование симисторов

При использовании симисторов следует обратить внимание на ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы получить от них максимальную производительность, необходимо понять несколько советов по использованию симисторов.

Было обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинами эти электронные компоненты не срабатывают симметрично.Это приводит к генерации гармоник: чем менее симметрично срабатывает симистор, тем выше уровень создаваемых гармоник. Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, и в результате симисторы не подходят для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как их срабатывание легче контролировать.

Чтобы помочь в преодолении проблемы несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диак (диодный переключатель переменного тока), часто подключается последовательно с затвором симистора.Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.

Это происходит из-за того, что характеристика переключения диака намного лучше, чем у симистора. Поскольку диак предотвращает прохождение тока затвора до тех пор, пока напряжение срабатывания триггера не достигнет определенного значения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.

Внутренняя схема симисторного регулятора освещенности

Примеры схем симистора

Есть много способов использования симисторов.Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми приборами.

  • Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель – он может активировать пусковой импульс переключателя малой мощности для включения симистора для управления гораздо более высокими уровнями мощности, которые могут быть возможны с помощью простой переключатель. Схема простого симисторного переключателя
  • Схема регулируемой мощности симистора или диммера: Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке.
    Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Можно использовать гораздо больше схем симистора. Устройство очень универсально и может использоваться в различных схемах, обычно для обеспечения различных форм переключения переменного тока.

Примечание по схемам и конструкции симистора:
Цепи симистора

могут переключать обе половины на переменную форму волны с помощью одного устройства, что делает их очень привлекательными для использования во многих коммутационных схемах переменного тока малой и средней мощности.

Подробнее о Симисторные схемы и конструкция

Характеристики симистора

Симисторы

имеют много характеристик, которые очень похожи на характеристики тиристоров, хотя, очевидно, они предназначены для работы симистора на обеих половинах цикла и должны интерпретироваться как таковые.

Однако их работа очень похожа, как и основные типы спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т.п., необходимы при проектировании схемы симистора, обеспечивая достаточный запас для надежной работы схемы.

Симисторы

– идеальные устройства для использования во многих приложениях переменного тока малой мощности. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, и их легко и легко реализовать. При использовании симисторов диаки часто включаются в схему, как упоминалось выше, чтобы помочь снизить уровень генерируемых гармоник.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Общие сведения о технических характеристиках симистора и параметрах таблицы данных »Примечания по электронике

Существует множество различных симисторов, от мала до велика, которые можно использовать в схемах – выбор правильного является ключом к успешной работе схемы симистора.


Triac, Diac, SCR Учебное пособие включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


При выборе симистора для конкретной схемы применения, важно выбрать тот, который будет способен работать требуемым образом и выдерживать напряжения и токи, которые ему необходимо выдерживать.

Ключом к выбору правильного симистора является понимание технических характеристик и параметров, содержащихся в технических описаниях. Таким образом можно узнать, какие цифры обозначают цифры, и, следовательно, выбрать лучшее устройство для схемы.

Технические характеристики симистора

: основные характеристики

Спецификации симистора

и тиристоров имеют много общего, как и следовало ожидать, но одно из основных различий заключается в том, что симисторы работают на обеих половинах цикла формы сигнала переменного тока.

В результате спецификации симистора должны учитывать это, и часто спецификации симистора включают количество квадрантов, в которых они работают.


Общие характеристики симистора и параметры паспорта
Спецификация Характеристики симистора / подробные сведения о параметрах
V DRM / V RRM Повторяющееся пиковое напряжение в закрытом состоянии Этот параметр представляет собой максимальное пиковое напряжение, допустимое на TRIAC.Этот параметр нельзя превышать даже мгновенно, иначе устройство может выйти из строя. Также всегда хорошо оставлять достаточный запас, чтобы учесть переходные процессы. Этот параметр указан для условий до максимальной температуры перехода. Также токи утечки (I DRM / I RRM ) также обычно определяются в этой спецификации.
I T (среднеквадратичное значение) Действующее значение тока в открытом состоянии В этой спецификации симистора указан максимально допустимый среднеквадратичный ток через устройство.Он указан для данной температуры. В различных технических характеристиках может быть указана температура окружающей среды, T a , температура корпуса, T c , или даже температура свинца, T l . Метод, используемый для определения температуры, обычно зависит от типа корпуса симистора.
dI / dt Максимальное повышение тока в открытом состоянии Существует спецификация максимальной скорости нарастания тока в открытом состоянии при включении симистора.Если это значение будет превышено, устройство может быть повреждено.
I 2 т Максимальная токовая защита Параметр I 2 t указывает предохранитель, который требуется для защиты симистора и его цепи. Обычно это время перегрузки по току 10 мс, но это будет указано в таблице данных.
I T (AV) Средний ток в открытом состоянии Этот параметр отличается от среднеквадратичного значения тока, поскольку он определяет средний ток, а не среднеквадратичное значение.Среднеквадратичное значение даст истинный эффект нагрева от тока.
I TSM Неповторяющийся импульсный ток в открытом состоянии Как следует из названия, этот параметр из таблицы данных для тиристоров определяет максимальный пиковый ток в устройстве в импульсных условиях. Необходимо посмотреть точные условия для рассматриваемого производителя, но они часто определяются для полусинусоидальной волны. Длительность указана для 50 Гц (продолжительность 10 мс) и 60 Гц (8.Длительность 3 мс). Это необходимо, потому что импульсный ток, превышающий максимальный, может вызвать отказ устройства.
I GT Ток срабатывания затвора Этот параметр представляет собой ток, требуемый в цепи затвора симистора, чтобы позволить симистору запускаться и фиксироваться во включенном состоянии при условии, что анодный катодный ток достаточен для поддержания протекания тока.
I GM Пиковый ток затвора Этот параметр спецификации представляет собой максимальный уровень тока затвора для симистора.
V GT Напряжение срабатывания затвора Эта спецификация отражает напряжение, которое необходимо приложить к затвору симистора, чтобы обеспечить достижение тока срабатывания затвора и срабатывание устройства.

Это некоторые из основных характеристик или параметров, которые включены в таблицы данных симистора. Они помогают выбрать лучший симистор для любой конкретной схемы.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Basic Triac-SCR Projects Circuits Tutorial

от Льюиса Лофлина

На этой странице обсуждаются базовые симисторы и тиристоры. Симистор – это двунаправленный трехконтактный двойной тиристорный переключатель (SCR). Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.

Симистор изготовлен путем объединения двух тиристоров в обратном параллельном соединении.Он используется в приложениях переменного тока, таких как регулирование яркости света, управление скоростью двигателя и т. Д. Симисторы также могут использоваться в микроконтроллере управления мощностью со схемой фазовой синхронизации.

Если кто-то не знаком с диодами и выпрямлением переменного тока, см. Следующее:


Включение / выключение диода

На рисунке выше изображен кремниевый управляемый выпрямитель (SCR) или тиристер. Это диод с «затвором». SCR не только проводит в одном направлении, как любой другой диод, но и затвор позволяет отключать и отключать саму проводимость.Когда переключатель ON нажат, SCR включается, и ток течет с отрицательного на положительный через SCR и нагрузку. После включения SCR будет оставаться включенным до тех пор, пока не будет нажат выключатель, нарушающий текущий путь.

Обратите внимание, что переключатель ON называется «нормально разомкнутым» (Н.О.) и при нажатии замыкает (замыкает) соединение. Выключатель OFF, называемый нормально замкнутым (N.C.), разрывает (размыкает) соединение при нажатии. Оба они кнопочные.

В цепи над нагрузкой есть лампа постоянного тока.Нажмите переключатель S1, и включатся и будут продолжать оставаться включенными, пока не будет нажат переключатель S2.

В этом примере мы разместили диод последовательно с переключателем включения / выключения затвора. Когда вы нажимаете переключатель ON, двигатель запускается, загорается свет и т. Д. Когда переключатель отпускается, питание прекращается без использования переключателя OFF. Это связано с тем, что входное напряжение переменного тока возвращается к нулю вольт на 180 и 360 градусов, отключая SCR. И как диод, SCR проводит только половину цикла.

В этом примере схемы мы разместили переменный резистор (потенциометр) последовательно с диодом затвора. (Это было также известно как ручка регулировки громкости старого стиля.) «Поворачивая ручку», мы можем изменить точку срабатывания при включении SCR только части полупериода или, если сопротивление достаточно, выключить SCR.


Это иллюстрирует процесс с двухполупериодным нефильтрованным постоянным током

В другом примечании мы можем управлять двухполупериодным пульсирующим нефильтрованным постоянным током с помощью тиристора.См. Также «Основы выпрямления и фильтрации переменного тока»

.

Подробнее см. Что такое светоактивированный кремниевый управляемый выпрямитель? (LASCR) и спецификация оптопары h21C6 SCR. (PDF файл)

Выше представлена ​​практическая схема тестирования SCR. Лампа загорится только при нажатии Sw3. Лампа будет иметь половинную яркость, потому что тиристор действует как полуволновой выпрямитель. R4 может находиться в диапазоне от 100 до 470 Ом. Лампа должна быть полностью выключена, если выключатель не нажат или устройство не неисправно.(Полностью или частично закорочено.)

Эта схема также удобна для сравнения различных тиристоров одного и того же номера детали. Например, однажды у меня была неисправная печатная плата с шестью тиристорами, но один тиристор из шести при работе включался при совершенно другом напряжении срабатывания, чем остальные пять. Лампа имела другой уровень яркости, чем остальные пять. Замена этого одного SCR устранила эту очень дорогую печатную плату.


Знакомство с симисторами

Симистор – это твердотельный переключатель переменного тока.Небольшой ток на клемме затвора может переключать очень большие токи переменного тока. Думайте о симисторе как о двух последовательно соединенных тиристорах, в которых катод одного тиристора соединен с анодом другого и наоборот. Ворота соединены между собой. Поскольку у нас есть две конфигурации типа SCR, можно переключать оба полупериода.

Примечание: я видел бумажные примеры использования двух тиристоров в качестве симистора, но это может не работать так же! Остерегайтесь этого.

В приведенном выше примере замыкание переключателя приведет к включению симистора.Идея состоит в том, чтобы использовать небольшой переключатель малой мощности для управления устройствами большой мощности, такими как двигатели или нагреватели. Опасность здесь заключается в том, что на самом переключателе присутствует высокое напряжение переменного тока. Это также может быть большой проблемой для твердотельных контроллеров, если они не используют небольшое реле, которое некоторые микроволновые печи делают именно так.

Выше представлена ​​практическая схема тестирования TRIAC. Нажмите любой переключатель, и лампа включится с половинной яркостью. Сожмите оба вместе на полную яркость. Это позволяет тестировать обе стороны SCR по отдельности.Яркость должна быть одинаковой для обеих сторон, иначе TRIAC неисправен. Когда ни один переключатель не нажат, лампа должна быть полностью выключена. R1 и R2 должны быть в диапазоне от 100 до 470 Ом.


Схема симистора с наилучшим откликом и диак.

Ключ к успешному срабатыванию симистора – убедиться, что затвор получает свое напряжение срабатывания со стороны главной клеммы 2 схемы (основной клеммы на противоположной стороне символа TRIAC от клеммы затвора). Идентификация клемм Mt1 и Mt2 должна выполняться по номеру детали TRIAC со ссылкой на технический паспорт или книгу.

DIAC, или «диод переменного тока», представляет собой триггерный диод, который проводит ток только после того, как его напряжение пробоя было мгновенно превышено. Когда это происходит, сопротивление DIAC резко уменьшается, что приводит к резкому уменьшению падения напряжения на самом DIAC, что приводит к резкому увеличению тока, протекающего через затвор симистора.

Это обеспечивает быструю и чистую резку TRIAC. DIAC остается в режиме проводимости до тех пор, пока напряжение не упадет до очень низкого значения, намного ниже напряжения срабатывания.Это называется удерживающим током. Ниже этого значения диак снова переключается в состояние высокого сопротивления (выключено). Это двунаправленное поведение, то есть обычно одинаковое как для положительного, так и для отрицательного полупериодов.

Большинство DIAC имеют напряжение пробоя около 30 В. Таким образом, их поведение в некоторой степени похоже на (но гораздо более точно контролируется и происходит при более низких напряжениях, чем) неоновая лампа.

ЦИАП

не имеют электрода затвора, в отличие от некоторых других тиристоров. Некоторые TRIAC содержат встроенный DIAC последовательно (я никогда не видел такого в полевых условиях) с терминалом «затвора» TRIAC для этой цели.ДИАП также называют симметричными триггерными диодами из-за симметрии их характеристической кривой. Поскольку DIAC являются двунаправленными устройствами, их выводы помечены не как анод и катод, а как A1 и A2 или Mt1 («Главный вывод») и Mt2. Большинство листов спецификаций не удосуживаются маркировать A1 / A2 или Mt1 / Mt2.

Также см. Как проверить DIAC


Диммер для коммерческих ламп в странах с напряжением 220 В. Br100 – диак.

Диак обеспечивает более чистое переключение симистора.Диоды – это специализированные диоды Шокли, соединенные последовательно.


Демпферы

Демпферная цепь (обычно RC-типа) часто используется между МТ1 и МТ2. Демпферные цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели. Кроме того, резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором и MT1 для дальнейшего предотвращения ложного срабатывания. Это может увеличить требуемый ток запуска и, возможно, задержку выключения при разрядке конденсатора.

В этой схеме выше “горячая” сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне. Резистор на 100 Ом и конденсатор 0,1 мкФ предназначены для демпфирования симистора. Эти компоненты должны использоваться с индуктивными нагрузками, такими как двигатели, контакторы и т. Д.

Для получения дополнительной информации о вышеуказанном оптроне см. Оптоизолятор серии moc30xx (файл в формате pdf)

DM014 AC90 ~ 2240V Triac Dimmer, 1-канальный беспроводной трехклавишный RF Triac Dimmer

Технические параметры

● Рабочая температура: -20-60 ℃

● Напряжение источника питания: 90 240 В переменного тока (50 ~ 60 Гц)

● Выход: 1 канал

● Частота передачи и приема: 433.92 МГц

● Размеры: Д104 × Ш68 × В40 мм

● Размер пульта дистанционного управления: L119,7 × W43,2 × h26,4 мм

● Размер упаковки: L122 × W45 × h232 мм

● Вес нетто: 150 г

● Вес брутто: 250 г

● Статическая потребляемая мощность: <1 Вт

● Выходной ток: <1A

● Выходная мощность: 110 В: <110 Вт, 220 В: <220 Вт

● Метод затемнения: затемнение после обрезки

● Расстояние дистанционного управления: менее 20 метров

Технические характеристики Загрузить

Размеры

Описание интерфейса

①: Выход, интерфейс выхода сигнала затемнения SCR, выходное напряжение составляет 90 ~ 240 В переменного тока, 50 ~ 60 Гц, а максимальный выходной ток составляет 1 А;

②: Вход, интерфейс ввода питания, диапазон входного напряжения составляет 90 ~ 240 В переменного тока, 50 ~ 60 Гц;

③: Соответствие кодовому ключу дистанционного управления.Контроллер может быть оснащен двумя пультами дистанционного управления для управления им. Используйте острый непроводящий предмет, чтобы нажать и удерживать кнопку сопоставления кода на контроллере, и в то же время нажмите и удерживайте кнопку на пульте дистанционного управления более 3 секунд, чтобы завершить сопоставление кода. Если код успешен, индикатор загрузки будет мигать. Индикатор загрузки первого парного пульта дистанционного управления мигнет 3 раза, а индикатор загрузки второго спаренного пульта дистанционного управления мигнет 6 раз. После этого каждая пара кодов заменит ранее закодированный пульт дистанционного управления.

④: красный индикатор питания, когда питание контроллера в норме, красный индикатор питания всегда горит;

⑤: сигнальный зеленый свет, когда контроллер обрабатывает сигнал дистанционного управления, сигнальный зеленый световой индикатор мигает;

Инструкции

На пульте ДУ контроллера есть три кнопки:

Открытый ключ в любом состоянии может выключить диммер;

Клавиша увеличения яркости, яркость будет увеличиваться на 1 уровень при каждом коротком нажатии, а яркость будет быстро увеличиваться до длительного нажатия 255;

Клавиша уменьшения яркости, яркость уменьшается на 1 уровень при каждом нажатии, а яркость уменьшается быстро, пока вы не нажмете 1

Типовое применение

Что такое TRIAC: схема переключения и приложения

Силовые электронные переключатели, такие как BJT, SCR, IGBT, MOSFET и TRIAC, являются очень важными компонентами, когда дело доходит до схем переключения, таких как преобразователи постоянного тока в постоянный ток , Контроллеры скорости двигателя , Драйверы двигателей и , контроллеры частоты и т. Д.У каждого устройства есть свои уникальные свойства, и поэтому у них есть свои специфические приложения. В этом руководстве мы узнаем о TRIAC , который является двунаправленным устройством, что означает, что он может работать в обоих направлениях. Благодаря этому свойству TRIAC используется исключительно там, где задействован источник синусоидального переменного тока.

Введение в TRIAC

Термин TRIAC обозначает TRI ode для A lternating C urrent.Это трехконтактное переключающее устройство, подобное тиристору (тиристору), но оно может работать в обоих направлениях, поскольку оно создается путем объединения двух тиристоров в антипараллельном состоянии. Символ и вывод TRIAC показаны ниже.

Поскольку TRIAC является двунаправленным устройством, ток может течь либо от MT1 к MT2, либо от MT2 к MT1, когда терминал затвора срабатывает. Для TRIAC это напряжение запуска, которое должно быть приложено к клемме затвора, может быть положительным или отрицательным по отношению к клемме MT2.Таким образом, это переводит TRIAC в четыре режима работы , как указано ниже

  • Положительное напряжение на MT2 и положительный импульс на затвор (Квадрант 1)
  • Положительное напряжение на MT2 и отрицательный импульс на затворе (квадрант 2)
  • Отрицательное напряжение на MT2 и положительный импульс на затворе (квадрант 3)
  • Отрицательное напряжение на MT2 и отрицательный импульс на затворе (квадрант 4)

V-I Характеристики TRIAC

На рисунке ниже показано состояние TRIAC в каждом квадранте.

Характеристики включения и выключения TRIAC можно понять, посмотрев на график характеристик VI для TRIAC, который также показан на рисунке выше. Поскольку TRIAC – это просто комбинация двух SCR в антипараллельном направлении, график характеристик V-I похож на график SCR. Как вы можете видеть, TRIAC в основном работает в 1-м квадранте и 3 -м квадранте .

Характеристики включения

Для включения симистора необходимо подать положительное или отрицательное напряжение затвора / импульс на вывод затвора симистора.Когда срабатывает один из двух SCR внутри, TRIAC начинает проводить в зависимости от полярности выводов MT1 и MT2. Если MT2 положительный, а MT1 отрицательный, первый SCR проводит, а если терминал MT2 отрицательный, а MT1 положительный, то второй SCR проводит. Таким образом, любой из SCR всегда остается включенным, что делает TRIAC идеальным для приложений переменного тока.

Минимальное напряжение, которое должно быть приложено к выводу затвора для включения симистора, называется пороговым напряжением затвора (V GT ) , а результирующий ток через вывод затвора называется пороговым током затвора (I GT ). Когда это напряжение подается на вывод затвора, TRIAC смещается в прямом направлении и начинает проводить, время, необходимое для перехода TRIAC из выключенного состояния в состояние включения, называется временем включения (t на ).

Точно так же, как и SCR, один раз включенный TRIAC останется включенным, пока он не будет переключен. Но для этого условия ток нагрузки через TRIAC должен быть больше или равен току фиксации (I L ) TRIAC. Таким образом, можно заключить, что TRIAC будет оставаться включенным даже после удаления стробирующего импульса, пока ток нагрузки больше, чем значение тока фиксации.

Подобно току фиксации, существует еще одно важное значение тока, называемое током удержания. Минимальное значение тока для поддержания TRIAC в режиме прямой проводимости называется удерживающим током (I H ). TRIAC войдет в режим непрерывной проводимости только после прохождения через ток удержания и ток фиксации, как показано на графике выше. Также значение тока фиксации любого TRIAC всегда будет больше, чем значение тока удержания.

Отключающие характеристики

Процесс выключения TRIAC или любого другого устройства питания называется коммутацией , а схема, связанная с ним для выполнения задачи, называется коммутационной схемой. Наиболее распространенный метод, используемый для отключения TRIAC, – это уменьшение тока нагрузки через TRIAC до тех пор, пока он не станет ниже значения тока удержания (I H ). Этот тип коммутации называется принудительной коммутацией в цепях постоянного тока.Мы узнаем больше о том, как TRIAC включается и выключается через его прикладные схемы.

Приложения TRIAC

TRIAC очень часто используется в местах, где необходимо контролировать мощность переменного тока, например, он используется в регуляторах скорости потолочных вентиляторов, схемах диммера ламп переменного тока и т. Д. Давайте рассмотрим простую схему переключения TRIAC, чтобы понять, как она работает на практике. .

Здесь мы использовали TRIAC для включения и выключения нагрузки переменного тока с помощью кнопки .Затем сетевой источник питания подключается к маленькой лампочке через TRIAC, как показано выше. Когда переключатель замкнут, фазное напряжение подается на вывод затвора TRIAC через резистор R1. Если это напряжение затвора выше порогового напряжения затвора, то через вывод затвора протекает ток, который будет больше, чем пороговый ток затвора.

В этом состоянии TRIAC входит в прямое смещение, и ток нагрузки будет течь через лампу. Если нагрузка потребляет достаточно тока, TRIAC переходит в состояние фиксации.Но поскольку это источник питания переменного тока, напряжение будет достигать нуля в течение каждого полупериода, и, следовательно, ток также мгновенно достигнет нуля. Следовательно, фиксация в этой схеме невозможна, и TRIAC выключится, как только выключатель откроется, и здесь не требуется никакой схемы коммутации. Этот тип коммутации TRIAC называется естественной коммутацией . Теперь давайте соберем эту схему на макетной плате с использованием BT136 TRIAC и проверим, как она работает.

При работе с источниками питания переменного тока необходимо соблюдать особую осторожность. В целях безопасности снижается рабочее напряжение. Стандартное напряжение переменного тока 230 В 50 Гц (в Индии) понижается до 12 В 50 Гц с помощью трансформатора.Маленькая лампочка подключена как нагрузка. После завершения экспериментальная установка выглядит так, как показано ниже.

Когда кнопка нажата, контакт затвора получает напряжение затвора и, таким образом, TRIAC включается. Лампа будет светиться, пока кнопка удерживается нажатой. После того, как кнопка будет отпущена, TRIAC будет в фиксированном состоянии, но поскольку входное напряжение переменного тока, ток, хотя TRIAC будет ниже удерживающего тока, и, таким образом, TRIAC выключится, полную работу также можно найти в . видео под номером в конце этого руководства.

Управление TRIAC с помощью микроконтроллеров

Когда TRIAC используются в качестве регуляторов освещенности или для управления фазой, импульс затвора, который подается на вывод затвора, должен управляться с помощью микроконтроллера. В этом случае штифт затвора также будет изолирован с помощью оптрона. Принципиальная схема для этого же показана ниже.

Для управления TRIAC с помощью сигнала 5V / 3.3V мы будем использовать оптрон , такой как MOC3021 , внутри которого есть TRIAC.Этот TRIAC может быть активирован 5 В / 3,3 В через светоизлучающий диод. Обычно сигнал ШИМ подается на вывод 1 st MOC3021, а частота и рабочий цикл сигнала ШИМ будут изменяться для получения желаемого выходного сигнала. Этот тип цепи обычно используется для регулировки яркости лампы или управления скоростью двигателя.

Эффект скорости – демпфирующие цепи

Все TRIAC страдают от проблемы, называемой эффектом скорости. То есть, когда клемма MT1 подвергается резкому увеличению напряжения из-за шума переключения, переходных процессов или скачков, TRIAC прерывает его в качестве сигнала переключения и автоматически включается.Это связано с наличием внутренней емкости между клеммами MT1 и MT2.

Самый простой способ решить эту проблему – использовать демпферную цепь. В приведенной выше схеме резистор R2 (50R) и конденсатор C1 (10 нФ) вместе образуют RC-цепь, которая действует как демпфирующая цепь. Любые пиковые напряжения, подаваемые на MT1, будут наблюдаться этой RC-цепью.

Эффект люфта

Другой распространенной проблемой, с которой столкнутся дизайнеры при использовании TRIAC, является эффект люфта.Эта проблема возникает, когда потенциометр используется для управления напряжением затвора TRIAC. Когда POT установлен на минимальное значение, на вывод затвора не будет подаваться напряжение, и, таким образом, нагрузка будет отключена. Но когда POT установлен на максимальное значение, TRIAC не включится из-за эффекта емкости между выводами MT1 и MT2, этот конденсатор должен найти путь для разряда, иначе он не позволит TRIAC включиться. Этот эффект называется эффектом люфта. Эту проблему можно решить, просто включив резистор последовательно со схемой переключения, чтобы обеспечить путь для разряда конденсатора.

Радиочастотные помехи (RFI) и TRIAC Цепи переключения

TRIAC более подвержены радиочастотным помехам (EFI), потому что при включении нагрузки ток внезапно повышается с 0 А до максимального значения, создавая, таким образом, всплеск электрических импульсов, который вызывает радиочастотный интерфейс. Чем больше ток нагрузки, тем хуже будут помехи. Использование цепей подавления, таких как LC-подавитель, решит эту проблему.

TRIAC – Ограничения

Когда требуется переключать формы сигнала переменного тока в обоих направлениях, очевидно, что TRIAC будет первым выбором, поскольку это единственный двунаправленный силовой электронный переключатель.Он действует так же, как два SCR, подключенных вплотную друг к другу, и также имеют одни и те же свойства. Хотя при проектировании схем с использованием TRIAC необходимо учитывать следующие ограничения.

  • TRIAC имеет внутри две структуры SCR, одна проводит в течение положительной половины, а другая – во время отрицательной. Но они не срабатывают симметрично, вызывая разницу в положительном и отрицательном полупериоде выхода
  • .
  • Кроме того, поскольку переключение не является симметричным, оно приводит к высокоуровневым гармоникам, которые вызывают шум в цепи.
  • Эта проблема гармоник также приведет к электромагнитным помехам (EMI).
  • При использовании индуктивных нагрузок существует огромный риск протекания пускового тока к источнику, поэтому необходимо убедиться, что TRIAC полностью отключен, а индуктивная нагрузка безопасно разряжается по альтернативному пути.

Мировой рынок оптопар с выходом симисторов и тиристоров 2021 Ключевые данные, выручка, будущее развитие, анализ тенденций и конкурентной среды к 2026 году

Отдел новостей MarketWatch не участвовал в создании этого контента.

23 мая 2021 г. (Лента новостей CDN через Comtex) – MarketQuest.biz представил аналитический обзор мирового рынка оптопар для симисторных и SCR-выходов в 2021 году по производителям, регионам, типу и применению, прогноз до 2026 года вместе с методами обмена, расходами на разработку, развивающимся ноу-хау, конкурентами бизнес-предприятий, ключевыми предприятиями. , и прогноз до 2026 года. Отчет определяет взгляды и мнения, высказанные потребителями. В отчете дается оценка тенденций, основанная на текущем и будущем анализе рынка.В отчете оценивается потребление, рыночная доля и темпы роста мирового рынка выходных оптопар симисторов и тиристоров. Прошлые и текущие рыночные оценки включаются в прогноз и анализ рынка.

Описание рынка:

В отчете предлагается внимательный подход к важным событиям, которые, как ожидается, будут иметь гигантский характер и повлияют на ход изменения продолжительности прогноза с 2021 по 2026 год. На рынке оптопар с выходом симистора и тиристора представлены подробные данные о доходах, темпах роста, продажах, доле рынка и ценовых тенденциях.Он включает в себя бизнес-схему и имидж продукции важных производителей на мировом рынке. Подробно разъясняется анализ конкурентной среды, а также тенденции роста рынка. Переходя к разделу факторов роста и ограничений, в отчете представлены все факторы, прямо или косвенно влияющие на рост рынка.

СКАЧАТЬ БЕСПЛАТНО ОБРАЗЕЦ ОТЧЕТА: https://www.marketquest.biz/sample-request/70106

ПРИМЕЧАНИЕ. Во время пандемии COVID-19 поведение потребителей изменилось во всех слоях общества.С другой стороны, отраслям промышленности придется реструктурировать свои стратегии, чтобы приспособиться к меняющимся требованиям рынка. В этом отчете представлен анализ воздействия COVID-19 на рынок выходных оптопар для симисторов и тиристоров, и он поможет вам разработать стратегию вашего бизнеса в соответствии с новыми отраслевыми нормами.

Глобальные ключевые игроки на рынке выходных симисторов и тиристоров: оптопары:

  • Компоненты Isocom
  • ON Semiconductor
  • Toshiba
  • Vishay
  • Центральный полупроводник
  • Everlight Electronics
  • Технология Lite-On
  • NTE Electronics
  • Panasonic
  • Электромонтажные работы
  • QT-Brightek
  • Острый

Объем отчета:

Исследование мирового рынка оптопар для симисторных и SCR-выходов сосредоточено на предоставлении ценных данных об инвестиционных карманах, возможностях роста и основных рыночных поставщиках, чтобы помочь клиентам понять методологии своих конкурентов.Исследование также сегментирует рынок на основе конечного пользователя, типа продукта, области применения и демографии на прогнозный период 2021–2026 годов. Этот документ демонстрирует всесторонний анализ критических аспектов, таких как факторы воздействия и конкурентная среда, с помощью жизненно важных ресурсов, таких как диаграммы, таблицы и инфографики.

В связи с раздвоением конкуренции, глобальный рынок выходных оптопар для симисторов и тиристоров разделен на:

  • Северная Америка (США, Канада и Мексика)
  • Европа (Германия, Франция, Великобритания, Россия, Италия и остальные страны Европы)
  • Азиатско-Тихоокеанский регион (Китай, Япония, Корея, Индия, Юго-Восточная Азия и Австралия)
  • Южная Америка (Бразилия, Аргентина, Колумбия и остальная часть Южной Америки)
  • Ближний Восток и Африка (Саудовская Аравия, ОАЭ, Египет, Южная Африка и остальные страны Ближнего Востока и Африки)

Что касается разветвления продукта, рынок разделен на:

Что касается разветвления сегмента приложений, рынок разделен на:

  • Коммерческий
  • Промышленные
  • Бытовая электротехника
  • Автомобильная промышленность

ДОСТУП К ПОЛНОМУ ОТЧЕТУ: https: // www.marketquest.biz/report/70106/global-triac-and-scr-output-photocouplers-market-2021-by-manufacturers-regions-type-and-application-forecast-to-2026

Кроме того, глобальные Triac и SCR Отчет о рынке выходных оптопары проливает свет на источники сырья, организационную структуру, использование мощностей, цепочку создания стоимости, структуру ценообразования, технологии, оборудование, канал сбыта спецификаций продукции и обслуживающие сегменты. В этом отчете выделены рыночные стратегии, применяемые вашими конкурентами и ведущими организациями.

Есть 12 глав, в которых подробно рассказывается о рынке выходных оптопар для симисторов и тиристоров.

Глава 1, Определяет глобальное внедрение на рынок оптопар с триаком и выходом SCR, цели исследования и методологию исследования рынка

Глава 2, Краткое изложение рынка, дает оценку типов и показывает оценку приложений

Глава 3 , Анализ рынка по игрокам, анализ конкурентной среды с указанием размера рынка, доли и коэффициента концентрации

Глава 4, Оценка регионов и придворных (или субрегионов)

Глава 5, 6 , 7, 8, 9 Объем рынка по странам, по типу, по приложению

Глава 10 , Прогноз рынка в последующие годы по типу, по приложению

Глава 11, Анализ ключевых игроков с подробной информацией о компании , предлагаемый продукт, выручка, валовая прибыль и доля рынка

Глава 12 , Результаты исследования и заключение

Настройка отчета:

Этот отчет можно настроить в соответствии с требованиями клиента.Пожалуйста, свяжитесь с нашим отделом продаж ([email protected]), который позаботится о том, чтобы вы получили отчет, соответствующий вашим потребностям. Вы также можете связаться с нашими руководителями по телефону + 1-201-465-4211, чтобы поделиться своими исследовательскими требованиями.

Свяжитесь с нами
Марк Стоун
Начальник отдела развития
Телефон: + 1-201-465-4211
Эл. Почта: [email protected]
Веб: www.marketquest.biz

Это контент распространялся через службу распространения пресс-релизов CDN Newswire.По вопросам пресс-релиза пишите нам по адресу [email protected].

COMTEX_387112862 / 2657 / 2021-05-23T08: 53: 15

Есть ли проблемы с этим пресс-релизом? Свяжитесь с поставщиком исходного кода Comtex по адресу [email protected]. Вы также можете связаться со службой поддержки клиентов MarketWatch через наш Центр поддержки клиентов.

Отдел новостей MarketWatch не участвовал в создании этого контента.

TRIAC в цепи переключателя диммера функционирует как

TRIAC в цепи переключателя диммера функционирует как электронный переключатель. Он контролирует интервалы, через которые электрический ток течет через лампочку. «Вкл» и «Выкл» TRIAC контролируется состоянием напряжения / тока затвора. Таблица данных для TRIAC предоставляет ключевую информацию о работе TRIAC.

1. Что означает «ТРИАК»? Учитывая схематический символ TRIAC, определите его три терминала: ворота, главный терминал 1 (MT1) и главный терминал 2 (MT2)

.

2.Какие условия включают (или запускают ТРИАК)?

3. При каких порогах тока / напряжения затвора срабатывает BTB08-600BW?

4. Когда TRIAC включен, какое приблизительно напряжение на главном терминале 1 (MT1) и главном терминале 2 (MT2)?

5. Когда TRIAC выключен, через TRIAC проходит очень небольшой ток, так называемый ток утечки. Примерно сколько тока утечки?

Цепь включения

TRIAC состоит из резистора (включая потенциометр) R2 и конденсатора C1 (RC-цепь).Учитывая напряжение питания синусоидальной волны, регулируя эффективное значение (регулируя настройку потенциометра), схема запуска устанавливает угол включения – фазовый сдвиг в течение каждого полупериода, который начинает проводить TRIAC.

1. Основываясь на результатах моделирования, какое максимальное значение R2, при котором BTB08 вообще может быть запущен? Обратите внимание, что если TRIAC не может быть запущен в течение положительного полупериода источника питания, это означает, что значение R2 слишком велико.

2. При текущем значении R2 сделайте яркость лампочки на каком-то промежуточном уровне. Что произойдет с яркостью при увеличении значения R2? И наоборот, если уменьшить значение R2, что произойдет с яркостью?

3. Если R2 = 470 Вт, насколько яркой будет лампочка?

4. Если конденсатор заменить на разомкнутую цепь, насколько яркой будет лампочка? Объясните причину.

Ключевой особенностью схемы диммера является управление мощностью, подаваемой на нагрузку (лампочку), с высоким КПД.

1. Кто-то может подсказать возможность подключить лампочку с потенциометром, чтобы сделать делитель напряжения на источнике питания. Мощность, подаваемая на лампочку, можно настроить с помощью потенциометра. В чем главный недостаток такого подхода?

2. Если напряжение на лампе представляет собой синусоиду с пиковым значением 20 мВ или меньше, загорится ли лампа визуально?

3. Какой график переменной схемы можно использовать, чтобы определить, имеет ли лампа промежуточную яркость? В чем заключается основная особенность следа, на которую нужно обращать внимание?

4.Когда лампа имеет промежуточную яркость, сколько раз она загорается за одну секунду?

5. Сравните максимальные значения напряжения лампы при яркости лампы 60% и 80% максимальной яркости, в каком случае максимальное значение выше? Найдите ответы на соответствующих смоделированных трассах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *